
SMOOTH NONCOMPACT OPERATORS FROM C(K), K SCATTEREDR. Deville and P. H�ajekO
tober 2003Abstra
t. Let X be a Bana
h spa
e, K be a s
attered 
ompa
t and T : BC(K) ! X be aFr�e
het smooth operator whose derivative is uniformly 
ontinuous. We introdu
e the smoothbi
onjugate T �� : BC(K)�� ! X�� and prove that if T is non
ompa
t, then the derivativeof T �� at some point is a non
ompa
t linear operator. Using this we 
on
lude, among otherthings, that either T (B
0 ) is 
ompa
t or else `1 is a 
omplemented subspa
e of X�. We alsogive some relevant examples of smooth fun
tions and operators, in parti
ular a C1;u-smoothnon
ompa
t operator from B
0 whi
h does not �x any (aÆne) basi
 sequen
e.Introdu
tion.The theory of linear operators from C(K) spa
es is a vast and important part of Bana
hspa
e theory. One of the approa
hes to this subje
t is through the redu
tion (or �xing)properties of a given T 2 L(C(K); X). Let us re
all the following 
lassi
al result ofPel
zynski, and refer to Rosenthal's arti
le in [JL, Chapter 36℄ and [DU, Chapter VI℄ forthe history, many more results of this type and referen
es.Theorem 0.1Let X be a Bana
h spa
e, K be 
ompa
t, and T : C(K)! X be a non-weakly 
ompa
tlinear operator. Then there exists 
0 �= Y ,! C(K) su
h that T �Y a
ts as an isomorphism.Moreover, if K is s
attered, the same result holds for T a non
ompa
t linear operator.In his work on the Dunford-Pettis property, Pel
zynski [P1, 2℄ relying on the use ofve
tor measures, indu
tion by the degree of the polynomial and the use of bi
onjugatesP �� to polynomials (whi
h he is able to de�ne for weakly 
ompa
t polynomials or in 
asewhen 
0 is not 
ontained in X) obtained the following nonlinear extension of Theorem 0.1.
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Theorem 0.2Let X be a Bana
h spa
e, K be a s
attered 
ompa
t, and P : C(K) ! X be anon
ompa
t polynomial operator. Then 
0 ,! X.In the same paper Pel
zynski observed that in general the assumption of s
atteredness
annot be removed, 
onstru
ting a homogeneous polynomial P : C[0; 1℄ ! `1 for whi
hP (BC[0;1℄) 
ontains B`1 . Let us remark that from [H3℄ and the fa
t that every Bana
h spa
e
ontaining `1 (a 
ondition 
hara
terizing pre
isely all C(K), where K is a non-s
attered
ompa
t) has an `2 quotient, it follows that for every C(K), K nons
attered and everyseparable Bana
h spa
e X, there exists a homogeneous polynomial P : C(K) ! X ofdegree 2, su
h that P (BC(K)) 
ontains BX . This of 
ourse means that a stru
tural theoryfor polynomials from C(K), K nons
attered 
ompa
t, along the 
lassi
al lines of Theorem0.1 is not possible.Our aim in the present paper is to investigate Pel
zynski's-type result for general C1;u-smooth operators. Note again that C1-smoothness alone leads only to a trivial theory (dueto nontrivial work of Bates [B℄, [BL, p. 261℄), stating that arbitrary separable Bana
h spa
eis C1-smooth range of every separable Bana
h spa
e. In our paper we treat the lo
alizedversion (whi
h is equivalent to the original one for polynomials) when T : BC(K) ! X isFr�e
het di�erentiable, and T 0 is uniformly 
ontinuous. The following question (suggestedby our previous work in [H1℄, [H2℄, and expli
itly asked also in Godefroy's arti
le in theHandbook [JL, p. 799℄) is the sour
