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REGULATED FUNCTIONS AND THE PERRON-STIELTJES INTEGRAL
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Summary. Properties of the Perron-Stieltjes integral with respect to regulated functions are
investigated. It is shown that linear continuous functionals on the space G(a, b) of functions
regulated on [a, b] and left-continuous on (@, b) may be represented in the form F(x) = p x(a) +
+ I'j q dx, where p€ R and g(¢) is a function of bounded variation on [a, b]. Some basic theorems
(e.g. integration-by-parts formula, substitution theorem) known for the Perron-Sticltjes integral
with respect to functions of bounded variation are established.

Key words: regulated function, function of bounded variation, Perron-Stieltjes integral, lefts
continuous function, linear continuous functional.

AMS classification: 26A42 (26A45, 28A25, 46E99).

This paper deals with the space G(a, b) of regulated functions-on a compact
interval [a, b]. It is known that when equipped with the supremal norm G(a, b)
becomes a Banach space, and linear bounded functionals on its subspace G(a, b)
of functions regulated on [a, b] and left-continuous on (a, b) can be represented by
means of the Dushnik-Stieltjes (interior) integral. This result is due to H. S.
Kaltenborn ([7]), cf. also Ch. S. Honig ([5]), Theorem 5.1. Together with the known
relationship between the Dushnik-Sticltjes integral, the o-Young-Stieltjes integral
and the Perron-Stieltjes integral (cf. Ch. S. Hénig [6] and 8. Schwabik [12], [13])
this enables us to see that F is a linear bounded functional on G,(a, b) if and only
if there exist a real number g and a function p of bounded variation on [a, b] such
that

F(x) = q x(a) + J'bp(t) dx(f) forany xe Gya,b),

a
where the integral is the Perron-Stieltjes integral. We will give here the proof of this
fact based only on the properties of the Perron-Stieltjes integral. To this aim, the
proof of the existence of the integral

| j "1 da(d)

for any function f of bounded variation on [a, b] and any function g regulated
on [a, b] is crucial. Furthermore, we will prove extensions of some theorems (e.g.
integration-by-parts and substitution theorems) needed for dealing with generalized
differential equations and Volterra-Stieltjes integral equations in the space G(a, b).
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1. PRELIMINARIES

Throughout the paper R, denotes the space of real n-vectors, R; = R. Given
x € R,, its components are denoted by x;, X5, ..., X, (x = (x, X3, ..., X,)). N stands
for the set of all natural numbers (N = {1,2,...}). Given M < R, x) denotes its
characteristic function (y,(f) = 1 if € M and xp(t) = 0 if ¢ ¢ M).

Let —0 <a <b < . The sets d = {to,ty,...,1,} of points in the closed
interval [a, b] such that a = t, < t; <... <1, = b are called divisions of [a, b).
Given a division d of [a, b], its elements are usually denoted by to, ty, ..., t,,. The
couples D = (d, &), where d = {to,1y,...,t,} is a division of [a,b] and & =
= (&4, &5, -vvs Em) € R,, is such that

t]-léfjétj forall j=1,2,..,m

are called partitions of [a, b]
A function f: [a, b] » R which possesses finite limits

f(t+) =1limf(r) and f(s—) = lim f(z)

for all te[a, b) and all se(a, b] is said to be regulated on [a, b] The set of all
regulated functions on [a, b] is denoted by G(a, b). Given f e G(a, b), we define

fla=) = 1(a), f(b+) = f(b),
A*f(t) = f(t+) — f(t) if tela,b), A*f(b)=0,
Af(t) =f(t) = f(t=) if te(a,b], A f(a)=0
and :
Af(t) = f(t+) — f(t=) if te(a,b),
Af(a) = A*f(a), Af(b) = A S(b).-
It is known (cf [5], Corollary 3.2a) that if f € G(a, b), then for any ¢ > 0 the set of
points ¢ € [a, b] such that |A*f(f)| > & or |Af(t)] > & is finite. Consequently, for
any fe G(a, b) the set of its discontinuities in [a, b] is countable. The subset of
G(a, b) consisting of all functions regulated on [a, b] and left-continuous on (a, b)
will be denoted by Gy(a, b).
A function f: [a, b] —» R is called a finite step function on [a, b]if there exists
a division {t, t;, ..., t,,} of [a, b] such that f is constant on every open interval
(tj-1, 1), i =1,2,...,m. The set of all finite step functions on [a, b] is denoted
by S(a, b). A function f: [a, b] - R is called a break function on [a, b] if there

exist sequences {ti}xen = [, b], {¢; }ien and {c; }ien such that 1, # t; for k = j,
¢ =0ift,=a,¢f =0ift, = b,

Sl + Je) < e0
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and

(1.1) =Y e + Y ¢

st te<t

or equivalently
10) =k2:1 cx Yensit) + & Xpnpi(t) for tela, b].

Clearly, if f is given by (1.1), then A*f(t,) = ¢, and A™f(t,) = ¢, for any ke N
and f(t+) = f(¢t) = f(t—) if t € [a, b] \ {t;}1en- Furthermore, we have f(a) = 0 and

vart f =k§l[c,"[ + ef| <

for any such function. The set of all break functions on [a, b] is denoted by B(a, b).

