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1. Introduction

Theorems about the existence of solutions of boundary value problems for ordinary
differential equations often suppose the existence of lower and upper functions to
the studied problem. We can decide whether the problem has constant lower and
upper functions (see e.g. [3], [6]) and to find them if they exist. In general, however,
it is easy neither to find lower and upper functions which need not be constant nor
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to prove their existence which can make difficult the application of such theorems.
One possibility how to get nonconstant lower and upper functions to the periodic
boundary value problem

(1.1) u" = f(t,u), u(0)=u(27), u'(0)=u'(27)

is shown in this paper. We make use of fairly general definitions of these notions in-
troduced in [11] and we construct them as solutions of generalized periodic boundary
value problems for linear differential equations in sections 3 and 4. (Essentially they
are solutions of linear generalized differential equations in the sense of J. Kurzweil,
cf. e.g. [5], [14], [15] and [16].) This together with the existence results presented in
[11] enable us to get some new effective existence criteria for the problem (1.1). In
particular, in Section 5 we give two simple applications to singular problems of the
Lazer-Solimini type (cf. [9]).

Throughout the paper we assume: f : [0,27] x R — R fulfils the Carathéodory
conditions on [0,27] x R, i.e. f has the following properties: (i) for each x € R
the function f(.,z) is measurable on [0,27]; (ii) for almost every t € [0, 2] the
function f(t,.) is continuous on R; (iii) for each compact set KC R the function
mi(t) = sup zex | f(t, )| is Lebesgue integrable on [0, 27].

The set of functions f : [0,27] X R — R satisfying the Carathéodory conditions
on [0,27] X R is denoted by Car([0,27] x R). Furthermore, we keep the following
notation:

As usual, for a given subinterval J of R (possibly unbounded) C(J) denotes
the set of functions continuous on .J. Furthermore, L[0, 27| stands for the set of
functions Lebesgue integrable on [0, 27|, Ly[0,27] is the set of functions square
Lebesgue integrable on [0,27], AC[0,27] denotes the set of functions absolutely
continuous on [0, 27r] and BV [0, 27] is the set of functions of bounded variation on
[0, 27]. For = € C[0,27], y € L[0,27] and z € L, |0, 27] we denote

1 2T

lelle = sup Jo()l, =5 [ u(s)ds,
te[0,27] ™ Jo

2w

= [ ol and felh = ([ 20a)

If z € BVI[0,27], s € (0,27] and t € [0,27), then the symbols z(s—), z(t+) and
ATx(t) are respectively defined by

z(s—) = lim z(7), z(t+)= lim z(7) and A%z(t) = z(t+) — z(t)

T—5— T+

and z* and z*"¢ stand for the absolutely continuous part of x and the singular part
of x, respectively. We suppose z5¢(0) = 0.
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Furthermore, L"[0, 27] and L"*"[0, 27| are respectively the sets of column n-
vector valued and of n X n-matrix valued functions with elements from L[0, 27],
AC"[0,27] and AC™*"[0,27] are respectively the sets of n-vector valued and of
n X n-matrix valued functions whose elements are absolutely continuous on [0, 27]
and BV ™[0, 27] is the set of n-vector valued functions whose elements have a bounded
variation on [0, 27].

Finally, for a subset M of R, x,s denotes the characteristic function of M
(xa(t) =1fort € M, xp(t) =0fort € R\ M) and for a given function 3 € L[0, 2],
[T denotes its nonnegative part (61 (¢) = max{3(¢),0} for a.e. t € [0,27]) and 3~
stands for its nonpositive part (3~ (t) = max{—/(¢),0} for a.e. t € [0, 27]).

By a solution of (1.1) we understand a function u : [0,27] +— R such that
u' € ACI0, 27], u(0) = u(27), v'(0) = u'(27) and

u"(t) = f(t,u(t)) fora.e. te]|0,2n].

1.1. Definition. Functions (o1, p;) € AC|0,27] x BV|[0, 27| are said to be lower

sing

functions of the problem (1.1), if the singular part pi™® of p; is nondecreasing on
[0, 27],

o (t) =p(t), pit) > ft,o0(t)) forae. te]|0,2r]
and
(1.2) 01(0) = 01(2m),  p1(0+) = p1(27—).

Similarly, functions (o9, p2) € ACI0, 27| x BV [0, 27] are said to be upper functions

sing

of the problem (1.1), if the singular part p3"® of p, is nonincreasing on [0, 27},

an(t) = pa(t), py(t) < f(t,00(t)) fora.e. te€|0,27]
and

(1.3) 02(0) = 02 (2m),  p2(0+) < p2(27—).

1.2. Remark. Let us note that in virtue of a monotonicity of singular parts of
p1 and po we get equivalent definition of lower and upper functions of (1.1) if
we replace the boundary conditions (1.2) and (1.3) respectively by o1(0) = o,(27),
p1(0) = p1(2m) and 02(0) = 02(2m), p2(0) = p(2m).

The existence results in Section 5 are based on the following theorem which is
contained in [11, Theorems 4.1 and 4.2].

1.3. Theorem. Let (01, p1) and (02, p2) be respectively lower and upper functions
of the problem (1.1).
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(I)  Suppose o1(t) < o9(t) on [0,27]. Then there is a solution u of the problem
(1.1) such that o1 (t) < u(t) < oa(t) on [0, 27].
(IT)  Suppose o1(t) > o2(t) on [0,27] and there is m € L[0, 2x] such that
f(t,x) > m(t) (or f(t,xz) <mf(t)) for a.e.t€|0,2n] and all z € R.
Then there is a solution u of the problem (1.1) such that ||u'l|c < ||m||L and

oa(tu) < ulty) < o1(ty) for some t, € [0,2n].

