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GENERALIZED BOUNDARY VALUE PROBLEMS WITH ABSTRACT 
SIDE CONDITIONS AND THEIR ADJOINTS I 

R. С BROWN, Tuscaloosa and M. TVRD\'*), Praha 

(Received February 16, 1977) 

1. INTRODUCTION 

Suppose [of, b] is a compact interval of the reals. Let ЛС^ = ÄCj[a, b] and 
II^ = JI^\_a,h\, 1 й P < CO denote the spaces of functions у :\_a,b] -^ C" having 
absolutely continuous or L^-integrable components where C" is the complex m-
dimensional space (elemenis in C" are regarded as column vectors) under the usual 
Euclidean norm. L^ is the space of functions у : [a b] -> C" essentially bounded 
on [a, b]. For 1 ^ p ^ 00 and n = 1,2,... 

Consider the generalized boundary value problem 

(1,1) ^y:=Ao/ + Äy=f, 

Hy = r, 

where у e W^^'^, H : Ж '̂̂  -^ F is a linear continuous operator into a locally convex 
topological vector space F, and AQ, Л are к x m(k ^ m) matrices with columns 
in L^ and LI. 

In this paper we will study adjoints and Fredholm Alternatives for the system (1,1). 
In particular we extend results of several recent papers on generalized boundary 
value problems (see the monograph [22] or the survey paper [16] for a list) where F 
is finite dimensional. 

There have been basically two approaches in recent years to the adjoint theory of 
differential systems like (1,1). In the first place, if we take the norm on W^'^ to be 

(1Д) l|3'lk...,= ||y|U:="Z|/^->(a)|+b«lL. 

each W^'^ (l ^ p ^ oo, n = 1, 2,...) becomes a Banach space and (l,l) determines 
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a continuous operator 5£ : W^'^ ~> Д x F. Thus in the case 1 ^ p < oo, o^ possesses 
a unique adjoint . ^ * : Д x F* -> PF '̂̂ , where 1//? + l/^ = 1 if p > 1 and ^ == oo 
if p = 1. By determining c^* and showing that the range of S^ is closed, conditions 
for the solvability of (\S) can be stated in the form of Fredholm Alternatives. This 
continuous approach was initiated by D. WEXLER [28] and has since been developed 
by VEJVODA and TYRDY [22] —[27] for differential and integro-differential systems 
under Stieltjes boundary conditions. On .the other hand, И^ '̂̂  is also a dense subspace 
of L^ with respect to the norm of the space Д , and (1,1) generates an unbounded 
operator L\ye D{L) С Ц„ -^tfye L\ defined on the set D{L) of all yeW^'^ fulfilling 
Ну = 0. An adjoint operator or relation (if D(^L) is not dense in U^) S£^ exists in 
Д X 13^. This approach which generalizes the classical theory of ordinary differen­
tial operators in Hubert spaces was first applied to operators with general boundary 
conditions by A. M. KRALL in 1968 [14]. Recent papers stressing this point of view 
include CoDDiNGTON and DIJKSMA [8], [9], Brown [ 2 ] - [ 5 ] , Brown and Krall [6], 
[7], [17], Krall [14 ] - [16] and PARCHIMOVIC [19]. 

Of these approaches the first is the most general. It is not difficult to prove the 
normal solvability of ^ and to characterize its adjoint J^*. However, ^ * is an inte­
gral operator which is diff^erent from the formal Lagrange adjoint of an ordinary 
differential expression. On the other hand in the second "unbounded" setting L* 
amounts to an extension of the adjoint of an ordinary "maximal operator" to a larger 
domain of possibly nonsmooth functions. Further, from this point of view there exists 
significant applications of the adjoint to spline and optimization problems (cf. [4], 
[6]) and also to the theory of selfadjoint extensions of symmetric differential operators 
defined on nondense domains (cf. [8], [9]). Unfortunately L* has proved difficult to 
construct. Previous methods in the papers cited above have been both complicated 
and not as general as we would like, requiring for example either the existence of 
a Green's function or the finite dimensionality of F. This paper is an attempt at synthe­
sis: we show that the bounded and unbounded approaches are more closely related 
than has been hitherto realized. 

We conclude this section with a brief outline of the paper. Notation and prelimi­
nary facts concerning the representation of the operator И and the theory of adjoints 
of nondensely defined operators are developed in § 2. This furnishes the tools by which 
reasoning valid when dim F < со can be generalized. In § 3 we develop the conti­
nuous theory. Sufficient conditions for the normal solvability of J^ are given (Theorem 
3.12) and its adjoint ^ * is characterized (Theorem 3.4). §4 defines the "minimal" 
and "maximal" operators LQ and Ldetermined on L^ by (1,1) and finds their adjoints, 
while their normal solvability is obtained easily from Theorem 3.12. We restrict 
ourselves to ^ < oo. 

In the further parts of the paper we shall extend both the bounded and unbounded 
approaches to higher order operators and to the case p = со. The final section of the 
third part of the paper will sketch some applications of adjoint theory to the theory 
of splines and optimal control. 



