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Abstract

In the paper we deal with the Kurzweil-Stieltjes integration of functions hav-
ing value in a Banach space X. We extend results obtained by Stefan Schwabik
in [5], [9] and we complete the theory so that it will be well applicable to prove
results on the continuous dependence of solutions to generalized linear differen-
tial equations in a Banach space. By Schwabik, the integral f; d[F] g exists if
F:a,b] — L(X) has a bounded semi-variation on [a,b] and g: [a,b] — X is reg-
ulated on [a,b]. We prove that this integral has a sense also if F' is regulated on
[a,b] and g has a bounded semi-variation on [a,b]. Furthermore, a general form
of the integration by parts theorem proposed by S. Schwabik in [9] is presented
under the assumption not covered by [9] and the substitution formula is proved.
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1 Introduction

It is known that integration processes based on Riemann type sums, such as Kurzweil
and McShane integrals, can be extended to Banach space-valued functions. Among
other contributions it is worth to highlight the monograph by Schwabik and Ye [11],
which studies these type of integrals and their connections e.g. with the classicals due
to Bochner and Pettis.

Concerning integrals of Stieltjes type, Honig presented a quite complete study in
[3] dealing with the interior integral. In [6] and [9] Schwabik investigated some funda-
mental properties of the Kurzweil-Stieltjes integral.
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The concepts of generalized (nonlinear) Kurzweil or Kurzweil-Stieltjes integrals in
a Banach space have been the background of several papers related to generalized
differential equations like e.g [1], [2], [7] and [§].

In this paper we are dealing with the Kurzweil-Stieltjes integral. Our aim is to
supplement the existing knowledge by results needed for treating generalized linear dif-
ferential equations. In particular, we prove that if F':[a,b] — L(X) and ¢g:[a,b] — X,

b
then the integral / d[F] g exists provided F is regulated on [a,b] and g has a bounded

b
semi-variation on [a,b], and the integral [ F d[g] exist provided F has a bounded

semi-variation and ¢ is regulated. Furthernalore, a general form of the integration by
parts theorem proposed by S. Schwabik in [9] will be presented under the assump-
tions not covered by those from [J]. Finally, the substitution formula is proved. For
application of the results presented in this paper, see [4].

2 Preliminaries

Throughout these notes X is a Banach space and L(X) is the Banach space of bounded
linear operators on X. By || - || x we denote the norm in X. Similarly, || - [|(x) denotes
the usual operator norm in L(X).

Assume that —oo < a <b< 400 and [a, b] denotes the corresponding closed interval.
A set D={ag,a1,...,a,} C [a,b] is said to be a division of [a, b] if

a=op<o;< ... <a,=b.

The set of all divisions of [a,b] is denoted by Dla, b].

A function f:[a,b]— X is called a finite step function on [a,b] if there exists

a division D ={ag, a1, ...,q,} of [a,b] such that f is constant on every open interval
(Oéj_l,Oéj), j: 1, 2, e,
For an arbitrary function f:[a,b] — X we set
[flle = sup [If(¥)]lx
t€[a,b]
and

var f = sup ZHf ;) — flay-1)lx

De’D[ab

is the variation of f over [a,b]. If var’ f < oo we say that f is a function of bounded
variation on [a,b]. BV ([a,b], X) denotes the Banach space of functions f:[a,b] — X
of bounded variation on [a,b] equipped with the norm || f||zv = || f(a)||x + var’f.
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For F'[a,b] — L(X) and a division D ={ag, ay,...,a,} of the interval [a,b], let
VAE, D) = sup { || S[F(ay) = Flag-] will }-
=1

where the supremum is taken over all possible choices of y; € X, 7 = 1,2,...,m, with
lyjllx < 1. Then

(B) var’ (F) = sup{V(z, D); D € D[a,b]} .
is said to be a semi-variation of F on [a,b], cf. e.g. [3]. Sometimes it is called also
a B-variation of F' on [a,b] (with respect to the bilinear triple B = (L(X), X, X),
cf. e.g. [0]). Analogously, we can define the B-variation of a function f : [a,b] — X
using

VD) = sup {[| S F [F(ey) = sl }-

where the supremum is taken over all possible choices of operators F; € L(X) with
||F’]||L(X) <1, j:172a"'7m'

The set of all functions F':[a,b] — L(X) with (B)var’(F) < oo is denoted by
(B) BV ([a,b], L(X)). Similarly as in the case of bounded variation functions, the set
(B) BV (Ja,b], L(X)) is a Banach space with respect to the norm

F e (B)BV([a,b], L(X)) = [|Fllsv = [ F(a)l|rex) + (B) varg F

(cf. [10)

A function f:[a,b] — X, is said to be regulated on [a,b] if for each ¢ € [a, b) there
is f(t4) € X such that

lim |[f(s) = f(t4)]x =0

s—t+

and for each t € (a,b] there is f(t—) € X such that
T [1£(5) — £(t-)x = 0.