2 . Periodic solutions of certain generalized linear
differential problems

In this section we want to show that if for a.e. ¢ € [0, 27] and all = € I;, where I; is
a subinterval of R, the function f fulfils a condition of the form

(2.1) ft,z) <wzx+ B(t)
(2.2) f(t,x) > wr + B(t),

where w € R and 3 € L[0,2x] are given, then it is possible to construct lower or
upper functions for the problem (1.1), respectively.
It is known that if w # —k? for all k € N U {0}, then the problem

(2.3) o =p, p=woc+p(t) ae on [0,27],
(2.4) 0(0) = o(2m), p(0) = p(2m)

possesses a unique solution (o, p) € ACI0,2x] x ACI0, 27| for any § € LJ0, 27].
Consequently, if we have in addition

(2.5) o(t) eI, forall te|0,2n],

then the functions (o, p) are lower or upper functions of (1.1) (according to whether
(2.1) or (2.2) is satisfied). In general the relation (2.5) need not be true, of course.
However, if we admit a more general notion of a solution to the linear problem
(2.3), (2.4) and if the intervals I; of validity of (2.1) or (2.2) are large enough, we
can always use the problem (2.3), (2.4) for a construction of lower or upper functions
for (1.1).

To show this, let us first consider a linear differential system on [0, 27]

(2.6) ¢ '=P(t)¢+q(t),
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where P € L"™"[0,27] and ¢ € L"[0,27]. By a solution of (2.6) on [0,27] we
mean a function £ € AC"|0, 27| satisfying (2.6) a.e. on [0, 27]. The corresponding
normalized fundamental matrix solution of the system

(2.7) ¢ =P(t)¢
is denoted by @, i.e. & € AC"*"[0, 27| and
t
O(t) =1 —|—/ P(s)®(s)ds on [0, 27].
0
Its inverse matrix ®~'(¢) is defined for any ¢ € [0,27], ®~' € AC™ "0, 27] and if
(2.8) det (@*1(2@ - 1) £0

holds, then for any ¢ € L™[0, 27] there is a unique solution & € AC™[0, 2| of (2.6)
on [0, 27] such that

(2.9) £(0) = &(2m).
This solution can be written in the form
2
)= [ Gt 8)als)ds on [0, 2],
0
where
1
(@*1(27) - I) for ¢t <s,

(2.10) G(t,s) = ®(t) ) @71(5)

I+ (@’1(27) - I>_ for s <t
is the Green function of the problem (2.7), (2.9).

2.1. Definition. Let 7 € [0,27) and d € R™ be given. By a solution of the problem
(2.6), (2.9),

(2.11) ATE(r)=d
we mean a function & € BV"[0, 27] such that the relations (2.9) and
(2.12) ¢'(t) = P(t)&(t) +q(t) a.e. on [0,27]

are satisfied and & — d x(r2-) € AC"[0, 27].
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2.2. Proposition. Assume (2.8). Then for any 7 € [0,27), any d € R" and any
q € L"[0, 27|, the problem (2.6), (2.9), (2.11) possesses a unique solution & and this
solution is given by

(2.13) () =G(t,7)d+ /027T G(t, s)q(s)ds on [0,27],

where G is defined by (2.10).

Proof. For any ¢ € R", the functions

t
o) = @t e+ @) [ @ (s)als)ds, € [0,27],
0
and
27
y(t) = ()@ '(27) c — (D(t)/ ®*(s)q(s)ds t€0,27],
¢
are the unique solutions of (2.6) on [0,27], such that z(0) = ¢ and y(27) = ¢,
0

respectively. Define £(t) = x(t) for 0 < ¢ < 7 and &(t) = y(t) for 7 <t < 27. Then
¢ € BV"[0, 27] fulfils (2.9), (2.12) and

AYE(T) = B(7) (@’1(277) — I) c—d(7) /027r ® 1(s)q(s)ds.

Consequently, if we put

27
c=M" (<I>_1(T) d+ / <I>_1(s)q(s)ds>,
0
where M = ®~'(27) — I, then £ verifies (2.11). Moreover, &(t) — dx(r2x(t) = 2(t)

holds on [0,27] and hence & — dx(r2.; € AC"[0,2r]. Finally, using the relation
O'2r)M~ =1+ M™!, we get

£(t) = (1) (M’1<d>’1(7)d+ /0 . qu(s)q(s)ds) + /0 t@l(s)q(s)ds)
for 0 <t <7 and
£(t) = o(1) ((1 + MY (<I>_1(7') d + /0% <I>_1(s)q(s)ds> - /t% <I>_1(s)q(s)ds>

for 7 < t < 27, wherefrom the representation (2.13) of £ follows. O

2.3. Remark. Clearly, for any solution £ of (2.6), (2.9), (2.11) we have £* =
£ — dX(r2n], & = dX(r2x and £ is left-continuous on (0, 27].
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2.4. Remark. The problem (2.6), (2.9), (2.11) can be rewritten as the integral
equation

t
€)= €0)+ [ Po)E(s)ds + hit) = h(0), ¢ € [0,2],
0
where
t
h(t) = d X(r2m(t) + / q(s)ds on [0,27].
0
This equation is a very special case of generalized differential equations introduced
by J. Kurzweil in [5].

Now, we shall apply Proposition 2.2 on the problem (2.3), (2.4) generalized in
the sense of Definition 2.1. In the case w = a?, a > 0, we get the following result:

2.5. Corollary. Let o > 0. Then for any 7 € [0,27), any § € R and any § €
LL[0, 2], the problem
(2.14) o' =p, p=ad*c+p(1),

o(0) = o(2m), p(0) = p(27), Ato(r) =0, Atp(r) =46

possesses a unique solution (o, p). Moreover, o € ACI0, 2], p*"* = X (r2x and

(2.15) o(t) = g(t, )5 + /0 " g(t,5)B(s)ds, on [0,27],
where
cosh(a(m 4+t — s5))
2 « sinh ()
cosh(a(m + s — 1))
2 « sinh ()

if 0<t<s<2m,
216)  glts) =

if 0<s<t<2m.

