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1. INTRODUCTION

A distributed discrete-event system with synchronous commu-
nication is modeled as a parallel composition of two or more
subsystems. Each subsystem has its own observation channel.
The local control synthesis then consists in synthesizing local
nonblocking supervisors for each subsystem.

Recently, Komenda and van Schuppen (2008) have proposed
a coordination control architecture as a trade-off between the
purely local control synthesis, which does not work in gen-
eral, and the global control synthesis, which is not always
possible because of complexity reasons. The coordination con-
trol approach has been developed for prefix-closed languages
in Komenda et al. (2011b, 2012b) and partially discussed for
non-prefix-closed languages in Komenda et al. (2011a). A co-
ordination control plug-in handling the case of prefix-closed
languages has recently been implemented for libFAUDES,
see Moor et al. (2012).

In this paper, we further develop the coordination control
scheme for discrete-event systems based on the Ramadge-
Wonham framework. The notions of conditional decompos-
ability, conditional controllability, and conditional closedness
are revised and simplified, supremal conditionally controllable
sublanguages of general non-prefix-closed languages are dis-
cussed, and a procedure for the computation of a coordinator
for nonblockingness is presented.

The paper is organized as follows. Section 2 recalls the basic
theory and revises the basic concepts. Section 3 formulates the
problem of coordination supervisory control. Section 4 pro-
vides new results concerning non-prefix-closed languages, and
Section 5 discusses the construction of a nonblocking coordi-
nator. Section 6 revises the prefix-closed case, and Section 7
concludes the paper.

2. PRELIMINARIES AND DEFINITIONS

In this paper, we assume that the reader is familiar with super-
visory control of discrete-event systems, where discrete-event

systems are modeled as deterministic finite automata with par-
tial transition functions, see Cassandras and Lafortune (2008).

Let E be a finite, nonempty set (of events), then E∗ denotes the
set of all finite words over E; the empty word is denoted by ε .
A generator over E is a construct G = (Q,E, f ,q0,Qm), where
Q is a finite set of states, f : Q×E → Q is a partial transition
function, q0 ∈ Q is the initial state, and Qm ⊆ Q is the set of
marked states. In the usual way, f can be extended to a function
from Q×E∗ to Q by induction. The behavior of G is described
in terms of languages. The language generated by G is the set
L(G) = {s ∈ E∗ | f (q0,s) ∈ Q}, and the language marked by G
is the set Lm(G) = {s ∈ E∗ | f (q0,s) ∈ Qm}.
We restrict our attention to regular languages. A (regular)
language L over E is a set L ⊆ E∗ such that there exists a
generator G with Lm(G) = L. The prefix closure of L is the set
L = {w ∈ E∗ | ∃u ∈ E∗,wu ∈ L}; L is prefix-closed if L = L.

A controlled generator over E is a structure (G,Ec,Γ), where
G is a generator over E, Ec ⊆ E is the set of controllable events,
Eu = E \Ec is the set of uncontrollable events, and Γ = {γ ⊆ E |
Eu ⊆ γ} is a set of control patterns. A supervisor for the con-
trolled generator (G,Ec,Γ) is a map S : L(G)→ Γ. The closed-
loop system associated with the controlled generator (G,Ec,Γ)
and the supervisor S is defined as the minimal language L(S/G)
such that (i) ε ∈ L(S/G), and (ii) if s ∈ L(S/G), sa ∈ L(G), and
a ∈ S(s), then sa ∈ L(S/G). We define Lm(S/G) = L(S/G)∩
Lm(G). The supervisor disables transitions of G, but it cannot
disable a transition with an uncontrollable event. If the closed-
loop system is nonblocking, i.e., Lm(S/G) = L(S/G), then the
supervisor S is called nonblocking.

Given a specification language K, the control objective of su-
pervisory control is to find a nonblocking supervisor S so that
Lm(S/G) = K. For the monolithic case, such a supervisor exists
if and only if K is controllable with respect to L(G) and Eu,
that is, KEu ∩L ⊆ K, and K is Lm(G)-closed, that is, K = K ∩
Lm(G). For uncontrollable specifications, controllable sublan-
guages are considered. In this paper, supC(K,L,Eu) denotes
the supremal controllable sublanguage of K with respect to



L and Eu, which always exists and equals to the union of all
controllable sublanguages of K, see Wonham (2011).

A projection P : E∗→ E∗0 , E0 ⊆ E, is a homomorphism defined
so that P(a) = ε , for a ∈ E \E0, and P(a) = a, for a ∈ E0. The
inverse image of P is denoted by P−1 : E∗0 → 2E∗ . For Ei, E j,
E` ⊆ E, we use the notation Pi+ j

` to denote the projection from
(Ei ∪E j)

∗ to E∗` . If Ei ∪E j = E, we write only P̀ . Moreover,
Ei,u = Ei∩Eu denotes the sets of locally uncontrollable events.

