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Časopis pro pěstovánf matematiky, roč. 98 (1973), Praha 

GENERAL BOUNDARY VALUE PROBLEM 
FOR AN INTEGRODIFFERENTIAL SYSTEM AND ITS ADJOINT 

MILAN TVRDY, OTTO VEJVODA, Praha 

(Received January 19, 1971 — in revised form February 10, 1972)*) 

(Continuation)**) 

4. WEAKLY NONLINEAR BOUNDARY VALUE PROBLEM 

Notation. Given a B-space 01 with the norm ||.||^, uoe0S and Q > 0, the set 
{ue@ : ||u - ti0||* ^ Q} is denoted by ^ ( M 0 , Q; $). 

Definition 4,1. Let 0fu 0S2 be B-spaces and let e0 > 0. An operator F :ue 0SU 

6 e [0, 60] -> F(e) (M) e 0S2 is said to be locally lipschitzian in u near e = 0 if, given 
an arbitrary u0 6 0SU there exist <x(u0) > 0, Q(U0) > 0 and S(M0) > 0 such that 

||F(6)(M2) - F(6)(M 1 ) |U 2 ^ a(M0) ||M2 - Ul\Ml 

for all uu u2 € ^(u0, Q(M0); Stx) and E G [ 0 , 6(M0)]. 

Hereafter we suppose 

A 6 $e\,n, G e <£2\®r} , Le 3Srntn (m = n) . 

The mappings 

$ : x 6 ^ 5 6 e [ 0 , 6 0 ] ^ 3>(E) (X) e ££l, 

A : x e **/# , e e [0, e0] -+ A(e) (x) e ®n 

are locally lipschitzian in x near e = 0 and continuous in s e [0, e0] for any 
x e s/% fixed, e0 > 0. 

. *) The last paragraph (§ 5) was added. 
**) The first part was published in this Cas. pest. mat. 97 (1972), 399—419. 
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Let us consider the weakly nonlinear boundary value problem (^e) 

(4.1) x = A(t) x + f [d5G(f, s)] x(s) + e O(e) (x) (t) , 

(4.2) f [dL(s)] x(s) + e A(e) (x) = 0, 

where e ^ 0 is a small parameter. 
We proceed formally as in § 3 and write the problem (&>e) in the equivalent form as 

the system of equations for x e s/%, h e $£2 and ce0tn 

(4.3) -x(f) + X(t) c + f X(t) X~l(s) h(s) ds + eP0(e) (x) (0 = 0, 

-h(t) + Hx(t) c + J K(t, s) h(s) ds + eP.(e) (x) (t) = 0 , 

Cc + \ H2(s) h(s) ds + eP2(e) (x) = 0, 

where X(t) has the same meaning as before ((3,3)) and 

(4.4) H1(t)=j\dsG(t,s)]X(s), H2(t) = (jb[dL(s)]X(s))x-\t), 

K(t, s) = (!\d0G(t, a)] X(a)V"1(s) , C = J W ) ] *(s) -

P0(e) (x) (t) = X(f) J^ _ 1 (s ) <K«0 (*) (s) ds , 

Pfc) (x) (t) = j\d,G(t, ,)] (x(s) jSX-\c) <D(fi) (x) (a) da) = 

= J* ( J W ( ' > a)] X(a)) X" \s) <*(e) (x) (s) ds = Jx(«, -) 0(e) (x) (s) ds , 

P2(e)(x) = A(e)(x) + j\dI+s)](x(s)jSX-i(<y)<i>(e)(x)(o)d<s) = 

= A(e)(x) + jb(j\dH<y)]X(<s))x-\s)*(*) (x)(s)ds = 

= A(E) (X) + J H2(s) <D(E) (x) (s) ds . 
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By assumptions of this paragraph Ke S£2,HX and H2 e £?ln and P0, Px and P2 are 
mappings of st%> x [0, c0] into ${%>, 5£2 and ffl„ respectively, locally lipschitzian in x 
near 6 = 0 and continuous in e e [0, s0] for any x e stf^ fixed. For example, in the 
case of Pt we have for xu x2 e jrf'tf, t e J and sl9 e2 e [0, £0] 

\\Px(e2) (x2) (t) - Pfa) (x,) (Of = P vaii G(U •) ||0(E2) (x2) - 0(£ l) (x^li , 

where p = sup IIK^X*""1^)!. Hence 
f.se/ 

flP^) (x2) - Pi(e,) (x.)|2 = o||«(82) (x2) - $(£,) (x^lli, 
where 

a = p||var* G(t, -)||2 . 