BV/(a, b) denotes the set of all functions with bounded variation on [a, b], | f|sr =
= |f(a)| + var f for f e BV(a, b). It is well-known that for any fe BV(a, b) there
exist uniquely determined functions f€ € BV(a, b) and f® € BV(a, b) such that f€ is
continuous on [a, b}, f? is a break function on [a, b] and f(t) = f(t) + f5(t) on
[a, b] (the Jordan decomposition of f e BV(a, b)). In particular, if W = {w,};en is
the set of discontinuities of f in [a, b], then .

(12) 1) =§1A—f (%) Xomr(!) + A*S(Wi) Xowort) on [a, -b] .
Moreover, if we put
(13)  S20 = ZAF0) Hol) + A0 2ol on [4, 8]

for ne N, then

(cf. e.g. [14], the proof of Lemma 1.4.23). Obviously, S(a, b) = B(a, b) = BV(a, b)
< G(a, b). '
Given f € G(a, b), we define

I£]l = sup lF@)] -

Clearly, |f|| < o for any fe G(a, b) and when endowed with this norm, G(a, b)
becomes a Banach space (cf. [5], Theorem 3.6). It is known that S(a, b) is dense in
G(a, b) (cf. [5], Theorem 3.1). It means that f: [a, b] — R is regulated on [a, b] if
and only if it is a uniform limit on [a, b] of a sequence of finite step functions.
Obviously, Gy(a, b) is closed in G(a, b) and hence it is also a Banach space. (Neither
S(a, b) nor BV(a, b) are closed in G(a, b), of course.)

For some more details concerning regulated functions see the monographs by
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Ch. S. Honig [5] and by G. Aumann [1] and the papers by D. Fraiikova [2] and [3].
The integrals which occur in this paper are the Perron-Stieltjes integrals. We will
work with the followmg definition which is a special case of the definition due to
J. Kurzweil [8].
Let —o0 < a < b < . An arbitrary positive valued function é: [a, b] — (0, oo)
is called a gauge on [a, b]. Given a gauge 6 on [a, b], the partition (d, &) of [a, b]
is said to be d-fine if

(-1t = (& = 8(&), & + 8(¢) forany j=1,2,...,m
Given functions f, g: [a, b] > R and a partition D = (d, &) of [a, b], let us define

Sp(f Ag) = me (£ (a(t)) = a(ty-1) -

We shall say that I € R is the Kurzweil integral of f with respect tog from a to b and
denote

= Ef(z) dg(f) orI = J :fdg

if for any & > 0 there exists a gauge 6 on [a, b] such that

|r - SD(ng)l <e

for all é-fine partitions D of [a, b].

The Perron-Stieltjes integral with respect to a function not necessarily of bounded
variation was defined by A. J. Ward [15] (cf. also S. Saks [10], Chapter VI). It can
be shown that the Kurzweil integral is equivalent to the Perron-Stieltjes integral
(cf. [12], Theorem 2.1, where the assumption g € BV(a, b) is not used in the proof
and may be omitted). Consequently, the Riemann-Stieltjes integral (both of the
norm type and of the o-type, cf. T. H. Hildebrandt [4]) is its special case. The relation-
ship between the Kurzweil integral, the o-Young-Stieltjes integral and the Perron-
Stieltjes integral was described by S. Schwabik (cf. [12] and [13]).

Since we will make use of some of the properties of the o-Riemann-Stieltjes
integral, let us indicate here the proof that this integral is included in the Kurzweil
integral. In fact, let f, g: [a, b] — R and I € R be such that the o-Riemann-Stieltjes
integral o [’ f dg exists and equals I, i.e. for any ¢ > O there is a division d, =
= {505 S15 +++» Smo} Of [a, b] such that for any division d = {t,,1y,...,,} which is
its refinement (d, = d) and any & € R,, such that D = (d, &) is a partition of [a, b]
the inequality

|So(fAg) — 1| < &
is satisfied. Let us define 5,(¢) = 1 mm If —s;| for & ¢d, and & (s) = ¢
j ’

for j =1,2,..., my. Then a partition D = (d, &) of [a, b] is é,-fine only if for any
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Jj=1,2,...,mg there is an index i; such that s; = £; . Furthermore,

o7 89) = 3, [1(8) [o(e) - (&3] +1(2) &) = (-]

for any partition D = (d, &) of [a, b]. Consequently, for any J,-fine partition D =
= (d, &) of [a, b] the corresponding integral sum Spy(f Ag) equals the integral sum
Sp(f Ag) corresponding to a partition D’ = (d’, &), where d’ is a division such that
d, = d’, and hence

[SD.(ng) - 1| <e.
This means that the Kurzweil integral Sf, fdg exists and

b b
J‘fdg=cjfdg=1

holds.
It is well known that if f€ G(a, b) and g € BV(a, b), then the integral {5fdg
exists and the inequality

(135) j}da|§ I7] (et o)

holds. The Kurzweil integral is an additive function of intervals and possesses the
usual linearity properties. For the proofs of these assertions and some more details
concerning the Kurzweil integral with respect to functions of bounded variation see

e.g. [8], [9], [11] and [14].