2. PRELIMINARIES 

2.1. Basic notation. We now introduce the following additional notation which 
will be used throughout the paper. 

R^ is the space of column real m-vectors under the Euclidean norm. 
If Б is an m 1 x m2-matrix, then |ß | denotes its operator norm and JB* is its con­

jugate transpose. If Б(^) is a matrix valued function defined on [a, b], its L''-norm 
||JB||P is defined by 

(2Д) \\B\\^:=({\B\'dt) ' for l ^ p < c x ) , 

| | 5 | | ^ : = s u p e s s | ß ( r ) | . 
fs[a,b] 

In particular, when restricted to functions with values in C", Ц* ||̂ , is a norm in the 
Banach space L^ (1 ^ p ^ oo). We interpret equality between such functions in the 
almost everywhere sense. C^ = C^[^a, b] is the Banach space of continuous functions 
X : [a, b] -> C" equipped with the norm || ' Цсю-

If X, У are locally convex topological vector spaces, X x 7 denotes their cartesian 
product equipped with the usual topology. If X, У are normed spaces, then the norm 
on X X У is given by 

(2.2) \\{x, y)\\xxY '•= Ы\х + \\у\\г . 

where || • ||;̂  and || • ||y denote the norms on X, У, respectively. The notation T : X -^ Y 
means that Tis an operator defined on the whole space X and with range in У. Z* 
is the dual space of X and by [•, '"jx we denote the pairing on Z x Z* defined 
by [x, u]x ' = ^{^) for X e X and и e Z*. If Z is a normed space, the topology on Z * 
is the uniform operator norm topology. In a general case (when X need not be 
normed) the topology on X* is supposed to be such that for each x e Z the linear 
functional UEX'^ -> [^x,u]x is continuous. Simultaneously we shall consider the 
weak*-topology on Z * which is the weakest topology on Z * possessing this property. 
For M cz X and N с Z * their closures are denoted respectively by M and N. The 
weak*-closure of iV c Z * is denoted by с1*(ДГ). Recall that и e cl*(iV) iff" for every 
subset g CI Z with at most a finite number of elements there exists a sequence 
{u^} с N such that [x, u^ — u]x -> 0 for each x e Q. The pairing on (X x Y) x 
X (Z* X y*) is given by 

(2.3) [(x, j ) , (M, vJjxxY ' = [x, u]x + [j^, V]Y for (x, j ) e Z x У, 

{и, v)eX^ X У* . 

Let us recall that the dual spaces to C", Ц„ and W^'^ (l ^ p < oo, n = 1, 2 , . . . ) 
may be identified with the spaces C", 13^ and W^'^, respectively, where ifp + Ijq = 1 



if p > 1 and ^ = 00 if p = 1, while 

(2,4) [c, d]cm :=d^c = Y d,c, for cdeC"^, 
i = l 

(2.5) [x, u\i^^p : = [x, U]L : = м*х df for хеЦ„ and w e Д , , 

(2.6) [у, .]^„„., : = [у, . ] ^ : ^'iV^-Xa))* j;«(a) + [/">, .<">], . 
j = 0 

We shall often omit the subscripts from the pairing or norm notations and rely on the 
context to indicate precisely which pairing is meant. 

Given M cz X and N a Z*, we denote 

M-̂  := {w eX* : [x, w] = 0 for all xeM], 
^N := [xeX :\x,u\=^ for all ueN] . 

Clearly, M^ is a weakly*-closed subspace of Z* and ^N is a closed subspace of Z. 
Moreover (cf. RUDIN [21], 4.7), if M and N are linear subspaces of Z and Z*, respec­
tively, then 

(2.7) \M^) = M , (̂ iV)-̂  = cl*(N). 

Notice that N a N a cl*(iV) for every Â  с Z*. 

2.2. Adjoint and pre-adjoint relations. Let Z, 7 be locally convex topological 
vector spaces and let The a linear operator having the domain D(T) in Z and the range 
R{T) in y. iV(r) and G{T) denote its null space {xeX :Tx = 0} and its graph 
{{x, Tx)eX X У : X e i)(T)}, respectively. If D{T) = Z and Tis continuous, then it is 
known that T possesses a unique adjoint T* which is a linear continuous operator 
defined on the whole У* with values in Z* and such that 

(2.8) [Tx, V]Y = [x, T^vjx for all x e D{T) and г; G У* . 

In a general case when Г need not be continuous and D{T) need not be dense in Z, 
we define 

(2.9) G(T*) : = {(w, V)EX'' X Y^: [Tx, V]Y = [x, u]x for all x e D{T)} , 

(2.10) D(T*) := (y e У*: there exists w e Z* such that (м, Î;) G G(T*)} , 

(2.11) Ä(T*) := {M G Z * : there exists veY"^ such that (w, i;) G G(r*)} 

and 

(2.12) T*v : = {w G Z* : (w, i;) G G(T*)} for i? G D(r*) . 
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Since G{T'^) = С{—Ту, G(T'^) is a linear weakly*-closed (hence also closed) mani­
fold in Z * X y* for every T. The multivalued mapping T* of D{T'^) с 7* into X* 
is called the adjoint relation to T, D(T*) is its domain, JR(T*) its range and 0(7"^) its 
graph. The null space N(T^) of T* is defined as 

(2.13) N{T'') := {t; e 7* : [Tx, i?]y = 0 for all x E D{T)} . 

Obviously N{T^) = К{ту. Consequently Щт) = \К{ТУ) = "^N(7*). In particular, 
if R{T) is closed, then R(T) = -^ЩТ"^) (T is normally solvable). T* is an operator 
(T*Î ; has a unique value for every ve D(T*)) if and only if T*(0) = {O}. Further 
since 

(2.14) T*(0) = {M G X * : [x, w] = 0 for all x e D{T)} = D(T)"^ 

and •^T*(0) = D(T), T* is an operator if and only if D{T) is dense in X. Obviously 
in this case T* is the adjoint operator to T. 