Proof. The fundamental matrix solution ® of the corresponding homogeneous sys-
tem o' = p, p' = o0, is given by

cosh(at) sinh(at)
= « on [0,27]
asinh(at) cosh(at)

o(t

~—

and det ((I>*1(27r) - I) = —4sinh(am) # 0. Thus, we can apply Proposition 2.2 to
the problem (2.6), (2.9), (2.11) with
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to obtain that the problem (2.14) possesses a unique solution (o, p). Since, in partic-
ular, Ato(7) = 0 and A*p(7) = ¢, it follows from Definition 2.1 that o € AC|0, 27]
and p — dX(r2+] € AC[0, 27| (i.e. p*™ = 0X(r2x). Furthermore, inserting for ® into
(2.10), we get

(

_sinh(a(m+t—3s))  cosh(a(r +1—5))

2 sinh(am) 2asinh(arr)
_acosh(a(m+1—15))  sinh(a(r +1t—3))
2 sinh (o) 2 sinh ()
if 0<t<s<2m,
G(t,s) =
sinh(a(r+s—1t))  cosh(a(r+s—1))
2 sinh () 2asinh (o)
_acosh(a(m +s—t))  sinh(a(r +5—1))
2 sinh(am) 2sinh(am)
\ if 0<s<t<o2n,
which implies that o has the form (2.15), where g is defined in (2.16). O

2.6. Remark. We can easily verify that for any a € (0,00), the Green function ¢
from (2.16) satisfies the estimates

cosh(a) 1
2.17 —_— < gt,s) < - <0 0,2 0, 27].
(2.17) 2asinh(amr) — 9t,s) < 2acsinh (o) on [0, 2] > [0, 2]
The next result concerns the case w = —a?, a > 0.

2.7. Corollary. Let o > 0 and o # k for all k € N. Then for any T € [0,27), any
d € R and any € L|0, 27|, the problem

(2.18) o' =p, p=-a’c+f1),
o(0) = o(2m), p(0) = p(27), Ato(r) =0, Atp(r) =4

possesses a unique solution (o, p). Moreover, o € ACI0,27], p™ = dX(r24] and o
has the form (2.15), where

cos(a(m+t—1s))
2 « sin(am)

if 0<t<s<2m,

(2.19) g(t,s) = cos(a(m + s — t))

2 « sin(am)

if 0<s<t<2m.
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Proof. Substituting ® in (2.10) by

sin(at)
o) = | osted) o |, telo2n),
—a sin(at)  cos(at)

we get

Csin(a(r +t—s))  cos(a(r +1t—3s))

2 sin(a) 2asin(ar)
_cos(a(m+t—s)) sin(a(r+1t—3s))
2 sin(a) 2 sin(a)
if 0<t<s<2m,
G(t,s) =
sin(a(r+s—1t))  cos(a(r+s—1t))
2sin(am) 2asin(am)
_acos(a(m+s—1t)) sin(a(r+s—1))
2sin(am) 2sin(am)

it 0<s<t<2rm

\

and since under our assumptions we have det (@‘1(27r) - I) = 4sin®*(ar) # 0, the
proof follows from Proposition 2.2 similarly as the proof of Corollary 2.5. O

1

2.8. Remark. Let us notice that for any o € (0,5

(2.19) satisfies the estimates

|, the Green function g from

o e

2.20 0<
(220) ~ 2asin(am)

~ 2asin(am
If w =0, the system (2.3) becomes
(2.21) o =p, p=p@)

and the corresponding fundamental matrix solution ® is defined by

O(t) = b on [0,27].
01

Consequently, det (<I>_1(27r) — I) = 0. Hence, the assumptions of Proposition 2.2

are not satisfied and instead of the generalized periodic boundary value problem we
have to deal with a certain related problem with conditions of the mixed type

(2.22) o(0) = o(27) = ¢1, p(0) = p(27), At p(r) = =274,

where ¢; may be an arbitrary real number.
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2.9. Definition. Let 7 € [0,27), ¢; € R and § € L]0, 27] be given. By a solution
of the problem (2.21), (2.22) we mean a couple of functions (o, p) € ACJ0, 27| x
BV [0, 27] satisfying (2.22) and

(2.23) o' (t) = p(t), p'(t)=p(t) a.e. on|0,27]

and such that p + QWBX(T’QW] € AC|0, 27].

2.10. Proposition. Let c; € R, 7 € [0,27) and § € L[0,27]. Then the problem
(2.21), (2.22) possesses a unique solution (o, p). Moreover, p*" = =278 (r2x] and
o 1s given by

2
(2.24) o(t) = ¢, — g(t,7)(273) +/ g(t,s)3(s)ds on |0, 27],
0
where
t(sgi%) if 0<t<s<on,
(225)  glt,s) = "
% if 0<s<t<o2n.

Proof. For any c¢q,co € R, put

¢
cl—l—cgt—l—/(t—s)ﬂ(s)ds if 0<t<7<2m,
(226)  olt) = o
cl+02(t—27r)—/ (t—$)B(s)ds if 0<r<t<2r
¢
and
t
cz+/ B(s)ds if 0<t<r7 <2m,
(2.27) p(t) = o

Cy — B(s)ds if 0 <7<t < 2.
t

Then o and p belong to BV [0, 27] and they satisfy (2.23), (2.22),
0 — AYo(T)X(r2n € AC[0,27] and  p — AT p(7)X(r2r € AC[0, 27].