Let X0 6 .S?2, Xj e .S?^,,. and X2 e SC2
%„ be again such that K(t, s) = X0(f, s) + 

+ Kt(t)K2(s), \\\K0\\\ < 1. Let T be the resolvent kernel of X0 and let H^ and Kt be 
again defined by (3,10). (r e J£?2, # t e JS?̂  and i?t e JS?* „-, of course.) Then the 
system (4,3) becomes 

(4.5) -x(f) + U(t) b + sR0(e) (x) (0 = 0, 

Bb + ER(E) (X) = 0 , 

where B is given by (4,4), (3,9), (3,10) and (3,12), 

(4.6) U(t) = (x(t) |~I + fx-'(s) Ri(s) dsl. X(0 fx_1(s) * » ds), 

*„(*) (X) (t) = P0(E) (X) (t) + X(t) J'x~ »(s) P.(e) (X) (S) ds , 

/f*2(s)P.(s)(x)(s)ds 

*(«)(*)- Va
 C" 

\P2(e)(x)+J fl2(s)P.(s)(x)(s)ds^ 

Q2(t) = H2(t) + CH2(S) T(s, J) ds , K2(t) = K2(t) + J K2(s) T(s, t) ds , 

h(t) = /?.(*) c + tf .(f) d + e Ip^e) (X) (0 + JV(f, s) P.(e) (x) (s) dsl, 

d= fx2(s)A(s)ds, t = (c,,-d,)\ 

Clearly, U(t) is absolutely continuous on J, R2 e JSf * „, R2 e :&?*._„, K0 and R are 
mappings of .«/# x [0, s0] into s4<€ and #„+,,•, respectively, locally lipschitzian in x 
near E = 0 and continuous in s e [0, E0] for any x e sftf fixed. 
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The further investigation of our problem rather depends on whether det B 4= 0 
or det B = 0. In the former simple (so called noncritical) case the following theorem 
holds. 

Theorem 4,1. Let the boundary value problem (^E) be given and let the assumptions 
(s/) be fulfilled. Let the limit problem (0>o) have only the trivial solution. Then 
there exists e* > 0 such that for any e e [0, £*] there exists a unique solution xz 

of(0>e), while | | x * | | ^ - Ofor e - 0 + . 

Proof. Let (£?0) have only the trivial solution. Then by Corollary 1 of Theorem 3,1 
det B =N 0 and (4,5) becomes 

x(t) = 8[K0(e) (x) (t) - U(t) B~l R(s) (x)] = eT(e) (x) (t) . 

It follows immediately from the above argument that the operator T: «s/# x 
x [ty 8o] ~* ^^ is locally lipschitzian in x near 6 = 0 and continuous in e e [0, e0] 
for any x e st<€ fixed. Hence the fixed point theorem for contractive operators ([8]) 
can be applied. 

Remark 4,1. The given boundary value problem (^e) is certainly noncritical e.g. 
if in (4,3) 

a) det C + 0 and 1 is not an eigenvalue of K(t, s) - Ht(t) C'1 H2(s), 

b) 1 is not an eigenvalue of K and 

det (c + f H2(s) IH^S) + f Q(s, a) H,(a) d a l ds\ * 0 , 

where Q is the resolvent kernel of K. 

In the critical case (det B = 0) some further notations are needed. 

Notation. Jf0 denotes the naturally ordered set {1, 2 , . . . , n + ri}. If Sf is a natural­
ly ordered subset of Jf0, then Sf* denotes the naturally ordered complement of Sf 
with respect to Jf0. The number of elements of a set Sf c= Jf0 is denoted by y(Sf). 
Let C = (cifj)ij€jr0 be an (n + n') x (n + n')-matrix and let «9̂  c ^V0, TT c ^V0, 
then C ^ f denotes the matrix (citj)ieyJ&r- Similarly if b is an (n + n')-vector (b = 
= (fc/^e-ro) anc* ^ c *^o> the11 by = (fcj)j6y. (Analogously for matrix or vector 
functions and operators.) Jf denotes the naturally ordered set {1, 2, ..., ri\. The 
sign -i- is defined by b = by -J- by*. 

Let x = r a n k (#) < » + ri, while 

(4,7) det £ y , , r . * 0 and By^o - WB y * ^ 0 = 0 , 
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v(y*) = v ( f *) = x and W is an (n + n' — x) * X-matr*x- Let us put v = n + 
+ n ' - ) [ J 1 = Bytir*^B2 = B ^ , r , y = V* a nd 8 = fcr. Then (4,5)2 yields 

(4.8) Y = - B I lB25 - s B f 1 * ^ ) (x) . 

