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REGULATED FUNCTIONS AND THE PERRON-STIELTJES INTEGRAL 

MILAN TVRDY, Praha 

Dedicated to Professor Otakar Boriivka on the occasion of his ninetieth birthday 

(Received November 5, 1987) 

Summary. Properties of the Perron-Stieltjes integral with respect to regulated functions are 
investigated. It is shown that linear continuous functionals on the space GL(a, b) of functions 
regulated on [a, b] and left-continuous on (a, b) may be represented in the form F(x) -= p x(a) -f-
+ f b

a Q <-*, where p e R and q(t) is a function of bounded variation on [a, b]. Some basic theorems 
(e.g. integration-by-parts formula, substitution theorem) known for the Perron-Stieltjes integral 
with respect to functions of bounded variation are established. 

Key words: regulated function, function of bounded variation, Perron-Stieltjes integral, lefts 
continuous function, linear continuous functional. 

AMS classification: 26A42 (26A45, 28A25, 46E99). 

This paper deals with the space G(a9b) of regulated functions on a compact 
interval [a, &]. It is known that when equipped with the supremal norm G(a, b) 
becomes a Banach space, and linear bounded functionals on its subspace GL(a9 b) 
of functions regulated on [a9 b~] and left-continuous on (a9 b) can be represented by 
means of the Dushnik-Stieltjes (interior) integral. This result is due to H. S. 
Kaltenborn ([7]), cf. also Ch. S. Honig ([5]), Theorem 5.1. Together with the known 
relationship between the Dushnik-Stieltjes integral, the a-Young-Stieltjes integral 
and the Perron-Stieltjes integral (cf. Ch. S. Honig [6] and §. Schwabik [12], [13]) 
this enables us to see that F is a linear bounded functional on GL(a9 b) if and only 
if there exist a real number q and a function p of bounded variation on [a, b] such 
that 

F(x) = q x(a) + p(t) dx(t) for any x e GL(a9 b) , 

where the integral is the Perron-Stieltjes integral. We will give here the proof of this 
fact based only on the properties of the Perron-Stieltjes integral. To this aim, the 
proof of the existence of the integral 

r"f(t)Mt) Í 
for any function / of bounded variation on [a, b] and any function g regulated 
on [a, b] is crucial. Furthermore, we will prove extensions of some theorems (e.g. 
integration-by-parts and substitution theorems) needed for dealing with generalized 
differential equations and Volterra-Stieltjes integral equations in the space G(a9 b). 
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1. PRELIMINARIES 

Throughout the paper Rn denotes the space of real n-vectors, Rx = R. Given 
x e Rn9 its components are denoted by xl9 x2,..., xn (x = (xl9 x2 , . . . , xn)). N stands 
for the set of all natural numbers (N = {1, 2,...}). Given M cz R, XM denotes its 
characteristic function (XM(0 = 1 if f e Af and %M(0 = Oif t$M). 

Let — oo < a < b < oo. The sets d = {t09 tl9..., tm} of points in the closed 
interval \a9 b] such that a = t0 < fx < ... < tm = b are called divisions of \a9 b]. 
Given a division d of \a9 b], its elements are usually denoted by t09 tl9..., tm. The 
couples D = (d9 £), where d = {t09 tl9..., tm} is a division of [a, b] and <!; = 
= (f i, £2>..., <Q e Km is such that 

0- i = £; = 0 ^ all j = 1,2,.. ,m 

are called partitions of [a, b] 
A function f: [a, b] -> R which possesses finite limits 

f(t+) = limf(r) and f(s-) = limf(r) 
T-+f+ T-+S-

for all f e [a, b) and all s e (a9 b] is said to be regulated on [a, b] The set of all 
regulated functions on \a9 b] is denoted by G(a9 b). Given fe G(a9 b), we define 
f(a-)=f(a),f(b + )= f(b), 

A+/(0 = / ( ' + W ( 0 if te\a9b)9 A+f(b) = 0 , 

A"/(0=/(0-/(H if 's(fl,&jf A-/(«) = O 

and 

Af(0 = / ( r + ) - / ( t - ) if te(a9b)9 

Af(a)=A+f(a)9 Af(b) = A~f(b). 

It is known (cf [5], Corollary 3.2a) that if fe G(a9 b), then for any 8 > 0 the set of 
points t e \a9 b] such that |A+f(f)| > £ or |A""f(OI > e 1s finite. Consequently, for 
any fe G(a9 b) the set of its discontinuities in \a9 b] is countable. The subset of 
G(a9 b) consisting of all functions regulated on \a9 b] and left-continuous on (a9 b) 
will be denoted by GL(a9 b). 

A function f: \a9 b] -• R is called a finite step function on \a9 b] if there exists 
a division {f0, tl9.... tm} of \a9 b] such that f is constant on every open interval 
(f/-i, tj)9 j = 1, 2,. . . , m. The set of all finite step functions on \a9 b] is denoted 
by S(a9 b). A function f: \a9 b] -> R is called a break function on [a, b] if there 
exist sequences [tk}keN c \a9 b], {cfc~}keiY and {c+}ke^ such that ffc # ts for fe # ;, 
ck = 0 if fk = a9 ck = 0 if tk = b, 

k = i 
. 1 . (I--1 + ҜI ) < «> 

188 



and 

(i.i) /(<) - Z -r + 1 <; 
tk£t tk<t 

or equivalently 
00 

/ ( ' ) = I c; xitk,b{t) + 4 X[,k.6](0 for t e [ a , & ] . 
* = 1 

Clearly, if/ is given by (1.1), then A+f(tk) = ck and A~f(tk) = ck for any fceN 
and/(r+) = f(t) = /(f ~) if * e [a, b] \ {̂ }fceN. Furthermore, we have/(a) = 0 and 

v a r 6
f l / = J | c ; | + |cfc

+[<cx) 
*-=i 

for any such function. The set of all break functions on [a, b] is denoted by B(a9 b). 
BV(a9 b) denotes the set of all functions with bounded variation on [a, 6], ||/||BK = 

