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Summary 

After global cerebral hypoxia, many patients are severely disabled even after intensive 

neurorehabilitation. Secondary mechanisms of brain injury as a result of biochemical and 

physiological events occur within a period of hours to months, and provide a window of 

opportunity for therapeutic intervention. Erythropoietin (EPO) has been shown to be 

neuroprotective in the brain subjected to a variety of injuries. Fifty-nine 3-month-old male 

Wistar rats were randomly distributed to experimental groups with respect to the housing 

(enriched environment – EE, standard housing – SH), to hypoxia exposure, and to EPO 

treatment. An acute mountain sickness model was used as a hypobaric hypoxia simulating an 

altitude of 8000 m. One half of the animals received erythropoietin injections, while the 

others were injected saline. Spatial memory was tested in a Morris water maze (MWM). The 

escape latency and the path length were measured. Better spatial learning in MWM was only 

seen in the group that received erythropoietin together with enriched environment. EPO 

administration itself had no influence on spatial memory. The results were very similar for 

both latencies and path lengths. These results support the idea that after brain injuries, the 

recovery can be potentiated by EPO administration combined with neurorehabilitation. 
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Introduction 

Brain damage is manifested by functional deficiencies due to both primary and 

secondary mechanisms. For example, the primary injury represents the direct mechanical 

damage that cannot be changed. Secondary mechanisms are the result of biochemical and 

physiological events that lead to cell death. They occur within a period of hours to days or 

even months, and provide a window of opportunity for therapeutic interventions with a 

potential to prevent or reduce secondary damage and to improve the long-term outcome.  

Global cerebral ischemia occurs when cerebral blood flow is reduced throughout most of the 

brain. Complete global ischemia can be caused by cardiac arrest, aortic occlusion, neck cuff 

etc. (Traystman 2003). The decrease of tissue oxygenation induced by hypobaric hypoxia 

alters many physiological and psychological processes in an altitude- and duration-dependent 

manner (Titus et al. 2007, Pokorný et al. 1989). 

The physiological basis for neurorehabilitation is neuroplasticity that is responsible for 

functional restitution or recovery after secondary brain damage. There are several 

mechanisms of neuroplasticity after brain damage – vicariation, diaschisis, sprouting, long-

term potentiation, neuronal reorganization, unmasking of neuronal functional pathways, 

neurogenesis, and others (Trojan and Pokorný 1989, Zhang et al. 2004). Neurorehabilitation 

can be enhanced by promising neuroprotective and neurorestorative approaches. Various 

substances (e.g. erythropoietin, nitric oxide and others) are used for such purposes after the 

brain injury (Stein 2007, Xiong et al. 2009).  

Erythropoietin (EPO), a naturally occurring cytokine, is most widely recognized for its 

role in the stimulation of maturation, differentiation and survival of hematopoietic progenitor 

cells (Xiong et al. 2009). It is a glycoprotein which has emerged as a multifunctional growth 

factor that plays a significant role in the nervous system. EPO and its receptors are expressed 

throughout the brain in glial cells, neurons and endothelial cells. EPO is a key example of 
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gene expression that is regulated in an oxygen-dependent manner (Marti 2004). EPO has 

multiple protective effects in the CNS that are, at least partially, mediated through the 

upregulation of antiapoptotic molecules (Chong et al. 2002). EPO has been shown to be 

neuroprotective in the brain after exposure to a variety of injuries, including cerebral 

ischemia, head injury, seizures and experimental autoimmune encephalomyelitis (Marti 

2004). 

A milestone in the history of biological activities of EPO was the paper of Brines et al. 

(2000) who demonstrated that the cross-talking between peripheral and central EPO systems 

is possible. The most striking effect of these interacting systems is the ability of peripherally 

injected human recombinant EPO (r-Hu-EPO) to protect brain tissue from a variety of injuries 

including ischemia/hypoxia, as well as trauma, immune-mediated inflammation, and 

excessive neuronal excitation (Brines and Cerami 2008). It has not been elucidated how EPO 

mediates its effects across blood-brain barrier, but the observations are consistent with a 

specific receptor-mediated translocation of EPO into the brain (Brines et al. 2004). Although a 

rat EPO has 192 amino acids compared to human EPO with 165 amino acids, most of the 

experiments in rats were done with r-Hu-EPO (Brines et al. 2000, Marti 2004, Brines and 

Cerami 2008). 