Inserting (4,8) and b = y + 8 into (4,5)t we obtain that (4,5) is equivalent to the 
system of equations for x e s/^ and 8 e 0tv, 

(4.9) -x(f) + V(t) 8 + eS(e) (x) (0 = 0, 

T(e)(x) = 0, 
where 

(4.10) V(t) = 1 7 ^ 0 - U^.(f) J5r *B2 , 

S : x e s/V, 6e [0 , e 0 ] -* S(e) (x) = R0(s) (x) - C/^,^*(.) B; lRy*(s) (x) e sf<g, 

T:xe s/<#, e e [0, e0] -+ T(e) (x) = Ry(e) (x) - fVl̂ «.(e) (x) e 0ls . 

F(f) is absolutely continuous on J and it is easy to verify that the operators S and T 
have the same smoothness properties as O, A, P0, P- etc. 

Let s > 0, then x e $$<€ is a solution to the boundary value problem (^e) iff (x, 8), 
where 

x(a) 

8 = bv and b = " <*b ' ^ 

= rь 

| j ř 2 ( 0 ( j [d.G(ř,5)].x(s))dři 

x(a) \ 

rrdtfx2(s)G(s,Odslx(í)l' 

is a solution to (4,9). (All solutions x0 of the limit problem (^0) are given by x0(f) = 
= V(t) 8, where 8 is an arbitrary v-vector.) To investigate further the existence of 
a solution (and its dependence on s) to (^8) various principles in accordance with the 
smoothness of the operators O and A may be used. Below we state two existence theo­
rems which can serve as models. The first one is obtained by the use of the Newton 
method for equations in B-spaces. 

Proposition 1. Let &x and 82 be B-spaces and let e0 > 0. Let <% c &i and let F 
be an operator: (u, e) e °U x [0, e0] -> F(e) (u) e 0S2. Let us assume that 

(i) the equation F(0) (u) = 0 possesses a solution u0 e tfl; 
(ii) there exists Q0 > 0 such that F is continuous in (u, e)e<%0 x [0, e0] = 

= ^(u0, Q0; &i) x [0, 80] and for all (u, e) € # 0 x [0, e0] possesses a G-derivative 
F'u(e) (u) with respect to u which is continuous in (u, e) e °U0 x [0, 80]; 

(iii) F;(0) (w0) possesses a bounded inverse [F'u(0) (wo)]""1-
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Then there exist e* > 0 and Q* > 0 such that for any e e [0, e*] the equation 
F(e)(u) = 0 possesses one and only one solution u*(e) in <%(u0, Q* ;^X ) . The 
mapping e 6 [0, 8*] -> u*(e) e J^ is continuous and u*(e) -• M0 in 01\ ife -» 0-f. 

(For the proof see [19], p. 355. Similar theorems are proved also in [8] or [16].) 

Remark 4,1. Let us notice that the assertion of Proposition 1 can be equivalently 
reformulated as follows. 

There exists e* > 0 such that for all e e [0, e*] there exists a unique solution 
w* = «*(e) e %0 of the equation F(e) (w) = 0 continuous in e e [0, 6*] and such 
that w*(0) = u0. 

To be able to apply Proposition 1 to the boundary value problem (^c) we have to 
add some further assumptions concerning the differentiability of O and A to those 
used until now. It is easy to verify that if °U c st^t and €> and A are continuous in 
(x, e ) e f x [0, 60] and for all (x, e)e% x [0, e0] possess a G-derivative with 
respect to x which is continuous in (x, e) e °U x [0, e0], then the same holds also for 
the operators S and T. 

Theorem 4,2. Let the boundary value problem (0*^ fulfilling the assumptions (sJ) 
be given. Let the limit problem (0*o) admit a nonzero solution (i.e. det B = 0). 
Let the matrix function V and the operators T and T0 be defined by (4,7), (4,10) and 

(4,11) T0 : 8 e <fv -*T0(8) = T(0) (V(.) 8) e ®v . 

Suppose 
(I) the limit problem (&0) possesses a solution x0 such that T0(80) = 0 for 

80 = (h)r> where 

x0(a) 

b0 = l 

\([dtÍK2(s)<Hs,t)ds^x^t)\l 

(II) there exists Q0 > 0 such that O and A are continuous in (x, e) e ^ 0 x 
x [0, e0] = ^(x0, Q0; «*/#) x [0, e0] and for all (x,s)e<%0 x [0, e0] possess 
a G-derivative with respect to x continuous in (x, e) e °U0 x [0, e0]; 

(III) the Jacobian 

det (ъИ 
is nonzero. 