= |/(a)| + varj/ for fe BV(a9 b). It is well-known that for any fe BV(a9 b) there 
exist uniquely determined functions fc e BV(a9 b) and fB e BV(a9 b) such that fc is 
continuous on [a, b ] , / B is a break function on [a, b] and/(f) = fc(t) + fB(t) on 
[a, b] (the Jordan decomposition of feBV(a9 b)). In particular, if W = {wk}keN is 
the set of discontinuities of/ in [a, b], then 

(1.2) /B(0 = £A-/K)Z[W k .»/0 + A7(wik)z(Wk,fc](0 on [a, 6 ] . 
ft=l 

Moreover, if we put 

(1-3) / « 0 = i A - / K ) Z [ ^ 0 + A + / K ) z < ^ l ( 0 on [a, 6] 
k = l 

for neJV, then 

(1-4) l i m | | / * - / B | B K = 0 
n 

(cf. e.g. [14], the proof of Lemma 1.4.23). Obviously, S(a9 b) c B(a9 b) c BV(a9 b) <= 
c G(a, b). 

Given/G G(a, b), we define 

I/I = »P 1/(01 • 
f€[a,6] 

Clearly, ||/|| < oo for any fe G(a9 b) and when endowed with this norm, G(a9 b) 
becomes a Banach space (cf. [5], Theorem 3.6). It is known that S(a9 b) is dense in 
G(a9 b) (cf. [5], Theorem 3.1). It means that / : [a, b] -> R is regulated on [a, b] if 
and only if it is a uniform limit on [a, b] of a sequence of finite step functions. 
Obviously, GL(a9 b) is closed in G(a9 b) and hence it is also a Banach space. (Neither 
S(a9 b) nor -3V(a, b) are closed in G(a9 b)9 of course.) 

For some more details Concerning regulated functions see the monographs by 
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Ch. S. Honig [5] and by G. Aumann [1] and the papers by D. Frankova [2] and [3]. 
The integrals which occur in this paper are the Perron-Stieltjes integrals. We will 

work with the following definition which is a special case of the definition due to 
J. Kurzweil [8]. 

Let — o o < a < b < c o . An arbitrary positive valued function d: [a, b] -> (0, co) 
is called a gauge on [a, b]. Given a gauge 5 on [a, b], the partition (d, £) of [a, b} 
is said to be 5-fine if 

[o-i. '11c (*i - *(*A £J + 3(Q) f o r a ny I = 1,2,..., m . 
Given functions / , g: [a, b] -> .R and a partition D = (d, £) of [a, b], let us define 

SD(fAg) = Zf(Q(9(tj)-g(tI_l)). 
I=i 

We shall say that I e R is the Kurzweil integral of/ with respect to g from a to b and 
denote 

= Г/(0 dfìr(í) or J = Ґ/dff 
J a J a 

if for ariy e > 0 there exists a gauge <5 on [a, b] such that 

\l-SD(fAg)\<e 

for all <5-fine partitions D of [a, b]. 
The Perron-Stieltjes integral with respect to a function not necessarily of bounded 

variation was defined by A. J. Ward [15] (cf. also S. Saks [10], Chapter VI). It can 
be shown that the Kurzweil integral is equivalent to the Perron-Stieltjes integral 
(cf. [12], Theorem 2.1, where the assumption g e BV(a, b) is not used in the proof 
and may be omitted). Consequently, the Riemann-Stieltjes integral (both of the 
norm type and of the c-type, cf. T. H. Hildebrandt [4]) is its special case. The relation­
ship between the Kurzweil integral, the a-Young-Stieltjes integral and the Perron-
Stieltjes integral was described by §. Schwabik (cf. [12] and [13]). 

Since we will make use of some of the properties of the a-Riemann-Stieltjes 
integral, let us indicate here the proof that this integral is included in the Kurzweil 
integral. In fact, let/, g: [a, b] -• R and I e R be such that the a-Riemann-Stieltjes 
integral a \b

af dg exists and equals I, i.e. for any e > 0 there is a division d0 = 
= {s0, su ..., smo} of [a, b] such that for any division d = {t0,tu..., tm) which is 
its refinement (d0 a. d) and any ^ e Rm such that D = (d, £) is a partition of [a, b] 
the inequality 

| S D ( / A g ) - 7 | < 8 

is satisfied. Let us define 5e(^) = \ min \l — Sj\ for £$ d0 and St(sj) = e 
y = 0 f l , . . . ,mo 

for j = 1,2,..., m0. Then a partition D = (d, £) of [a, b] is i5e-fine only if for any 
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j = 1, 2 , . . . , m0 there is an index ij such that Sj = £iy Furthermore, 
m 

SoifAg) = I [f(Q tftj) - g(Q] + / & ) [g(Q - a^ . . ) ] ] 
1=1 

for any partition D = (d, £) of [a, 6] . Consequently, for any (5e-fine partition D = 
= (d, <!;) of \a, b] the corresponding integral sum SD(f Ag) equals the integral sum 
SD>(f Ag) corresponding to a partition Df = (d\ <*'), where d' is a division such that 
d0 c d', and hence 

\sD(fAg)-i\<e. 

This means that the Kurzweil integral \b
af dg exists and 

pb /•* 

\fág = a\ fág 
J a J a 

holds. 
It is well known that if fe G(a, b) and g e BV(a, b), then the integral $afdg 

exists and the inequality 

(1.5) 
>b 

fàg (var£я) 

holds. The Kurzweil integral is an additive function of intervals and possesses the 
usual linearity properties. For the proofs of these assertions and some more details 
concerning the Kurzweil integral with respect to functions of bounded variation see 
eg- [8], [9], [11] and [14]. 