By G([a,b], X) we denote the set of all regulated functions f:[a,b] — X. For t € [a, b),
s€ (a,b] we put AT f(t)=f(t+)—f(t) and A~ f(s)=f(s)—f(s—). Recall that

BV ([a,b], X) € G(Ja,b], X) N (B)BV (Ja, b], X),

while (B)BV ([a,b],X) € G([a,b], X) (cf. e.g. [T, 1.5]). Moreover, it is known that
regulated function are uniform limits of finite step functions (see [3, Theorem 1.3.1]).

Now, let us recall the definition and some crucial properties of the Kurzweil-Stieltjes
integral.
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As usual, tagged systems P = (D,¢) € Da,b]x[a,b]™ where D ={ag,a1,...,am},
£=(&,&,...,&n), are called partitions of [a,b] if
(67581 ng SCYJ‘ for ]: 1,2,...,m.

The set of all partitions of [a,b] is denoted by Pla, b].

Furthermore, functions d:[a, b]—(0, c0) are said to be gaugeson [a, b]. Given a gauge

J, the partition P = (D, &) with D={ap, a1,...,an}, E=(&1,8, ..., &n), is 0-fine if
[aj_1,05] C (& —6(§). & +6(§)) for j=1,2,....m.

We remark that for an arbitrary gauge 0 on [a, b] there always exists a d-fine partition
of [a,b]. This is stated by the Cousin lemma (see [5, Lemma 1.4]).

For given functions F': [a,b] — L(X) and ¢:[a,b] — X and a partition P = (D, ¢)
of [a,b], where D = {ag, a1, ..., an}, £ = (&, ..., &), we define

S(F,dg, P) = > F(&) [9(ey) = glay )

and
m

S(AF. g, P) =) [Flay) — Fla;-1)] 9(§)) -

j=1

We say that I € X is the Kurzweil-Stieltjes integral (or shortly KS-integral) of F' with
respect to g on [a,b] and denote
b
1= [ Fag

if for every € > 0 there exists a gauge § on [a,b] such that
HS(F, dg, P) — IH < e forall §— fine partitions P of [a,b].
X

Similarly, J € X is the KS-integral of g with respect to F' on [a,b] if for every ¢ >0
there exists a gauge d on [a,b] such that

HS(dF,g,P) —J

‘ < e forall §— fine partitions P of [a,b].
b

b
In this case we write J = / d[F]g.

b
Analogously, if H:[a,b] — L(X), we define the integral / H d[F]g using sums

of the form .

S(H,dF,g,P) =Y H(&)[F(ay) = Fla;1)] 9(&)-

J=1
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The KS-integral is linear and additive with respect to intervals. Basic results con-
cerning KS-integral can be found in [0] and [I3]. Obviously, if the Riemann-Stieltjes
b

b
integral (RS) / F d[g] exists, then the KS-integral / F d[g] also exists and

a

[ P =ms) [ ra

Some of the further results needed later are summarized in the following assertions:
2.1. Proposition. Let F':[a,b] — L(X) and g:[a,b] — X.

(i) [0, Proposition 10] Let F € (B) BV ([a,b], L(X)) and g:[a,b] — X be such that
/b d[F] g exists. Then

a

/: d[F]g|| < (B) (varlF) lglle

(i) [6, Proposition 11] Let F € (B) BV (|a,b], L(X)) and g,:[a,b] — X be such that
b
/ d[F] g, exists for alln €N and lim, . ||gn — g||oc =0. Then

a

b b b
/ d[F|g exists and / d[F]g = lim d[F)] gn -

n—oo

(iii) [0, Proposition 15]If F'€ (B)BV (a,b], L(X)) and g € G([a,b], X) then /bd[F} g
exists.