Furthermore, with respect to (2.26), ATo(7) = 0 (and consequently o is absolutely
continuous on [0, 27]) if and only if

2
(2.28) Co = —/0 TQWSﬂ(s)ds,
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while ¢; € R may be arbitrary. Inserting (2.28) into (2.26) we can check that o
verifies (2.24). Finally, in virtue of (2.27) we have

t
p(t) + 27TBX(T,27T] (t) = +/ ﬁ(S)dS,
0

Le. p* = p+ 213X (r2n and p™¢ = =27 BX (7 2m. O

2.11. Remark. The Green function g from (2.25) satisfies the estimates

(2.29) o sPros)

< < .
5 < o < g(t,s) <0on [0,27] x [0, 27]

2.12. Remark. Notice that if the couple (o, p) is determined by Proposition 2.10,
then p € AC[0,27] whenever § = 0. Furthermore, if 5 = 0 or 7 = 0, then the
formula (2.24) reduces to

(2.30) o(t)=¢c —i—/o Wg(t, s)B(s)ds on [0, 27].

3 . Lower functions

The following Lemma will be often used in the next two sections.
3.1. Lemma. Let p : [0,27] — R and p., p* € R be such that p,p* > 0 and
pe < p(t) <p* on [0,27]. Then the inequality

‘/Oﬂp(s)b(s)ds gmaX{|p*|7|p*|}m

|
2
holds for any b € L[0, 271] such that b= 0.

Proof. Let b € L[0, 2] be such that b = 0. Then b* = b~ and ||b||r, = 47wbt = 47b~.
Thus, in the case 0 < p, < p*, we have

27
—p* ||b2||]1" = —p*2rb~ < / p(s)b(s)ds < p*2mbt = p*—HbQHL.
0

Similarly, we can show that

u [161]1.
‘/ p(s)b(s)ds‘ < —p 5
0

holds if p, < p* < 0. O
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3.2. Proposition. Assume that there are a € R, A € R and b € L|0, 27| such that

(3.1) a<0, b=0

and

(3.2) f(t,z) <a+b(t) forace. te[0,2n] andall x € [A, B],
where

(3.3) B:A+gwm

Then there exist lower functions (o, p) of the problem (1.1) such that
(3.4) A<o(t) < B on [0,2n].

Proof. Let us put 7 = 0. By Proposition 2.10, the problem (2.21), (2.22) with
B(t) = b(t) a.e. on [0,27] has a unique solution (o, p) € ACI0, 27] x ACI0, 27] for
any ¢; € R. Moreover, o has the form

o(t) =¢ +/0 Wg(t, s)b(s)ds on [0, 27]

with ¢ defined by (2.25) (see Remark 2.12). Since Lemma 3.1 and (2.29) give the
estimate

27 T
(3.5) ‘/ q(t, S)b(s)ds‘ < Z||b||]L,
0
it follows that
™ ™
G — ZHb“lL <o(t) <e + Z“bH]L on [0,27].

Choosing ¢; = A+ 7 [|b]| and taking into account (3.3) we verify that (3.4) holds.
According to (3.1) and (3.2) this implies that

p'(t) =b(t) > f(t,0(t)) for a.e. t e [0,2n].

Furthermore, with respect to (2.22) we have 0(0) = o(27) and p(0+) = p(0) =

p(2m) = p(2m—) and hence, by Definition 1.1, the functions (o, p) are lower functions

of (1.1). O
The following result is supplementary to Proposition 3.2.

3.3. Proposition. Assume that there are a € R, A € R, 7 € [0,27) and b €

L]0, 27] such that

(3.6) a<0, b=0

and
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(3.7) f(t,x) <a+b(t) forae. te[0,2r] and all x € [A(t), B(t)],
where
(3.8) A(t) = A+ah(t,7), B(t) = A(t) + g||b||L for t €[0,2x]
and

ﬂ%=;r+ﬂ Fo<t<r<om
(3.9) h(t,T) = (2r — t)2(27 ) et

Then there exist lower functions (o, p) of (1.1) fulfilling
(3.10) A(t) < o(t) < B(t) on [0,27].

Proof. Let us put 3(t) = a + b(t) a.e. on [0,27]. Then, using (3.9) and Proposition
2.10, we get for the solution (o, p) of the problem (2.21), (2.22)

o(t)=c —2mwag(t,7) + gt (t —2m) + /0 ' g(t, s)b(s)ds

=c +ah(t,T)+ /OZF g(t,s)b(s)ds on [0, 27].

Thus, if we put again ¢; = A + 7||b|L and take into account (3.5) and (3.8), we
obtain (3.10). Furthermore, we have p(0+) < p(0) = p(27) = p(2r—) and since
by (3.6) p¥™¢ = =27 a X(r2x is nondecreasing on [0, 27, we can complete the proof
similarly as that of Proposition 3.2. O

3.4. Remark. Notice that the function h defined in (3.9) fulfils the estimates

2 S_(7r—T)2

T(2m — 7) 2
2 2

7
— <
2 - 2

< h(t,7) <

on [0, 27] x [0, 27].

The next assertion provides conditions which ensure the existence of lower func-
tions of (1.1) and which rely upon Corollary 2.7 where « is restricted to the interval
(0, %] and a need not be nonpositive. (Notice that the proofs of Proposition 3.2 and

3.3 do not admit the case a > 0.)
3.5. Proposition. Assume that there are a € R, A € R, 7 € [0,27), § € [0, 00),
a € (0,%] and b € 1|0, 27| such that

’ 2

(3.11) a<M, b=0

and
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(3.12) ft, ) < —a’x +a+b(t)
for a.e. t € [0,2w] and all x € [A(t), B(t)],

where
bl
. M=0a2A L
(3:13) AT 4sin(am)’
_ _ 0[]
(3.14) A(t)=A+g(t, 7)o, B(t) = A(t) + Sorsin(ar) for t €[0,2n]

and g is given by (2.19).
Then there exist lower functions (o, p) of (1.1) fulfilling (3.10).