2. PERRON-STIELTJES INTEGRAL WITH RES.PECT 
TO REGULATED FUNCTIONS 

In this section we deal with the integrals 

rb rb 
ҐДt)dđ(t) and ЫO-Дt), 

where / e BV(a, b) and g e G(a, b). We prove some basic theorems (integration-by-
parts theorem, convergence theorems, substitution theorem and unsymmetric Fubini 
theorem) needed in the theory of Stieltjes integral equations in the space G(a, b). 
However, our first task is the proof of existence of the integral \h

af&g for any fe 
e BV(a, b) and any g e G(a, b). We start with some simple special cases. 

2.1. Proposition. Let g e G(a, b) be arbitrary. Then for any z e [a, ti] we have 

(2.1) \Xiarfdg = g(r+)- g(a), 
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(-"•-) *[...) dg = ф-)- g(a) , 
Ja 

(2.3) Гxьмdg = g(Ь) - ф-) , 

(2-4) Ы.»àg = g(b) - g(т+) 

and 

(2.5) fx[T]d^ = A^(T), 

where X[«)(0 = X(^(0 = 0 and the convention g(a-) = g(a), g(b+) = g(b) is used. 
Proof. Let g e G(a9 b) and T e [a, b] be given. 
a) Let/ = Xia.xy It follows immediately from the definition that 

I fåg = g(г)- g(a) , 

In particular, (2.1) holds in the case T = b. Let T e [a, b), let e > 0 be given and let 

SJ® = }|T - £| for T < £ = b and <5C(T) = e. 

It is easy to see that any <5e-fine partition D = (d, £,) of [T, b] must satisfy 
f I = *o = T , rx < T + £ 

and 

SD(/Ag) = g(r1)-gW-
Consequently, 

/ d ø = g(т+) - ø(т) 

and 
Í; 

[b /»t pb 
\fdg = /dtf + / d ^ = g(x) - g(a) + g(x+) - g(z) = O(T+) - g(a), 

Jo Jo J X 

i.e., the relation (2.1) is true for every T e [a, b]. 
b) Let / = X[a,t). If T = a, then / = 0, g(t-) - g(a) = 0 and (2.2) is trivial. 

Let T e (a, b]. For a given e > 0, let us define a gauge <5e on [a, T] by 

<5e(£) = *|T - £| for a = £ < T and <5,(T) = e. 

Then for any <5e-fine partition D = (d, £) of [a, T] we have 

tm = £» = *, r M _ 1 > T - e 
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and hence 

SD(fAg) = g(tm-t)-g(a). 

It follows immediately that 

Л fdg = g(r-) - g(a) 

and in view of the obvious identity 

fda = 0, Í 
this implies (2.2). 

c) The remaining relations follow from (2.1), (2.2) and the equalities Xiz,bi = 
= X[a,&] ~" X[a,T)» X ( T , 5 ] = Z[a,b] "~ X[a,T] a n ( l X[T] = X[a,T] "" X[a,T)* 

2.2. Remark. Since any finite step function is a linear combination of functions 
X[tb](a ^ T ^ b) and jc(t,&](a ^ T < b), it follows immediately from Proposition 2.1 
that the integral \h

afAg exists for any fe S(a9 b) and any g e G(a9 b). 
Other simple cases are covered by 

2.3. Proposition. Let T e [a, b]. Then an arbitrary function f: [a9 b] -» R 
satisfies 

K-rr ;::::: 
M j?*--r.!f:-:: 

and 

(2.10) | в/dZ [ t ] = 
-f(a) if т = a , 

0 if a < т < b , 
f(b) if т = b . 

(For the proof see [14], 1.4.21 and 1.4.22.) 

2.4. Corollary. Let W = {wl9 wl9..., wn} c [a, b], c e R and ft: [a, b]-+ R be 
such that 
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(2.11) h(t) = c for all t e [a, b] \ W. 

Then 

(2.12) Cfdh = f(b) (h(b) - c) - f(a) (h(a) - c) 

holds for any function f: [a, b]-> R. 

Proof. A function h: [a, b]-+ R fulfils (2.11) if and only if 
n 

*(0 = c + I Ww1) - c) XcwiO on [a, b] . 

Thus, the formula (2.12) follows from (2.6) (with T = b) and from (2.10) in Proposi­
tion 2.3. 

2.5. Remark. It is well-known (cf. [14], 1.4.17 or [11], Theorem 1.22) that if 
g e BV(a9 b), h: [a, b] -» K and hn: [a,b] -+ R, neN are such that jb hn dg exists 
for any n e N and lim \\hn — h|| = 0, then j£ h dg exists and 

ii.. 

b rb 

hdg (2.13) lim í h„ dg = í 

holds. To prove an analogous assertion for the case g e G(a, b) we need the following 
auxiliary assertion. 

2.6. Lemma. Let fe BV{a, b) and g e G(a, b). Then the inequality 

(2.14) \SD(fAg)\ Z (\f(a)\ + \f(b)\ + var»/) ||a|| 

holds for an arbitrary partition D of [a, b\. 

Proof. For an arbitrary partition- D = (d, £) of [ci, b] we have (putting £0 = a 
and £m+1 = b) 

m + 1 

\SD(fAg)\ = |/(fc)a(b) - / (*)«(«) - I (f(Q - / ( { , _ 0 ) ^ - i ) l = 

m + 1 

= (|/(t')l + |/(«)l + . I I / ( ^ ) - / f e - 1 ) l ) l k l l = 

= (|A*)| + l/MI + var^/) ||a| . 