(iv) [9, Theorem 13][fFEG([a,b] L(X))N(B)BV
then both the integrals / Fdlg] and ’

)BV ([a,b], L(X)) and g € BV ([a,b], X)
d[F) g exist, the sum

> ATF(r (1) = > ATF(r) A g(7)
a<t<b a<t<b

converges in X and the equality

/ade[gH/abd[F]g

= F(b) g(b) — F(a) gla)— Y ATF(t)Atg(t)+ Y A F(t) A g(t)

a<t<b a<t<b

18 true.
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3 Main results

In this section we will present our main results. First, we will prove two auxiliary
properties of the KS-integral which, in the case that X # R", are not available in the
literature.

3.1.Lemma. (i) Let Fe(B)BV([a,b], L(X)), g€G([a,b], X) be such that /;7 dlg]

exists. Then ¢

I1S(F,dg, P)|lx < 2|[Fllsv gl for each P €Pla,b] (3.1)

(i) Let F € G([a,b], L(X)), g € (B) BV ([a,b], X) be such that /b d[F] g exists. Then

and

[ Pa], <21Flsv gl (32

[S(dF, g, P)lx < 2|[Fll llgllsv  for each P €Pla,b]. (3.3)

b
| [ airg] <21F< gl (3.4
PROOF. It is easy to check that, for an arbitrary partition P=(D,§) of [a,b] with
D:{Oé[),Oél, s 7QM} and 52(5175% R 7£m)a we have
S(F,dg, P)

= F(&) [g9(an) —g(a)] + F(&2) [g(az) —g(an)] + ... + F(&m) [9(b) — g(am—1)]
= F(b) g(b) — F(a)g (a)

and

— [F(&) — F(a)] g(a)= [F (&) —g(&)] — ... = [F(b) = F(&m)] 9(b)
= F(b) g(b) = F(a) ga) = > [F(&+1) = F(&)] g(ey),
5=0

where £y = a and &,,11 = b. Consequently

IS(F. dg, P)|x < (|[F(a )IIL ) FIE®)zx)) gl

+ Z (€1) — ()] 20 (o)

llg(ai)llx

< (F<a>L<X>+F<b>L<X>+1Z[F<sj+1> FE) e HXH ) gl
j=0

< (IF @) + IFO)loox) + B) v F) glloo < 21F v gl
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ie. (3.1) is true.
Now, let an arbitrary £ >0 be given. By our assumptions there is a gauge 0 on [a, b] such
that

HS(F, dg, P) — /de[g]HX <e whenever P is ¢ — fine.

a

Let Py be an arbitrary d-fine partition of [a,b]. Then by (3.1) we have

| [ pa], < |strasm - [ F ] +isteas s
<e+2|Flsv s

Since € >0 can be arbitrary, it follows that inequality (3.2)) is true.

The proof of (3.3) and (3.4) can be obtained in a similar way. O

3.2.Lemma. Let g : [a,b] — X be a finite step function. Then for any F : [a,b] — L(X)
b

the integral / F dlg] exists.
a

PROOF. One can check that g:[a,b] — L(X) is a finite step function if and only if it is a
finite linear combination of the functions of the form

Xla,7] (t) z, Xlo,b] (t) Y, Xla) (t) z, Xb] (t) w,

where 7, o are some points from (a,b) and 7, y, z, w may be arbitrary elements of X. Hence,
by the linearity of the integral, it is sufficient to prove the formula (3.8) for functions g of the
form:

Xa,7 1T X[rb]Tr  X[a T, X[ T

where 7 € (a,b) and T € X.
Let 7€ (a,b), 7€ X and g = Z X[ Given € > 0 define

5(6) € it t=r1.
t) =
=t if t#£7

Then, for any J-fine partition P of [a,b], 7 is the tag and S(F,dg, P) = —F(7)z. Hence

b
/ Fdlg|=—-F(n)x.