The aim of our study was to reveal whether EPO given to rats after hypobaric hypoxia 

could influence the final outcome of cognitive functions, especially spatial memory measured 

by means of a Morris water maze. We were also interested to discover how important is the 

role of enriched environment in this model.  

 

Materials and methods 

Animals  
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This study was performed in accordance with the Guide for Care and Use of 

Laboratory Animals of Central Commission for Animal Welfare (CCAW) of the Charles 

University of Prague. All efforts were adopted to minimize animal pain or discomfort, and to 

reduce the total number of used experimental animals. 

Fifty-nine 3-month-old male Wistar rats from our own breeding facility were used. 

Their initial body weight was approximately 400-500 g. They were maintained in a 

temperature-controlled room (20-23 °C), on a 12 h light/dark cycle, with commercial rat chow 

(Velas F1, Velas s.r.o., Lysá nad Labem, Czech Republic ) and fresh water available ad 

libitum. The rats were always tested between 10 a.m. and 2 p.m. The animals were randomly 

distributed in experimental groups with respect to:  

• housing – enriched (EE+) or standard (EE–) environment (EE is described further)  

• hypoxia event – hypoxia (Hypo+) or sham-hypoxia (Hypo–) 

• erythropoietin treatment – EPO+ or EPO–  

 

Hypobaric hypoxia, sham-hypoxia 

The acute mountain sickness model was used as a hypobaric hypoxia. The barometric 

pressure and atmospheric oxygen pressure were reduced. The experimental animals were 

exposed on the 8th day of the experiment to this hypoxia (Hypo+) for 60 min in an 

experimental chamber, simulating an altitude of 8000 m. This altitude was reached within 10 

min as well as its reversal. Sham-hypoxia (stress situation) was performed by placing the 

animals in another experimental hypobaric chamber at the same time, but without the 

reduction of the barometric pressure. 

 

Enriched environment 
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Environmental enrichment (EE+) began at the start of this study, i.e. in rats aged 

3 months and continued throughout the whole experiment. Each group consisted of 8-9 rats 

that were kept in three large half-plastic and half-wire cages. Two of the cages measured 57 x 

38 x 20 cm, and the last – the middle 57 x 38 x 40 cm supported by two wooden floors 

connected by circular port (12 cm in diameter). Moreover, these cages contained toys and 

various objects suitable for training. The standard housing (EE-) consisted of standard plastic 

cages (27 x 42 cm) without toys or other objects. 

 

Erythropoietin 

The animals received a single intraperitoneal injection on the 8th day of the 

experiment immediately after the exposure to hypoxia/sham-hypoxia. Half of the animals 

received erythropoietin injections (EPREX, epoetinum alfa, Janssen-Cilag, 400 or 1000 

IU/0.1 ml) in the dosage of 5000 IU/kg body weight, ad the other half of the rats received 

saline injections (Natrium Chloratum, sol. isotonica, Hoechst-Biotika, Germany). 

 

Morris water maze 

Spatial memory was tested in a Morris water maze (MWM). The maze consisted of a 

circular pool 183 cm in diameter, filled with clear water at a temperature of 22-23 °C. The 

depth of the water was 23 cm, and a transparent platform 10 cm in diameter was submerged 

2 cm below the surface in the northwest quadrant in a constant position throughout the whole 

experiment. The pool was divided in four equal sections (north-east, north-west, south-east 

and south-west) and had four points designed as start positions – north, west, south and east. 