2.7. Theorem. Let g e G(a, b) and let h„, h: [a, b]-> R be such that JJ hn dff 
exists for an neN and lim ||hn — h||BF = 0. Then jb h dg exists and (2.13) holds. 

n 

Proof. Since |/(b)| = \f(a)\ + \f(b) - f(a)\ = \f(a)\ + varj/, we have by (2.14) 

\SD(hm-hk)Ag)\<2\\hm-hk\\BV\\g\\ 
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for all m, k e N and all partitions D of [a, 6], Consequently, 

I.Г (я m - «t) dfl < 2||«и - fcJU Цafl 

holds for all m, keN. This immediately implies that there is q e R such that 

lim \hn dg = q 

It remains to show that 

lim h„ 

hág 

For a given e > 0, let n0 e N be such that 

(2.16) IÍ 
U a 

K0àg - q < s and \\hno - h\\BV < s , 

and let 5E be such a gauge on [a, b] that 

(2.17) o(K0Ag)- Ґ lЬ.odö' < £ 

for all <5e-fine partitions D of [a, b]. Given an arbitrary <5£-partition D of [a, b] we 
have by (2.16), (2.17) and Lemma 2.6 

\q - SD{h Ag)\ < 

< \q ~ ľ K0 ág + I ľ h„0 ág - SD(h„0 Д<j) 
I J a I I J a 

+ SD(hnoAg)-SD(hAg) 

= 2e + \SD((hno - fc) Ag)| ^ 2e + 2||h„0 - ft||BF ||g|| = 2e(l + | | 0 | 

This completes the proof of (2.16) and as well as of the proposition. 

Now we can prove the following 

2.8. Theorem. Let f e BV(a, b) and g e G(a, b). Then the integral 

Í /(OMO 

exists and the inequality 

(2.18) 

holds. 

j/(0dff(0 < (1/001 + !/(*)! + v a r«/) IMI 
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Proof. Let fe BV(a, b) and g e G(a, b) be given. Let W = {w*}^ be the set of 
discontinuities of/ in [a, b] and le t / = fc + fB be the Jordan decomposition of/ 
(fc is continuous on [a, b] and/B is given by (1.2)). We have 

l i m | / f - / B | B K = 0 
« 

for/?, n eN given by (1.3). By (2.3) and (2.4), 

(2.19) f/Bd0 = £ [A+f(wk)(g(b) - g(wk+)) + A+f(wk)(g(b) - g(Wk-))] 
J. --* 

holds for any n e N. Thus according to Theorem 2.7 the integral JJ/B do exists and 

(2.20) f /Bda = l i m f / B d a . 
Ja n Ja 

The integral \h
af

c dg exists as the a-Riemann-Stieltjes integral (cf. Theorems 11.13.17 
and II. 11.7 in [4]). This means that \b

afdg exists and 
pb pb /»fr /•& pb 
/ d a = fcdg + \fBdg = / cdfl + lim /„Bda . 

J a J a J a J a n J a 

The inequality (2.18) follows immediately from Lemma 2.6. 

2.9. Remark. Since 

I |A+/(w»)(fl(b) - g(wk+)) + A - / K ) ( # ) - * K - ) ) | ^ 
* = 1 

= -Bffl ( I | A + / K ) | + |A"/K)|) = -|k| | (varj/) < co , 
* = 1 

we have in virtue of (2.19) and (2.20) 

(2.21) ( V dg = £ [A + /K) ( # ) - g(wk+)) + A"/(wk) ( # ) - g(wfc-))] . 
J« *--

As a direct consequence of Theorem 2.8 we obtain 

2.10. Corollary. Let hn e G(a, b),neN and h e G(a, b) be such that lim \\hH - ft|| = 
= 0. Then for any feBV(a, b) the integrals n 

еъ ль 
\/йп апс! / 

За ^ а 

Г/^»= Г/ал. 

l/d/j and |/dh , , , weiV 

exist and 

lim 
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2.11. Lemma. Let h: [a, b] -» R, ce Rand W = {wk}keN <= [a, b] be such that (2.11) 
and 

(2.22) £ |h(w») - c| < GO 
t = i 

AoW. Git>eH neN, let us define W„ = {w., w2,..., WB) and 

(2.23) h„(f) = c /or t e [a, b] \ Wn , 

K(t) = h(t) for teW„. 

Then h„eBV(a, b)for any neN, heBV(a, b) and 

(2.24) l im | | n n -n | B K = 0 . 
n 

Proof. The functions hn,neN and h evidently have a bounded variation on [a, b]. 
For a given neJV,we have 

hn(t) - h(f) = 0 if f£jV„ or re [a, b]\W 

and 
hn(f) - h(f) = c - h(wfc) if f = wk for some k > n . 

Thus, 
(2.25) lim ftn(r) = h(r) on [a, b] 

and, moreover, 

11 Wo) - Ko)) - W ' M ) - *('.«-0)1 = 2 £ l"W - c| 
j=l k=n+l 

holds for any neN and any division {f0, tu ..., i*m} of [a, b]. Consequently, 

(2.26) varj(ftn-h) = 2 £ |h(wk) - c\ 
k = w + l 

holds for any neN. In virtue of the assumption (2.22) the right-hand side of (2.26) 
tends to 0 as n -> oo. Hence (2.24) follows from (2.25) and (2.26). 

2.12. Proposition. Let h: [a, b] -» R, ceR and W = {wk}k€N be such that (2.11) 
and (2.22) hold. Then 

І \ àg = £ (h(wk) - c) Ag(Wk) + c(g(b) - g(a)) 
* = 1 

holds for any g e G(a, b). 