Then there exists 8* > 0 such that for all e e [0, e*] there exists a unique solution 
x*(e) to (^e) continuous in 8 e [0, e*] as a mapping [0, 8*] -* s/<# and such that 
**(0) = x0. 
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Proof. Let us denote ^ = stf^ x Mv and 

F:(*,8)e*, ee[0,Eo] -, f - + n-)5 + eS(e)(x)\ 1 ' L ' ° J U(8)(n-)5 + BS(e)(x))1 

(^ is a B-space with the norm ||(x, S)\m = ||x||^^ + ||8||.) 
We shall verify that the operator F fulfils all the assumptions of Proposition 1. 

(i) For (x, 8) e £% we have 

. f < 0 ) (*' 5 ) - (T(0)(K.)8))- l ro(6) I 

Let x0 be a solution to ( ^ 0 ) s u c h th^t T0(80) = 0 for 80 = (boV> where 

*o(<») 

jTdrfK2(s)G(5,0dslxo(t), Ьo = 

Then x0 = V(.) 50 and hence T(0) (x0, 50) = 0. 

(ii) Since the operators S and Thave the same smoothness properties as <L> and A, 
there exist e. > 0 and Qi > 0 such that F fulfils the assumption (ii) of Proposition 1 
on <8r. x [0, E J = <W((X0, 50), Q t ;^) x [0, ex] while for (x, 5, e)e<%l x [0, e j 
and (x, 8) 6 £#, 

[-W<0 (*, 5)] (x, 8) = 
/ - x + V ( . ) 5 + e[S;(e)(x)]x \ 

\[Z(e)(V(.) 5 + eS(e)(x))](V(.)8) + e[r;(e)(V(.)5 + eS(e)(x))] [s;(e)(x)] x)' 

In particular 

4 M - M ) ( * « I M - ([7,(0)^(
+)I)](K(.) a)) " ( S 3 J 

(iii) Given an arbitrary couple (x, 8) e ®, 

Jo(x, 8) - (*) 

iff 
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* + n.)[EŞм]"'s 

fg«Г 
є. 

Thus the operator J0 possesses an inverse 

/ 

Jo 1 :(x,8)e#-+ 

\ 

the boundedness of J^1 being obvious. 

Applying Proposition 1 we complete the proof. 

The system (4,9) can be simplified by means of the following 

Proposition 2. There exists et > 0 such that for every e e [0, 8r] and 8 e M^ 
there exists a unique solution x = E(e) (8) e s/W of the equation 

(4,9)2 - x + V(.) 8 + eS(e) (x) = 0 , 

the operator E : @tv x [0, e j -> stf^ being continuous in (8, e) and locally lip-
schitzian in 8 near 6 = 0. 

Proof. The existence and uniqueness of the desired solution x = 2(e)(8) for all 
8 e 0tv and 6 e [0, e2] with some e2 > 0 and the continuity of E in (8, s)e@v x 
x [0, 82] are evident. Given an arbitrary 80 e ^ v , let us denote 

*o = K t ) S 0 = E(0)(80). 

Let p = p(80) > 0, e3 = e(80) > 0 (e3 = e2) and Q = Q(80) > 0 be such that 

||S(e)(x1) - S ( E ) ( X 1 ) | | ^ _S P||X2 - xx\M 

for all xl9 x2 6 ^(x0, Q; S/%) and e e [0, 63]. In virtue of the continuity of E in (8, e) 
there exist a = a(80) > 0 and e4 = £4(80) > 0 (e4 g e3) such that E(e) (8) e 
e ^(x0, Q; S4<€) for all 8 e ^(S0, a; ^v) and 8 € [0, e4]. Hence for 8lf 82 e ^(80, a; ^v) 
and 8 e [0, e4] 

||S(e)(52) - 3(z)(it)U ^ \\V\\^ | 5 . - 5,1 + eP|S(e)(52) - S(e)(81)|Utf. 

Wherefrom, putting e± = e^o) = min (e4, (2P)"1) our assertion follows. 

