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Abstract. It is shown that if a separable real Banach space admits a separating analytic

function with an additional property (K) (concerning uniform behavior of radiuses of conver-
gence) then every uniformly continuous operator into any real Banach space can be approxi-
mated by analytic operators. In particular, the result applies to c0.

In our present note, we present a modification of the following theorem due to Kurzweil
[K]:

Theorem 1. Let X be a real separable Banach space which admits a separating polynomial.
Then for every real Banach space Y , every continuous (nonlinear) operator F : X → Y
and ε > 0 there exists a real analytic operator H: X → Y such that

sup
x∈X

|H(x) − F (x)| < ε.

More precisely, we replace the assumption of a separating polynomial by that of a sep-
arating analytic function with uniformly bounded (from below) radius of convergence at
each point (condition (K)). This is a strictly weaker condition, but the class of approxi-
mated operators is limited to uniformly continuous ones. In particular, every uniformly
continuous operator from c0 is uniformly approximable by analytic operators, but the gen-
eral case of continuous operators remain open. The space c0 is a critical example in this
context. Recall that by a result of Deville ([D]), every Banach space admitting a separating
C∞ Fréchet smooth function, which does not contain a copy of c0 admits a separating poly-
nomial. Thus the impossibility of approximations of all continuous functions (operators)
on c0 would turn Theorem 1 into a characterization.

In the second part of the note we investigate the nonsuperreflexive spaces satisfying
condition (K). We show that any Banach space with DP (Dunford-Pettis) property satis-
fying condition (K) is isomorphic to a subspace of c0. More generally, this is true for every
Banach space on which all scalar polynomials are weakly sequentially continuous.

The main result of this paper, Theorem 3, was obtained independently by both authors.
We have realized that at a Conference on Infinite Dimensional Analysis, held in Madrid
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in December 1997. In order to avoid unnecessary duplicity, we decided to publish a joint
paper. The second part of the note was influenced by some discussions with Gilles Godefroy,
to whom we would like to express our thanks. We would also like to thank the Department
of Analysis of Universidad Complutense de Madrid for excellent working conditions and
for organizing the meeting.

General background on smoothness in Banach spaces can be found in [DGZ]. We refer
to [AO] for facts on real analytic functions on real Banach spaces and their complex

extensions. Given a real Banach space (X, ‖ · ‖) we denote by (X̃, ‖ · ‖) the complexified
version of X, which is (as a real space) isomorphic to X ⊕ X. Given a real analytic
operator q(x) defined on some open subset O ⊂ X with values in Y , there exists some

open (complex) neighbourhood U of O in X̃, and a unique complex analytic operator

q̃: U → Ỹ such that q̃|O = q.

Given x ∈ X, d > 0 we denote by B̃(x, d) = {x ∈ X̃; ‖x − z‖ ≤ d}.
For the convenience of the reader we try to keep a similar notation to that in [K].

Definition 2. Let X be a separable real Banach space. We say that X satisfies the con-
dition (K) if there exists a real analytic function q on X such that the following conditions
are satisfied:

(i) q ≥ 0 on X;
(ii) q−1([0, 1]) is a bounded open neighbourhood of the origin;
(iii) there exists d > 0 such that for each x ∈ X, the Taylor series of q̃ converges

uniformly on B̃(x, d) ⊂ X̃ to q̃.

Theorem 3. Let X be a separable real Banach space with property (K). Let Y be an
arbitrary real Banach space, F : X → Y be a uniformly continuous operator, and ε > 0.
Then there exists a real analytic operator H: X → Y such that sup

x∈X

‖F − H‖ ≤ ε.

Proof. Let us assume that the function q on X and d > 0 verify the property (K) of X.
Let us start by introducing some notation:

Given y ∈ X, r > 0 we define sets:

K(y, r) = {x ∈ X; q(x − y) < r},

C(y, r) = {x ∈ X; q(x − y) > r}.

By standard scaling arguments, we may assume that ε = 1 and x ∈ K
(
y, 1

2

)
implies

‖F (x) − F (y)‖ < 1
4 .

Choose sequences {xi}i∈N and {yi}i∈N such that
⋃

i∈N

K
(
xi,

1
4

)
= X and

⋃
i∈N

B
(
yi,

d
2

)
= X.