2. PERRON-STIELTJES INTEGRAL WITH RESPECT
TO REGULATED FUNCTIONS

In this section we deal with the integrals
b b
J' 7(1)dg(f) and J o) d1(1),

where f € BV(a, b) and g € G(a, b). We prove some basic theorems (integration-by-
parts theorem, convergence theorems, substitution theorem and unsymmetric Fubini
theorem) needed in the theory of Stieltjes integral equations in the space G(a, b).
However, our first task is the proof of existence of the integral jﬂ fdg for any fe

€ BV(a, b) and any g € G(a, b). We start with some simple special cases.

2.1. Proposition. Let g € G(a, b) be arbitrary. Then for any te€[a, b] we have

(2.1) be[a,,] dg = g(z+) — g(a),
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(22) | j Yoy 40 = a(=) — 6(a)

(2'3) rX[:,b] dg = g(b) - g(‘f —) s
(2'4) beu,b] dg = g(b) - é(1+)
and

(2.5) ' rx(,] dg = Ag(7),

where x,(t) = xu(t) = 0 and the convention g(a—) = g(a), g(b+) = g(b) is used.
Proof. Let g € G(a, b) and 7 € [a, b] be given.
a) Let f = y, . It follows immediately from the definition that

J}dg = g(t) — g(a).

In particular, (2.1) holds in the case © = b. Let 7 € [a, b), let ¢ > 0 be given and let
6 () =3t —¢ for t<&<b and §r)=ce.

It is easy to see that any d,-fine partition D = (d, &) of [z, b] must satisfy
bi=to=1, ty<tT+¢

and
Sp(f Ag) = g(t,) — 9(7) .
Consequently,
b .
deg =g(t+) — g(7)
and

j}dg = J"fdg + Jl}dg = g() — g(a) + g(z+) — 9(z) = g(z+) — g(a),

i.e., the relation (2.1) is true for every 7 € [a, b].
b) Let f = .. If T =a, then f =0, g(t—) — g(a) = 0 and (2.2) is trivial.
Let 7 €(a, b]. For a given & > 0, let us define a gauge 6, on [a, 7] by

68) =3t —¢ for a<é<t and §4(7) =s.
Then for any d,-fine partition D = (d, &) of [a, 7] we have

tn =8m=7T, tyy >T—¢
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and hence
So(f Ag) = g(tm-1) — 9(a).
[t follows immediately that

'ffda = g(7—) = 9(a)
and in view of the obvious identity

b
'ffdg=0,

this implies (2.2).
c¢) The remaining relations follow from (2.1), (2.2) and the equalities ., =
= Xta,b] — Xia,r)> X(z,61 = Xa,b1 — X[a,7] and X1l = Xta,sl — Xfao)e

2.2. Remark. Since any finite step function is a linear combination of functions
Aes@ £ © < b)and x 4i(a < © < b), it follows immediately from Proposition 2.1
that the integral (% f dg exists for any f e S(a, b) and any g € G(a, b).

Other simple cases are covered by

2.3. Proposition. Let 1€ [a, b]. Then an arbitrary function f:[a,b] > R
satisfies

b _[(—f(x) if ©<b,
25) J.f e = { 0 if =5,

b _[(—f(x) if ©>a,
(2.7) _[f o = { 0 if t=a,
(2.8) f g = {f () if < >a,

. ’ 0 if 1=a,

b _[f(x) if T<b,
@9) Lf e = { 0 if ©=b
and

b —f(a) if T=a,
_[fdxm= 0 if a<t<b,
a f(b) if T=b.

(2.10)

(For the proof see [14], 1.4.21 and 1.4.22.)

2.4. Corollary, Let W= {w;, w;,...,w,} = [a,b], ceR and h:[a,b] > R be
such that
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(2.11) h(t) = ¢ forall te[a,b]\W.
Then :

2.12) J "fah = 7(6) (h(b) — ¢) — f(a) ((a) — ©)

holds for any function f: [a, b]— R.
Proof. A function h: [a, b] — R fulfils (2.11) if and only if

MO = ¢ + 3 (w) = ) tousd) on [ 5]

Thus, the formula (2.12) follows from (2.6) (with t = b) and from (2.10) in Proposi-
tion 2.3.

2.5. Remark. It is well-known (cf. [14], 1.4.17 or [11], Theorem 1.22) that if
g € BV(a, b), h: [a,b] > R and h,: [a, b] > R, ne N are such that [} h,dg exists
for any ne N and lim |h, — h| = 0, then {} h dg exists and

" Ja a

o b b
(2.13) limj h,dg = J’ hdg

holds. To prbve an analogous assertion for the case g € G(a, b) we need the following
auxiliary assertion.

2.6. Lemma. Let f € BV(a, b) and g € G(a, b). Then the inequality
(2.14) S5(7 Ag)| = (f(a)] + |£(B)] + varaf) ||
holds for an arbitrary partition D of [a, b].

Proof. For an arbitrary partition D = (d, &) of [a, b] we have (putting &, = a
and {,4q = b)

m+1

ISD(ng)I = |f(b) g(b) — f(a) g(a) = ¥ (f(&;) = F(&;-1) g(t;-1)| =

j=1

< (70 + 17(@) + % 11(&) = 1) lol <
< (V)] + @)+ varz) ]

2.7. Theorem. Let g€ G(a,b) and let h,, h:[a,b] > R be such that [, h,dg
exists for an ne N and lim |h, — h| gy = 0. Then [’ h dg exists and (2.13) holds.