Remark 4,2. It could be shown that if 80 e ^ v , x0 = V(.) 80 and S possesses for 
all (x, s)e<%(x09 Qt; */<£) x [0, sx] (Q\ > 0) a G-derivative with respect to x 
continuous in (x, e) e ^(x0, Qil ss/%) x [0, e j , then there exist e2 > 0 and Q2 > 0 
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such that for all (8, s) e *(8 0 , Q2; 0tv) x [0, e2] S possesses a G-derivative with 
respect to 8 continuous,in (8, e) e *(8 0 , Q2; 0tv) x [0, s2]. (For 8 e 0tv 

[S;(e) (8)] 8 = (i - s[S;(s) (S(s) (8))])"1 (V(.) 8), 

where i denotes the identity operator in j/^7.) 

Inserting x = S(e) (8) into (4,9)2 we get 

(4,12) 0(e)(5) =T(e)(S(s) (5)) = 0. 

The second existence theorem for the critical case is based on the notion of the 
Brouwer topological degree and does not require any assumptions of the differen­
tiability of O and A. It follows from the following proposition. (For the definition 
of the Brouwer topological degree see J. CRONIN [4].) 

Proposition 3. Let & be a bounded open set in 0tv and letf be a continuous mapping 
of the closure § of <$ in Mv into 0tv. Letf (8) * 0 on the frontier d& of & in 0tv and 
let the degree d(f, &, 0) off with respect toOe0tv and & be nonzero. Then the equa­
tion /(8) = 0 has at least one solution in <& and there exists t| > 0 such that for 
every continuous mapping g : § -• 0tv with sup ||/(8) - #(8)|| < T| there exists in <& 

at least one solution of the equation g(8) = 0. 

Proof. The mapping 

h : S e ^ , f e[0, 1] - h(8, t) =/(8) + (1 - t) (g(8) - /(8)) 

is a continuous mapping of § x [0,1] into 0tv with h(§, 0) = g(8) and h(8, 1) = 
= /(8).If 

||/(8)|| = 2T] > 0 and ||/(8) - g(8)|| < t] on <^, 

then for all 8 e d& and t e [0,1] 

|ft(8, Oil ^ 1/(8)1- 11/(8) - P(«)I > t| > 0. 
Proposition 2 is now an immediate consequence of Existence Theorem ([4]. p. 32) 
and of Theorem of Invariance under Homotopy ([4], p. 31). 

Theorem 4,3- Let the boundary value problem (0*^) fulfilling the assumptions {sf) 
be given. Let the limit problem (0>

o) admit a nonzero solution (i.e. det B = 0). 
Let the matrix function V and the operators T and T0 be given by (4,7), (4,10) and 
(441). Suppose 

(I) the limit problem (0O) possesses a solution x0 such that T0(80) = 0 for 
5o = (b0)ir> where 

xQ(a) 

[Td,ґii:2(s)ö(s,/)dЛx0(t), 
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(II) there exists a bounded open subset & of &v such that T0(b) =)= 0 for 5 e d<0 
andd(To,<&,0) + 0. 

Then there exists 6* > 0 such that for every e e [0, 8*] there exists at least one 
solution to (0e). 

Proof. It is easy to verify that the operator T0 : Rv x [0, 80] -> 0tv is locally 
lipschitzian in 5 e 0tv near e = 0 and continuous in 8 e [0, r^] with some r^ > 0 
small enough for any be0tv fixed. By Heine-Borel Covering Theorem we may 
assume that there exists T|2 > 0 such that © is uniformly continuous in (5, s) e § x 
x [0, t |2]. Applying Proposition 3 to the equation (4,12) we complete the proof. 

Remark 4,3. The methods of this paragraph can be also applied if Le J^ w , n and 
A : s/W -• 0tm, where generally m + n. Of course, the situation is no more prede­
termined so largely by the fact whether the limit problem (0O) admits a nonzero 
solution or not. Let the (m + n') x (n + n')-matrix B be defined by (4,4), (3,9), (3,10) 
and (3,12). Let the n x (n + n')-matrix function U and the operators R0 : s/W x 
x [0, e0] -* s4<6 and R : $$<€ x [0, e0] -> 0tn+n> be given by (4,4) and (4,6)/Then 
again an n-vector function x e stf^ is a solution to the boundary value problem (0^) 
iff a couple (x, b), where 

x(a) 

S[dAbK2(s)G(s)t)ás']x(t)j 

is a solution to the system of operator equations ((4,5)) 

-x + U(.)b + sR0(e)(x) = 0, 

Bb + eR(e) (x) = 0 . 