e of this note.Question 0.3Let X be a Bana
h spa
e, K be a s
attered 
ompa
t, and T : BC(K) ! X be a C1;u-smooth non
ompa
t operator. Is then 
0 ,! X?Keeping in mind the redu
tion and �xing properties of linear operators, we 
an proposethe following variants of the question.Question 0.4 (redu
tion)Let X be a Bana
h spa
e, K be a s
attered 
ompa
t, and T : BC(K) ! X be a C1;u-smooth non
ompa
t operator. Does there exists 
0 �= Y ,! C(K) su
h that T �Y isnon
ompa
t?or evenQuestion 0.5 (�xing)Let X be a Bana
h spa
e, K be a s
attered 
ompa
t, and T : BC(K) ! X be a C1;u-smooth non
ompa
t operator. Does there exists a sequen
e fung1n=1 in BC(K), su
h thatboth fung1n=1 and fT (un)g1n=1 are equivalent to the 
anoni
al basis of 
0?It is obvious that the 
ondition in Q 0.5 is the strongest and implies the other two, whosemutual relation is not quite 
lear. In the linear 
ase, the questions are equivalent due toTheorem 0.1, and for polynomial operators Q 0.3 has a positive answer due to Theorem0.2. In our paper, we develop some basi
 theory of smooth nonlinear operators, in orderto deal with Q 0.3-5. The theory is formulated for C(K), K 
ountable, (or just 
0) spa
es,2



but due to the general redu
tion results (Theorem 1.5), the statements remain valid (withobvious modi�
ations) for all C(K), K s
attered. Let us pass to a brief dis
ussion ofour results. In se
tion 1 we show that every C1;u-smooth operator T : BC(K) ! X, K
ountable, has a 
anoni
al C1;u-smooth extension T �� : BC(K)�� ! X�� (in the generalC(K), K s
attered, situation, the bi
onjugates T �� 
an also be introdu
ed, but theirdomain will be 
ontained in Y ,! C(K)��, where Y is the w�-sequential 
losure of C(K)in (C(K)��; w�)). We prove that Q 0.4 has an aÆrmative answer, provided we 
onsider aredu
tion to an aÆne subspa
e Y �= 
0 of C(K) (i.e. a subspa
e not ne
essarily 
ontainingthe origin). For a linear subspa
e Y �= 
0 the answer to Q 0.4 is trivially negative evenfor polynomial operators. In se
tion 2, we fo
us on operators from B
0 . The main generalresult (using the redu
tion) is that if T : BC(K) ! X, K 
ountable, is a C1;u-smoothnon
ompa
t operator, then there exists a point x�� 2 BC(K)�� at whi
h (T ��)0(x��) �C(K)is a non
ompa
t linear operator. This implies (for all K s
attered) in parti
ular that`1 ,! X��, a weak answer to Q 0.3 (it also implies that Q 0.5 is true for T ��). For spe
ial
lasses of X, su
h as duals, weakly sequentially 
omplete spa
es, Bana
h latti
es or spa
eswith PCP (in parti
ular RNP) property the statement in Q 0.3 is indeed true. In se
tion3 we investigate the summability properties of smooth fun
tions on 
0, whi
h are 
losely
onne
ted with Q 0.5. By a result of Aron and Globevnik ([AG℄, see also an earlier relatedresult [Bo℄), 1Pi=1 jf(ei)j <1, for every polynomial f on 
0. This type of result imply thatthe answer to (aÆne version of) Q 0.5 is aÆrmative for polynomial operators, improvingTheorem 0.2.As we will show, for C1;1-smooth fun
tions this property fails, and this allows us to
onstru
t in se
tion 4 a C1;1-smooth 
ounterexample to the general statement in Question0.5. Unfortunately, our results are not strong enough to solve the original Question 0.3. Soin fa
t our paper 
ontains indi
ations going in both dire