If G(T) is closed (T is closed), then N(T) = ^R{T^) and с1*(Я(Т*)) = N{T)\ 
while C1*(Ä(T*)) = Я(Т*) if and only if Щг^) = R{T^) and this occurs if and only 
if R{T) is closed in Y. Obviously the closedness of G{T) implies the closedness of 
G{-T). Moreover, since j ; e •^/)(Т*) if and only if {0.y)e^G{T^) = G{^) = 
= G{-T), we have ^D{T'') = {0} and hence C1*(JD(T*)) = D ( T * ) = У*. 

If X**, 7** are dual spaces to Z * and 7*, respectively, the linear relation (Т*)* = 
= T** with graph 

ЦТ^**) :=: С{-Т''У = {G{Tff с Z** X 7** , 

domain 

2)( J**) : = {w e X**: there is z e 7** such that (w, z) e G{T'''')] 

and range 

i^(r**) : - {z 6 7**: there is weX'''' such that (w, z) e G ( T * * ) } 

is called the second adjoint of T. By (2,14), T**(0) = 2)(Г*)-^. Since D(T*) = 7*, 
T**(0) = {0} so that T** is an operator. If X** = X and Г** = Y{X, 7are reflexive) 
we may also write G{T'''') = •^G(-T*) - \G{T^) = G ( T ) . Hence Tis closed if and 
only if T** = T. 

Let S' be a linear operator having domain in 7* and range in X*. The linear rela­
tion *5 with graph 

G(*S) = ^G{-S) c=X X 7 , 

domain 

i)(*S) = [xeX\ there is j e 7 such that (x, j;) e G(*5)} 
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and range 

Я(*5) = (у e У: there is x e X such that (x, y) e G(*S')} 

is called the pre-adjoint of S. In the same way as for adjoints we have 

i)(*S) = X and с1*(Я(5)) = iV(*S)-^, 

* where iV(*S) = { x e Z : (x, 0 ) G G(*S)}. Since (^G(S))^ = cl*(G(S)), S is weakly 
closed if and only if G((*5)*) : - G(-*S)- ' = {•^G{S)y = G{S), i.e. if (*S)* = 5. 
If iS is weakiy*-closed, then i^(*S) = • îV(5), while 7^(5) is weakly*-closed if and only 
if it is closed and this occurs if and only if R(^S) is closed. Moreover, if 5 = T* 
for some linear operator Twith D{T) = X and R(T) С Y, then G(*5) = G{'^{T^)) = 
= G{T) and Tis closed if and only if *(Т*) = T. 

Obviously, if the linear operators T^ :X -^ Y and T2 : X -^ Y are such that 
G{Ti) с G(T2), then G{T^) c= G{T^). Analogously, if S^, S^ : У* -^ X* and G(5i) cz 
cz 0(82), then G(*52) cz G(*5i). 

For further details concerning adjoint and pre-adjoint relations (as well as the 
proofs of the statements given here without proof) see Section 2 of Coddington, 
Dijksma [9] (cf. also ARENS [1] and Brown [5]). 

2.3. Lemma. Let F be a linear topological space and 1 ^ p < со. Then H : 
: W^'^ -^ F is a linear continuous operator if and only if there exist linear con­
tinuous operators Uj : С^„ -^ F and V : И^-^ F such that 

n-l 

(2.15) Ну = Y. Uj(y^'^) + ^3^^"^) for each у e Ж^'^ . 
j=o 

Proof. Let и J and F be given. Since for any y e W^'^ and j = 0, 1 , . . . , n — 1 

(2.16) /J\t) =" Y ' ^^^^ /'^'\a) + 
i = 0 il 

+ ' (^ . . . (^ r" ' 'V">df„ Adr„_ , - iV . . ' ) d f , on [ a , b ] , 

it follows from the Holder inequality that 

r- йТ ^ Ц ^ l/^^'M + ÇÎ^^^) Il/1|p й e<-">|i>'|k, 
Setting v{t) = y^"\t) and Uj(t) = {t - ayjjl y^^\a) (j = 0, 1 , . . . , n - l) and defining 
the operators JJj and F by 

üj:yBw;::'^Vj{u;)eF (; = o,i,...,n-i), 
V -.ув ИС'" -* V{v) 6 F, 
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n-l 

we can write Я = ^ l7y + F. Since these Üj and Fare continuous, H is continuous. 
j = 0 

On the other hand, let a linear operator Я : FF '̂̂  -> F be continuous. Define for 
J = 0, 1, ...,n - 1 

Uj:ueC„-^H(^^-—^u{a)\EF and F : t;e Д„-> ЯwGF 

where 

4 0 = [ ( l Y - - - ( r '^d^«]^^«- iy-V^i on [ a , b ] . 

It is clear that Uj and Fare continuous. Now (2,15) follows from (2,16). 

2.4. If jp is a Banach space, then Uj {j = 0, 1,..., n — l) and Fcan be represented 
by abstract integrals. For example, Uj are integrable with respect to a certain F 
valued countably additive regular measures defined on the Borel sets of [a, fe] (see 
[10], p. 318, 492 for details). A similar representation theory exists for Fin terms of 
an abstract generalization of the Riesz representation theorem (cf. PETTIS [20]). 
Such an approach would generalize earlier work in which the boundary conditions 
were represented by systems of ordinary Stieltjes integrals, and has been exploited 
by HÖNIG in the monograph [12] dealing with the construction of Green's functions 
for problems with abstract boundary conditions (cf. [13]). 

Since in all calculations of this paper the boundary conditions appear only in the 
form [Яу, (pi, (p G F*, it will be sufficient for our purposes to make use of the fol­
lowing obvious relation valid for p, 1 ^ p < oo. 