Proof. Define 5(t) = M +b(t) for a.e. t € [0, 27]. The assumptions (3.11) and (3.12)
imply

ft,r) < —a?x + B(t) forae.t€[0,2n] and all z € [A(t), B(t)].

Furthermore, by Corollary 2.7 there is a unique solution (o, p) of (2.18), o is given
by (2.15) and (2.19), p¥™¢ = dx(r24 and p(0+) < p(0) = p(27) = p(2m—). Moreover,
we have

2w 1
/0 g(t,s)ds = —z on 0, 27]

and therefore

M 27
ot)=g(t,7)0 +— +/ g(t,s)b(s)ds on [0, 27].
@ 0
Now, Lemma 3.1 together with the estimates (2.20) yield

on [0,27].

‘/0%9(’57 S)b(S)ds‘ <« _ |blle

~ dasin(am)

Consequently, the inequalities

M 161
< < o2 " dasin(ar)
< O'(t) > g(t77)6+ a2 + 4&SiH(OZ7T)

M b
(3.15) g(t,7)0+ — — []c

a?  dasin(ar)

are valid on [0, 27]. According to (3.13) and (3.14) we can verify that o satisfies
(3.10). This together with (3.11) and (3.12) mean that

f(t,o(t)) < —a’o(t) + B(t) = p'(t)

holds a.e. on [0, 27], i.e. (o, p) are lower functions of (1.1). O
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The case o > % is dealt with by the following immediate corollary of Proposition
3.5.

3.6. Corollary. Assume that there are a € R, A € [0,00), 7 € [0,27), ¢ € [0, 00),
o € (3,00) and b € L0, 2r] such that (3.11) and (3.12) are satisfied with

(3.16) M= (@A bl),
(3.17) A(t) = A+ g(t,1) 6, B(t) = A(t) + bl on [0,2x]

and g given by (2.19) with o = 3.

Then there exist lower functions (o, p) of (1.1) fulfilling (3.10). O
3.7. Remark. Let us note that if the first inequality in (3.11) falls, i.e. there is p >
0 such that a = M + p, then we have to replace [A(t), B(t)] by [A(t) + &, B(t) + &]
in (3.12) and in (3.10) to keep the validity of the conclusion of Proposition 3.5. This
follows from the estimates
[161]x. a [161]x.

<o(t)<g(t,7)6+—+———— on [0,27]

a
t,7)0+ — —
g(t:m)0 + a?  4dasin(ar)

a?  dasin(am)

which can be derived similarly as (3.15) putting 5(t) = a + b(t) a.e. on [0, 27].

3.8. Remark. Let the assumptions of Proposition 3.5 be satisfied and let § = 0.
Then all the intervals [A(t), B(t)], t € [0, 27|, reduce to [A, B], where

bl 2M
- -

B=A+ A.

2asin(am) «

Further, assume for the simplicity that A = 0 and a = M. Then (3.12) has the form
f(t,z) < —a?x + M +b(t) for a.e. t € [0,27] and all z € [0, B], which implies

B
f(t,x) <b(t) forae. t€[0,2n] and all z € [E’B]'

Thus, Proposition 3.2 can be also applied to show the existence of lower functions

of the problem (1.1) whenever £ > Zb||1,, i.e. whenever 2ar sin(ar) < 1. The

function ¢(a) = 2ar sin(am) is increasing on [0,1], ©(0) = 0, ¢(3) = 7, which
yields that there is exactly one oy € (0,3) (o ~ 0.235817) such that ¢(c;) = 1.
It follows that for « € (0, 4] both Proposition 3.2 and Proposition 3.5 guarantee
the existence of lower functions (o, p) for (1.1), however Proposition 3.2 states more
precise localization of o (o(t) € [£, B] for all t € [0,27]). On the other hand, for
a € (o, %], Proposition 3.2 need not work, in general. Having in mind Corollary
3.6, we can conclude that the conditions (3.11) and (3.12) are proper for getting

lower functions provided a > «, only.
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3.9. Proposition. Assume that there are a € R, A € R, 7 € [0,27), § € [0, 00),
a € (0,00) and b € L[0, 27| such that

(3.18) a<—-M, b=0
and
(3.19) ft,7) <o’z +a+bt)

for a.e. t € [0,2w] and all x € [A(t), B(t)],

where
|||, cosh(ar)
4sinh(amr)

(3.20) M=ao”>A+

||b||r, cosh ()

(3.21) Alt) = A+g(t,7)0, Bt) = A(t) + 2asinh (o)

for t €[0,2n]
and g is given by (2.16).
Then there exist lower functions (o, p) of (1.1) fulfilling (3.10).