The synchronous product of languages L1 ⊆ E∗1 and L2 ⊆ E∗2
is defined by L1‖L2 = P−1

1 (L1)∩P−1
2 (L2)⊆ (E1∪E2)

∗, where
Pi : (E1 ∪E2)

∗ → E∗i , i = 1,2, are projections. For generators
G1 and G2, the definition can be found in Cassandras and
Lafortune (2008). It holds that L(G1‖G2) = L(G1)‖L(G2) and
Lm(G1‖G2) = Lm(G1)‖Lm(G2). In the automata framework,
where the supervisor S has a finite representation as a generator,
the closed-loop system is a synchronous product of the super-
visor and the plant. Thus, we can write L(S/G) = L(S)‖L(G).

Generators G1 and G2 are conditionally independent with re-
spect to a generator Gk if Er(G1‖G2) ∩ Er(G1) ∩ Er(G2) ⊆
Er(Gk), where for a generator G over E, Er(G) = {a ∈ E |
∃u,v ∈ E∗, uav ∈ L(G)} is the set of all events appearing in
words of L(G). In other words, there is no simultaneous move in
both G1 and G2 without the coordinator Gk being also involved.
From the practical viewpoint, we omit the element Er(G1‖G2)
because we do not want to compute the global plant G1‖G2.

Now, the notion of decomposability is weakened. More-
over, it is simplified in comparison with our previous work,
see Komenda et al. (2012b), but still equivalent. A language K
is conditionally decomposable with respect to event sets E1, E2,
Ek if K = P1+k(K)‖P2+k(K). There always exists an extension
of Ek which satisfies the condition. The question which exten-
sion should be used (the minimal one?) requires further investi-
gation. Polynomial-time algorithms for checking the condition
and extending the event set are discussed in Komenda et al.
(2012a).

Languages K and L are synchronously nonconflicting if K‖L =
K‖L. Note that if K is conditionally decomposable, then the lan-
guages P1+k(K) and P2+k(K) are synchronously nonconflicting
because K ⊆ P1+k(K)‖P2+k(K) ⊆ P1+k(K)‖P2+k(K) = K. The
following example shows that there is no relation between the
conditional decomposability of K and K in general.
Example 1. Let E1 = {a1,b1,a,b}, E2 = {a2,b2,a,b}, Ek =
{a,b} be event sets, and let K = {a1a2a,a2a1a,b1b2b,b2b1b}.
Then, P1+k(K) = {a1a,b1b}, P2+k(K) = {a2a,b2b}, and K =

P1+k(K)‖P2+k(K). Notice that a1b2 ∈ P1+k(K)‖P2+k(K), but
a1b2 /∈ K, which means that K is not conditionally de-
composable. On the other hand, consider the language L =
{ε,ab,ba,abc,bac} ⊆ {a,b,c}∗ with E1 = {a,c}, E2 = {b,c},
Ek = {c}. Then, L = P1+k(L)‖P2+k(L) = P1+k(L)‖P2+k(L), and
it is obvious that L 6= L. /

3. COORDINATION CONTROL SYNTHESIS

In this section, we formulate the coordination control problem
and revise the necessary and sufficient conditions of Komenda
et al. (2011a,b, 2012b) under which the problem is solvable.
Problem 2. Consider generators G1, G2 over E1, E2, respec-
tively, and a coordinator Gk over Ek. Let K ⊆ Lm(G1‖G2‖Gk)
be a specification. Assume that generators G1 and G2 are con-

ditionally independent with respect to the coordinator Gk, and
that the specification language K and its prefix-closure K are
conditionally decomposable with respect to E1, E2, Ek. The
aim of the coordination control synthesis is to determine non-
blocking supervisors S1, S2, Sk for the respective generators
such that Lm(Sk/Gk)⊆Pk(K), Lm(Si/[Gi‖(Sk/Gk)])⊆Pi+k(K),
for i = 1,2, and the closed-loop system with the coordinator
satisfies

Lm(S1/[G1‖(Sk/Gk)]) ‖ Lm(S2/[G2‖(Sk/Gk)]) = K .

�

Note that then L(S1/[G1‖(Sk/Gk)])‖L(S2/[G2‖(Sk/Gk)]) = K
because K = Lm(S1/[G1‖(Sk/Gk)])‖Lm(S2/[G2‖(Sk/Gk)]) ⊆
L(S1/[G1‖(Sk/Gk)])‖L(S2/[G2‖(Sk/Gk)])⊆ K, and if such su-
pervisors exist, their synchronous product is a nonblocking
supervisor for the global plant, cf. Komenda et al. (2011a).

One of the possible methods how to construct a suitable coor-
dinator Gk has been discussed in the literature, see Komenda
et al. (2011a,b, 2012b).
Algorithm 1. (Construction of a coordinator). Let G1 and G2
be two subsystems over E1 and E2, respectively, and let K be
a specification language. Construct the event set Ek and the
coordinator Gk as follows:

(1) Set Ek = E1∩E2.
(2) Extend Ek so that K and K are conditional decomposable.
(3) Define Gk = Pk(G1) ‖ Pk(G2).