(2,17) [Hy,(p]p=[y,H^cp]j^ = 

= "Z ((Я»(^"> {a)Y y^^\a) + f ((Я»(">)* y^""^ dt 

for all yeW^'P and cp e F* , 
where the function 

(2,18) (Я» (0 ="Z (Я»0> (a) Lf)^ + 
j = 0 j \ 

+ |7Г7...(Г"\Я>У"^^^^^^ on [a,b] 

belongs to W^'^ with ijp + Ijq == lif p > 1 and ^ = oo if p = 1. 
Further, since by Lemma 2.3 

(2,19) [Ну, cp-], = "i\uj{/J^), cp], + [F(/">), cp], 
j = 0 

for any У e Tf̂ '" and (p e F* , 
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we obtain for ye W^'^ and cp e F^ 

(2.20) [Vj{/^^1 cf], = ((Я»<^> {ay /^\a) {j = 0, 1, ,..,n - 1) , 

V^cp ••= (Я*(р)^''^ . 

I f l < j 7 ^ o o , F = (*i^)* and H = (*Я)* for some locally convex topological 
vector space *F and a linear continuous operator *Я : *F -> W^'^ (where Ijp + Ifq = 
= 1 if p < 00 and q = 1 if p = oo; *Я is the pre-adjoint of Я), we have for every 
Ф e *F a function *Яф e W^'^ such that 

(2.21) [cp, Ну]., = [*Яф, у],, =^j:{/''\a)y {^cpf^ (a) + 
j = 0 

+ I (>^̂ "0* (*^<P)̂ ''̂  d̂  for any у e W^'^ . Г (/"))* (*Я(p)(''^ 

The identities (2,17)— (2,21) will be used freely throughout the paper. In particular, 
we shall usually write V^cp for (Н'^срУ"^ and similarly 

(2,22) *7ф = (*Яф)̂ "> for (pe^'F . 

3. CONTINUOUS THEORY 

Throughout this section we suppose 

3.1. Assumptions. 1 й P S 
00, AQ and A are fc x m-matrix valued functions, 

к ^ m, AQ is esentially bounded on [a, b], A is L^-integrable on [a, b] if p < oo 
and essentially bounded on [a, b] if p = oo. F is a locally convex topological vector 
space and Я : Pf̂ *̂  -> F is a linear and continuous operator; ^ is a number such that 
1/JP + 1/^ = 1 if 1 < p < 00, ^ = 00 if /7 = 1 and ^ = 1 if p = oo. 

The symbols ( Я » (a), F*(p, {''Hep) (a) and *F^ are defined by (2,17)-(2,22). 
3.2. Definition. Let ^ : W^'^' -^ Uj, x F and ^ o *• ̂ m'"" -> Д x F x C^'" be 

given by 

Using the Minkowski and Holder inequalities we obtain the following 

3.3. Lemma. ^ and ^Q are linear continuous operators, 
(In fact, for any у e W^^^ we have |Kĵ i|p ^ ( | | ^ | U + ^ | И | | Р ) i|j^||i.p where 

X = {b - af"' if p > 1 and X = 1 if JP = 1.) 

14 



It follows that the adjoints if* : L\ x JF* -^ W^'^ and ^ * : Д x F* x C^̂ " -> 
-» PF '̂̂  of i f and ifo ^xist for 1 ^ jP < oo and satisfy the Green relations 

(ЗД) [ i f J, (z, (p)] = [y, J^*(z, (p)]^ 

and 

(3,2) [ifоУ. (^, <P, a, iS)] = [ j , i f *(z, Ф, a, ß)~\w 

for all 3; e Pf^'^ z G Д , cpeF'^^oc and jS e C". The left-hand pairings in (3,1) and 
(3.2) are on (Ц, x F) x ( 4 x F*) and ( Д x F x C '̂") x Д x F* x C^^), 
respectively, while the right-hand ones are given by (2,6). 

Our aim now will be to find the analytic form of ^"^ and ^*, 

3.4. Theorem. Letl S p < 00. Then the adjoint Se"" : Д x F* -> Pf̂ '̂  is given by 

(3.3) ^%z, cp) {t) = ^""{z, (p) (a) + Г ^A'^z + F > + f Ä*z drX ds , 

t e [a, b] , 

^* (z , ^) (a) = j A^z ds + (Я*(р) (a) / o r z G Д and cp e F* , 

Proof. Writing (3,1) explicitly (see (2,3)-(2,6) and (2,17)), we have 

z'^Ao/ dt + z*^3; dr + ((Я*(р) (a))* X«) + {У'срУ / dt = 
Ja Ja Ja 

= f (^*(z, <р)У* у' dt + ( if *(z, cp) (a))* y{a) . 

Integrating |* z*Ay dt by parts and rearranging terms gives 

f L*Ao + ( F » * + I z*A ds - (if*(z, ^ ) ) ' * ly ' d( + 

+ j f z*^ df + ( ( Я » (a))* - ( if *(z, (p) (a))*l j;(a) = 0 

for any yeW^'^,ze 13^_ and (p G F*. Since this represents tlie zero functional on W^'", 

{^*{z, (p))' = Atz + {y*ç) + Г A*z ds , 

<£*{z, ip) (a) = Г Л*г ds + (Я*с?) (Й) 

15 



for z e Д and cp e f^. Integrating the first expression completes the proof, 

3.5. Corollary. / / 1 g p < oo, then 

(3.4) i f *(z, cp, a, ß) (0 = i f î(z, cp, a, i?) (a) + 

+ I IA^Z + 7*Ф + I Л*2 d i l ds + ß{t - a), te [a, b] , 

i f *(z, Ф, a, jß) (a) = f A^z dt + (Я*ф) (a) + jß + a 

for all zeL\\ cp e F'', a, j S e C " . 