Proof. We can proceed similarly as in the proof of Proposition 3.5. In particular,
by Corollary 2.5 the problem (2.14) with 3(t) = —M + b(t) a.e. on [0, 27| possesses
a unique solution (o, p), where o is given by (2.15) and (2.16), p™™* = 0X(r,2r and
p(0+) < p(0) = p(27) = p(2r—). In view of (2.16) we have

27 1
/ g(t,s)ds = —— on |0, 27].
0

a2

Further, (2.17) and Lemma 3.1 yield

_cosh(am)
(1, )b(s)ds| < |l 27).
‘/ °) | < Wl 4 b am dasinh (o) on [0, 2]

Hence, the inequalities

(322) g(t,7)0 + 2L _ Lblle cosh(ar)

M ||b]|r, cosh(amr)
< < —
«?  dasinh(ar) — oty <gltm)o+ 5+

a?  dasinh(ar)
are true for all ¢ € [0, 27]. Thus, as in the proof of Proposition 3.5, we can conclude
that o satisfies (3.10) and (o, p) are lower functions of (1.1). O

3.10. Remark. If a = —M + p for some p > 0, then to keep the validity of the
conclusion of Proposition 3.9 we have to replace [A(t), B(t)] by [A(t) — %5, B(t) — %3]
n (3.19) and in (3.10). This follows from the estimates

a  ||b||r cosh(am)

o(t,7)0 - 5 -

||b]|1, cosh(a)
o? WS o(t) < g(t,7) 0 — = +

a?  4dasinh(am)

which are valid on [0, 27] and can be derived similarly as (3.22) when setting () =
a+ b(t) for a.e. t € [0, 27].
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3.11. Remark. Similarly to Remark 3.8 where we have compared the applicability
of Propositions 3.2 and 3.5, we can compare also Propositions 3.2 and 3.9. Indeed,
let the assumptions of Proposition 3.9 be satisfied with § =0, A =0 and a = —M.
Denote B = 25, Then the relation (3.19) reduces to

f(t,z) <a’?x — M +b(t) forae. t€[0,27] and all x € [0, B].

This means that f(¢,z) < b(t) fora.e. ¢ € [0,2n] and all z € [0, £] and so Proposition
3.2 can be applied to show the existence of lower functions of the problem (1.1)
whenever 2ar tanh(ar) < 1. The function ¢(a) = 2am tanh(ar) is increasing
on [0,00), ¢(0) = 0, lim,_, ¢(a) = co. Hence, there is exactly one oy € (0, 00)
(g = 0.24564) such that p(ay) = 1. It follows that for o € (0, ] both Proposition
3.2 and Proposition 3.9 guarantee the existence of lower functions (o, p) for (1.1),
however Proposition 3.2 gives a better estimate for o (o(t) € [0, 2] for all ¢ € [0, 27]).
On the other hand, for « € (ay, 00), Proposition 3.2 need not work, in general. To
summarize, Proposition 3.9 is useful for o > s, only.

4 . Upper functions

In this section we reformulate the assertions of Section 3 to obtain conditions en-
suring the existence of upper functions of (1.1). In the consequence of the duality
of the definitions of lower and upper functions (see Definition 1.1) their proofs may
be omitted.

4.1. Proposition. Assume that there are a € R, A € R and b € L[0, 27| such that

(4.1) a>0, b=0
and
(4.2) f(t,z) > a+b(t) forae te|0,2n] andall x € [A, B],

where B is given by (3.3).
Then there ezist upper functions (o, p) of the problem (1.1) with the property
(3.4). O

4.2. Proposition. Assume that there are a € R, A € R, 7 € [0,27) and b €
L]0, 27] such that

(4.3) a>0, b=0
and
(4.4) f(t,z) > a+b(t) forace. te|0,2n] and all x € [A(t), B(t)],

with the same A(t) and B(t) as in Proposition 3.3.
Then there exist upper functions (o, p) of (1.1) fulfilling (3.10). O
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4.3. Proposition. Assume that there are a € R, A€ R, 7 € [0,27), § € (—00,0],
o € (0,1] and b € L[0, 27] such that

(4.5) a>M, b=0
and
(4.6) ft, 1) > —a’x +a+ b(t)

for a.e. t € [0,2x] and all x € [A(t), B(t)],

with the same M, A(t), and B(t) as in Proposition 3.5.
Then there exist upper functions (o, p) of (1.1) fulfilling (3.10).

4.4. Corollary. Assume that there are a € R, A € (—00,0], 7 € [0,27), § €
(—00,0], a € (3,00) and b € L[0, 27| such that (4.5) and (4.6) are satisfied with the
same M, A(t) and B(t) as in Corollary 3.6.

Then there exist upper functions (o, p) of (1.1) fulfilling (3.10). O

4.5. Proposition. Assume that there are a € R, A€ R, 7 € [0,27), § € (—00,0],
a € (0,00) and b € L[0, 27| such that

(4.7) a>-M, b=0
and
(4.8) ft,z) > v +a+bt) forae tel0,2n] and all x € [A(t), B(t)],

with the same M, A(t) and B(t)] as in Proposition 3.9.
Then there exist upper functions (o, p) of (1.1) fulfilling (3.10).

4.6. Remark. If a = M — p (or a = —M — p) for some p > 0, then the conclu-
sion of Proposition 4.3 (or Proposition 4.5) remains valid if we replace the interval
[A(t), B(t)] by [A(t) — L5, B(t) — %] in (4.6) and (3.10) (or by [A(t) + L&, B(t) + %]
in (4.8) and (3.10)).

Similarly, putting A = 0, a = M (or a = —M) and § = 0 and arguing like in
Remark 3.8 (or Remark 3.11) we can deduce that the conditions (4.5), (4.6) (or the
conditions (4.7), (4.8)) are profitable for proving the existence of upper functions
provided o > «; (or @ > a), only.

5. Applications to Lazer-Solimini singular prob-
lems

Criteria on the existence of lower and upper functions presented in sections 3 and 4

together with Theorem 1.3 enable us to formulate a number of various theorems on
the existence of solutions to the problem (1.1). In this text we shall restrict ourselves
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just to two examples of such results. In particular, we will consider possibly singular
problems of the attractive type

(5.1) u" + g(u) =e(t), u(0)=u(2r), u'(0)=u'(27)
and of the repulsive type

(5.2) u" —g(u) =e(t), u(0)=u(2r), «(0)=1u'(2n),
where

(5.3) g € C(0,00) and e € L[0,27]

and it is allowed that
lim sup g(z) = oc.
r—0+

The problem (5.1) has been studied by Lazer and Solimini in [9] for e € C[0, 27]
and ¢ positive. In [12, Corollary 3.3], their existence result has been extended to
e € L[0,2n] essentially bounded from above. Here, we bring conditions for the
existence of solutions to (5.1) without boundedness of e.