tions. It seems, however, that our
onditions on X basi
ally ex
lude all the known examples of X whi
h 
ome in mind whileseeking a 
ounterexample to Q 0.3. In parti
ular the Bourgain-Delbaen L1 spa
es [B℄without 
0, Gowers' spa
e [G℄ without 
0 or boundedly 
omplete basi
 sequen
e, spa
es ofJT type (Ghoussoub-Maurey [GM℄) all satisfy Q 0.3. Moreover, relying on Bourgain-Pisierresults [BP℄ we know that if there exists X violating Q 0.3, then there also exists su
h L1spa
e.Let us now establish the terminology and notation. Let X;Y be Bana
h spa
es. Let!(t) : IR+ ! IR+, !(0) = 0 be a nonde
reasing fun
tion. We say that a fun
tion f : S !X, S � Y has modulus of 
ontinuity !(t), whenever x; y 2 S, kx � yk < " implies thatkf(x)� f(y)k < !(") (the de�nition of 
ourse makes sense for mappings between generalmetri
 spa
es). A 
ontinuous (nonlinear, in general) operator T : S ! X, where S � Yis 
alled a C1;u-smooth operator if T is Fr�e
het di�erentiable on int(S) and there exists amodulus !(t) su
h that both T and T 0 have modulus of 
ontinuity !(t). By C1;1-smoothoperator we mean an operator for whi
h T and T 0 are Lips
hitz. An operator T : S ! X is
alled weakly sequentially 
ontinuous (ws
) if it maps weakly Cau
hy sequen
es fxng1n=1 �S � Y into norm 
onvergent sequen
es fT (xng1n=1 � X. An operator T : S ! X is 
alled3




ompa
t if T (S) � X is a norm 
ompa
t set. By results of [H2℄, a C1;u-smooth operatorT : BC(K) ! X, K s
attered, is ws
 i� it is 
ompa
t. For subsets M;N � IN we usethe notation M < N if max(M) < min(N). If one of these sets is a singleton, we mayabbreviate this notation by repla
ing the set with its element. The symbolX �= Y indi
atesthat the Bana
h spa
es X;Y are isomorphi
. Given a s
attered 
ompa
t K, and a pointp 2 K, we will use the notation C0(K) = ff : f 2 C(K); f(p) = 0g. In the statementsregarding C0(K) below, it is understood that p is �xed but arbitrary. We also use thesimple fa
t that C0(K) �= C(K) for all in�nite s
attered 
ompa
ts. Re
all that a Bana
hspa
e X has the point of 
ontinuity property (PCP), if every weakly 
losed bounded subsetof X 
ontains a point of weak-to-norm 
ontinuity for the identity mapping.1. Smooth operators from C(K) spa
es.Re
all the basi
 fa
t that given two Bana
h spa
es E;F , for any T 2 L(E;F ) there
anoni
ally exists a 
onjugate T � 2 L(F �; E�), and thus also a bi
onjugate operatorT �� 2 L(E��; F ��). Pel
zynski [P2℄ observed in the proof of Theorem 0.2 that notwith-standing the la
k of duality, bi
onjugate operators 
an be 
anoni
ally de�ned also forweakly 
ompa
t polynomial operators from P(C(K); X) spa
es. In this se
tion we aregoing to generalize this de�nition further for all C1;u-smooth operators T : BC(K) ! X,K 
ountable and arbitrary separable Bana
h spa
e X. For a general C(K) , K s
attered,a bi
onjugate 
an be de�ned along the same lines, ex
ept that its domain will be thew�-sequential 
losure of BC(K) in (B��C(K); w�). Sin
e our later results rely on a separableredu
tion argument, we do not treat the general 
ase here. Let us mention in passingthat similar generalization is in fa
t possible for operators a
ting from spa
es of 
lass C,introdu
ed in [H2℄. The next lemma is a variation on Lemma 5 from [H2℄. We sket
h aproof for readers 