So far, the only known condition ensuring that the projected
generator is smaller than the original one is the observer prop-
erty. Therefore, we might need to add step (2b) to extend Ek so
that Pk is also an L(Gi)-observer, for i = 1,2, cf. Definition 7.

3.1 Conditional controllability

Conditional controllability was introduced in Komenda and van
Schuppen (2008) and later studied in Komenda et al. (2011a,b,
2012b). In this paper, we revise and simplify this notion.
Definition 3. A language K ⊆ L(G1‖G2‖Gk) is conditionally
controllable for generators G1, G2, Gk and uncontrollable event
sets E1,u, E2,u, Ek,u if

(1) Pk(K) is controllable wrt L(Gk) and Ek,u,
(2) P1+k(K) is controllable wrt L(G1) ‖ Pk(K) and E1+k,u,
(3) P2+k(K) is controllable wrt L(G2) ‖ Pk(K) and E2+k,u.

where Ei+k,u = (Ei∪Ek)∩Eu, i = 1,2.

The following result shows that every conditionally control-
lable and conditionally decomposable language is controllable.
Proposition 4. Let Gi be a generator over Ei, i = 1,2,k, and let
G = G1‖G2‖Gk. Let K ⊆ Lm(G) be such that K is conditionally
decomposable wrt E1, E2, Ek, and conditionally controllable for
generators G1, G2, Gk and uncontrollable event sets E1,u, E2,u,
Ek,u. Then, K is controllable with respect to L(G) and Eu.

Proof. As P1+k(K) is controllable wrt L(G1)‖Pk(K) and E1+k,u,
and P2+k(K) is controllable wrt L(G2)‖Pk(K) and E2+k,u,
Lemma 24 implies that K = P1+k(K)‖P2+k(K) is controllable
wrt L(G1)‖Pk(K)‖L(G2)‖Pk(K) = L(G)‖Pk(K) and Eu, where
the equality is by the commutativity of the synchronous product
and the fact that Pk(K) ⊆ L(Gk). As Pk(K) is controllable wrt



L(Gk) and Ek,u, by Definition 3, L(G)‖Pk(K) is controllable
wrt L(G)‖L(Gk) = L(G) by Lemma 24. By Lemma 25, K is
controllable wrt L(G) and Eu. However, this means that K is
controllable wrt L(G) and Eu, which was to be shown. 2

On the other hand, controllability does not imply conditional
controllability.

Example 5. Let L(G) = {au}‖{bu} = {abu,bau}. Then K =
{a} is controllable wrt L(G) and Eu = {u}. Both K and K are
conditionally decomposable wrt event sets {a,u}, {b,u}, and
{u}, and Pk(K) = {ε} is not controllable wrt {u} and {u}. /

However, if the observer and local control consistency (LCC)
properties are satisfied, this implication also holds. To prove
this, we need the following two definitions, cf. Schmidt and
Breindl (2011); Wong and Wonham (1996), respectively.
Definition 6. Let L ⊆ E∗ be a prefix-closed language, and let
E0 ⊆ E. The projection P0 : E∗→ E∗0 is locally control consis-
tent (LCC) with respect to s ∈ L if for all σu ∈ E0∩Eu such that
P0(s)σu ∈ P0(L), it holds that either there does not exist any
u ∈ (E \E0)

∗ such that suσu ∈ L, or there exists u ∈ (Eu \E0)
∗

such that suσu ∈ L. The projection P0 is LCC with respect to a
language L if P0 is LCC for all s ∈ L.
Definition 7. The projection Pk : E∗→ E∗k , where Ek ⊆ E, is an
L-observer for a language L⊆ E∗ if, for all words t ∈ Pk(L) and
s ∈ L, Pk(s) is a prefix of t implies that there exists u ∈ E∗ such
that su ∈ L and Pk(su) = t.
Proposition 8. Let L ⊆ E∗ be a prefix-closed language, and let
K ⊆ L be a language such that K is controllable with respect
to L and Eu. If Pi is an L-observer, for i ∈ {k,1+ k,2+ k}, and
LCC for L, then K is conditionally controllable.

Proof. (1) Let s ∈ Pk(K), a ∈ Ek,u, and sa ∈ Pk(L). Then, there
exists w ∈ K such that Pk(w) = s. By the observer property,
there exists u ∈ (E \Ek)

∗ such that wua ∈ L and Pk(wua) = sa.
By LCC, there exists u′ ∈ (Eu \Ek)

∗ such that wu′a ∈ L, that is,
wu′a ∈ K by the controllability. Hence sa ∈ Pk(K). (2) Let s ∈
P1+k(K), a ∈ E1+k,u, and sa ∈ L(G1)‖Pk(K). Then, there exists
w ∈ K such that P1+k(w) = s. By the observer property, there
exists u ∈ (E \E1+k)

∗ such that wua ∈ L and P1+k(wua) = sa.
By LCC, there exists u′ ∈ (Eu \E1+k)

∗ such that wu′a ∈ L, that
is, wu′a ∈ K by controllability. Hence sa ∈ P1+k(K). 2

For a generator G with n states, the time and space complexity
of the verification whether P is an L(G)-observer is O(n2),
see Pena et al. (2008). An algorithm extending the event set
to satisfy the property runs in time O(n3) and linear space. The
most significant consequence of the observer property is the
following theorem.
Theorem 9. (Wong (1998)). If a projection P is an L(G)-
observer, for a generator G, then the minimal generator for the
language P(L(G)) has no more states than G.