5.1. Theorem. Assume (5.3) and let there exist Ay, Ay € (0,00) such that

(5.4) g(x) >e forall x € [Ay, B,
(5.5) g(x) <e forall x € [Ay, By,
where

T
(56) B1 - A1 = 32 - A2 = 5“6 — E“]L
and A2 2 Bl.

Then the problem (5.1) has a solution w such that A; < u(t) < By on [0, 27].

Proof. Define for a.e. t € [0, 27],

) = - { A RS

Then f € Car([0,27] x R). Furthermore, by (5.4) and (5.6), f satisfies (3.1)-(3.3)
witha = 0, b(t) = e(t)—e a.e. on [0,27] and [A, B] = [A4;, B;]. Hence, by Proposition
3.2 there exist lower functions (oy, p;) € ACI0, 27| x ACJ0, 27| of (1.1) such that
o1(t) € [A1, By] for all t € [0,27]. Similarly, (5.5), (5.6) and Proposition 4.1 yield
the existence of upper functions (o2, p2) € ACI0, 27] x AC[0, 27| of (1.1) such that
oa(t) € [Ag, Bo] on [0, 27]. Now, since Ay > By, we have oy (t) < 05(t) on [0, 27] and
the assertion (I) of Theorem 1.3 gives the existence of a desired solution u to (1.1)
which is also a solution to (5.1), of course. O
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Classical Lazer and Solimini’s considerations [9] of the repulsive problem (5.2)
have been extended by several authors (see e.g. [1], [2], [4], [7], [10] and [17]).
Provided g € C(0,00), e is essentially bounded on [0, 27| and

(5.7) Jim g(w) = oo,

1
(5.8) Jim : 9(§)dg = oo,
5.9 iminf 2% > _L i L [ g =
(5.9) minf= > =, diminf 5 | g(§dE> g,
(5.10) there is d > 0 such that g(z) < —€ for all z € [d, 00),

Omari and Ye proved in [10, Theorem 1.2] the existence of a solution to (5.2). Here
we present a related result, where e need not be essentially bounded.

5.2. Theorem. Assume (5.3), (5.8),

(5.11) h;g&ilfg(x) > —00,
and

. eg(r) 1
5.12 | f—">>—.
(>12) e

Furthermore, let there exist Ay, Ay € (0,00) such that

(5.13) g(z) <
(5.14) g(zx) >

N

for all x € [Ay, By],
for all x € [Ay, By

—€
—€

and (5.6) are true and Ay > Bs.
Then the problem (5.2) has a positive solution u such that u(t,) € [Ag, By] for
some t,, € [0, 2]

5.3. Remark. If e is essentially bounded from below on [0, 27], then according to
Proposition 4.1, the condition (5.8) implies (5.14) with Ay, = B,.

5.4. Remark. Notice that if g € C(0, 00) satisfies (5.8) then

lim sup g(z) = oo,
z—0+

which implies the existence of a sequence {¢,}5°, C (0,1) such that

(5.15) lime, =0, g¢g(e,) >0 forall neN.
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For the proof of Theorem 5.2 we will need the following two lemmas, where we
deal with the auxiliary family of problems

(5.16) u" = gp(u) +e(t), u(0)=u(2r), «'(0)=1d'(27),
where n €N,

0 if <0,
(5'17) gn(x) = g(sn)i if e [O,Sn],

g(z) if z>¢,

and ¢, are from (5.15).

5.5. Lemma. Assume that g € C(0,00) satisfies (5.8), (5.11) and (5.12) and gy,

n €N, are given by (5.17). Then there exist n € (0,1) and C' > 0 such that

1
(5.18) gn(x)z > _(Z —n)a® — Clx| forall x €R and all n € N.

Proof. By (5.12), there are n € (0, ;) and A € (1, 00) such that

(5.19) ? > —(% —n) forall z> A.
Put
0 if <0,
(5.20) p(x) = g(A)% if x €0, Al
g(z) if x> A

and ¢,(z) = gn(xz) — p(z) on R. In virtue of (5.11), there is C' > 0 such that
¢n(z) > —C for all z € R and all n € N. Thus, since according to (5.19) and (5.20)
we also have

1
p(x) > _(Z —n)z forall z €R,

we deduce that (5.18) is true. O

5.6. Lemma. Assume that g and g,, n € N, are as in Lemma 5.5. Then for any
r >0 and any e € L[0, 27| there exists R > 0 such that

(5.21) u(t) < R on [0,27]
holds for all n € N and all solutions u of (5.16) with the property

5.22 in w(t) <r
(5.22) ter%}gﬂu()_r
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Proof. Assume that (5.21) does not hold. Then we can choose a subsequence {g; }7°

of the sequence {g,}5>, and sequence of solutions {uj}°, of the corresponding

problems (5.16) satisfying (5.22) and

5.23 I t) = 0.
(5.23) im max uy(t) = o0

In particular, for any £ € N, there is t; € [0, 27] such that
Uk (tk) =T.

Furthermore, if we extend the functions u,, £ € N, and e to functions 27-periodic
on R, we get that

(5.24) uy(t) = gp(ug(t)) +e(t) forae teR

is true for any k € N.