Let m < n and rank (B) = m + n'. Let us denote M = {1, 2,..., m + n'} and let 
if c= .yV0 be such that v(V) = n — m and det Bjiiir* 4= 0. Putting y = br*, 5 = br, 
Bt = jB^>r« and B2 = J?^,^-, (4,5) becomes 

(4,13) -x + V(.) 5 + 85(e) (x) = 0, 

where the n x (n — m)-matrix function V and the operator S are given by (4,10). 
Given an arbitrary 50 e 0tn-m, the function x0 = V(.) 50 is a solution to the limit 
problem (^0) and by Proposition 2 there exists e* > 0 such that for all s e [0, 8*] 
there exists a unique solution x*(e) to (0t) continuous in 8 e [0, 8*] as a mapping 
[0, e*] -» sf^ and such that x*(0) = x0. The given boundary value problem (̂ *£) 
can be treated similarly as the noncritical case for m = n, although the limit problerti 
(0O) possesses a nonzero solution. On the other hand, if 8 > 0, m > n and rank (B) =*= 
- n + ji\ then (4,5) is equivalent to the system 

( 4 '1 4) - x + 8S(e)(x) = 0, T(e)(x) = 0 
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with S and T defined analogously as in (4,10). Now the function x is uniquely deter­
mined by (4,14)! and tabe a solution to the given problem (0*e) with e > 0 it has to 
satisfy (4,14)2. Hence the boundary value problem (^8) has generally no solution, 
though the limit problem (^0) has only the trivial solution (cf. Corollary 1 of Theorem 
3,1). In the other cases we meet an analogous situation. 

5. LINEAR BOUNDARY VALUE PROBLEM - FUNCTIONAL 
ANALYSIS APPROACH 

Let us turn back to the linear boundary value problem (@>) given by 

(5.1) x - A(t) x - f [dsG(r, s)] x(s) = f(t), 

(5.2) f[dL(s)]x(s) = / , 

where A e 2\„ fe&\Ge <£2\®r\ L e @rmtn and / e ®m. Without any loss of 
generality we may assume that for all t e J G(t, .) and L are continuous from the right 
on the open interval (a, b). 

In [20] D. Wexler derived the true adjoint (in the sense of functional analysis) to 
the boundary value problem 

x - A(t) x = f(t) , Lx = /, 

where A e S£\n,f e JSP1, Lis a continuous linear mapping of $&<€ into some B-space A 
and / e A. In this paragraph we apply his ideas to the boundary value problem (&>). 
The special form of the operator L and the different choice of a dual space to the space 
<£ of continuous functions on J (measures are replaced by functions of bounded 
variation) enables us to prove that the problem (^*) derived in § 3 ((3,16), (3,17)) is 
equivalent to the true adjoint of (0*). 

First, we have to introduce some new notations. 
<£m denotes the B-space of all row n-vector functions measurable and essentially 

bounded on J. It is well-known that j£?°° is a dual B-space to the B-space J&P1 = 3?lA 

of column n-vector functions L-integrable on J. The value of a functional yK e 3?°° 
on x e SB1 is given by 

< x , / > * = / ( s ) * ( s ) d s 

and the norm of yx is \ys\«> = sup ess ||yXOII* Functions from J&?00 which coincide 
t€J 

a.e. on J are identified with one another. 
J ^ + is the B-space of all row n-vector functions of bounded variation on J and 

continuous from the right on (a, b) (^9ir+ c 3iir
ltH). <&* denotes the dual B-space 
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to the space <€ of column n-vector functions continuous on J, i.e. <€* is formed by 
all functions from 2&Y'+ which vanish at a. Given an arbitrary functional yy e<€*, 
its value on x e <€ is given by 

<x, />* = [W(0] *(0 

and Uy'lltf* = var* j \ The zero element of <€* is the function vanishing everywhere 
on J. 

stf'tf* denotes the dual B-space to the B-space stf^ of column n-vector functions 
absolutely continuous on J. The value of a functional yy e s4<€* on xesrf^ is 
denoted by <x, J O J / V Let us notice that we can consider ([20] 2,1) <€* c srf^* 
and <x, y^jjcg = <x, yy)% for x e s^<€ and yy e # *. Moreover, since the topology of sd<€ 
is stronger than that induced by ^( | |^ | |^ = sup ||x(0||) and «a/# is dense in <€, the 
zero elements of s^<€* and <€* coincide. J 

The operators 

D : x e s/<€ -» x e Se1 , A : x e s4<€ -> ,4(*) x(f) e J5P1 , 

G : x e ^ - ^ [dsG(r, 5)] x(s) G J5?1 , ^ : x e A<€ -+ Dx - Ax - Gx e Sel 

JW)]*(')« 
are linear and continuous. Hence the operator 

(5,3) gl:xej*V-> (m^x\ e g1 x 0tm 

\0&2xj 

is linear and continuous, too. Its adjoint 0i* is a linear continuous operator J27°° x 
x <#* -- .*/#* defined on ( / , V) e J ? w x < by 

<#!* , / > * + V(@2x) = <x, « * ( y \ V)}^ for all x G st<g . 