Proof. Since |f(b)| < |f(a)| + |f(b) — f(a)| < |f(a)| + varlf, we have by (2.14)
|So(hm = he) Ag)| < 2[[ B — hilav 9]
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for all m, k € N and all partitions D of [a, b]. Consequently,

b
[0 = m) o] < 2~ il Lol
holds for all m, k € N. This immediately implies that there is g € R such that

b
limjh,dg =q.

a

b
q=Jhdg.

For a given ¢ > 0, let ny € N be such that

b
jhnodg - q

a

It remains to show that

(2.16) <e¢ and |h, — hl|ay <,

and let 6, be such a gauge on [a, b] that

(2.17)

b
Sp(h,, Ag) — J h,, dg‘ <eg

for all 5-fine partitions D of [a, b]. Given an arbitrary §,-partition D of [a, b] we
have by (2.16), (2.17) and Lemma 2.6
|¢1 — Sp(h Ag)| =<
b
= ‘q —J‘h...,dgl +

Sp(hn, Ag) — Sp(h Ag)| <

b
J‘h,,o dg — Sp(h,, Ag)l +

< 26 + [Sp((he — k) Ag)| = 28 + 2[huy — s 9] = 26(1 + a]))-

This completes the proof of (2.16) and as well as of the proposition.
Now we can prove the following

2.8. Theorem. Let f € BV(a, b) and g € G(a, b). Then the integral
b
[ 7 46t0
exists and the inequality

j :fm dg(t)l < (If(@)] + [fB)] + vars) o]

(2.18)

holds.
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Proof. Let f € BV(a, b) and g € G(a, b) be given. Let W = {w,};ey be the set of
discontinuities of f in [a, b] and let f = f€ + f® be the Jordan decomposition of f
(f€ is continuous on [a, b] and f? is given by (1.2)). We have

lim |72 = %oy = 0
for f2, n € N given by (1.3). By (;3) and (2.4),
(219) [72dg = 5 1A%700) (8) = sl )+ A°F(0) 6(5) = o]
holds for any n € N. Thus according to Theorem 2.7 the integral [ f® dg exists and
(2.20) ' J' 7 dg = lim '[ 7.

The integral [, f€ dg exists as the o-Riemann-Stieltjes integral (cf. Theorems I1.13.17
and I1.11.7 in [4]). This means that [} f dg exists and

J.bfdg =J?°dg + 'rf"dg = J"}Cdg + li:nrf.?dg-
The inequality (2.18) follows immediately from Lemma 2.6.
~2.9. Remark. Since

T A%0m) (0(8) = almi+) + &S0 (65) — o) 5

< 2ol (38700 + 1477 (m)) < 2] (artf) < o,
we have in virtue of (2.19) and (2.20)
¢a | 1749 = 1A% (6(6) - o)) + A7) (0(8) — gl -

As a direct consequence of Theorem 2.8 we obtain

2.10. Corollary. Let h, € G(a,b),ne N and h € G(a,b) be such thathm"h -] =
= 0. Then for any f € BV(a, b) the integrals

J'fdh and deh,,, neN

exist and

b b
limjfdh,, - deh.
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2.11. Lemma. Let h: [a, b] > R, c € Rand W = {wi}xen < [a, b] be such that (2.11)
and

(2.22) Y |h(wi) = ] <

k=1
hold. Given ne N, let us define W, = {w,, w,, ..., w,} and
(2.23) h(t)=c  for tel[a,b]\W,,

h(t) = h(t) for teW,.
Then h, € BV(a, b) for any ne N, h e BV(a, b) and
(124) ]hnl“h - h”BV ==0-
Proof. The functions h,, n € N and h evidently have a bounded variation on [a, b].

For a given n e N, we have

h(t) — h(t) =0 if teW, or te[a,b]\W

and

h,(t) — h(t) = ¢ — h(w,) if t=w, forsome k>n.
Thus,
(2.25) lim h,(t) = h(f) on [a,b]

and, moreover,
_le(hn(‘j) = (1)) = (hy(t;-1) = h(t;-y))| < Zk Zﬂlh(wk) - ¢
j= =n
holds for any ne N and any division {t,, t,, ..., t,,} of [a, b]. Consequently,
(2.26) vary(h, = h) <2 Y |h(w) — ¢
k=n+1

holds for any n € N. In virtue of the assumption (2.22) the right-hand side of (2.26)
tends to 0 as n — oo. Hence (2.24) follows from (2.25) and (2.26).

2.12. Proposition. Let h: [a, b] - R, ce R and W = {w,},en be such that (2.11)
and (2.22) hold. Then

-

rh dg = 3, (hm) — 9 Ag(w) + c(o(t) - o(a)
holds for any g € G(a, b).