Proof. Setting 

Яо : J 'e Ж^-Р-> Xa) 6 F X C -̂" := f 0 , 
V(b)/ 

we have for any y e Wj^'^, cp e F*, a and ß eC^ 

[Яо}^, ((^, a, )ß)] : = \Hy, cp\ + a* j (a) + ß^ y{b) = 

= { ( ( Я » ( ö ) ) * + a* + jß*} j (a) + f { ( F » * + jS*} /dt. 

Replacing in (3,3) V^cp by F*(p + j8 and (Я*ф) (a) by (Я*ф) {a) + ос + ß we 
obtain (3,4). 

3.6. Remark. If, in addition to 3.1, also 
(3.5) 1 < JP ̂  00, F = (*F)* and H = (*Я)* for some locally convex topological 

vector space *F and linear continuous operator *Я : *F -> 1^^'^, 
we denote for z e W^'^ and (p e*F 

(3.6) *if(z, ф) (t) = "^^{z, cp) (a) + f b * z + (*F<p) + f A*z d i j ds , 

t e [of, b] , 

*^{z, cp) (a) = j yl*z dr + (*Яс)) (a) . 

It is easy to check that the operator *if : Д x *F -> If '̂̂  defined by (3,6) fulfils 
(*if)* = if, i.e. *if is the pre-adjoint of ^ and ^ is weakly*-closed in И;^'^ x 
X ( 4 X F). 

16 



Similarly, by an obvious modification of (3,4) we would obtain an analytical 
representation for the pre-adjoint *ifo ^^ -^o-

At this point we introduce a new notation which will be convenient in the remainder 
of the paper. 

3.7. Notation. Given z e L\ and ф e Ц^ {i S q й <=^) such that AQZ -\- ф e AC^, 
we denote 

(3.7) ^+(z, Ф) := -{Atz + ФУ + A'^z . 

In terms of Notation 3.7 we have 

3.8. Corollary. Let 1 ^ p < со, then N[^^) consists of all pairs (z, (p) E Lf x F* 
such that 

(3.8) Atz + фЕ AC^ , 

(3.9) ^ + (z, Ф) = 0 a.e. on [a, b] , 

(3.10) [Atz + îA] (Ь) = 0 , [Atz + ф] (а) = (Н^ср) (а) 

for some ф = V^cp a.e. on [a, b~\. 

Proof. By Theorem 3.4, c^*(z, cp) = 0 if and only if 

(3.11) I }^Atz + 7*ф + j A^z d i j ds = 0 on [a, b] 

and 

(3.12) f ^*z dt + ( Я » (a) = 0 . 

Dilferentiating (3,11) we obtain 

ri{t):= [Atz + F > ] + ^*z ds = 0 a.e. on [a, b] 

If ф{t) := (V^cp) (t) - rj{t) on [a, b], then ф = F*^ a.e. on [a, b] and 

(3,13) [Atz •i-ф']{t) + { A'^zds = 0 on [a, b ] . 

In particular. Atz + ф E AC^, [Atz + ф] {b) = О and in virtue of (3,12)? 
[Atz + lA] (a) = (Я*ф)(а). Finally, differentiating (3,13) gives (3,9). 
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3.9. Corollary. 1/1^р<оэ, then iV(^o) consists of all (z, cp, a, ß) e L\ x F* x 
X C^'" such that (3,8) and (3,9) hold for some ij/ = V^cp a.e. on [a, b] and 

(3.14) a = [^*z + Ф] (a) - [H^cp) (a) , ß= ^ {A^z + ^ ] (b) . 

Proof. By Corollaries 3.5 and 3.8 iV(^*) is the set of all (z, <p, a, jö) e Lf x F* x 
X C^'" for which there exists x e Д such that x = V'^cp + jö a.e. on [a, b], 

(3.15) ^*z + / G ^ C , , 

(3.16) /+(z, x) = 0 a.e. on [a, b] 

and 

(3.17) [^*z + x] («) = ( Я » (a) + a + i9 , [^*z + ;̂ ] (b) = 0 , 

If we put \l/{t) := x(0 — ß^ then î  = F*^ a.e. on [a, b] and the conditions (3,15), 
(3,16) and (3,17) reduce to (3,8), (3,9) and (3,14), respectively. This completes the 
proof. 

3.10. Remark. The modification of assertions 3.8 and 3.9 in the case that (3,5) 
holds is obvious (cf. 3.6 and 3.7). 

3.11. Notation. ÄQ and Л are the m x m-matrices formed by the first m rows of ^o 
and A, respectively. 

3.12. Theorem. If AQ is invertible a.e. on [a, b] and AQ^ is essentially bounded 
on [a, b], then ^ and S^Q have closed ranges in IFj^ x F and Д x F x C^'", 
respectively. 

Proof. It is sufficient to prove that R{£^) is closed. Let AQ^ be essentially bounded 
on [a, b]. Then there exist linear bounded operators Ф : C" -^ W^'^ and W : IF^-^ 
-» W^'^ such that for every/G Ü^ and с e С" the function 

x = фс + Wf 

is the unique solution of the initial value problem 

ÄQX' + AX = f a.e. on [a, b] , x{a) = с 

in ACjn. (If X denotes the fundamental matrix solution of the corresponding homo­
geneous equation, then 

(Фс) (t) = X{t) с , (Wf) (t) = X{t) Cx-'fds on [a, b] .) 
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Then 

Let us denote P :== Д „ ^ x F. Write 

Let g e Ц„ and ^ e F. Then {g, Q) e R{L) if and only if there exists с e C" such that 

(3,18) ЩФс) = Q - H{Wg) : = Т{д, Q) . 