The boundary value problem (P) can be now written in the form 

and 

&, : x є л/íř -* I ГdLísЛ x(s) є ář, 

(5,4) ^X = (í) 

Let us derive an explicit form for US*. For x e J / # and (y\ iV) e JSf °° x .#* we 
have 

<x, ®*(y\ V)}^ = < ^ t x , / > , + *:(-»-*) = <I>*, / > , - </lx, / > , -

- <Gx, / > , + V(m2x) = <x, Z>V - A*y" - G V + .»ÎV>,r» 
and 

êS*(y\ V) = Z>V - A*y' - G*yy + # * r , 
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where D*9 A*9 G* and 01* are adjoint operators to D, A, G and g&2, respectively. 
Thus the adjoint equatipn to (5,4) is 

(5,5) 2>V ~ A*yy - G*ys + a\V = 0 

(where 0 means the zero element of s/%*, of course). 
Given an arbitrary x e st^ and ys e JS?00, it holds by Lemma 2,7 

f V (0 ( f\*sG(t, s)] x(s)\ dt = fb id, f by\s) {G(s91) - G{s, a)) dsl x(t) . 

As a consequence, since J* y\s) (G(s, t) - G(s, a)) ds G #*, we have 

<*, G*fy^ -= <Gx, / > * = /x , f / ( s ) (G(s, 0 - G(s, a)) ds\ 

and 

(5.6) G* : / 6 J$? °° - f / ( s ) (G(s> 0 - G(s> *)) ds G #* . 

By a similar argument the operators A* and 2&\ a r e defined by 

(5.7) A* : / e g™ -> f yx(s) 4 s ) d s e ^* 

and 

(5.8) B* : Ve@*-+ V(L(t) - L(a)) G #* . 

Furthermore, 

(5.9) D* : / G <€* -* -y\t) + * ( / ) (t) G V* , 

where 

(5.10) f/(a) for * = a , 
R ( / ) (*) = Jo for a < t < b , 

[/(*) for t = b. 

The operator Dx - Ax maps «s/# onto J2?1. Hence yy e S£ °° being an arbitrary 
solution to D*yx — A*}?' = 0, y\t) = 0 a.e. on J. Moreover, given an arbitrary 
gx €<£*, the equation 

(5.11) D V ~ A*yy = 0X 

has a solution in JSf °° iff 

(5,12) Ґ[dв'(s)]X(s) = 0, 
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where X denotes again the fundamental matrix solution of Dx — Ax = 0 (cf. (3,3)). 
Suppose gy e #* and (5,11) has a solution in JSf00. Then this solution is unique in JSf °°. 
Let us put for t e J 

\t)=-(jW(s)-]x(S)y-\t) 

Since zs e <€* and /?(z<) (t) s 0 by (5,10) and (5,12), we have by (5,7), (5,9), Lemma 
1,1 and (3,3) 

D*zx - A*zy = -z\t) + |"Y V[d^XCT)l X ^ W ' ^ ^ d s = 

= ~-X0 + fW(-)] (*(-) ("-^(a) 4°) d°) = «X0 • 

It follows that zs is the unique solution of (5,11) in JSf00. Applying this to (5,5) and 
taking into account (5,6) -(5,8), we obtain that to any solution (y\ Xs) e JSf00 x ^* 
of (5,5) there exists a solution (r|\ XX) of (5,5) such that T|x e ^lir+

9 T|x is continuous 
at a from the right and at b from the left and y\t) = r\\t) a.e. on J (j;x = r|x in JSf00). 
Consequently, to find all solutions of (5,5) in JSf00 x ^*, it is sufficient to consider 
instead of Si* its restriction 0S* o n f x 01*, where *V is formed by all functions 
from .#^*+ which are continuous at a from the right and at b from the left. By 
(5,6)-(5,9) 

»Z{y\ v) = - / ( ' ) + *(/) (0 - fV(«) A(S) ds + v(L(t) - L(a)) -

- f y\s) (G(s, t) - G(s, a)) ds e #* . 