Proof. Let g € G(a, b) be given. Let W, = {w,, w,, ..., w,} for n€ N and let the
function h,, ne N be defined by (2.23). Given an arbitrary n € N, then (2.1) (with
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.= b) and (2.5) from Proposition 2.1 imply

[[dg = 3, 00) = ) gt + (605) = ().
Since (2.22) yields |

3 [(60w) = ) g(m)] = 24l (£ 16 = o] < oo

and Lemma 2.11 implies
lim |k, — sy = 0,

we can use Theorem 2.7 to prove that
| rh dg = lim J"’h dg = % (H0w) — ) Aa(w) + la(b) - 9(a)) -
2.13. Proposition. Let h € G(a, b), c€ R and W = {w. ey fulfil (2.11). Then
(2.27) 741 =500 - 9 - 160 06) -

holds for any fe BV(a, b).

Proof. Let fe BV(a, b). For a given ne N, let W, = {wy, w,, ..., w,} and let h,
be given by (2.23). Then

(2.28) lim [, — k| = 0.

Indeed, let ¢ > 0 be given and let ny € N be such that k = n, implies
(2:29) |[h(wi) — | < &.

(Such an ny exists since |h(w,) — c| = |A™h(wy)| = |A*h(w,)| for any k e N and the
set of those k e N for which the inequality (2.29) does not hold may be only finite.)
Now, forany n = n, and any t € [a, b] such that t = w, for some k > n(te W\ W,)
we have

|ha(t) — h(‘)l = |h(we) — Wk)| = |c — h(wy)| <.

Since h A1) = h(f) for all the other t e [a, b] (t € ([a, b]\ W) U W,), it follows that
|h(t) = h(t)] < & on [a, b], i.e.
ke — B]| <.

This proves the relation (2.28).
By Corollary 2.4 we have for any ne N

J' by = 1(6) (h5) = ©) = 1) (He) ~ ).
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Making use of (2.28) and Corollary 2.10 we obtain :
. b b
J 7dh = lim J' 7 dh, = £(5) (h(B) = <) — £(a) (h(a) = ).
2.14. Corollary. Let h € BV(a, b), c € R and W = {Wyhen fulfil (2.11). Then (2.27)

holds for any f € G(a, b).

Proof. By Proposition 2.12, (2.27) holds for any f € BV(a, b). Making use of the
density of S(a, b) = BV(a, b) in G(a, b) and of the convergence theorem mentioned

in Remark 2.5 we complete the proof of our assertion.
: [

2.15. Theorem. (integration-by-parts). If fe BV(a, b) and g € G(a, b), then
both the integrals j'; fdg and j"; g df exist and

(230 [ Fdg + j"g df = £(8) 9(b) - £(a) a(a) +
+ X [A77()A76() - A*/() A%g(r)].

Proof. The existence of the integral [} g df is well-known while the existence
of _[Z f dg is guaranteed by Theorem 2.8. Furthermore, '

[0+ [0 = [10 186669 + 87000 + [ a0 4070 - A7) -

- [Foraaron + [ o Wasen.

It is easy to verify that the function h(f) = A*g(z) fulfils the relation (2.11) with
¢ = 0and h(b) = 0. Consequently, Proposition 2.13 yields

' b
7010 = —ste) a7ote).
Similarly, by Corollary 2.14 we have

j "o(0) [A(A7(0)] = A7(b) o(b).

Hence

(231) _[ :fdg + J jg of = j :f(t) dg(t+) + J:g(t) af(e-) +

+ f(a) A*g(a) + A™f(b) g(b).
The first integral on the right-hand side may be modified in the following way:

(2.32) J"’f(z) dg(t+) = '["f(t—)' dg(t+) + rA“ 1) dg(t+).

.
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Making use of Proposition 2.12 and taking into account that Ag,(t) = Ag(t) on
[a, b] for the function g, defined by g,(t) = g(t+) on [a, b], we further obtain

(2.33) rA‘ 16)da(t+) = 3. A7F0) 8().
Similarly

(2.34) Ibg(t) df(t-) = J.bg(t-{»-)df(t—) - J bA+g(t) df(t=) =

C = [aen ) - 3 a0 0.

ast=<

The function f(t—) is left-continuous on (a, b], while g(t+) is right-continuous
on [a, b). It means that both the integrals

J'}(t—)dg(t+) and rg(t+)dj‘(t—)

exist as the o-Riemann-Stieltjes integrals (cf. [4], I1.13.17), and by the integration-
by-parts theorem for these integrals (cf. [4], I1.11.7) we have

(2.35) j}(t—) dg(t+) + jbg(t+) df(t=) = f(b—) g(b) — f(a) g(a+).
Inserting (2.32)—(2.35) into (2.31) we get
[730+ [o0r=10-)o) - @) otas) +
+ 3 A0 (80 + Ata() ~ T (A7) + ATS(0) A%9(0) +
+f(a) A*g(a) + A7 (b) g(b) = S(b) g(b) — f(a) g(a) +
+ 3 [A71()Ag() - A7) A"o(9],
and this completes the proof.
The following proposition describes some properties of indefinite Perron-Stieltjes

integrals.

2.16. Proposition. Let f: [a,b] = R and g:[a,b] > R be such that (5fdg
exists. Then the function

h(t) = J.fdg
is defined on [a, b] and
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i) if g € G(a, b), then h € G(a, b) and
(2.36) A*h(t) = f(1)A*g(t), Ah(t) =f(t)Ag(t) on [a,b];
ii) if g € BV(a, b) and f is bounded on [a, b}, then h € BV(a, b).