onvenien
e.Lemma 1.1Let K be a s
attered 
ompa
t, X = C(K) or C0(K), f : BX ! IR be C1;u-smooth,fxng1n=1 be weakly Cau
hy in BX . Then ff 0(xn)g1n=1 is norm 
onvergent in X�.Proof. By Lemma 5 and the proof of Theorem 10 of [H2℄, f 0(xn) is norm relatively
ompa
t. By a standard argument, it is enough to prove the result under the additionalassumption that supfkxnk : n 2 INg = r < 1. If we assume that � = limn!1 f 0(x2n), = limn!1 f 0(x2n+1), and 0 6= h 2 (1� r)BX , we have the following:f(xn + h) = f(xn) + khkZ0 f 0(xn + � hkhk )( hkhk )d� = f(xn) + f 0(xn)(h) + Rn;where jRnj � !(khk)khk. So 0 = limn!1 f(x2n+ h)� limn!1 f(x2n+1+ h) = limn!1 f(x2n)�limn!1 f(x2n+1)+(�� )(h)+ limn!1(R2n�R2n+1) = (�� )(h)+R, where jRj � 2!(khk)khk.Letting khk ! 0 we see that (��  )(h) = o(khk) and so � =  .4



Proposition 1.2Let K be a 
ountable 
ompa
t, X = C(K) or C0(K), f : BX ! IR be C1;u-smooth.Then there exists a 
anoni
al C1;u-smooth and w�-sequentially 
ontinuous extension f�� :BX�� ! IR, f�� �BX= f . Moreover, (f��)0(x��) 2 X� ,! X���, for all x�� 2 BX�� i.e. thederivatives are w�-
ontinuous fun
tionals.Proof. Sin
e X is 
0 saturated ([PS℄, for 
lass C we have to invoke [H2℄ Proposition 6instead), `1 6,! X. For 0 < � � 1 we have by Odell-Rosenthal's theorem ([LT1, p. 101℄)that every x�� 2 �BX�� is a w�-limit of a sequen
e fxng1n=1 � �BX . (In fa
t, as the refereeof this note has pointed out, a simpler argument using Alaoglu's theorem and C(K)� = `1
an be employed here). We know that limn!1 f(xn) exists, so we set f��(x��) = limn!1 f(xn).We need to 
he
k that this de�nition is independent of the 
hoi
e of fxng1n=1. However, thisis immediate sin
e if x�� = w�� limn!1 x2n = w�� limn!1 x2n+1, then x�� = w�� limn!1 xn andthe result follows due to ws
 property of f again ([H2℄). Next, we have to verify that f�� isC1;u-smooth. Let us 
he
k �rst that for x�� 2 �BX�� , (f��)0(x��) = limn!1 f 0(xn) = � 2 X�(the limit exists due to Lemma 4 of [H2℄). For h�� 2 (1 � �)BX�� , h = w� � limn!1 hn,hn 2 (1� �)BX we havef��(x�� + h��)� f��(x��) = limn!1(f(xn + hn)� f(xn)) = limn!1 f 0(xn)(hn) +Rnwhere jRnj � !(khk)khk. Thusjf��(x��+h��)�f��(x��)� limn!1 �(hn)j = jf��(x��+h��)�f��(x��)��(h)j � !(khk)khk;and the 
on
lusion follows. Let us now indi
ate why f�� and (f��)0 have the modulusof 
ontinuity !(�). This 
learly follows from the following fa
t. For x��; y�� 2 �BX we
an �nd sequen
es fxng1n=1; fyng1n=1 2 �BX su
h that kxn � ynk � kx�� � y��k for everyn 2 IN , and moreover x�� = w� � limn!1xn, y�� = w� � limn!1 yn. Indeed, by the Odell-Rosenthal's theorem [LT1, p. 101℄, 
hoose �rst fxng1n=1 2 �BX w�-
onvergent to x��,and fzng1n=1 2 kx�� � y��kBX , w�-
onvergent to y�� � x��. At this point we surely havethat ~yn = xn + zn is w�-
onvergent to y��, but we still need the norm estimate on ~yn.Using the fa
t that we are working in X = C(K) or C0(K), it suÆ
es to trun
ate settingyn(t) = minf�;maxf��; ~yn(t)gg. Let us remark that in 
ase C, one needs to shrink thedomain to get the same modulus. The problem is to generalize Odell-Rosenthal for a pairof sequen
es as used here.Proposition 1.3Let K be a 
ountable 
ompa
t, Y be a Bana
h spa
e, X = C(K) or C0(K), T : BX !Y , T be C1;u-smooth operator. Then there exists a C1;u-smooth and w�-sequentially 