Set Sl,m = K
(
xl,

1
4

)
∩

m⋃
i=1

B
(
yi,

d
2

)
.

It is easy to see that
⋃

m∈N

Sl,m = K
(
xl,

1
4

)
. Given n ∈ N,

Vn = sup{|q̃(yi + z − xj)| + 1; z ∈ B̃(0, d), 1 ≤ i, j ≤ n}
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exists and is finite.
Choose a sequence εn ց 0, ε1 < 1

20 , and define the open coverings {Dn}n∈N, {D∗
n}n∈N

of X as follows:

Dn =

n−1⋂

i=1

C

(
xi,

1

4
− εn

)
∩ K

(
xn,

1

4

)

D∗
n =

n−1⋂

i=1

C

(
xi,

1

4
− 3εn

)
∩ K

(
xn,

1

4
+ 2εn

)
.

Both of the above coverings are easily shown to be locally finite, Dn ⊂ D∗
n, n ∈ N.

We proceed by defining subsets Tn ⊂ R
n and analytic functions φ̃n on X + B̃(0, d) ⊂ X̃,

n ∈ N as follows:

Tn =

{
[τ1, . . . , τn];

1

4
− 2εn ≤ τ, for i < n and − 1 ≤ τn ≤

1

4
+ εn

}

φn(z) = (‖F (xn)‖ + 1) · νn ·

∫

Tn

· · ·

∫
e
−tn

(
n∑

i=1

ai(q̃(z−xi)−τi)
2

)

dτ1 . . . dτn,

where νn is the normalizing factor:

1

νn

=

∫

Rn

· · ·

∫
e
−tn

(
n∑

i=1

aiτ
2

i

)

dτ1 . . . dτn.

We proceed by choosing the values ai, ti > 0.
The values ai are chosen so that

ai <
1

2i · 9 · V 2
i

. (0)

The values ti are chosen sufficiently large for the following conditions to be satisfied:

(‖F (xn)‖ + 1)2e−tn· 1

n <
1

2n
(1)

|φn(x) − ‖F (xn)‖ − 1| <
1

2
for x ∈ Dn (2)

|φn(x)| <
1

2n+3(‖F (xn) + 1)
for x /∈ D∗

n. (3)

Condition (1) is clear.
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To see (2) and (3), it is enough to realize that

{[q(x − x1), . . . , q(x − xn)]; x ∈ Dn} + {(α1, . . . , αn); |αi| ≤ εn} ⊂ Tn,

Tn ∩
{
{[q(x − x1), . . . , q(x − xn)]; x /∈ D∗

n} +
{

(α1, . . . , αn); |αi| ≤
εn

2

}}
= ∅,

and

lim
tn→∞

∫
Rn

· · ·
∫ −tn

(
n∑

i=1

aiτ
2

i

)

dτ1 . . . dτn

∫

[− εn
2

,
εn
2

]n
· · ·

∫
e
−tn

(
n∑

i=1

aiτ
2

i

)

dτ1 . . . dτn

= 1.

Let

φ(x) =

∞∑

i=1

φi(x)

H∗(x) =
∞∑

i=1

F (xi)φi(x).

We proceed by proving that φ and H∗ are real analytic on X. As a uniform limit of
complex analytic functions is complex analytic, this follows from the next statement. For
every x0 ∈ X there exists δ > 0 and n0 ∈ N such that

(‖F (xn)‖ + 1)|φn(x0 + z)| ≤
1

2n
(4)

whenever n > n0, z ∈ B̃(0, δ).
Fix a point x0. There exist j0,m0 ∈ N such that x0 ∈ Sj0,m0

. Thus for some α > 0 and
n′ ∈ N: (

1

4
− 2εn′

)
− q(x0 − xj0) > α. (5)

We need the following estimates.
Let ξ ∈ C, ξ = ξ1 + ıξ2, ξ1, ξ2 ∈ R, n, j ∈ N. Then

∫

R

|e−tnaj(ξ−τ)2 |dτ ≤

∫

R

|e−tnaj [(ξ1−τ)2−ξ2

2
+2ξ2(ξ1+τ)ı]|dτ

≤ etnaj ·ξ
2

2 ·

∫

R

e−tnajr3

dτ. (6)

Let i > max{j0,m0, n
′}, z ∈ B̃

(
0, d

2

)
. Then |q̃(x0 + z − xi)| < Vi, so by (6):