Proof. Let g e G(a, b) be given. Let Wn = {wu w2,..., wn} for n eN and let the 
function hn, neN be defined by (2.23).. Given an arbitrary neN, then (2.1) (with 
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I' 
T = b) and (2.5) from Proposition 2.1 imply 

\ d 0 - I (%*) - c) Ag(Wk) + c(g(b) - g(a)) . 
* - l 

Since (2.22) yields 

I |(«(wt) - c) Ag(Wk)\ < 2\g\ ( £ |«(wk) - c\ < co 
fc=l fc=l 

and Lemma 2.11 implies 
lim \\hn - h\\BV = 0, 

n \'- . 
we can use Theorem 2.7 to prove that 

[\ dg = lim f hn dg = f (h(wk) - c) Ag(wk) + c(g(b) - g(a)) . 
Jfl » J« *=1 

2.13. Proposition. Let h e G(a, b), ceR and W = {wk}keN fulfil (2.11). Then 

(2.27) f / dh = f(b) (h(b) - c) - f(a) (h(a) - c) 

holds for any feBV(a, b). 

Proof. Let fe BV(a, b). For a given fieiV, let Wn = {w^ w2,..., wn} and let /irt 
be given by (2.23). Then 

(2.28) l im | |h n - h\\ = 0. 
n 

Indeed, let 8 > 0 be given and let n0 e N be such that k = n0 implies 

(2.29) | h ( w k ) - c | < 8 . 

(Such an n0 exists since \h(wk) — c| = JA"/i(wk)| = |A+/i(wk)| for any keN and the 
set of those k e N for which the inequality (2.29) does not hold may be only finite.) 
Now, for any n ^ n0 and any t e [a, 6] such that t = wk for some k > n (t e W\ Wn) 
we have 

\K(t) - h(t)\ = \hB(Wk) - h(Wk)\ = \c- h(Wk)\ < s. 

Since h„(i) = h(t) for all the,other te {a, b] (t e([a, b]\W)v W„), it follows that 
\h„(t) - h(t)\ < e on [a, fc], i.e. 

||»» - « | < e . 
This proves the relation (2.28). 

By Coroliary 2.4 we have for any neN 

JÎ fd«„ = /(&) (h(b) - c) - f(a) (h(a) - c) . 
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Making use of (2.28) and Corollary 2.10 We obtain 

'"fdh,, =f(b) (h(b) - c) - f(a) (h(a) - c) . Í
b ŕb 

/dh=lim V 
2.14. Corollary. Let h e BV(a9 b),ceR and W = {wk}keNfulfil (2.11). Then (2.27) 

holds for any fe G(a9 b). 

Proof. By Proposition 2.12, (2.27) holds for any fe BV(a9 b). Making use of the 
density of S(a, b) a BV(a9 b) in G(a9 b) and of the convergence theorem mentioned 
in Remark 2.5 we complete the proof of our assertion. 

2.15. Theorem, (integration-by-parts). If fe BV(a9b) and g e G(a9 b), then 
both the integrals \h

afdg and \b
a g d/ exist and 

(2.30) J / dg + j*g d/ = f(b) g(b) - f(a) g(a) + 

a + Z °[A-f(t)A-g(t)-A+f(t)A+g(ty\. 
a^tgb 

Proof. The existence of the integral \b
agdf is well-known while the existence 

of ja/dg is guaranteed by Theorem 2.8. Furthermore, 

\bfdg + Cg d/ = f/(0 [d(«(0 + A+«(0)] + \"g(t) [d(/(0 - A"/(0)] -
J a J a J a J a 

Ґ/(0[d(A+a(0)]+[W)[d(A-/(0)] 
Ja Jb 

It is easy to verify that the function h(t) = A+g(t) fulfils the relation (2.11) with 
c = 0 and h(b) = 0. Consequently, Proposition 2.13 yields 

'/(0 [d(A+a(0)] = -/(«) A+g(a). 
la ÍÌ 

Similarly, by Corollary 2.14 we have 

jbg(t)[d(A-f(t))-] = A-f(b)g(b). 

Hence 

(2.31) [/da + Cg d/ = [/(0 dg(t+) + ["g(t) df(t-) + 
J a J a J a J a 

+ f(a)A+g(a) + A-f(b)g(b). 

The first integral on the right-hand side may be modified in the following way: 

(2.32) f/(0 dg(t+) = [/(*-) dg(t+) + [*A"/(0 M*+) • 
J a J a J a 
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Making use of Proposition 2.12 and taking into account that Agx(t) = Ag(t) on 
[a, 6] for the function g^ defined by gx(t) = g(t+) on [a, b], we further obtain 

(2.33) CA-f(t)dg(t+)= £ A'f(t) Ag(t) . 
Jfl «isrsb 

Similarly 

(2.34) ("g(t) df(t-) = ra('+) d/(.-) - \bA+g(t) df(t-) = 
J a J a J a 

• =rVr+)d/(r-)- I A+
fl(')A/(0-

J f l fl^riifr 

The function f(t—) is left-continuous on (a, b], while g(t+) is right-continuous 
on [a, b). It means that both the integrals 

rb rb 
Çf(t-)dg(t+) and Гa(ť+)dДř-) 

J a J a 

exist as the a-Riemann-Stieltjes integrals (cf. [4], 11.13.17), and by the integration-
by-parts theorem for these integrals (cf. [4], 11.11.7) we have 

(2.35) f / ( . - ) dg(t+) + ("g(t+) df(t-) = f(b-) g(b) - f(a) g(a +) . 

Inserting (2.32)-(2.35) into (2.31) we get 

f/dg + Cg df = f(b-) g(b) - f(a) g(a +) + 

+ I A-f(t)(A-g(t) + A+g(t))- I (A~f(t) + A+f(t)) A+g(t) + 
aZt^b a£t£b 

+ f(a) A+g(a) + A~f(b) g(b) = f(b) g(b) - f(a) g(a) + 

+ I [A"/(.) A-g(t)-A+f(t)A+g(t)], 
aZtgb 

and this completes the proof. 
The following proposition describes some properties of indefinite Perron-Stieltjes 

integrals. 