Proof. The former assertion follows from Theorem 1.3.5 in [8]. The latter follows
immediately from the inequality

J
f fdg
L I P

which is valid for any division {t, ty, ..., t,,} of [a, b].
In the theory of generalized differential equations the substitution formula

(237) [ L0 [ [ 0609] - | W10 400)

is often needed. In [4], 11.19.3.7 this formula is proved for the o-Young-Stieltjes
integral under the assumption that g € G(a, b), h is bounded on [a, b], and the
integral |2 f dg as well as one of the integrals in (2.37) exists. In [14], Theorem 1.4.25
this assertion was proved for the Kurzweil integral. Though it was assumed there
that g € BV(a, b), this assumption was not used in the proof. We will give here
a slightly different proof based on the Saks-Henstock lemma (cf. e.g. [11], Lemma
1.11).

m

)

j=

<3 17l (arf,0) = 1] (varko)

2.17. Lemma. (Saks, Henstock). Let f, g: [a, b] = R be such that the integral
[ f dg exists. Let ¢ > 0 be given and let 6 be a gauge on [a, b] such that

<eé

b
So(f Ag) — ff dg

holds for any &-fine partition D of [a, b]. Then for an arbitrary system {([B;, v:], 6:),
i =1,2,...,k} of intervals and points such that

(2.38) asp S0, Sy =SB s . SEhSo=n=sb
and

[ﬂia ?i] < [ai - 5(ai)s o + 6(01)] ’ i= 1’ 2: sy k s
the inequality

(2'39) é:lf(ai) [9(7;‘) - g(ﬂ;)] - ylfdgl <e

Bi

holds.
Making use of Lemma 2.17 we can prove the following useful assertion
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2.18. Lemma. If f:[a,b] — R and g:[a, b] — R are such that [if dg exists,
then for any & > O there exists a gauge 6 on [a, b] such that

m J
(240 5 Vetote) - a1 - [ req] <
J= tj-1
holds for any d-fine partition (d, &) of [a, b].
Proof. Let d: [a, b] — (0, o) be such that
t; e
) = oty —j » fdgl <t
tj-1 2
for all 6-fine partitions D = (d, £) of [a, b]. Let us choose an arbitrary -fine partition

=(d, &) of [a,b]. Lety, = t,,and B, = t,,_;, i = 1,2,..., k be all points of the
division d such that

Sp(f Ag) — I:fdgl =

f(&) [a(vi) — a(B))] — '[:fdg >0.

i

Then the system {([B:,7:],0:), i =1,2,...,k}, where o, = &,, fulfils (2.38) and
(2 39) and hence we can use Lemma 2.17 to prove that the inequality

; £ La(vs) — 9(B)] - f dg

<._.
2

is true. Similarly, if w; = ¢, and 9; =1t,,_,, i = 1, 2,...,r are all points of the
division d such that

12, [a(@s) — 9(9)] - j :'fdg <o,

then the inequality

1(20) [a(@)) _ 9(9)] - j “"fdgl <!

8

i=il

holds. Summarizing, we conclude that

'21 f(él)[g(tj) - g(t;=))] - J.tj fdg‘ =

= 2|7t Lotrd = a(si = [ reo] +

Bi

+ 2,
i=1

(&) [a(@) — (9] - j :"fdg <&

i

This completes the proof.
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'2.19. Theorem (Substitution). Let f, g, h: [a, b] = R be such that h is bounded
on [a, b] and the integral
b
j fdg

j "H(1) 1) da(t)

exists if and only if the integral

[0 [r6r260]

exists, and in this case the relation (2.37) holds.

exists. Then the integral

Proof. Let |h(f)] £ C < o on [a, b]. Let us assume that the integral {3 hf dg
exists and let ¢ > 0 be given. There exists a gauge J, on [a, b] such that

élh(éi)f (&) [a(ty) — a(t;-1)] - thf dg

&
< =
2

is satisfied for any 6,-fine partition (d, &) of [a, b]. By Lemma 2.18 there exists
a gauge 6 on [a, b] such that 6(f) < 6,(t) on [a, b] and

&) Ta(t,) = alt;-1)] - J" " fdg

tj-1t

holds for any d-fine partition (d, &) of [a, b]. Let us denote

m

2

j=1

&
< —
2C

t
k(t) =-,’fdg for tela,b].
Then for any é-fine partition D = (d, £) of [a, b] we have

Sy(h AK) — Ehfdgl =

SHe)[" rdg -3 HENSE)ote) - oo +

3, HE) 5 [o(0) = a0 = [ 4] <

=

S ([ 790 -ste)tste) - st +
|3 1) 50 60 = a1 - [ag] <.

ji=
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This implies the existence of the integral |5 h dk and the relation (2.37). The second
implication can be proved in an analogous way.