On the other hand, if we multiply (5.24) by wu(t), integrate from ¢ to ¢ + 27
and if we take into account Lemma 5.5, we get that there exist n € (0, i) and C' >0
such that for any k£ € N

it == [ ot Dutas — [ eloputs)as

tr 123
1
< (7 = Wluelle, + Clluglle + llelle fluxllc
holds. Furthermore,
tp+2m
(5.25) Jurlle < Juw(te)| + / |uy,(s)|ds = 7+ V2 ||ug |,
123

Thus,

v 1 T
526 (bl ~ el [3)° < G~ il + Cllll + el + 3 el

Inserting ug(t) = vi(t) + 7 on R into (5.26), we obtain

li a2
(527 (G
k]I,

PR
-0 )
Norlle  lloell?,

1
4
where a,b, ¢ € R do not depend on k. Now, (5.23), (5.25) and (5.26) yield

(5.28) li]£n||v,'€||]L2 =00 and li]£n||vk||]L2 = 0.
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Since vg(tx) = v(tx + 2m) = 0, by Scheeffer’s inequality (cf. [8, I1.2] or [13, p.207])

lvellf, < 4llillE,.
we get
- (ol —

S ICAT

(o ll, =)

lvellE,

Therefore with respect to (5.27) and (5.28) we have

1 l _ 2 1 b 1
4k Ao, ko\4 Jorlle — [loellL, /4

a contradiction. O

Proof of Theorem 5.2. Let R > B; be a constant given by Lemma 5.6 for » = B;.
In virtue of (5.3) and (5.11) we have g, := inf,e(o,r 9(z) € R. Put K = |le||n + |9
and

R
K* =K ||l + / l9(a)da.

Az

It follows from (5.8) and Remark 5.4 that we can choose ¢ € {£,}°°, such that
€€ (0,142) and

(5.29) /A2 g(z)de > K* and g(e) > 0.

Define

0 if ©<0,
_ ge) if x €[0,¢e),
g(x) if z€ g R),
g(R) if x>R
and
f(t,z) =e(t) +g(x) fora.e. t€[0,2n] and all = € R.

We can see that f € Car([0,27] x R) and (3.1)-(3.3) are satisfied with a = 0,
b(t) = e(t) — € a.e. on [0,27] and [A, B] = [A;, B1] wherefrom, due to Proposition
3.2, the existence of lower functions (o1, p1) € AC[0, 27] x AC[0, 27] of (1.1) follows
and oy (t) € [Ay, By] for all ¢ € [0, 27]. Similarly, Proposition 4.1 ensures the existence
of upper functions (o9, p2) € AC|0, 27] x ACI0, 27] of (1.1) with o9(t) € [Ag, Bs] on
[0, 27]. Since A; > Bsy, the assertion (II) of Theorem 1.3 (with m(t) = g, + e(t) a.e.
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on [0,27]) implies that (1.1) has a solution u such that u(t,) € [As, B;] for some
ty € [0,27] and ||v/||c < K. By Lemma 5.6 we have u(t) < R for all ¢t € [0, 27]. It
remains to show that u(t) > € holds on [0, 27].
Let ty and t; € [0, 27] be such that
tp) = mi t d t1) = t).

u(to) té’féf%r]“( ) and u(ty) tgl[ofg;]U( )
Clearly, A; < u(t;) < R. With respect to the periodic boundary conditions we have
u'(ty) = u'(t1) = 0. Now, multiplying the differential relation u”(t) = e(t) + g(u(t))
by u/'(t) and integrating over [ty,t1], we get

0= / ! () () dt = / Ce(tnd ()t + / () (1) dt,

to to to
i.e.

u(t1) t1
/ d(z)dz = —/ e (1) dt < K ||e]lu.

(to) to

Further,

Ao R
/ G(@)de < K elln + / §(2)|dz = K
u(to) Ao

which, with respect to (5.29), is possible only if u(ty) > e. Thus, wu is a solution to
(5.2). O

5.7. Example. Notice that, the function

1+ sin(")
g(x) =—0.24x + fx, z € (0, 00),
verifies the assumptions (5.3), (5.8), (5.11) and (5.12) of Theorem 5.2, while it does
not satisfy the condition (5.7) required by Omari and Ye in [10, Theorem 1.2].
Now, let £ = 7 and let us restrict ourselves to e € L[0, 27| such that € = —E. It
may be shown that the equation ¢g(z) = E has exactly 5 roots z;, i = 1,2,...,5,
in the interval [0.12,00) (see Figure 1). In particular, we have x; &~ 0.125587,

xe A2 0.142891, 23 ~ 0.165230, x4 = 0.206177, x5 ~ 0.236265, g(x) > F on (xs,x3)U
(1'4,1'5) and g(fL') < E on (1'1,1'2) U (1‘3,1'4) U (1‘57 OO) Let

T3 — T2
2

(5.30) d <

and assume in addition that ||e —€l|;, < % d. We have o — 1 > d and x;,1 —x; > 2d
for i = 2,3,4. We can apply Theorem 5.1 to obtain the existence of solutions u; and
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Figure 1:

x3 S < S X5

0.15 0.2 0.25

uy of the problem (5.2) such that u,(t) € [z — d, x5+ d] and us(t) € (x4 — d, x4 + d]
on t € [0,27], i.e. ui(t) < ug(t) on [0,27]. Moreover, by Theorem 5.2 there is a
further solution us of (5.2) such that us(t3) € [x3 — d, x5 + d] for some t3 € [0, 27].
In virtue of (5.30) it means that ug can coincide neither with u; nor with us.

5.8. Remark. In all of the above mentioned results concerning the problem (5.2)
the assumption (5.8) is substantial. The existence theorem, which does not need
(5.8) has been proved in [12, Corollary 3.7].
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