∫

R

|e−tnai(q̃(x0+z−xi)−τ)2 |dτ ≤ etnaiV
2

i ·

∫

R

e−tnaiτ
2

dτ. (7)
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Finally, by (5) choose d
2 > δ1 > 0, small enough in order to have

(
1

4
− 2εn′

)
− Re q̃(x0 + z − xj0) ≥ α

|Im q̃(x0 + z − xj0)| <
α

2
(8)

whenever z ∈ B̃(0, δ1). Thus

∞∫

1

4
−2εn′

|e−tnaj0
(q̃(x0+z−xj0

)−τ)2 |dτ ≤

∞∫

0

e−tnaj0
[(α+τ)2−α2

5
]dτ

≤ e−tnaj0
α2

2

∫

R

e−tnaj0
τ2

dτ. (9)

By (0) there exist n0 > max
{

j0,m0, n
′, 4

aj0
·α2

}
such that

∞∑

i=n0

aiV
2
i <

aj0α
2

8
. (10)

By continuity, there exists 0 < δ < δ1 such that

n0−1∑

j=1

aj [Im(q̃(x0 + z − xj))]
2 <

aj0α
2

8
(11)

whenever z ∈ B̃(0, δ).
Consequently, by (6)–(11):

|φn(x0 + z)| ≤

≤ (‖F (xn)‖ + 1) ·
n∏

i=1
i 6=j0

∫
R

|e−tnai(q̃(x0+z−xi)−τi)
2

|dτi

∫
R

e−tnaiτ
2

i dτi

·

∞∫
1

4
−2εn

|e−tnaj0
(q̃(x0+z−xj)−τj0

)2 |dτj0

∫
R

e−tnaj0
τ2

j0 dτj0

≤ (‖F (xn)‖ + 1) ·
n0−1∏

i=1
i 6=j0

etnai(Im q̃(x0+z−xi))
2

·
n∏

i=n0

etnaiV
2

i · e−tnaj0
α2

2 ≤

≤ (‖F (xn)‖ + 1)e−tnaj0
α2

4 . (12)

whenever n ≥ n0, z ∈ B̃(0, δ).
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Condition (1) and the choice of n0 immediately imply (4).

We proceed by showing that the analytic operator H(x) = H∗(x)
φ(x) satisfies sup

x∈X

‖F −

H‖ > 1. Fix x ∈ X

F (x) − H(x) = F (x)
∞∑

i=1

φi(x)

φ(x)
−

∞∑

i=1

F (xi)φi(x)

φ(x)

=
1

φ(x)

∞∑

i=1

(F (x)φi(x) − F (xi)φi(x)).

Set I1 = {i;x ∈ D∗
i }, I2 = {i;x /∈ D∗

i }.
Then

‖F (x)−H(x)‖ ≤
1

φ(x)

∑

i∈I1

‖F (x)−F (xi)‖φi(x)+
‖F (x)||

φ(x)

∑

i∈I2

φi(x)+
1

φ(x)

∑

i∈I2

‖F (xi)‖φi(x).

If i ∈ I1 then x ∈ K
(
xi,

1
2

)
and

‖F (x) − F (xi)‖ <
1

4
.

Moreover, x ∈ Dl for some l, so by (2)

‖F (x) − F (xl)‖ <
1

4
, φl(x) > ‖F (xl)‖ +

1

2

and

φ(x) ≥ φl(x) > ‖F (x)‖, φ(x) >
1

2
.

The above inequalities together with (3) imply

‖F (x) − H(x)‖ ≤
1

4
+

1

8
+

2

8
< 1.

♦

It is perhaps worth noticing that the same proof as above yields the following conclusion:
Let X be a separable Banach space satisfying (K), {xn}n∈N be an ε-separated sequence,
ε > 0 and F : {xn}n∈N → Y be an arbitrary function. Then for every δ > 0 there exists
an analytic function H: X → Y such that sup

n

|F (xn) − H(xn)| < δ.

Examples.

It is well-known that c0 does not admit a separating polynomial ([B]). However, the space

c0 satisfies the condition (K). Indeed, the function q(x) =
∞∑

i=1

x2i
i constructed in [FPWZ] is
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easily shown to satisfy (K), where d < 1. Clearly, condition (K) is inherited by subspaces
and finite direct sums. Under suitable circumstances, it can also pass to infinite direct sums.
Assume all members of a sequence {(Xn, ‖ · ‖)n} satisfy the condition (K) with qn and dn.