The convergence result 2.10 enables us to extend the known theorems on the change
of the integration order in iterated integrals

ew | o0 E ﬁ"‘" 96, | ( [[ot0 e 9) a0,

where —o0 < ¢ < d <oo and h is of strongly bounded variation on [c, d] x [a, b]
(cf. Theorem 1.6.20 in [14]). In what follows v(k) denotes the Vitali variation of the
function h on [c, d] x [a, b] (cf. [4], Definition IIL.4.1 or [14], 1.6.1). For a given
te[c,d], vard h(t, +) denotes the variation of the function s e [a, b] - h(t,s) e R
on [a, b]. Similarly, for s e [a, b] fixed, var h(-, s) stands for the variation of the
function t € [c, d] - h(t, s) € R on [c, d].
2.20. Theorem. Let h: [c,d] x [a, b] = R be such that
v(h) + var? h(+, a) + vary h(c, *) < o .
Then for any f € BV(a, b) and any g € G(c, d) both the integrals (2.38) exist and

O :g(t) [d [ :h(,, 9470 - j ( [ jg(o 46, 9) 6.

Proof. Let us notice that by Theorem 1.6.20 from [14] our assertion is true if g
is also supposed to be of bounded variation. In the general case of g € G(c, d) there
exists a sequence {g,},v = S(c,d) such that lim ||g, — g| = 0. Then, since the
function "

of) = J "W, 5) af(s)

is of bounded variation on [c, d] (cf. the first part of the proof of Theorem 1.6.20
i [14]), the integral on the left-hand side of (2.39) exists and by Corollary 2.10 and
Theorem 1.6.20 in [14] we have

(2.40) j’ :g(t) [a f :h(t, ) df(s)] - lim J jg”(t) [d -[ :h(t, ) df(s)] _

= lim J‘ ( f (1) d.h(t, s)) 4f(s) .

wa(s) =‘r 0] dh(t,s) for se[a,b] and n=1,2,....

Let us denote
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Then w, € BV(a, b) for any n € N (cf. [14], Theorem 1.6.18) and by Theorem 1.4.17
from [14] mentioned here in Remark 2.5 we obtain

li:n wa(s) = | g(t) d,h(t,s) := w(s) on [a,b].
As
[wal(s) = w(s)| < |lga — g (varZ b(+, 5)) < [9n — 9] (var b(*, a) + v(h))
for any s € [a, b] (cf. [14], Lemma 1.6.6), we have

lim |w, — w|| = 0.

It means that w € G(a, b) and by Theorem 2.8 the integral

I:W(S) df(s) = I: ( £g(t) d,h(t, s)) df(s)

exists as well. Since obviously
im J "( j :g;(t) d.h(, s)) () = tim j :wn(s) 4 (s) =
- I :w(s) df(s) = J j(J‘:g(t) d,h(t, s)) df(s),

the relation (2.39) follows from (2.40).

3. LINEAR BOUNDED FUNCTIONALS ON G((a, b)

By Theorem 2.8 the expression
b
(3.1) F(x) = g x(a) + J pdx

is defined for any x € G(a, b) and any n = (p, g) € BV(a, b) x R. Moreover, for any
n € BV(a, b) x R (3.1) defines a linear bounded functional on G(a, b).
Proposition 2.3 immediately implies

3.1. Lemma. Let n = (p, q) € BV(a, b) x R be given. Then

(3'2) F q(X[a,b]) =4,
F(xw) = p(b),
F,(X¢epy) = p(r) forany te[a,b).

3.2. Corollary. If n = (p, q) € BV(a, b) X R and F,(x) =0 for all xe S(a, b)
which are left-continuous on (a, b), then p(t) = 0 on [a,b] and g = 0.
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' 3.3. Lemma. Let x € G(a,b) be given. Then for a given n = (p,q) € BV(a, b) X R,
(3.3 Fx)=x(a) if p=0 and q=1,
Fx)=x(b) - if p=1 and g=1,
F(x)=x(t=) if p= Xau t€(a,b] and g=1,
F(x) = x(v4+) if P = Xts» t€[a,b) and g=1.

Proof follows from Proposition 2.1.

3.4. Corollary. If x € G(a, b) and F,(x) =0 for all n = (p, g) € BV(a, b) x R,
then

(34 ' x(a) = x(a+) = x(‘r—)i=.x(1:+) =x(b-)=x(b) =0
holds for any t € (a, b). In particular, if x € Gy(a, b) (x is left-continuous on (a, b))
and F,(x) = 0 for all ne BV(a, b) x R, then x(t) = 0 on [a, b].

3.5. Remark. The space BV(a, b) x R is supposed to be evql‘upped with the
usual norm (||n|syxr = ||p|sv + |a| for n = (p, g) € BV(a, b) x R) Obviously, it
is a Banach space with respect to this norm.

3.6. Proposition. The spaces G(a, b) and BV(a, bb) x R form a dual pair with
respect to the bilinear form

(3.5 xeGya,b), neBV(a,b) x R— F(x)eR.

Proof follows_from Corollaries 3.2 and 3.4
On the other hand, we have

3.7. Lemma. If F is a linear bounded functional on G(a, b) and

(3.6) p(t) = F(xup) if tela,b), p(b) = F(xw),
then p € BV(a, b) and
(3.7) |p(a)] + |p(b)] + var;

where ||F|| = sup {|F(x)|; x € G(a, b), | x| = 1}.