on-tinuous 
anoni
al extension T �� : BX�� ! Y ��. Moreover, (T ��)0(x��) 2 L��(X;Y ��) �L(X��; Y ��), for every x�� 2 BX�� , i.e. (T ��)0(x��) are w� � w� 
ontinuous.5



Proof. Given y� 2 BY � , we set fy� = y� Æ T : BX ! IR. As fy� is C1;u-smooth,and modulus of 
ontinuity of f 0y� is !(�), it is ws
 and by Proposition 1.2 there existsf��y� : BX�� ! IR extending fy� , su
h that f��y� (x��) = limn!1 fy�(xn). In parti
ular, T mapsweakly Cau
hy sequen
es into weakly Cau
hy sequen
es. We 
an therefore de�ne theextension T �� : BX�� ! Y �� as follows. Let x�� 2 �BX�� , x�� = w� � limxn, xn 2 �BX .We set T ��(x��) = w� � limn!1 T (xn) 2 Y ��:This formula is independent of the sequen
e fxng1n=1, and the existen
e and uniquenessof T ��(x��) is 
lear. We 
ontinue by proving that T �� is Fr�e
het di�erentiable in its domain.We have for every y� 2 BY � , x�� = w�� limn!1 xn and z�� = w�� limn!1 zn from the domainy�(T ��(x�� + z��)� T ��(x��)) = limn!1 y�(T (xn + zn)� T (xn)):Also y�(T (xn + zn)) = y�(T (xn)) + f 0y�(xn)(zn) +Rn; where jRnj � !(kznk)kznk:Re
all that by Proposition 1.2 and Lemma 1.1limn!1 f 0y�(xn) = (f��y� )0(x��) in norm:So jy�(T ��(x�� + z��)� T ��(x��))� (f��y� )0(x��)(z��)j � !(kznk)kznk:In parti
ular,y�(T ��(x�� + �z��)� T ��(x��)� � T ��(x�� + %z��)� T ��(x��)% ) � !(�) + !(%);independently of y� 2 BY � and z�� 2 BX�� , whi
h implies that T ��(x��) has uniformdire
tional derivatives. Similarly, we 
an prove the linear relations between the dire
tionalderivatives in order to see that (T ��)0(x��) exists in the Fr�e
het sense.On
e we have established the di�erentiability of T ��, we 
ontinue by proving that that(T ��)0(x��) = limn!1(T 0(xn))�� in the weak operator topology (note that (T 0(xn))�� is justthe ordinary linear bi
onjugate operator to T 0(xn)). That is to say we 
laim thaty�((T ��)0(x��)(z��)) = limn!1 y�((T 0(xn))��(z��) for all y� 2 BY � and z�� 2 BX�� :6



Using the notation from above, this follows using standard arithmeti
 from the followingrelations. ((T 0(xn))��(z��) = w� � limk!1 T 0(xn)(zk):y�(T ��(x�� + z��)� T ��(x��)) = limn!1 limk!1 y�(T (xn + zk)� T (xn)):The weak operator topology 
onvergen
e, together with the tri
k used in the proofof Proposition 1.2 in order to preserve modulus !(�) for the extension, yield the same
on
lusion here, namely (T ��)0(x��) has modulus of 
ontinuity !(�) as a fun
tion of x��.The w� � w� 
ontinuity of (T ��)0(x��) follows using similar arguments.The previous extension results will be used for a study of smooth operators on C(K)spa
es. As one of our 
orollaries below we prove that if T is non
ompa
t, then thereexists x�� 2 BX�� su
h that (T ��)0(x��) is a non
ompa
t linear operator. This impliesin parti
ular that there exists a non
ompa
t linear operator from X to Y ��, so that byTheorem 0.1 
0 is 
ontained in Y ��. However, we �rst need to prove the redu
tion lemmabelow, whi
h transfers the problem to the simplest spa
e 
0 and gives more information.Lemma 1.4Given a 
ountable ordinal �, let T : BC([0;�℄) ! X be a non
ompa
t C1;u-smoothoperator. Then there exists F 2 BC([0;�℄) and a sequen
e fungn2IN of disjointly supportedelements from C[0; �℄, with F + un 2 BC([0;�℄) for all n 2 IN , and su
h that T (F + un) isa non
ompa
t sequen