2.16. Proposition. Let / : [a, b]-> R and g: [a, b] -+ R be such that ftfdg 
exists. Then the function 

ВД-J/ fdg 

is defined on [a, b~\ and 
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i) if g € G(a, b), then h e G(a, b) and 

(2.36) A+h(t)=f(t)A+g(t)9 A"h(t) = f{t) A~g{t) on [a, b] ; 

ii) if g e BV(a, b) andfis bounded on [a, b], then h e BV(a, b). 

Proof. The former assertion foliows from Theorem 1.3.5 in [8]. The latter foliows 
immediately from the inequality 

^ I « / « ( v a r t ^ ) = « / | | ( v a r ^ ) 
j ~ * 

which is valid for any division {í0, tl9..., tm] of [a, b]. 
In the theory of generalized difFerential equations the substitution formula 

(2.37) |*fc(í) |~d 1/(5) dí(s)l = f *(*)/(*) d0(O 

is often needed. In [4], 11.19.3.7 this formula is proved for the a-Young-Stieltjes 
integrál under the assumption that g e G(a, b), h is bounded on [a, b], and the 
integrál \b

afdg as well as one of the integrals in (2.37) exists. In [14], Theorem 1.4.25 
this assertion was proved for the Kurzweil integrál. Though it was assumed there 
that g e BV(a9 b), this assumption was not ušed in the proof. We will give here 
a slightly different proof based on the Saks-Henstock lemma (cf. e.g. [11], Lemma 
i.ii). 

2.17. Lemma. (Saks, Henstock). Let f, g: [a, b] -> JR be such that the integrál 
\b

af dg exists. Let s > 0 be given and let d be a gauge on [a, b] such that 

?D( /A0)- f/d f f < £ 

holdsfor any 5-fine partition D of\a, b]. Then for an arbitrary systém {([PÍ, y j , 0"*), 
i = 1, 2,. . . , k} of intervals and points such that 

(2.38) a£P1£c1£y1£P2£...'áPkŠ<rk£ykŠb 

and 

ÍPi> 7i] c |>i- - Sfai), ^i + «(*,)] , i = 1, 2,.. . , k , 

í/ie inequality 

(2.39) 

holds. 

Íf(°,)lg(vt)-g(p,)\- [nfáa\ i = 1 J Í , I 
< e 

Making use of Lemma 2.17 we can prove the following useful assertion 
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2.18. Lemma. If f: [a, b] -> R and g: [a, b] -> JR are such that \b
af dg exists, 

then for any e > 0 there exists a gauge <5 on [a, b] suc/i ffcat 

(2.40) 
7 = 1 

л«i)[в(o)-^-i)]-Г /<** 
i J o - i 

< £ 

holds for any b-fine partition (d, £) of [a, b]. 

Proof. Let 5: [a, b] -> (0, oo) be such that 

•D(fAg) - fdg\ = ZfiQ [g{tj) - a ^ ) ] - /da 
J a I I/--1 J O-i 

for all <5-fine partitions D = (d, £) of [a, b]. Let us choose an arbitrary <5-fine partition 
D = (d, £) of [a, b]. Let yf = fp. and fit = fPi_i, i = 1, 2 , . . . , fc be all points of the 
division d such that 

/(U[0(v.)-^.)]-r/d^O. 
J/J. 

Then the system {([£„ y j , <7f), i = 1,2, ...,fc}, where ô  = £p., fulfils (2.38) and 
(2.39) and hence we can use Lemma 2.17 to prove that the inequality 

k 

I 
І=І Jßi I 

8 

< -
2 

is trueT Similarly, if cot = tqt and Sf = ffl4-i, i = 1, 2 , . . . , r are all points of the 
division d such that 

/(«,,)IX«>.) - # . ) ] - /dflfšO, 
Jdi 

then the inequality 

E 
i = l 

Д U 1 > Ы - # « ) ] - /<tø 
Jдi 

holds. Summarizing, we conclude that 

+ 1 
i = l 

/ ( ^ ) [ ^ ) - K 0 - i ) ] - f* fdg 
Jtj-i 

f(UÍ9(yi)-9(Pi)]-rfág\ 
Jfii I 

f&) [(!(<»>)-om-Tfád 

= 1 + 

6 8 

< - + - = e, 
2 2 

This completes the proof. 
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2.19. Theorem (Substitution). Let f,g, h: \_a, ti] -» R be such that h is bounded 
on \a, ti] and the integrál 

fdg 
: 

exists. Then the integrál 

í Kt)f(t)Mt) 
exists if and only if the integrál 

íMd í / ( s ) d ť ? ( s )] 
exists, and in this čase the relation (2.37) holds. 

Proof. Let \h(t)\ ^ C < oo on [a, 6]. Let us assume that the integrál \b
a hfdg 

exists and let e > 0 be giveií. There exists a gauge (5t on [a, ti] such that 

i=l Ja 

is satisfied for any á^fine partition (d, Č) of [a, ti]. By Lemma 2.18 there exists 
a gauge 5 on \a} ti] such that 5{t) ^ 5t(í) on [a, b] and 

i/(^)[fl(o)-flío-i)]- r /a* 
holds fot any (5-fine partition (á, <!;) of [a, &]. Let us denote 

fc(0 = Í / d » f o r Í6[fl,&]. 