Clearly, T: Цп X F -^ F is linear and continuous. Define G : C" -^ F by 0c = 
= Н(Фс), then © is also linear and continuous. Furthermore, in virtue of (3,18), 
R{^) = T~^ R(G). Since the domain of 0 is C", its range is finite dimensional and 
thus closed. Because Tis continuous, i^(^) must be closed too. 

3.13. Remark. Theorem 3.12 is in the case к = m due to Wexler [28]. Our approach 
is essentially the same. 

As a direct consequence of Theorem 3.12 we have 

3.14. Theorem (Fredholm Alternatives). Under the assumptions of Theorem 
3.12 we have 

(i) jR(^) = Щ^% N{^^) = R{^y, R{^o) = M ^ o ) ^nd N{^t) = R{^oV 
if 1 ^ p < CO ; 

(ii) if (3,5) holds, then R{^) = iV(*^)-^, iV(*^) = Щ^), R{^o) = M*=^o)^ 
and iV(*^e) = Щ^о)-

3.15. Remark. Furthermore, we have 

R(^^) = N{^y , N{^) = -^i^(^*), N{^o) = {0} and 

R{^ *)= N{^o)^ = K'^ if 1 ^ P < 00 
and 

i?(*^) = •Ljv(^), N{^) = R{*^Y , N(^o) = {0} and 

i^(*^o) = ^m*' if I < P й oo and (3,5) holds . 

3.16. Remark. ^ being continuous, it is closed. Thus if 1 < p < oo and F is 
reflexive, then <^** = j ^ . 
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4. "UNBOUNDED" THEORY {p Ф oo) 

In this section we endow W^'^ with the IT-norm (2,1) so that it can be viewed as 
a dense subspace of L^. The homogeneous system corresponding to (1,1) determines 
a pair of unbounded maximal and minimal operators L, LQ having domain in U^ 
and range in L^. 

Throughout the section we assume that the hypotheses of Theorem 3.12 hold. 

4.1. Assumptions. AQ,A,H,F and p, q satisfy 3.1. Furthermore, the m x m-
matrix ÄQ formed by the first m rows of AQ (cf. 3.11) is invertible a.e. on [a, Ъ\ 
and ÄQ^ is essentially bounded on [a, b]. We shall restrict ourselves to the case 
p Ф 00. (Nevertheless, the assertions 4.3 and 4.4 are true also for p ~ со.) 

4.2. Definition. L is the operator L^ -> Д with the definition domain 

(4.1) D:={yeU^:yG W^'' and Ну = 0} 

and with values 

Ly := i^y for у E D , 

LQ is the restriction of L to 

(4.2) D,:={yeD:y{a) = y{b) = 0}. 

Clearly 

R{L) = {/ E Д : (/, 0) e R{^)} and R(LO) = {/ e Д : (/, 0) e R{^,)} , 

Since by Theorem 3.12 R{^) and R{^o) are closed, it follows that R{L) and R{LQ) 
are also closed. 

4.3. Theorem. Linear operators Land LQ have closed ranges. 
The purpose of this section is to determine the adjoints L*, L* of L and LQ. In 

general, D and Do are not dense in П^ (cf. [7]) and hence L*, L* are relations in 
13^ X Д characterized by their graphs 

(4.3) GiL"^) = {{u, z) e LI x Д : [ О , z] = [j;, w] for all у E D} 

and 

(4.4) G{ÜQ) = {{и, z) E LI X Д : [ О , z] = [j;, u] for all y E DQ} , 

respectively (cf. (2,9)).*) 

*) Throughout this section [•, •] means the pairing in L^ X L^ or L^ x Lf according to the 
circumstances. 
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In virtue of the Fredholm Alternatives for nondensely defined operators with 
closed range (cf. 2.2) we have 

4.4. Theorem. / / 1 ^ p < oo, then 

R{L) = ЩЬ"") , N{L'') = R{Lf , 

Ä(Lo) = ^N(4) , N{Ll) = R{LoY. 

4.5. Theorem. The graph G[L*) of the adjoint relation L* to L is the set of all 
couples (u, z) e 13^ x I3^for which there exists \j/ e I3„ such that 

(4.5) Alz + фе AC^ , 

(4.6) M = ^^(z, Ф) := [A*z + ф]' + A*z , 

(4.7) [Atz + .A] (fe) = 0 

and 

(4.8) [A^z + lA]* (a) X«) + f ^*J' dt = 0 /or аП yeD. 

Proof, a) Let (м, z) e G(L'^) C: Д X Д . Then by the definition (4,3) we have for 
all J G D 

0 = [^y, z] - [y, u] = f z*(Aoj' + Лу) dr - f M*}; dr. 
Ja Ja 

Integrating by parts we obtain further 

f f {A*z - u) dtX y{a) + Г ("^^z + f (^*z - u) dtV y' df = 0 for all yeD. 

Let i/̂  6 13^ be such that 

(4.9) [A^z + (̂ ] (0 + Г (Л*г - w) dt = О for any t e [a, b] . 

Then 

(4.10) a* y{a) - j ф'^у' dt = 0 for all yeD 

where 

(4.11) a : = f (^*z - M)dteC'". 