The proofs of the cases g = X5 %, g = X[ T and g = ;) T are analogous. O

Next theorem is the first main result of this paper. It supplements the Schwabik’s exis-
tence result stated in Proposition 2.11 (iii).

b
3.3.Theorem. (i) If FeG([a,b],L(X)), g€ (B)BV ([a,b], X), then the integral /d[F] g
extsts. ¢
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b
(i) If Fe(B)BV([a,b],L(X)), g€ G([a,b],X), then the integml/ F dlg] exists.
a
PRrROOF. (i) Let F,,:[a,b] — L(X), n€N, be a sequence of finite step functions such that
lim ||[F), — F|loo = 0.
n—oo
Since F, € BV ([a,b], L(X)) for each n €N, it follows from Proposition 2.1 (iii) that for each
b

n €N the integral / d[F,] g exists. Moreover, these integrals define a Cauchy sequence in

a
the Banach space X. Indeed, given € > 0 there is ng € N such that ||F,, — F||« < ¢, for n > ny.
Thus, using Lemma (3.1, we obtain

b
H / d[F, — Fm]gHX <2||Fp = Flloo llgllsy < 4¢llgllsy  for all m,n > no.
a

b
Therefore there is 1 € X such that I = lim d[F},] g. This implies that there exists N € N

n—oo
such that N >ng and

a

H /ab d[Fy]g - IHX <e

Let 0 be a gauge on [a,b] such that

b
HS(dFN,g,P) - / d[FN]gHX < e whenever P isd — fine.

Having this in mind and using (3.3), for an arbitrary d-fine partition P of [a,b], we get

HS(dF,g, P) - IHX

< |[S(aF.g, P) ~ S(aFw,g.P)| -+ |[S(daFw,g,P) - /ab diFwg

o [ o],

<2||F = Fyllo lgllsv + 28 < 2 (lgllsv + 1),

which concludes the proof of the assertion (i).

The assertion (ii) can be proved by the same arguments using Lemma [3.2] instead of
Proposition 2.1 O

A direct consequence of Lemma [3.1/ and Theorem 13.3| is the following assertion.

3.4.Corollary. (i) Let g, gn € G([a,b],X), n€N be such that lim, oo ||gn — 9l|loc = 0.
Then for any F € (B) BV ([a,b], L(X)), the integrals

b b
/ Fdlg] and / Fdlgn], neN,
a a

exist and
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b b
lim Fdgy, :/ Fdg.
a

—
n—oo a

(ii) Let F, F,, € G([a,b], L(X)), n €N be such that lim, . ||Fy, — F|loo =0. Then for any
g€ (B)BV([a,b], X), the integrals

b b
/d[F]g and /d[Fn]g,neN,

exist and
b

b
lim d[Fy,)g = / d[F]g.

—
n—oo a

Thanks to Theorem 3.3, we are now also able to extend the integration by parts theorem
by Schwabik (cf. Proposition 2.1 (iv) or [9, Theorem 10]) and the Substitution Theorem
(cf. e.g. [14, Theorem 2.3.19] for X =R") to the form more suitable for applications to gen-
eralized differential equations. This will be the content of the rest of these notes. Whenever
we treat functions of bounded variation, we believe to be able to extend in a close future the
corresponding results to regulated functions having a bounded semi-variation.

3.5.Lemma. (i) IfF € G([a,b],L(X)) and g € BV ([a,b], X), then

S IATFOATgM)x+ > IATFHA g(t)]|x < 2||Floo varhg. (3.5)
tela,b) te(a,b]

(i) If F € BV ([a,b],L(X)) and g € G([a,b], X), then

S IATFOATgM)x+ Y IATFHA g(t)x < 2(varF) [lgllso -
t€la,b) te(a,b]

ProOOF. (i) Let F € G([a,b],L(X)) and g € BV ([a,b],X). It is known that the points
of discontinuities of a regulated function are at most countable (see [3, Corollary 1.3.2.b]).
Let {si} be the set of common points of discontinuity of the functions F' and ¢ in (a,b), so
we can write

D IATF@) AT x + D IATF() Ag(t)]x

t€(a,b) te(a,b]
= [[ATF(a) At g(a)|x + [ATF(b) A™g(b)|Ix
+> {HA+F(Sk) Atg(sk)llx + AT F(sk) A”g(se)llx
k=1
For n € N, define

Sn = |ATF(a) ATg(a)|lx + AT F(b) A™g(b)]x

+ ) [IATF(sk) A™glse)llx + |ATF(sk) AT g(se)llx] -
k=1
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Let € > 0 and n €N be given and let {t1,%2,...,t,} C (a,b) be such that

{tl,tg,...,tn}:{51,52,...,Sn} and a<t] <ty <---<t,<bh.