Proof is analogous to that of part c(i) of Theorem 5.1 in [5]. Indeed for an
arbitrary division {to, t, ..., t,,} of [a b] we have

sup |p(a) co + p(b) ¢4 +}; [p(t;) = p(t;-1)] )| =

lejlS1,c5eR
. m—1
= sup |F(CoX(a,b1 + CiXy + Z CjX(r,-..m + c"lx"m—hb))l =
lesl=1,c5eR
< sup IF(h)l =2|F|.

lhl] <2,heGr(a,b)
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In particular, for ¢, = sign p(a), ¢; = sing p(b) and c; = sign (p(t;) — p(t;~4)),
j=12,...,m, we get

p@)] + 1) + T Iole) = ps-0l 5 2171

and the inequality (3.7) immediately follows. '
Using the ideas from the proof of Theorem 5.1 in [5] we may now prove the fol-
lowing representation theorem.

3.8. Theorem. F is a linear bounded functional on Gy(a, b) (F € G{(a, b)) if and
only if there is an n = (p, q) € BV(a, b) x R such that

G3) F) '=.F,,(x).'(:= 2 x(a) + J '

p dx) forany xeGya,b).

The mapping - ‘
@: ne BV(a, b) x R - F, € G[(a, b)
is an isomorphism. :

Proof. Let a linear bounded functional F on GL(a b) be glven and let us put

(3.9) 4 = F(Xtap) » P(‘) = F(tp) for te [“ b) and p(b) = F(x))-

Then Lemma 3.6 implies 5 = (p, 9) € BV(a, b) x R and by Lemma 3.1 we have

F(ttas) = Fi(ttan) s FQlew) = Filtcray) forany te[a, b)

and ‘ .
F(xy) = Foltwy) -

Since all functions from S(a, b) N G.(a, b) obviously are ﬁmte linear combinations
of the functions X, 4, X(e.3s T € [@, b) and g, it follows that F(x) = F,(x) holds
for any x € S(a, b) N Gy(a, b). Now, the density of S(a, b) N Gy(a, b) in GL(a, b)
mplies that

F(x) = F,(x) forall xe G,_(a, b) .

This completes the proof of the first assertion of the theorem.
Given an x € GL(a, b), then Lemma 2.6 yields

|Fs(3)| = (|p(a)] + |p(b)] + varz p + |a]) [ x|
and consequently,

IF.ll < [p(@)| + [p(8)] + var p + |g| < 2(||P"Bv + la)) = 2|y <z -

On the other hand, according to Lemma 3.7 we have

Iplav = (Ip(a)] + |p(b)] + vara p) < 2|F| ..
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Furthermore, in virtue of (3.9) we have |q| £ [[F| and hence

bl <z = [plsv + Ja| = 2{F].
It means that

HF| = [alav<x = 30F|
and this completes the proof of the theorem,
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Souhrn

REGULOVANE FUNKCE A PERON-STIELTJESYJV INTEGRAL
MiLAN TyrpY

Studuji se vlastnosti Perronova-Stielijesova integrilu pti integraci vzhledem k ,,regulovanym®
funkcim {tj. funkcim, které maji v ka¥dém vnitfnim bod& vy¥etfovaného intervalu kone&né obd
jednostranné limity, v levém krajnim bod® maji konefnou limitu zprava a v pravém krajnim
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bod€ maji kone€nou limitu zleva). Ukazuje se, Ze linearni spojité funkcionaly na prostoru
G(a, b) funkci regulovanych na [q, b] a zleva spojitych na (a, b) (—o0 < @< b < ) mohou
byt representovany ve tvaru F(x) = p x(a) + | Z g dx, kde pe R a q(t) je funkce kone&né variace
na [a, b]. N&které v&ty znamé pro integraci vzhledem k funkcim s kone&nou variaci jsou zobec-
nény na pripad integrace vzhledem k regulovanym funkcim.

Pesrome

ITPEPBIBUCTBIE ®YHKIIMU Y MHTEI'PAJI ITEPPOHA-CTUJITBECA

MiLAN TVRDY

W3yvarorcst csoiictBa muTerpana Ileppona-Crunrbeca NpH HHTETPHPOBAHHH OTHOCHTEIBLHO
NpepBLIBUCTHIX byHKumit (T.€. hyHkuuit, o6nasaromux B KaXa0# TOYKE PACCMAaTPUBaEMOTO HHTEPBA-
Jla KOHEYHBIMH OJHOCTOPDOHHMMHM Ipenenamu). OKasbIBaeTCH, YTO JIMXEHHEIE HEnpephiBHEE GYHK-
LMOHANEl Ha npocrpancTse G(a, b) npepriBACTEIX HA [a, b] ¥ HeupephIBHEIX ciieBa Ha (a, b) byHKumik
(— < a< b<< ®) Moryr GeiTh mpencraBiensl B Buge F(x) = p x(a) + I',’ gdx, rne peR
u q(t) — dynxuusa ¢ xoneyHoit Bapuauueit Ha [a, b]. HexoTOopsie TeOpeMBI, U3BECTHBIE [AJIN HHTE-
TPUPOBAaHMS OTHOCHTENHHO (GyHKIHMA C KOHEYHOK Bapuanuei, 0GOOLIEHE! HA CiIyyae HHTErPHPO-
BAHAS OTHOCHTENBHO NMPEPLIBECTHIX GyHELHIM. '
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