Suppose d = inf
n∈N

dn > 0, there exists a sequence αn ∈ N such that sup
n∈N

|q̃n(B̃(0, d))|αn < 1

and sup
n∈N

diam q−1
n ([0, 1]) < +∞. Then

(
∞∑

n=1
⊕Xn

)

c0

satisfies the condition (K) with

q((x1, x2, . . . )) =
∞∑

n=1
q2nαn
n (xn) and d

2 . Thus for example

(
c0 ⊕

∞∑
n=1

⊕ℓ2n

)

c0

satisfies (K).

By the result of Deville [D], a space admitting a separating C∞ Frećhet smooth function
(in particular every space satisfying (K)) is saturated by spaces from {ℓp,p-even} ∪ {c0}.
While a full classification of spaces satisfying (K) is probably hopeless, there may be a
chance for the extremal cases when either c0 6 →֒ X or ℓp 6 →֒ X for every p-even. The first
case leads to spaces with a separating polynomial ([D]). We devote the rest of the paper
to the investigation of the second case.

Definition 4. We say that X satisfies condition (S) if there exists a continuous function
b(x) ≥ 0 on X, b−1([0, 1)) is a bounded open neighbourhood of the origin, and α > 0 such

that for every x0 ∈ X and every xn
w

−→0, ‖xn‖ ≤ α, we have b(x0 + xn) → b(x0).

Lemma 5. Let X satisfy condition (S). Then there exists an equivalent norm ||| · ||| on X,

and β > 0 such that for each x0 ∈ S(X,|||·|||), xn
w

−→0, |||xn||| ≤ β, we have |||x0+xn||| → 1.

Proof. The proof is a variant of an argument in [FWZ]. Choose φ(t) an increasing contin-

uous function on [0, 1), φ(0) = 0, lim
t→1

φ(t) = +∞. Put b̃(x) = φ(b(x)) for x ∈ b−1([0, 1))

and b̃(x) = +∞ otherwise. Given x0 ∈ b−1([0, 1)) and xn
w

−→0, ‖xn‖ ≤ α, we have again

b̃(x0 + xn) → b̃(x0). Define

U(x) = inf

{
k∑

i=1

ξib̃(xi), ξi ≥ 0,
k∑

i=1

ξi = 1,
k∑

i=1

ξixi = x

}
.

It is standard to check that U(x) is finite and convex on an open set C = conv(b−1([0, 1))),
and U(x) = +∞ on X\C.

Fix any x0 ∈ C, xn
w

−→0, ‖xn‖ ≤ α, ε > 0. There exist ξi ≥ 0,
k∑

i=1

ξi = 1, yi ∈ b−1([0, 1)),

k∑
i=1

ξiyi = x0 such that U(x0) + ε ≥
k∑

i=1

ξib̃(yi). Also

lim
n→∞

k∑

i=1

ξib̃(yi + xn) =

k∑

i=1

ξib̃(yi) ≤ U(x0) + ε,

so lim sup
n→∞

U(x0 + xn) ≤ lim sup
n→∞

k∑
i=1

ξib̃(yi + xn) ≤ U(x0) + ε for any ε > 0. Thus

lim sup
n→∞

U(x0 + xn) ≤ U(x0). The same argument applies to a sequence {−xn}, so lim sup
n→∞
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U(x0 − xn) ≤ U(x0). For convexity of U we finally obtain

lim
n→∞

U(x0 + xn) = U(x0).

Putting ||| · ||| to be the Minkowski functional of U−1([0, 1]) we obtain an equivalent norm

on X satisfying |||x0 + xn||| → 1 whenever x0 ∈ S(X,|||·|||) and xn
w

−→0, ‖xn‖ ≤ α. Lastly,
we choose β > 0 such that βB(X,|||·|||) ⊂ αB(X,‖·‖). ♦

Lemma 6. Let (X, ‖ · ‖) be a separable Banach space, ℓ1 6 →֒ X. Suppose there exists

α > 0, such that for every x0 ∈ SX , xn
w

−→0, ‖xn‖ ≤ α we have ‖x0 + xn‖ → 1. Then X
is isomorphic to a subspace of c0.