Then for any 5-fine partition D = (d, £) of [a, b] we háve 

Is^/t A/c) - [ hfdgí = 
I J a I 

j m /»řj m 

= I KQ fáo-I KtWĎ b(tj) - 3(0-0] 
m Ab i 

+ Z *&)/&) Ofo) - 0(ř;-O] - hfM š 

^ | JMQ [[' /^ - m Mu - í(ři-i)]] | -
+ I KZJMZJ) Í9(tj) - </(<,-0] - hfdg 

+ 

< e . 
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This implies the existence of the integral J* h dfc and the relation (2.37). The second 
implication can be proved in an analogous way. 

The convergence result 2.10 enables us to extend the known theorems on the change 
of the integration order in iterated integrals 

(2.38) fdg(t) Id (\(t, s) df(s)l, f 7 fdg(t) dth(t, s)\ df(s) , 

where — oo < c < d < oo and h is of strongly bounded variation on [c, d] x [a, b] 
(cf. Theorem 1.6.20 in [14]). In what follows \(h) denotes the Vitali variation of the 
function h on [c, d] x [a, b] (cf. [4], Definition III.4.1 or [14], 1.6.1). For a given 
t e [c, d], var* h(t, •) denotes the variation of the function s e [a, b] -> h(t, s)e R 
on [a, b]. Similarly, for s e [a, b] fixed, var£ h(m, s) stands for the variation of the 
function t e [c, d] -* h(t, s) e R on [c, d~\. 

2.20. Theorem. Let h: [c, d~] x [a, b]-+ R be such that 

v(h) + \Md
c h(-, a) + var* h(c, •) < oo . 

Then for any fe BV(a, b) and any g e G(c, d) both the integrals (2.38) exist and 

(2.39) !"g(t) [d Ch(t, s) df(s)~\ = f Y p ( 0 <-.*•('. s)) d/(s). 

Proof. Let us notice that by Theorem 1.6.20 from [14] our assertion is true if g 
is also supposed to be of bounded variation. In the general case of g e G(c, d) there 
exists a sequence {g„}neN

 c S(c> *0 s u ch that lim |jgn — g|| = 0 . Then, since the 
function B 

v(t)=tbh(t,s)df(s) 

is of bounded variation on [c, d] (cf. the first part of the proof of Theorem 1.6.20 
•n [14]), the integral on the left-hand side of (2.39) exists and by Corollary 2.10 and 
Theorem 1.6.20 in [14] we have 

(2.40) [dg(t) \d Ch(t, s) df(s)l = lim Fgn(t) Id Ch(t, s) df(s)l = 

=iimfvr*^ 
Let us denote 

wn(s) = a„(f) d,h(t, s) foг sєla,^] and и = l,2,. 
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Then wn e BV(a, b) for any n e N (cf. [14], Theorem 1.6.18) and by Theorem 1.4.17 
from [14] mentioned here in Remark 2.5 we obtain 

lim wn(s) = g(t) dth(t, s) : = w(s) on [a, b] . 
n Jc 

As 
\wn(s) - w(s)\ g \\gn - 0|| (var^ *(•, s)) = \\gn - 0|| (var< h(; a) + w(h)) 

for any s e [a, b] (cf. [14], Lemma 1.6.6), we have 

lim ||wn — w|| = 0 . 
n 

It means that w e G(a, b) and by Theorem 2.8 the integral 

Cw(s) df(s) = f Y f V ' ) d,fc(», s)) df(s) 

exists as well. Since obviously 

lim [(fa)dth(t9 s)\df(s) = lim Cwn(s)df(s) = 

= Cw(s) df(s) = f ( p ( 0 df*(rf 5)^ d/(S) , 

the relation (2.39) follows from (2.40). 

3. LINEAR BOUNDED FUNCTIONALS ON GL(a, b) 

By Theorem 2.8 the expression 

(3.1) Fn(x) = qx(a)+j 
b 

p dx 

is defined for any x e G(a, b) and any r\ = (p, q) e BV(a, b) x R. Moreover, for any 
r\ e BV(a, b) x R (3.1) defines a linear bounded functional on G(a, b). 

Proposition 2.3 immediately implies 

3.1. Lemma. Let rj = (p, q) e BV(a, b) x R be given. Then 

(3.2) Fn(Xla„) = q , 

-tarn) =P(b)> 
Fn(*ir.bi) = ?W for any % e [a, b) . 

3.2. Corollary. J/ n = (p, q) e BV(a, b) x R and F,(x) = 0 for all x e S(a, b) 
which are left-continuous on (a, b), then p(t) = 0 on [a, b] and q = 0. 
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3.3. Lemma. Let x e G(a,b) be given. Then for a given rj = (p,q) e BV(a,b) x R, 

(3.3) Fn(x)'= x(a) if p = 0 and a = 1 , 

Fn(x) = x(b) if p = 1 and q = 1 , 

Fn(x) = X(T-) lf P = X[a,t], T e (a, fc] and a. = 1 , 
F i ( x ) •= X (T+) */. P = Zc.t], * e [a, 6) and g = 1 . 

P roof follows from Proposition 2.1. 

3.4. Corollary. If xe G(a, b) and F„(x) = 0 for all rj = (p, q) e BV(a, b) x R, 
then 

(3.4) x(a) = x(a+) = X ( T - ) = X ( T + ) = x ( b - ) = x(b) = 0 

holds for any T e (a, b). In particular, if xe GL(a, b) (x is left-continuous on (a, b)) 
and Fn(x) = 0 /o r all r\ e BV(a, b) x R, then x(t) = 0 on [a, 6]. 

3.5. Remark. The space .BV(a, b) x R is supposed to be equipped with the 
usual norm (||IJ||BK-XJI = \\P\\BV + \q\ f<>r n = (p,q)eBV(a, b) x R). Obviously, it 
is a Banach space with respect to this norm. 

3.6. Proposition. The spaces GL(a, b) and BV(a, b) x R form a dual pair with 
respect to the bilinear form 

(3.5) x e GL(a, b) , rje BV(a, b) x R-> Fn(x) e R . 