In other words, the equation (5,5) for (y\ .V) e JSf°° x ^* is equivalent to the 
equation 

(5.13) -y\t) + R(f) (t) - f / ( s ) A(s) ds + V(l\t) - I\a)) -

- | / ( - ) (G(s, t) - G(s, a)) ds = 0 on J 
J a 

for (y\ X") e "T x $*. In particular, (5,13) yields 

y\a) - y\a) = 0 for t = a, 

(5.14) /(f) - ~ [ V(s) 4 s) ds + V(l\t) - U(a)) - f/(-) (<?(*> 0 - G(-, «)) ds 

for t e (a, b) , 
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and 

(5.15) 0 = - f y\s) 'A(s) ds + V(L(b) - L(a)) - f / (») (G(s, b) - G(s, a)) ds 
J a J a 

for t = b . 
Furthermore, from (5,14) we have 

(5.16) y\a) = y\a+) = V(L(a+) - L(a)) - f / ( s ) (<K*. fl+) - G(5, a)) ds 

and consequently (5,14) becomes 

(5.17) y\t) = /(«) - f V(*) 4*) ^ + V(L(*) - L(a+)) -

- j y\s) (G(s, t) - G(s, a +)) ds for * e (a, b) . 

Making use of (5,15), (5,14) can be modified as follows 

(5.18) y\t) = [V(s) A(s) ds - V(L(b) - L(r)) + 

+ f y\s) (G(s, b) - G(s, t)) ds for t e (a, 6). 

Thus 

(5.19) f(b) = / ( b - ) = ~ * W ) - ^ 6 - ) ) + (Vw (G(̂  *) ~ G(s, M ) d* 

and 

(5.20) /(/) = y\b) + fV(s) 4s) ds + V(I(.) - L(fc-)) -

- f / ( s ) (G(s> 0 - G(s, i - ) ) ds for te(a,b). 

Let us define 

G0(t, s) = 
G(/, a+) for te J and s = a , (H a +) for s = a , 
G(/, s) for / e J and a < s < b , LQ(S) = <L(s) for a < s < b , 
G(t, b—) for te J and s = b, [L(b—) for s = b, 

C(t) - G(/, a+) - G(t, a) and D(t) = G(/, b) - G(t, b-) forte J and 

M = L(a+) - L(a) , iV = L(b) - L(b-) . 

Then from (5,16), (5,17), (5,19) and (5,20) we can conclude that the equation (5,13) 
(and hence also (5,5)) is equivalent to the system of equations for (y\ yK) e JSf °° x 
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(5.21) y\t) = y\a) - ['/(*) A(s) ds - f^t) - ^(a)) -

- y\s) (G0(s, t) - G0(s, a)) ds on J , 

(5.22) y\a) = -y'M - ! y\s) C(s) ds , y\b) = yW + f y\s) D(s) ds . 
J a *, a 

In the introduced notation, the original boundary value problem (f?) assumes the 
form 

x = A(t) x + C(t) x(a) + D(t) x(b) + f [dsG0(f, s)] x(s) + f(t) , 

M x(a) + N x(b) + J [dLo(s)] x(s) = I 

and (5,21), (5,22) is exactly its adjoint (^*) derived in § 3 ((3,16), (3,17)). 
As a consequence we have that the adjoint (^*) of (0) from § 3 and the true 

adjoint (5,5) of (0>) are equivalent. 
From the fundamental "alternative" theorem concerning linear equations in B-

spaces ([5] VI, §6) and from Theorem 3,1 it follows that the operator & of the 
boundary value problem (&) defined by (5,3) has a closed range in j£f * x 0$n. 

Remark. The closedness of the range ^(s/W) of the operator & can be also shown 
directly in a similar way as D. Wexler did in [20] § 3 for the operator 

xe^->(X~A®X)e2>1 x®m, Íx-A(i)x\ 

where L is a continuous linear mapping of st<€ into some B-space A. In fact, let the 
matrix B and the operator 

¥ : (f\ e 2l x 0tm -+ V(f, I) = w e ®m+n. 

be defined by (4,4), (3,9), (3,10) and (3,12). Let us put 

© : b e Rn+n, -+ Bb e ®m+n,. 

Given feg1 and / e $lm, the corresponding boundary value problem (0>) possesses 
a solution (i.e. (/ ' , \y e ®(tf<$)) iff ¥( / , I) e ®(®n+n). Hence 

«(J/*) = Y_1(e(«,+..)). 
Since *¥ and 0 are continuous linear operators and dim 0(^„+„.) < oo, the set 
xP_1(©(^n+II,)) is certainly closed. 
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