e in X.Proof. We may and will assume that X is separable. Suppose that fyngn2IN is asequen
e in BC[0;�℄ su
h that T (yn) is non
ompa
t. We will WLOG assume that ouroriginal sequen
e has the following additional properties. The sequen
e yn, and so alsoT (yn), are weakly Cau
hy. Using the standard argument from the proof of Lemma 12 in[H2℄, there exists some " > 0, a sequen
e ffigi2IN 2 BX� so that fi(T (yn)) = 0 for n < iand fi(T (yi)) > ". Moreover, as (BX� ; w�) is metrizable, fi is w�-
onvergent, and (byrepla
ing fi by f2i+1 � f2i and passing to subsequen
es) we may assume that in fa
t fi isw�-null. Fix a system f"�g��� of positive numbers su
h that P��� "� < "2 .Using an (ne
essarily �nite) indu
tive argument in j, we are going to 
onstru
t a system
onsisting of the following obje
ts:(i) a de
reasing sequen
e �j of ordinals � = �1 > �2 > � � � > �m = 0,(ii) a de
reasing system Mj+1 �Mj of subsets of M1 = IN , 1 � j � m,(iii) a fun
tion F 2 BC([0;�℄), F �[�j+1;�j+1℄= F (�j+1) is 
onstant,(iv) a system of sequen
es fyjngn2Mj ;1�j�m in BC[0;�℄, fy1ngn2IN = fyngn2IN , and forevery j < m, and n 2Mj+1 we have yjn(�) = yj+1n (�) for all � 2 [0; �j+1℄ [ [�j + 1; �℄. Fora �xed j, the system fsupp(yj+1n � F ) \ [�j+1 + 1; �℄gn2Mj+1 is pairwise disjoint.7



jfn(yj+1n )� fn(yjn)j < "�j for all n 2Mj+1.We present only the indu
tive step from j to j+1, as the �rst step requires only minor
hanges. Suppose we have so far 
onstru
ted: �i, Mi and the sequen
es fyingn2Mi fori � j, and F is partially de�ned on [�j + 1; �℄.If �j is nonlimit, the step to a smaller ordinal �j+1 = �j � 1 is really trivial, settingF (�j+1 + 1) = F (�j) = limn2Mj yn(�j), and using some standard perturbation argumentstogether with the indu
tive assumption we 
hoose appropriate Mj+1 and fyj+1n gn2Mj+1 .In this 
ase we will have yj+1n (�j+1 + 1) = F (�j+1 + 1).So we may assume that �j is a limit ordinal. Put r = limn!1 yn(�j).For % < � < �j , we de�ne a 
ontinuous operator on C[0; �℄ by P �% (x) = x� �[%+1;�℄x+r�[%+1;�℄ for x 2 C[0; �℄. Similarly, for % < � < � < �j we de�ne P �;�% (x) = x� �[%+1;�℄x+r�[%+1;�℄ � �[�+1;�j ℄x+ r�[�+1;�j ℄ for x 2 C[0; �℄.For a �xed % < �j , we have the following alternative. Either for every % < � < �j thereexists an in�nite set fn 2Mj : jfn(P �% (yjn))�fn(yjn)j < "�jg. In this 
ase we say that % is oftype I. Or else there exists % < � < �j su
h that fn 2Mj : jfn(P �% (yjn))�fn(yjn)j < "�jg is�nite, and we say that % is of type II. Given yjn is of type (%; �) if jfn(P �% (yjn))� fn(yjn)j �"�j . We 
laim that there exists % < �j of type I. Assuming, by 
ontradi
tion, that all% < �j are of type II, using the fa
t that �j is a limit ordinal we obtain for every N 2 INa sequen
e %1 < �1 < %2 < �2 < � � � < %N < �N < �j and some yjn, n 2 Mj whi
h is oftype (%i; �i) for all 1 � i � N . This is a 
ontradi
tion with Lemma 5 of [H1℄. This allowsus to 
hoose �j+1 = % < �j of type I, and extend the de�nition of F on [�j+1 + 1; �j℄ bythe 
onstant value r. We 
ontinue now by de�ning Mj+1 and fyj+1n gn2Mj+1 by indu
tion.Let n1 2Mj, and using that lim�!�j yjn1(�) = r, �nd � < �1 < �j su
h thatyj+1n1 (�) = yjn1(�) for � =2 [�1 + 1; �j℄;yj+1n1 (�) = r for � 2 [�1 + 1; �j℄:satis�es jfn1(yj+1n1 ) � fn1(yjn1)j < "�j . Having found n1; : : : ; ni and the 