3.2 Conditionally closed languages

Analogously to the notion of Lm(G)-closed languages, we
define the notion of conditionally closed languages.
Definition 10. A language /0 6= K ⊆ E∗ is conditionally closed
for generators G1, G2, Gk if

(1) Pk(K) is Lm(Gk)-closed,
(2) P1+k(K) is Lm(G1)‖Pk(K)-closed,

(3) P2+k(K) is Lm(G2)‖Pk(K)-closed.

If K is conditionally closed and conditionally controllable, then
there exists a nonblocking supervisor Sk such that Lm(Sk/Gk) =
Pk(K), which follows from the basic theorem of supervisory
control applied to Pk(K) and L(Gk), see Cassandras and Lafor-
tune (2008).

As noted in (Cassandras and Lafortune, 2008, page 164), if K ⊆
Lm(G) is Lm(G)-closed, then so is the supremal controllable
sublanguage of K. However, this does not imply that Pk(K) is
Lm(Gk)-closed, for G = G1‖G2‖Gk such that Gk makes G1 and
G2 conditionally independent.
Example 11. Let E1 = {a1,a}, E2 = {a2,a}, Ek = {a}, and K =
{a1a2a,a2a1a}. Then, P1+k(K) = {a1a}, P2+k(K) = {a2a},
Pk(K) = {a}, and K = P1+k(K)‖P2+k(K). Define the generators
G1, G2, Gk so that Lm(G1) = P1+k(K), Lm(G2) = P2+k(K), and
Lm(Gk) = Pk(K) = {ε,a}. Then, Lm(G) = K and K is Lm(G)-
closed. However, Pk(K)⊂ Pk(K) is not Lm(Gk)-closed. /

3.3 Coordination control synthesis

The following theorem is a simplified version of a result pre-
sented without proof in Komenda et al. (2011a).
Theorem 12. Consider the setting of Problem 2. There exist
nonblocking supervisors S1, S2, Sk such that

Lm(S1/[G1‖(Sk/Gk)]) ‖ Lm(S2/[G2‖(Sk/Gk)]) = K (1)
if and only if the specification language K is both conditionally
controllable wrt generators G1, G2, Gk and event sets E1,u, E2,u,
Ek,u, and conditionally closed wrt G1, G2, Gk.

Proof. Let K satisfy the assumptions, and let G = G1‖G2‖Gk.
As K ⊆ Lm(G), Pk(K) ⊆ Lm(Gk). By the assumption, Pk(K) is
Lm(Gk)-closed and controllable wrt L(Gk) and Ek,u. By Ra-
madge and Wonham (1987), there exists a nonblocking su-
pervisor Sk such that Lm(Sk/Gk) = Pk(K). As P1+k(K) ⊆
Lm(G1‖Gk) and P1+k(K)⊆ (P1+k

k )−1Pk(K), we have P1+k(K)⊆
Lm(G1)‖Pk(K). These relations and the assumption that the
system is conditionally controllable and conditionally closed
imply the existence of a nonblocking supervisor S1 such
that Lm(S1/[G1‖(Sk/Gk)]) = P1+k(K). A similar argument
shows that there exists a nonblocking supervisor S2 such
that Lm(S2/[G2‖(Sk/Gk)]) = P2+k(K). As the languages K
and K are conditionally decomposable, Lm(S1/[G1‖(Sk/Gk)]) ‖
Lm(S2/[G2‖(Sk/Gk)]) = P1+k(K)‖P2+k(K) = K.

To prove the converse implication, Pk, P1+k, P2+k are applied to
(1), which can be rewritten as K = Lm(S1‖G1‖S2‖G2‖Sk‖Gk).
Thus, Pk(K) = Pk (Lm(S1‖G1‖S2‖G2‖Sk‖Gk)) ⊆ Lm(Sk‖Gk) =
Lm(Sk/Gk). On the other hand, Lm(Sk/Gk) ⊆ Pk(K), cf. Prob-
lem 2. Hence, by the basic controllability theorem, Pk(K) is
controllable wrt L(Gk) and Ek,u, and Lm(Gk)-closed. As E1+k∩
E2+k = Ek, the application of P1+k to (1) and Lemma 26
give that P1+k(K) ⊆ Lm(S1/[G1‖(Sk/Gk)]) ⊆ P1+k(K). Taking
G1‖(Sk/Gk) as a new plant, we get that P1+k(K) is controllable
wrt L(G1‖(Sk/Gk)) and E1+k,u, and that it is Lm(G1‖(Sk/Gk))-
closed. The case of P2+k is analogous. 2

4. SUPREMAL CONDITIONALLY CONTROLLABLE
SUBLANGUAGES

Let supcC(K,L,(E1,u,E2,u,Ek,u)) denote the supremal condi-
tionally controllable sublanguage of K with respect to L =



L(G1‖G2‖Gk) and sets of uncontrollable events E1,u, E2,u, Ek,u.
The supremal conditionally controllable sublanguage always
exists, cf. Komenda et al. (2011b) for the case of prefix-closed
languages.
Theorem 13. The supremal conditionally controllable sublan-
guage of a given language K always exists and is equal to the
union of all conditionally controllable sublanguages of K.