It follows immediately from (4,9) that AQZ + ij/ h absolutely continuous on [a, b] 

21 



and vanishes at Г = Ь (i.e. (4,5) and (4.7) hold). Moreover, differentiation of (4,9) 
yields (4,6). Inserting (4,6) and (4,7) into (4,11) we obtain 

a = Ç[Atz + ФУ dt = -[A*oZ + ф] {a), 

Hence (4,10) reduces to (4,8). To summarize: if (u, z) e G{L'^), then there exists 
ф e 4 , such that (4 ,5)- (4,8) hold. 

b) Let (w, z) e Ц„ x Д and let ф e Д , be such that (4,5)-(4,8) hold. Then using 
the integration-by-parfs formula we obtain for every y e D 

лЬ r*b 

\ u*ydt= - \ [A^z + ф}'* ydt + 
Ja Ja 

z*Ay dt 

= -[Atz + ФУ у 
b i*b f*b 

+ {z*Ao + Ф*) y' dt + z'^Ay dt = 
a J a Ja 

f z*(/3;) d̂  - [Atz + ФУ + ф'^/ dt f z*(/y) dt, 

Consequently (м, z) e G{L'^) and this completes the proof. 

4.6. Corollary. Let us denote by DQ the set of the derivatives of all functions 
from DQ. Then G[L%) is the set of all couples (w, z) e 13^ x Д for which there 
exists Ф e {DQY such that (4,5) and (4,6) hold. 

Proof. By 4.5 G(LO) is the set of all couples (м, Z)G 13^ x Д for which there 
exists X e 13^ such that 

Atz + x^AC^, w = / + ( z , z ) , [Atz + x]{b) = 0 

and (since y{a) = 0 for all у e DQ) 

I X^y' dt = 0 for all yeDQ 

Since /+(z, lA + ^) = /+(z, Ф) for all z e Д , ф e U^ and д e C", it is easy to verify 
that this happens if and only if there exists ф e 13^ such that (4,5) and (4,6) hold and 

(4,12) Г ф^'у' dt = О for all J e Do (i.e. ф e (DQ)^) , 

4.7. Remark. Let us notice that in the proofs of Theorem 4.5 and of its corollary 
4.6 we used neither the assumption about the essential boundedness of AQ^ nor the 
special forms (4,1), (4,2) of the definition domains D, DQ of the operators L, LQ. 
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We needed only that D с PF^'^, Do с W^'^ and y{a) = y{b) = 0 for any у e DQ. 
Hence the characterization (4,5) — (4,8) of the adjoint L* obtained in 4.5 is true also for 
operators L defined on an arbitrary linear subset D of W^ '^ and with values Аду' + Ay 
where AQ and A satisfy Assumptions 3.1. (^AQ need not contain an invertible sub-
matrix AQ as required in 4.1.) Analogously, if AQ, A fulfill 3.1 and DQ CZ W^'^ is 
such that y(a) = y(b) = 0 for each у e DQ, then (w, z)e L% x Д belongs to G(Lo) 
if and only if there exists ф e {DQY such that (4,5) and (4,6) hold. 

The following alternative characterization of L* makes use of the special form 
(4,1) of the definition domain D of L, 

4.8. Theorem. G(L*) is the set of all (w, z) e 13^ x 13^ for which there exist Ce W^'^ 
and its derivative C' e Д , such that 

(4ДЗ) Atz + CeAC^, 

(4.14) и = /^(z , 0 ci-e, on [a, b] , 

(4.15) [^*z + Г] (b) = 0 , [^*z + CI (a) = C{a) , 

(4.16) С e с1*(Я(Я*)) (ï/ze weak^-closure in Wj,'^). 

Proof, a) Let (w, z) e G(L*) . Then there exists ф e L% such that (4,5)-(4,8) hold. 
Let us put 

(4.17) C(a) = [Atz + Ф] (a) , C(0 = C(«) + f lA dr for te [a, b] . 

Then the relations (4,13) —(4,15) follows directly from (4,5) —(4,7). Furthermore we 
have by (4,8) and (4,17) 

Ma) y(a) + I C/ dt = 0 for all yeD. %a)y{a)+ f Cy< 

It means that l^e D^ a Wj,'^ (in the sense of the pairing (2,6)). As D = N{H) and 
Я : Щ^'Р -> F is continuous, we have D^ = М{ну = С1*(А(Я*)) (cf. 2.2), i.e. (4,16) 
holds. 

b) On the other hand, if (м, z) e Д„ x 1%, Ce Ж^̂ '̂  and С ^ L% are such that 
(4,13)-(4,16) hold, then it is easy to verify that (w, z) and ф = С fulfil (4,5)-(4,8). 

This complete the proof. 

4.9. Remark. Let us recall that (cf. 2.3) Ну = Vy' for у e DQ where F i s a linear 
continuous operator mapping L^ into F. Let us denote by Ж the operator 

(4,18) W:weni,-^(vwS wdT\eF X C"" =:Ф. 
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Then D'o = N{W) and 

(4.19) {D'oY = N(Wy = cl*(i^(lF*)) (the weak^-closure in Д , ) . 

Furthermore, as 

[Ww, {(p, а)]ф = [Fw, (p]p + a* w di = [F*ç> + a]* w dt 
Ja Ja 

for all w eLF^, cpeF^ and осе С'", the adjoint Ж* : Ф* = i^* x C^ -^ Д„ of W is 
given by 

PF* : (cp, a) e Ф* -> F*(p + a e Д„ . 
Consequently 

(4.20) i^(PF*) = ^(F*) + C"', 

the set of all rj e 13^ for which there exists an m-vector a such that the function rj — oc 
belongs to R^V'^). (C" stands here for the set of all m-vector valued functions con­
stant on [a, b].) By (4,19) and (4,20) we have 

{D'oY = cl*(i^(F*) + C") . 

Since JR(F*) + C"̂  с cl*(i^(F*)) + C" and cl*(i^(F*)) + C" is weakly*-closed in L^ 
(cf. Rudin [21], 1.42), it follows that 

{D'oY c: cl*(^(F*)) + C^ . 