The movements of rats were recorded with a video camera fixed on the ceiling over the maze 

and connected to a computer. 
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The trial began by gently placing a rat in the water, facing the wall at one of the four 

starting points. The rat was trained to find the platform within 60 s. When the rat did not reach 

the platform, it was placed on it and left there for 15 s after each unsuccessful trial. When the 

rat reached the platform, it was allowed to stay there for 15 s and then it was placed in the 

water again, from another starting point. 

The escape latency (the time needed to find the hidden platform) was measured in 

each trial, and then the mean latency for every rat and every training day was calculated. In 

case the rat did not find the platform, the latency was evaluated as 60 s. The path length (the 

length from the start to reaching the platform) in each trial was measured, and then the mean 

length for every rat and every day was calculated. In the case that the rat was not successful in 

finding the platform, the length of the path within 60 s was recorded.  

 

Timeline of experimental procedures 

The rats were given four training periods. Each period took five consecutive days with 

eight trials in MWM each day. The periods started in the first, twenty-second, thirty-sixth and 

fifty-seventh day of the experiment, respectively. On the 8th day of the experiment, the 

hypoxia /sham hypoxia was performed.  

 

Neurological evaluation (composite neuro-score) 

Experimental animals were tested one hour before hypoxia/sham hypoxia, one hour 

after hypoxia/sham hypoxia, and the second day after hypoxia/sham hypoxia (the 9th day of 

the experiment). The last evaluation (i.e. on the 16th day) was cancelled because of the normal 

neurological status of all animals. Scoring for each animal ranged from 0 points (severely 

impaired) to 4 points (normal neuromotor function) for each of following modalities: forelimb 

flexion (left/right) during suspension by the tail, hindlimb flexion with the forelimbs 
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remaining on the flat surface, resistance to lateral propulsion (left/right), and the ability to 

keep balance on an inclined plane (left/right/vertical position). This test shows high inter-

observer reliability and has been used in numerous studies (Faden et al. 1989, Lipert-Grüner 

et al. 2007). It reveals primarily neuromotor functions. 

 

Statistics 

Medians of path length and latencies were calculated for different groups during the 

experiment. Kruskal-Wallis analysis – a non-parametric (distribution-free) statistical test was 

chosen for evaluation of the differences between path length or differences between latencies 

in various groups. This non-parametric test uses the ranks of the data rather than their raw 

values to calculate the statistics. It is an alternative to the independent group ANOVA when 

the assumption of normality or equality of variance is not met. The normality of variance was 

tested with the Shapiro-Wilk test.  

 

Results 

Results are presented as medians of path lengths or latencies (Figs 1A-D) and the 

Mean Rank of the path lengths and latencies (Figs 2A-B and 3A-B) in groups 1, 2, 5 and 6. 

These groups are very important from the point of view of rehabilitation. We compared the 

effect of EPO in animals subjected to hypoxia with regard to the enriched environment. 

Groups 1 and 2 are the groups where rats were kept in enriched environment, were subjected 

to hypoxia and were treated with either EPO or saline. On the contrary, groups 5 and 6 

consisted of rats kept in standard plastic cages, subjected to hypoxia and administered EPO or 

saline. The differences between the groups are relatively small but some very important 

significances were seen. 
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Figures 1A-B show the medians of path lengths and latencies in groups1 and 2. The 

group kept in EE with EPO administration after hypoxia (group 2) deals better than the group 

without it (group 1). These results are more evident when Kruskal-Wallis analysis is used 

(Figs 2A-B). The differences in path lengths are significant especially on the 22nd, 24th, 26th 

and 40th day (p=0.008, p=0.037, p=0.049 and p=0.049) (Fig. 2A). Similar results were 

obtained for latencies (Fig. 2B). 

Figures 1C-D depict the medians of path lengths and latencies in groups 5 and 6. The 

rats of these groups were kept in standard housing, were subjected to hypoxia and were 

administered EPO or saline. Kruskal-Wallis analysis was also used for the same groups and 

situations (Figs 3A-B). Figure 3A concerning the path lengths shows that the group with EPO 

administration is even worse after hypoxia than before it, while the group with saline 

administration is slightly better after hypoxia although not significantly. The situation 

concerning latencies is very similar and there are no significant changes between the groups 

after hypoxia.  