Then,
S = [|ATF(a) ATg(a)|x + |ATF(b) Ag(b)l|x
+ 3 [IATF () A™g(t) |x + |ATF(te) At g(tr) | x] -
k=1
Furthermore, for each k = 1,2,...,n, choose d; > 0 in such a way that
€
t ) —g(t —_—
€
lg(tk = 0k) — gtk =)lx < e
8 (n+1) | Fll
and

[tk‘ - 6k‘7tk‘ + 5k] N {t17t27 s 7tn} = {tk} :

Analogously, let §g > 0 be such that

a+dy <t and Hg(a—I—ég)—g(a—l—)||X<L
8[| F oo

and
€

8 Floo

b—do > tn and [g(b—)—g(b—do)llx <

Now, noting that

[ATF®)|ILx) < 2|Flloe for t € [a,b)
and

[ATF@)|rx) <2|[Flle  fort € (a,b],
we can see that

S < 2|1Flle (llg(at) = gla-+30)lx + llgla+80) — g(a)llx)

+2|Flloo Y llgltat) — g(tr+68)llx
P

+2|Fllso Y lg(th+01) — g(ti)llx
=1

+2[|Flloe > llg(te—) — g(te — 0)|Ix
k=1

+2|Flloc Y llg(te = 8) — g(ti) | x
k=1
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+20|F o (Il9(8) = 9(b = 60)llx + (b —80) — 9(b-)]x )

9
< 7 +2|[Flls [lg(a+do) —g(a)llx

4
o Fle > gt ) — gt
4 (n+1) Pt
ne n
2| Fl ot —
HPTCET [F E_ lg(tk) — gtk — )l x

g
+2|[Flloc [l9(0) = g(b—do)llx + -

To summarize, we have

S < e+2(|F s (Ilg(a+do) = gla)llx + Y llglte+ ) —g(t)l1x)
k=1

+2Fllc (Z lg(tk) = gltx = 8 1x + lg(8) = 9o = 20)l1x)-

This implies that S, <&+ 2| F| s (varlg) holds for any n € N. Moreover, as ¢ > 0 can be
arbitrarily small, we finally deduce that

Sy < 2||Flloo (varlg) for any neN,
wherefrom the desired estimate (3.5) follows.

(i) Similarly, we could proceed if F' € BV ([a,b], L(X)) and g € G([a,b], X). O

3.6. Corollary. (INTEGRATION BY PARTS.) Let F € BV ([a,b],L(X)) and g€ G([a,b], X)
(or F€G([a,b],L(X)) and g€ BV ([a,b], X) ). Then both the integrals

/ade[g] and /abd[F]g

exist and

/Fd +/bd
F(b)g(b) — F(a)g(a) — > ATFE)Atgt)+ > A™F g(t)

a<t<b a<t<b

holds.

PROOF. a) Let FF € BV([a,b],L(X)), g€ G([a,b],X) and let {g,} be a sequence of finite
step functions on [a, b] which tends uniformly to ¢g on [a,b]. Then by Proposition 2.1 (iv) we
have

b b
/ Fdlga] + / A[F] g — F(5) gu(8) + F(a) gu(a)

a<t<b a<t<b

(3.7)
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for any n € N. Thus, by Corollary 3.4, the relation

in (| "l + / " AlF g0 — F®)gu®) + F(a) nla)

n—oo

b b
— [ P+ [ diF)g - FE)9®) + Fla)gla)
holds. Further, by Lemma 3.5 (ii) the estimate

D IIATE@R) AT (g(t) = gn()lx + D IATF() A (g(t) — gn(t) I x

a<t<b a<t<b

<2 (varg F) [|g — gnlloo
is true. Consequently,

lim | Y ATF@)Atga(t)— > ATF(t) A gn(t)

n—oo
a<t<b a<t<b

= > ATF{)Atg(t)— > ATF(t) Ag(t).

a<t<b a<t<b
To summarize, letting n — oo in (3.7), we obtain (3.0) .

b) Similarly, we could proceed if F'€ G([a,b], L(X)) and g € BV ([a,b], X). O

Now, notice that using arguments analogous to those from the proofs of the assertions (i)
and (ii) in Proposition 2.1/ we can justify the following proposition.