Proof. Let I be an index set, and let Ki, for i ∈ I, be condi-
tionally controllable sublanguages of K ⊆ L(G1‖G2‖Gk). To
prove that Pk(∪i∈IKi) is controllable wrt L(Gk) and Ek,u, note
that Pk

(
∪i∈IKi

)
Ek,u ∩ L(Gk) = ∪i∈I

(
Pk(Ki)Ek,u∩L(Gk)

)
⊆

∪i∈IPk(Ki) = Pk
(
∪i∈IKi

)
, where the inclusion is by con-

trollability of Pk(Ki) wrt L(Gk) and Ek,u. Next, to prove
that P1+k

(
∪i∈IKi

)
E1+k,u∩L(G1)‖Pk

(
∪i∈IKi

)
⊆ P1+k

(
∪i∈IKi

)
,

note that P1+k
(
∪i∈IKi

)
E1+k,u∩L(G1)‖Pk

(
∪i∈IKi

)
= ∪i∈I

(
P1+k(Ki)E1+k,u

)
∩∪i∈I

(
L(G1)‖Pk(Ki)

)
= ∪i∈I ∪ j∈I

(
P1+k(Ki)E1+k,u∩L(G1)‖Pk(K j)

)
.

Consider different indexes i, j ∈ I such that P1+k(Ki)E1+k,u ∩
L(G1)‖Pk(K j) 6⊆ P1+k

(
∪i∈IKi

)
. Then, there exist x ∈ P1+k(Ki)

and u ∈ E1+k,u such that xu ∈ L(G1)‖Pk(K j), and xu /∈
P1+k

(
∪i∈IKi

)
. It follows that Pk(x) ∈ Pk(Ki) and Pk(xu) ∈

Pk(K j). If Pk(xu) ∈ Pk(Ki), then xu ∈ L(G1)‖Pk(Ki), and con-
trollability of P1+k(Ki) wrt L(G1)‖Pk(Ki) implies that xu ∈
P1+k

(
∪i∈IKi

)
; hence Pk(xu) /∈ Pk(Ki). If u /∈ Ek,u, then Pk(xu) =

Pk(x)∈Pk(Ki), which is not the case. Thus, u∈Ek,u. As Pk(Ki)∪
Pk(K j) ⊆ L(Gk), we get that Pk(xu) = Pk(x)u ∈ L(Gk). How-
ever, controllability of Pk(Ki) wrt L(Gk) and Ek,u implies that
Pk(xu) ∈ Pk(Ki). This is a contradiction. As the case for P2+k is
analogous, the proof is complete. 2

Consider the setting of Problem 2, and define the languages

supCk = supC(Pk(K),L(Gk),Ek,u) ,

supC1+k = supC(P1+k(K),L(G1)‖supCk,E1+k,u) ,

supC2+k = supC(P2+k(K),L(G2)‖supCk,E2+k,u) .

(*)

The following inclusion always holds.
Lemma 14. Consider the setting of Problem 2, and the lan-
guages defined in (*). Then, Pk(supCi+k)⊆ supCk, for i = 1,2.

Proof. By definition, Pk(supCi+k)⊆ supCk and Pk(supCi+k)⊆
Pk(K). To prove that supCk ∩ Pk(K) is a subset of supCk, it
is sufficient to show that supCk ∩ Pk(K) is controllable with
respect to L(Gk) and Ek,u. Thus, assume that s∈ supCk ∩Pk(K),
u ∈ Ek,u, and su ∈ L(Gk). By controllability of supCk, su ∈
supCk ⊆ Pk(K), that is, there exists v such that suv ∈ supCk ⊆
Pk(K). This means that suv∈ supCk∩Pk(K), which implies that
su ∈ supCk ∩Pk(K). This completes the proof. 2

If also the opposite inclusion holds, then we immediately have
the supremal conditionally-controllable sublanguage.
Theorem 15. Consider the setting of Problem 2, and the lan-
guages defined in (*). If supCk ⊆ Pk(supCi+k), for i= 1,2, then
supC1+k‖supC2+k = supcC(K,L,(E1,u,E2,u,Ek,u)).