Proof. By [GKL] (see also [KW]) it is enough to show that ‖ ·‖ is c-Lipschitz UKK∗ norm
for some c ∈ (0, 1]. More precisely, we need to show that ‖ · ‖∗ satisfies the following:

‖x∗‖ + c lim sup
n→∞

‖x∗
n‖ ≤ lim sup

n→∞
‖x∗ + x∗

n‖ whenever x∗ ∈ X∗ and x∗
n

w∗

−→0. (13)

It is easy to see that it suffices to prove (13) for all x∗ from a dense subset of SX∗ , in
particular (using the Bishop-Phelps theorem) for all norm attaining functionals from SX∗ .

Let x∗ be such a functional, x∗(x) = 1, x ∈ SX and x∗
n

w∗

−→0. We may in addition assume
that lim ‖x∗ + x∗

n‖ and lim ‖x∗‖ = L exist. There exists a sequence {xn} ⊂ BX such that
x∗

n(xn) > 5
6L. By Rosenthal’s theorem, we may assume that {xn} is weakly Cauchy, and

using the fact that x∗
n

w∗

−→0, we can pass to yet another subsequence of x∗
n and replace xn

by yn = 1
2 (xn1

−xn2
), where n1 6= n2, n1, n2 → ∞ as n → ∞. Thus finally we may assume

that x∗
n(yn) > 1

3L, where yn
w

−→0, yn ∈ BX .
We obtain the following estimate:

lim sup
n→∞

‖x∗ + x∗
n‖ ≥ lim sup

n→∞
〈x∗ + x∗

n, x + αyn)〉

≥ lim sup
n→∞

x∗(x) + x∗
n(x) + αx∗(yn) + αx∗

n(yn)

≥ 1 +
1

3
αL = ‖x∗‖ +

1

3
α lim sup

n→∞
‖x∗

n‖.

♦

Proposition 7. Let X be a Banach space satisfying (K). Suppose all scalar polynomials
on X map weakly null sequences into sequences convergent to zero. Then X is isomorphic
to a subspace of c0.

Proof. It was proved in [AHV] that given a Banach space X, every scalar polynomial
maps weakly null sequences into sequences convergent to zero if and only if every scalar
polynomial maps weakly Cauchy sequences into norm convergent ones. Thus by results
of [HT], X is a separable Asplund space. The function q(·) on X from the definition of
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(K) is a uniform limit of polynomials on each B(x, d), so in particular for every x ∈ X,

q(x + yn) → q(x) whenever yn
w

−→0, ‖yn‖ ≤ d. Lemma 6 finishes the proof. ♦

By a result of [P] or [R], spaces with DP property (in particular all C(K) spaces and
all subspaces of c0) satisfy the above condition on sequential continuity of polynomials.

It can be shown ([HT)] that replacing the assumption (K) in Proposition 7 by an
existence of a separating analytic function on some open bounded set in X, one obtains
that X is a separable polyhedral space.

Recall a result of [LP] by which every C(K) space which is isomorphic to a subspace of
c0 is isomorphic to c0. Thus we have the following:

Corollary 8. Let X ∼= C(K) satisfy condition (K). Then Xis isomorphic to c0.

This Corollary should be compared with [DFH] where it is shown that every separable
polyhedral Banach space (e.g. C(K) where K is scattered) admits a separating analytic
convex function defined on some bounded convex open set.
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[HT] P. Hájek and S. Troyanski, Analytic norms in Orlicz spaces, preprint.

[KW] N.J. Kalton and D. Werner, Property (M), M-ideals and almost isometric structure of Banach
spaces, preprint.

[K] J. Kurzweil, On approximation in real Banach spaces, Studia Math 14 (1954), 213–231.

[LP] J. Lindenstrauss and A. Pelczynski, Contributions to the theory of the classical Banach spaces,

J. Funct. Anal. 8 (1971), 225–249.

[P] A. Pelczynski, On weakly compact polynomial operators on B-spaces with Dunford-Pettis prop-
erty, Bull. Acad. Polon. Sci. 11 (1963), 371–378.

[R] R. Ryan, Dunford-Pettis properties, bull. Acad. Polon. Sci. 27 (1979), 373–379.

Manuel Cepedello Boiso, Equipe d’Analyse, Tour 46.0, Université Paris 6, 75230 Paris,
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