There were no changes in the neurological evaluation of the rats after hypobaric 

hypoxia or sham hypoxia measured with neuro-score. According to our results, there were no 

significant differences in spatial memory measured by MWM between the rats that received 

EPO and those who got saline after hypobaric hypoxia when we did not take into account the 

environment in which the animals were kept (data not presented). Significant differences after 

hypoxia were seen only between groups 1 and 2, i.e. only between those rats that were kept in 

enriched environment. The rats, which got EPO and were kept in enriched environment 

(group 2), were significantly better than those which were kept in enriched environment but 

got only saline (group 1). 
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Discussion 

Long-term functional outcome of some patients after global cerebral hypoxia are very 

bad (especially cognitive functions), in spite of using different neurorehabilitation methods 

(Lippert Grüner et al. 2007, FitzGerald et al. 2010). This is why research is focused on 

neurorehabilitation combined with neuroprotection that could have much better results (Xiong 

et al. 2009). After a decade of research, there were only two perspective substances selected – 

progesterone which was studied in several clinical trials (Stein et al. 2008), and erythropoietin 

that has neuroprotective, neuroregenerative and antiinflammatory effects (Marti 2004, 

Ostedkar et al. 2010, Cherian et al. 2011). 

Hypobaric hypoxia causes different morphological and functional changes in several 

parts of an adult and newborn brain especially in hippocampus (CA3 and CA1 areas, gyrus 

dentatus), thalamus, striatum and cortex depending on the duration and simulated altitude of 

hypoxia (Kirino 1982, Šimonová et al. 2003). Neurons in CA3 hippocampal area probably 

play a very important role in memory processing (Lisman 1999, Lorincz and Buzsaki 2000). 

Neurons in the CA1 area are destroyed very quickly because they have more ionotropic 

NMDA receptors (Cassina et al. 2002). On the contrary, the CA3 area has less ionotropic and 

more metabotropic glutamate receptors that are responsible for delayed neurotoxicity (Maiti et 

al. 2007). 

EPO mediates its effects through the binding to its cognate receptors. Thus, an EPO 

receptor must be expressed at the site of action in the CNS to enable EPO to elicit its 

biological functions. Indeed, the expression of the EPO receptor mRNA and protein was 

demonstrated in the brain of a mouse, rat, monkey, and humans (Digicaylioglu et al. 1995). 

Both EPO mRNA and protein are found in the brain of numerous mammals including 

humans. The EPO receptor is widely expressed in most cerebral cell types, including neurons, 

endothelial cells, microglial cells and astrocytes (Marti 2004). EPO seems to be a part of an 
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endogenous defense system enabling the brain to counteract detrimental effects of hypoxia 

and ischemia (Marti 2004). 

The aim of the study was to reveal long-term effects of EPO and EE on the spatial 

memory and neuromotor functions of rats. There were no changes in neuro-score, i.e. no 

neuromotor problems in any studied group, but we have seen the differences between studied 

groups in spatial memory tested in MWM.  

Environmental enrichment is comparable with multidisciplinary rehabilitation in 

patients (Pereira et al. 2008). Its positive effect on neuromotor and cognitive functions was 

described in several studies (Grabovski et al. 1995, Gobbo and O´Mara 2004) as well as on 

neuroanatomic and neurophysiologic functions (Zhao et al. 2001, Pereira et al. 2008). 

We have seen the best results in the group where EE and EPO were applied together. 