3.7.Proposition. Let F, H:[a,b] — L(X) and g:[a,b] — X

(i) If FeBV(la,b],L(X)), H:[a,b] — L(X) and g:[a,b] — X are such that /bHd[F]g

exists, then

|/ "HAFE) 906)| < 1l () gl

(ii) Let F € BV([a,b],L(X)), Hy:[a,b] = L(X), n€N and let g: [a,b] — X be bounded and
b b
such that / H, d[F)g exists. If lim ||[H,—H|o =0, then the integral / Hd[F]g

exists and ¢ , ,
lim H/ Hnd[F]g/ Hd[F]gH -
n—oo a a X
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3.8. Theorem. (SUBSTITUTION THEOREM.) Let F'€ BV ([a,b], L(X)) and let g:]a,b] — X
b
be bounded and such that the integral / d[F] g exists. Then both the integrals

/abH(S)ds[/:d[F]g} and /abHd[F]g
/abH(s)d[Ltd[F}g} :/abHd[F]g (3.8)
(X))

holds for each H € G([a,b], L(X

exist and the equality

PROOF. Step 1. First, we show that (3.8) holds for each finite step function H : [a,b]—L(X).
By the linearity of the integral and since a finite step function H:[a,b] — L(X) is a finite
linear combination of the functions of the form

X[a,] (t) ﬁla X[U,b](t) ﬁ?a Xla) (t) ﬁ3> X1b] (t) ﬁ47

where 7, 0 € (a,b) and H; € L(X) i = 1,2,3, 4, it is enough to justify (3.8) for functions H of
such a form.

_ ~ t
Let 7€ (a,b), H € L(X), H = X[q-(t) H and K (t) :/ d[F]g for t€a,b].

/aTHd[F]g:/aTHd[K]:ﬁ/aTd[F]g. (3.9)

Let € >0 be given and let

Obviously,

5(6) € if t=r1.
) =
Hr—t| if T<t<b.

Then, for any d-fine partition P of [7,b] with D = {ag, a1,..., amp} and € = (£1,&2 ..., &m)
we have & = ag =7, a1 <7 +¢ and

S(H,dF,g,P) = H[F(ay) — F(7)]g(r) and S(H,dK,P)=H[K(a)— K(7)].

As a result and as a consequence of the Hake theorem for KS-integrals (cf.e.g. [Corollary
24][6]) we get

/Hd g—HA+F( g(t) and /Hd ﬁIA+K(T):ﬁA+F(T)g(T),

a /Hd g—/ HA[K] = HATF(7)g(7).

This, together with (3.9) yields (3.8).
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The proofs of the remaining cases H = x[;] H s H = X[q H and H = X[ H can be done
in a similar way.

t

Step 2. Let H € G([a,b], L(X)). Denote again K (t) —/ d[F]g for t € [a, b] and consider the

([a,b
sequence Hy, :[a,b]—L(X), n €N, of finite step functions such that lim, ., ||H, — H||cc =0.
By Proposition 3.7 (ii) and Step 1 we have

b
lim H, d[K] = lim H d[F g—/ Hd[F

n—oo a n—oo

Let € >0 be given. Choose ng € N and a gauge d on [a,b] in such a way that

|Hp — H||oo <,

/H d[K /Hd H < e hold for n>ng
and

b
HS(HnO, dK, P) — / Hy,, d[K]H < ¢ for all § — fine partitions P on [a,b].
a X

Then, for an arbitrary d-fine partition P = (D, &) of [a,b] with D = {agp,a1,...,q,} and
€= (&,22,...,&n) we have

IS(H. dK, P) ~ S(Hy, dK, P)| = Emj &) [ [ dirg]
j=1 j—1 X
< |l - Hnonooi | / " arr, < ||H—Hm||ooi [(vaxl_ F) llg1loc
2| ], 2

= [[H — Hno|loo (Var F)llgllss < & (vargF) |lglloc-

To summarize, we have

b
st ax.p)— [aaw| < s axp) - st ax Pl

) /:Hd[K]—/abHd[F]gHX

for each d-fine partition P of [a,b], i.e., (3.8) is true. O

b
n HS(HnO,dK, P) —/ Ho, d[K]H

e (2+ (vargF) [lg)l <)

3.9 . Remark. Notice that, on the contrary to the finite dimensional case, in a case of a
general Banach space X the Substitution Theorem can not be obtained as a corollary of the
Saks-Henstock Lemma.
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