Proof follows from Corollaries 3.2 and 3.4 
On the other hand, we have 

3.7. Lemma. If F is a linear bounded functional on GL(a, b) and 

(3.6) P(t) = F(X(t.bl) V te[a,b), p(b) = F(X[b]) , 

then p e BV(a, b) and 

(3.7) \p(a)\ + \p(b)\ + yavb
aP^2\\F\\, 

where \\F\\ = sup {\F(x)\; X e GL(a, b), \\x\\ ^ 1}. 

Proof is analogous to that of part c(i) of Theorem 5.1 in [5]. Indeed, for an 
arbitrary division {t0, tu ..., tm} of [a, b] we have 

m 

sup \p(a) c0 + p(b) cx + £ [p(tj) - K'1- i ) ] CJ\ = 
\cj\Zl,CjeR y = l 

m - 1 

= SUP \F(c0Xiatbl + CtXm + E C1X(0-i.O] + CmX(tm^.b))\ = 
\cj\£l,cjeR y = l 

g sup \F(h)\ = 2|F|| . 
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In particular, for c0 = sign p(a)9 ct = singp(b) and Cj = sign (p(tj) — p(f/-i))> 
; = 1,2, ...,m, we get 

|K-)| + b(fc)| + £ |P(O) - P(O-0I =̂  

and the inequality (3.7) immediately follows. 
Using the ideas from the proof of Theorem 5.1 in [5] we may now prove the fol­

lowing representation theorem. 

3.8. Theorem. F is a linear bounded functional on GL(a9 b) (F e G*(a9 b)) if and 
only if there is an rj = (p9 q) e BV(a9b) x R such that 

(3.8) F(x) = F„(x) f: = q x(a) + f p dx J for any x e GL(a9 b) . 

The mapping 
<P:neBV(a9b) x R-+ FneGL*(a9b) 

is an isomorphism. 

Proof. Let a linear bounded functional F on GL(a9 b) be given and let us put 

(3.9) q = F(Xlatbl)9 p(t) = F(x(tM) for te[a,b) and p(b) = F(X[bl). 

Then Lemma 3.6 implies r\ = (p9 q)e BV(a9 b) x R and by Lemma 3.1 we have 

F(Xta.bd = Ffi(Xia,bi) , F(X(t,bi) = Fr,(X(t,bi) for any t e [a9 b) 

and 

Hxm) = Fn(xlb}). 

Since all functions from S(a9 b) n GL(a, b) obviously are finite linear combinations 
of the functions x[fltb], X(xtbi> T G [fl> *0 anc* &&]> ^ f°--ows that F(x) = Fn(x) holds 
for any x e S(a, b) n GL(A, b). Now, the density of S(a9 b) n GL(a9 b) in GL(a, b) 
mplies that 

F(x) = Fn(x) for all x e GL(a9 b) . 

This completes the proof of the first assertion of the theorem. 
Given an x e GL(a9 b), then Lemma 2.6 yields 

\Fn(X)\^(\p(a)\ + \p(b)\ + s&rap + \q\)\\x\\ 

and consequently, 

j|F,| = |p(a)| + \p(b)\ + var»p + \q\ = 2(|p|BK + \q\) = 2\\r,\\ByXR. 

On the other hand, according to Lemma 3.7 we have 

IWU^(|p(a)| + | # ) l + varSp)rg2||F||. 
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Furthermore, in virtue of (3.9) we háve \q\ ^ ||F|| and hence 

HBFXK = ||p||flK + |«| £ 2\\F\\ . 
It means that 

m\ * b\Uv*R ̂  3|F|| 

and this completes the proof of the theorem. 
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Souhrn 

REGULOVANÉ FUNKCE A PERON-STIELTJESŮV INTEGRÁL 

MILAN TVRDÝ 

Studuji se vlastnosti Perronova-Stieltjesova integrálu při integraci vzhledem k „regulovaným" 
funkcím (tj. funkcím, které mají v každém vnitřním bodě vyšetřovaného intervalu konečné obě 
jednostranné limity, v levém krajním bodě mají konečnou limitu zprava a v pravém krajním 
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bodě mají konečnou limitu zleva). Ukazuje se, že lineární spojité funkcionály na prostoru 
GL(at b) funkcí regulovaných na [at b\ a zleva spojitých na (a, b) (—00 < a < b < 00) mohou 
být representovány ve tvaru F(x) = p x(a) + JJ q áx, kde p e R a q(t) je funkce konečné variace 
na [a, b]. Některé věty známé pro integraci vzhledem k funkcím s konečnou variací jsou zobec­
něny na případ integrace vzhledem k regulovaným funkcím. 

Резюме 

ПРЕРЫВИСТЫЕ ФУНКЦИИ И ИНТЕГРАЛ ПЕРРОНА-СТИЛТЬЕСА 

МI^АN ТУ1Ш* 

Изучаются свойства интеграла Перрона-Стилтьеса при интегрировании относительно 
прерывистых функций (т.е. функций, обладающих в каждой точке рассматриваемого интерва­
ла конечными односторонними пределами). Оказывается, что лихейлые непрерывные функ­
ционалы на пространстве 0(а, Ь) прерывистых на [а, Ь] и непрерывных слева на (а, Ь) функций 
(— оо < а < 6 < оо) могут быть представлены в виде Р(х) = р х(а) + Л! д ах, где ре К 
и ^(^) — функция с конечной вариацией на [а, Ь], Некоторые теоремы, известные для инте­
грирования относительно функций с конечной вариацией, обобщены на случае интегриро­
вания относительно прерывистых функций. 

Ашког'з аМгезз: Магстагюку й&1ау С5АУ, 21*па 25, 115 67 РгаЬа 1. 
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