EPO itself without EE had no significant effect on the results. The stimulation of brain 

endogenous protective mechanisms may be the key to future successful approaches to 

neuroprotection, as the activation of endogenous mechanisms can be efficient and well 

tolerated (Siren et al. 2001). EPO acts in the central nervous system primarily as a direct 

protective factor in neurons via the activation of antiapoptotic pathways. The protective effect 

on neurons might be supported by the action of EPO and other growth factors on endothelial 

cells, resulting in the cell survival and the stimulation of new vessel growth, as well as on 

glial cells, leading to a modulation of inflammatory responses (Marti 2004). EE plays a very 

important role as it increases hippocampal brain-derived neurotrophic factor, enhances cell 

survival, increases neurogenesis, dendritic branching and dendritic spines, as well as 

synaptogenesis (Van Praag et al. 2002). This takes some time so that we have seen the results 

after 40 and mainly after 60 days). 
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It was highly interesting that better results were also found in the group with EE and 

EPO without hypoxia. It means that EE plays a dominant role in the restoration of cerebral 

functions and EPO itself has no effect on the functional outcome. 

EPO binding to erythropoietin receptor (EpoR) mediates neuroprotection by 

endogenous EPO or by exogenous EPO (e.g. r-Hu-EPO). The level of EpoR expression in 

brain tissue has been proposed to determine the cytoprotective effects of EPO (Chen et al. 

2006, Yu et al. 2002). The number of EpoR is different in various parts of brain. It would be 

desirable to find new ways to enhance their expression in those brain parts where they are 

insufficient. It could be done e.g. by combining repeated mild hypoxia with EE (Sanchez et 

al. 2009).  

EPO, which is a molecule induced by hypoxia, is considered to have a key role in the 

enhancement of brain robustness by hypoxia (Sharp and Bernaudin 2004). Thus, recombinant 

human erythropoietin (rhEpo)can be considered as an “enviro-mimetic“, defined as any 

exogenous molecule that mimics the beneficial effects of environmental changes 

(Nithianantharajan and Hannan 2006). There is a concept that the optimization of the effect of 

a neuroprotective agent may require the preliminary induction of its targeted receptor (Lipton 

2007). Concerning rhEpo, future studies should elucidate the mechanisms promoting the 

movement of EpoR towards the cell surface (Ravid et al. 2007), and the mechanisms 

selectively involved in the induction of EpoR after environmental manipulations, to develop 

drugs capable of inducing EpoR and to influence the final functional outcome of people after 

brain injuries. 

Our results support the hypothesis that EPO combined with an enriched environment 

can influence the final outcome of spatial memory and learning of rats after hypobaric 

hypoxia. It is very important for medical practice in brain injuries to search for new strategies 

which can reduce final disabilities of patients. Taking into account our results, we can expect 
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that EPO given after brain injury to patients, who have multidisciplinary neurorehabilitation 

can influence the neurorestoration process, and helps to achieve better functional outcomes 

for these patients, 
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Table 1. Distribution of rats in groups and their characteristics 
 

 

 

 

 

 

 

Group No. 1 2 3 4 5 6 7 8 Number 
of Rats 

Number of 
rats 

7 8 7 7 8 8 7 7 59 

Enriched 
environment 
(EE) 

+ + + + – – – – 29 

Hypobaric 
hypoxia 

+ + – – + + – – 31 

Erythropoietin 
(EPO) 

– + – + – + – + 30 
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Legends to figures 

 

Fig. 1. Median of path length (A, C) and latencies (B, D) in the groups 1 and 2 (EE+ and 

Hypo+, EPO– or EPO+) (A, B) as well as in the groups 5 and 6 (EE– and Hypo+, EPO– or 

EPO+) (C, D). Open symbols with broken line represent EPO– animals, whereas full symbols 

with full line depict EPO+ animals. Significance of the differences between EPO– and EPO+ 

rats:* p<0.10, ** p<0.05. 

 

Fig. 2. Mean Rank of path length (A) and latencies (B) in the groups 1 and 2 (EE+ and 

Hypo+, EPO– or EPO+). Significance of the differences between EPO– and EPO+ rats 

according to Kruskal-Wallis analysis:* p<0.10, ** p<0.05.  

 

Fig. 3. Mean Rank of path length (A) and latencies (B) in the groups 5 and 6 (EE– and 

Hypo+, EPO– or EPO+). Significance of the differences between EPO– and EPO+ rats 

according to Kruskal-Wallis analysis:* p<0.10, ** p<0.05. 
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