On the other hand, from the definition of the weak*-closure we obtain easily 

cl*(^(F*)) + C" c: cl*(i^(F*) + C") = (DX • 
Hence 

(4.21) {D'oY = cl*(i?(F*)) + C" . 

This enables us to prove the following theorem. 

4.10. Theorem. G(Lo) is the set of all (u, z) e 13^ x Д for which there exists 
ф e C1*(Ä(F*)) such that (4,5) and (4,6) hold. 

Proof. Let us denote by GQ the set of all (w, z) e 13^ x Д for which there exists 
i/̂  6 cl*(E(F*)) such that A^z + ф EAC^ and и = ^^{z,\j/) = -\A%z + \\i\ + 
+ Л*2. Since cl*(^(F*)) c: {D'^ by (4,21), it follows immediately from 4.6 that 
Gl c= G(L*o). 

On the other hand, if (w, z) e G{Ü^, then by 4.6 and (4,21) there exist ф e C1*(K(F*)) 
and a e C" such that 

и = / ""(Z, Ф + a) = -[A^z + Ф + ocj + A'^z = 

= -[Atz + ФУ + A^z = ^^{z,ф) 
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and 
(4.22) . Atz + ф + ae АС^ . 

Obviously, (4,22) implies that A^^z + ф e ЛС^. Hence G{ÛQ) = GQ and this completes 
the proof. 

4.11. Remark. Given 'à cp e F*, there exists z e Д such that AQZ + F*(p e AC„„ 
/+(z, V'^^(P)ELI, [Atz + F > ] (a) = ( Я » (a), [A^z + V^(p] (b) = 0. In fact, 
put z* = (C*, 0) where 

Ф) = -Л-40 [l̂ *«?) (0 + (H^f) («) ̂ ] • 

4.12. Remark. If 1 < p < 00, then L^ is reflexive andiV = cl*(iV) for any N с U^, 
Thus, in this case we may replace the weak*-closure C1*(JR(F*)) of JR(F*) in the charac­
terization of L* given in 4.10 by the norm closure R{V^). Analogously for L*. 

4.13. Remark. Notice that by 4.8 the definition domain D^L"^) of the adjoint 
relation L* to L is the set of all z e Д for which there exist С e cl*(i^(H*)) and its 
derivative С ^ L\ such that A^z + С ^ ЛС^, /+(z, СО^Д,, [A^z e С] (a) = C{a) 
and [AQZ + C] (b) = 0. Similarly D{L%) is the set of all z e L\ for which there 
exists Ф E cl*(i^(F*)) such that A^z + ф E AC^ and / ' ' ( z , ф) E 13^, 

On the basis of 3.8 one could suggest as possible adjoints to L, LQ the relations 
L^, VQ given by 

G{ÜQ) = {(/+(z, F » , z) : (z, ф) G Do^} 
and 

G(L+) = {{r{z, V*<p), z) : (z, cp) e D"̂ } 
where 

i)+ = {(z, ф) e Д X F* : [^*z + F > ] e Л С , , /+(z, F » e L«„} 
and 

D+ = {(z, (p) e 0+ : lAtz + F > ] (a) = ( Я » (a), [^*z + F > ] (fe) = 0} . 

It is easy to verify that the definition domain DiV') of L"*" is the set of all z e Д for 
which there exist С e iî(H*) and its derivative Ç,' e J?(F*) such that A%z + С e ^C„ , 
/•*"(z, C) e Д,, [.4*z + C] (a) = <̂  (a) and [^^z + C] (b) = 0. Consequently L* = L^ 
if and only if 

(4.23) cl*(J?(H*)) = А ( Я * ) . 

(Then also cl*(i?(F*)) = R{V*), cf. (2,18) and (2,20).) Similarly LQ = L^ if and only 
if 

(4.24) C1*(Ä(F*)) = R{V*) . 
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In particular, if dim F < oo, then also dim Я(Я*) < oo and dim R(V*) < oo and 
(4,23) and (4,24) hold. We close the paper with a converse result. 

4.14. Lemma. Suppose 1 < p < oo, R{H) = F andR{V'^) с L^. If L* = LQ, then 
F is finite dimensional. 

Proof. Since L* = L^, cl*(i^(F*)) = il(F*) = R{V*). By the Grothendick lemma 
(Rudin [21], 5.2) dim RiV") < oo. Since 

R{H*) с I Г w di : w e R(V*)\ + C" , 

R(H^) is also finite dimensional. Because R{H) = F, it is iV(H*) = {0}. Hence Я* 
is a one-to-one mapping of F* onto R{H*) and this implies that dim F < oo. There­
fore F* is isometrically isomorphic with F**. The local convexity of F implies that F* 
separates points (Hahn-Banach Theorem). Thus the natural mapping x :fe F -^ g = 
= %(/) e F** defined by ö'(^) = [/, <P]F for 9 G F* is one-to-one and consequently 
dim F < 00. 

4.15. Corollary. Suppose 1 < p < со, i^(F*) с L^ and let F be a Banach space. 
Then L* = Lo if and only if dim R{H) < 00. 

Proof. Let и : y e C"* -^ He E F where с stands for the constant function c{t) = у 
on [a, b]. We have 

V.ueu^-^Hn'udÀeF (cf. 2.3), 

Then R{H) = R{U) + R{V) and since dim R{U) < 00, R{H) is closed if and only if 
R{y) is closed. The operator F being continuous, R{V) is closed if and only if R(V*) 
is closed. Therefore L* = LQ if and only if Ф := R(H) is a Banach space. Now, if 
R{V^) С L^ and L'̂  = Lo, then Lemma 4.14 implies that dim Ф = dim R{H) < сю. 
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