Proof. Let supcC = supcC(K,L,(E1,u,E2,u,Ek,u)) and M =
supC1+k‖supC2+k. To prove M ⊆ supcC, we show that (i)

M ⊆ K and (ii) M is conditionally controllable wrt G1, G2,
Gk and E1,u, E2,u, Ek,u. To this aim, M = supC1+k‖supC2+k ⊆
P1+k(K)‖P2+k(K) = K because K is conditionally decompos-
able. Moreover, Pk(M)=Pk(supC1+k)∩Pk(supC2+k)= supCk,
which is controllable wrt L(Gk) and Ek,u. Similarly, Pi+k(M) =
supCi+k‖Pk(supC j+k) = supCi+k‖supCk = supCi+k, for j 6= i,
by Lemma 14, which is controllable wrt L(Gi)‖Pk(M). Hence,
M ⊆ supcC.

To prove the opposite inclusion, by Lemma 27, it is sufficient
to show that Pi+k(supcC)⊆ supCi+k, for i = 1,2. To prove this
P1+k(supcC) is controllable wrt L(G1)‖Pk(supcC) and E1+k,u,
and L(G1)‖Pk(supcC) is controllable wrt L(G1)‖supCk and
E1+k,u by Lemma 24 because Pk(supcC) being controllable wrt
L(Gk) implies it is controllable wrt supCk ⊆ L(Gk) and Ek,u.
By Lemma 25, P1+k(supcC) is controllable wrt L(G1)‖supCk
and E1+k,u, which implies that P1+k(supcC) ⊆ supC1+k. The
other case is analogous. Hence, supcC ⊆ M and the proof is
complete. 2

Example 16. This example shows that the inclusion supCk ⊆
Pk(supCi+k) does not hold in general. Moreover, it shows
that it does not hold even if the projections are observers
or satisfy the LCC property. Consider two systems G1, G2,
and the specification K as shown in Fig. 1. The controllable
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Fig. 1. Generators G1, G2, and the specification.

events are Ec = {a1,a2,c}, and the coordinator events are Ek =
{a1,a2,c,u}. Construct the coordinator Gk = Pk(G1)‖Pk(G2). It
can be verified that K is conditionally decomposable, supCk =

{a1a2,a2a1}, supC1+k = {a2a1u1}, and supC2+k = {a1a2u2}.
Hence, supCk 6⊆ Pk(supCi+k). It can also be verified that the
projections Pk, P1+k, P2+k are L(G1‖G2)-observers and LCC for
L(G1‖G2). /

Proposition 17. Consider the languages of (*). Let the number
of states of the supervisor supCk be n and the number of states
of supervisors supCi+k be ni. There is an O(n · ni) algorithm
deciding whether supCk ⊆ Pk(supCi+k), for i = 1,2.

Proof. Consider a nondeterministic finite automaton, cf. Sipser
(1997), for the language Pk(supCi+k) constructed from the
generator for supCi+k by replacing projected events with ε , and
a deterministic finite automaton for the complement of supCk.
These automata are constructed in time linear wrt the number of
states. To verify that Pk(supCi+k)∩co-(supCk)= /0 by checking
reachability of a marked state in the product automaton takes
time O(n ·ni); here “co-” stands for the complement. 2

Note that if we have any specification K which is conditionally
decomposable, then the specification K‖L is also conditionally
decomposable. The opposite is not true.
Lemma 18. Let K be conditionally decomposable with respect
to event sets E1, E2, Ek, and let L = L1‖L2‖Lk, where Li ⊆ E∗i ,
for i = 1,2,k. Then, K‖L is conditionally decomposable with
respect to event sets E1, E2, Ek.
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Fig. 2. Generators Gi, i = 1,2,3.
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Fig. 4. The coordinator Gk, where supCk = Gk.
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Fig. 5. Supervisors supC1+k, supC2+k, and supC3+k.

Example 19. Database transactions are examples of discrete-
event systems that need to be controlled to avoid incorrect
behaviors. Our model of a transaction to the database is a
sequence of request (r), access (a), and exit (e) operations.
Usually, several (but a limited number of) users access the
database, which can lead to inconsistencies when executed
concurrently because not all the interleavings of operations give
a correct behavior. We consider the case of three users with
events ri,ai,ei, i = 1,2,3. All possible schedules are given by
the language of the plant G = G1‖G2‖G3 over the event set E =
{r1,r2,r3,a1,a2,a3,e1,e2,e3}, where G1, G2, G3 are defined as
in Fig. 2, and the set of controllable events is Ec = {a1,a2,a3}.
The specification language K, depicted in Fig. 3, describes
the correct behavior consisting in finishing the transaction in
the exit stage before another transaction can proceed to the
exit phase. For Ek = {a1,a2,a3} and the coordinator Gk =
Pk(G1)‖Pk(G2)‖Pk(G3), we can compute supCk, see Fig. 4,
and supC1+k, supC2+k, supC3+k, Fig. 5, and to verify that
the assumptions of Theorem 15 are satisfied. The solution is
optimal: the supremal conditionally-controllable sublanguage
of K coincides with the supremal controllable sublanguage of
K. Moreover, independently on the size of the global plant, the
local supervisors have only three states. /

5. COORDINATOR FOR NONBLOCKINGNESS

So far, we have only considered the coordinator for safety. In
this section, we discuss the coordinator for nonblockingness.
To this end, we first prove a fundamental theoretical result and
then give an algorithm for the construction of a coordinator for
nonblockingness.

Recall that a generator G is nonblocking if Lm(G) = L(G).
Theorem 20. Consider languages L1 ⊆ E∗1 and L2 ⊆ E∗2 , and let
P0 : (E1 ∪ E2)

∗ → E∗0 , with E1 ∩ E2 ⊆ E0, be an Li-observer,
for i = 1,2. Let G0 be a nonblocking generator with Lm(G0) =

P0(L1)‖P0(L2). Then L1‖L2‖Lm(G0) = L1‖L2‖Lm(G0), that is,
the system is nonblocking.

Proof. Let L = L1‖L2‖L0 = (L1‖L0)‖(L2‖L0). By Lemma 28,
(L1‖L0)‖(L2‖L0) = (L1‖L0)‖(L2‖L0) if and only if it holds
P0(L1‖L0)‖P0(L2‖L0) = P0(L1‖L0)‖P0(L2‖L0), because if P0
is an Li-observer, i = 1,2, and P0 is an L0-observer, P0 is
also an Li‖L0-observer by Pena et al. (2006). However, for
our choice of the coordinator, this equality always holds be-
cause P0(L1‖L0)‖P0(L2‖L0) = L0, and P0(L1‖L0)‖P0(L2‖L0) =

L0‖L0 = L0. It remains to show that Li‖L0 = Li‖L0, for i = 1,2.
Using Lemma 28 again, we get that this holds if and only if
P0(Li‖L0) = P0(Li)‖L0. This always holds because P0(Li‖L0) =

L0, and P0(Li)‖L0 = P0(Li)‖P0(L1)‖P0(L2) = P0(L1)‖P0(L2) =

L0 because P0(L1)‖P0(L2)⊆ P0(Li). 2

Hence, for supervisors supC1+k and supC2+k, we choose
C = P0(supC1+k)‖P0(supC2+k) ,

for the projection P0 being a supCi+k-observer, for i = 1,2.
Then, by Theorem 20,

supC1+k‖supC2+k‖C = supC1+k‖supC2+k

= supC1+k‖supC2+k‖C ,

thus C is the language of a non-blocking coordinator.
Algorithm 2. (Computation of a nonblocking coordinator).
Consider the notation above.

(1) Compute supC1+k and supC2+k as defined in (*).
(2) If the projection Pk is not a supC1+k-observer or not a

supC2+k-observer, extend the event set Ek so that Pk is
both a supC1+k- and a supC2+k-observer.

(3) Define the nonblocking coordinator as the minimal non-
blocking generator for C = Pk(supC1+k)‖Pk(supC2+k).

6. SUPREMAL PREFIX-CLOSED LANGUAGES

In this section, we revise the case of prefix-closed languages.
Moreover, we use LCC instead of output control consistency
(OCC), cf. Komenda et al. (2012b).
Theorem 21. Let K ⊆ L = L(G1‖G2‖Gk) be a prefix-closed
language, where Gi is over Ei, i = 1,2,k. Assume that K
is conditionally decomposable, and define supCk, supC1+k,
supC2+k as in (*). Let Pi+k

k be an (Pi+k
i )−1(L(Gi))-observer and

LCC for (Pi+k
i )−1(L(Gi)), i = 1,2. Then, supC1+k‖supC2+k =

supcC(K,L,(E1,u,E2,u,Ek,u)).

Proof. Denote supcC = supcC(K,L,(E1,u,E2,u,Ek,u)), M =
supC1+k‖supC2+k. It is shown in Komenda et al. (2012b) that
supcC⊆M and M ⊆ K. To prove Pk(M)Ek,u∩L(Gk)⊆ Pk(M),
let x ∈ Pk(M) and a ∈ Ek,u be such that xa ∈ L(Gk). To show
xa ∈ Pk(M) = P1+k

k (supC1+k) ∩ P2+k
k (supC2+k), there exists

w ∈M such that Pk(w) = x, and it is shown in Komenda et al.
(2012b) that there exists u ∈ (E1 \Ek)

∗ such that P1+k(w)ua ∈
(P1+k

1 )−1(L(G1)) and P1+k(w) ∈ L(G1)‖supCk. As P1+k
k is

LCC for (P1+k
1 )−1(L(G1)), there exists u′ ∈ (Eu \Ek)

∗ such that
P1+k(w)u′a∈ (P1+k

1 )−1(L(G1)). The controllability of supC1+k
then implies P1+k(w)u′a ∈ supC1+k, i.e., xa ∈ P1+k

k (supC1+k).
Analogously, xa ∈ P2+k

k (supC2+k). Thus, xa ∈ Pk(M). The rest
of the proof is the same as in Komenda et al. (2012b). 2

The conditions of Theorem 21 imply that Pk is LCC for L.



Lemma 22. Let L(Gi) ⊆ E∗i , i = 1,2, E = E1 ∪ E2, and let
Pi : E∗ → E∗i , i = 1,2,k and Ek ⊆ E, be projections. If E1 ∩
E2 ⊆ Ek and Pi+k

k is LCC for (Pi+k
i )−1(L(Gi)), i = 1,2, then Pk

is LCC for L = L(G1‖G2‖Gk).

Proof. For s∈ L and σu ∈Ek,u, assume that there exists u∈ (E \
Ek)
∗ such that suσu ∈L. Then, Pi+k(suσu)=Pi+k(s)Pi+k(u)σu ∈

(Pi+k
i )−1(L(Gi)) implies that there exists vi ∈ (Ei+k,u \ Ek)

∗,
i= 1,2, such that Pi+k(s)viσu ∈ (Pi+k

i )−1(L(Gi)). As Pk(vi)= ε ,
Pi(vi) = vi, we get Pi(s)Pi(vi)Pi(σu) ∈ L(Gi), i = 1,2,k. Con-
sider u′ ∈ {v1}‖{v2}. Then Pi(u′) = vi and, thus, su′σu ∈ L.
Moreover, u′ ∈ (Eu \Ek)

∗. 2

It is an open problem how to verify that Pi+k is LCC for L
without computing the whole plant.
Theorem 23. Consider the setting of Theorem 21. If, in addi-
tion, L(Gk) ⊆ Pk(L) and Pi+k is LCC for L, for i = 1,2, then
supC(K,L,Eu) = supcC(K,L,(E1,u,E2,u,Ek,u)).

Proof. It was shown in Komenda et al. (2012b) that Pk is an
L-observer. By Lemma 22, Pk is LCC for L. Denote supC =
supC(K,L,Eu). We prove that Pk(supC) is controllable wrt
L(Gk). Assume t ∈ Pk(supC), a∈ Ek,u, and ta∈ L(Gk)⊆ Pk(L).
We proved in Komenda et al. (2012b) that there exists s∈ supC
and u ∈ (E \ Ek)

∗ such that sua ∈ L and Pk(sua) = ta. By
the LCC property of Pk, there exists u′ ∈ (Eu \Ek)

∗ such that
su′a ∈ L. By controllability of supC wrt L, su′a ∈ supC, i.e.,
Pk(su′a) = ta ∈ Pk(supC). Thus, (1) of Definition 3 holds.
By Komenda et al. (2012b), Pi+k is an L-observer, for i = 1,2.
To prove (2) of Definition 3, assume that t ∈ Pi+k(supC),
1 ≤ i ≤ 2, a ∈ Ei+k,u, and ta ∈ L(Gi)‖Pk(supC). We proved
in Komenda et al. (2012b) that there exists s ∈ supC and u ∈
(E \Ek)

∗ such that sua ∈ L and Pi+k(sua) = ta. As Pi+k is LCC
for L, there exists u′ ∈ (Eu \E1+k)

∗ such that su′a∈ L. Then, the
controllability of supC wrt L implies that su′a ∈ supC, that is,
Pi+k(su′a) = ta ∈ Pi+k(supC). The other inclusion is the same
as in Komenda et al. (2012b). 2

7. CONCLUSION

We have revised, simplified, and extended the coordination
control scheme for discrete-event systems. These results have
been used, for the case of prefix-closed languages, in the imple-
mentation of the coordination control plug-in for libFAUDES.
Note that a general procedure for the computation of supremal
conditionally-controllable sublanguages is still missing. This
requires further investigation.

AUXILIARY RESULTS

Lemma 24. (Proposition 4.6, Feng (2007)). Let Li ⊆ E∗i , i =
1,2, be prefix-closed languages, and let Ki ⊆ Li be controllable
with respect to Li and Ei,u, E = E1 ∪ E2. If K1 and K2 are
synchronously nonconflicting, then K1‖K2 is controllable with
respect to L1‖L2 and Eu.
Lemma 25. (Komenda et al. (2012b)). Let K ⊆ L ⊆ M be lan-
guages over E such that K is controllable with respect to L and
Eu, and L is controllable with respect to M and Eu. Then, K is
controllable with respect to M and Eu.
Lemma 26. (Wonham (2011)). Let Pk : E∗→ E∗k , Li ⊆ E∗i , Ei ⊆
E, i = 1,2, Ek ⊇ E1∩E2. Then, Pk(L1‖L2) = Pk(L1)‖Pk(L2).

Lemma 27. (Komenda et al. (2012b)). Let Li ⊆ E∗i , i = 1,2,
and Pi : (E1 ∪ E2)

∗ → E∗i . Let A ⊆ (E1 ∪ E2)
∗ be a language

such that P1(A)⊆ L1 and P2(A)⊆ L2. Then A⊆ L1‖L2.
Lemma 28. (Pena et al. (2006)). Let Li ⊆ E∗i , i = 1,2, and let
E1∩E2 ⊆ E0. If Pi,0 : E∗i → (Ei∩E0)

∗ is an Li-observer, i= 1,2,
then L1‖L2 = L1‖L2 iff P1,0(L1)‖P2,0(L2) = P1,0(L1)‖P2,0(L2).
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