orresponding�1 < � � � < �i < �j and yj+1n1 ; : : : yj+1ni we pro
eed as follows. Pi
k ni+1 2 Mj, ni+1 > nisu
h that jfni+1(P �i� (yjni+1))� fni+1(yjni+1)j < "�j ;and set yj+1ni+1 = P �i;�i+1� (yjni+1) for a large enough �i < �i+1 < �j , so that jfni+1(yj+1ni+1)�fni+1(yjni+1)j < "�j remains valid. We have thus des
ribedMj+1 = fnigi2IN and fyj+1n gn2Mj+1 .The above des
ribed indu
tive pro
edure ends in �nitely many m steps, due to thewell-ordering of �. The last step provides us with a desired sequen
e fymn gn2Mm and afun
tion F . To 
on
lude, it remains to put un = ymn � F .Theorem 1.5 8



Given a s
attered 
ompa
t K and a Bana
h spa
e X, let T : BC(K) ! X be a non-
ompa
t C1;u-smooth operator. Then there exists an aÆne subspa
e 
0 �= Y � C(K) su
hthat T �Y\BC(K) is non
ompa
t. Moreover every C1;u-smooth real fun
tion on Y \BC(K)is ws
.Proof. Let fyngn2IN 2 BC(K) be su
h that fT (yn)gn2IN is not relatively 
ompa
t. Bya standard argument of passing to suitable separable subalgebra of C(K) generated byfyngn2IN , it suÆ
es to prove the statement for every 
ountable 
ompa
t. By the 
lassi
alresult of Mazurkiewi
z and Sierpinski in [MS℄ this is equivalent to the 
ase K = [0; �℄, �a 
ountable ordinal, and X is a separable subspa
e 
ontaining the range of T (C(K)). Theredu
tion result now follows from the previous Lemma 1.4. The last fa
t on ws
 propertyfollows from the expli
it des
ription of the spa
e Y , whi
h satis�es the 
onditions used inthe proof of Theorem 10 of [H2℄.Theorem 1.5 gives a general positive answer to an aÆne version of Q 0.4. In the nextse
tion we will investigate non
ompa
t operators from B
0 , in the 
anoni
al norm. Itis standard to 
he
k (relying on the mentioned proof of Theorem 10 in [H2℄), that allour statements remain valid when the domain is a 
onvex and latti
e bounded set withnonempty interior, as is the 
ase in the redu
tion theorem. So the results of the nextse
tion apply to the redu
ed operators from a general s
attered C(K). We have 
hosenthe 
anoni
al version for the obvious reason of notational simpli
ity and 
larity.2. Smooth operators from 
0In this se
tion we establish general stru
tural properties of T and X, assuming thatthere exists a non
ompa
t C1;u-smooth operator T : B
0 ! X. Our results 
ome 
lose toX having a 
0 a subspa
e, but we did not manage to prove this 
ondition in full generality.Our main stru
tural result is that (T ��)0(x��) 2 L��(
0; X��) is a non
ompa
t linearoperator for some point x�� 2 B
0 , whi
h implies that X�� 
ontains a 
opy of `1, X�
ontains a 
omplemented 
opy of `1 and X has a 
0 quotient. When applied to some
lasses of X, su
h as Bana
h latti
es, duals et
., our results allow to 
on
lude that Xindeed 
ontains 
0, as 
onje
tured. For spa
es with PCP property we show that all C1;u-smooth operators are in fa
t 
ompa
t. In fa
t, most known examples of Bana
h spa
esseem to be 
overed by our 
riterions. On the other hand, by the result of Bourgainand Pisier [BP℄, every separable spa
e X not 
ontaining 
0 is 
ontained in a L1 spa
enot 
ontaining 
0. This seems to suggest a 
anoni
al way to a 
ounterexample, namely
onstru
ting a 
on
rete L1 spa
e. However this appears to be a deli
ate problem, sin
ethe 
lassi
al L1 spa
es of Bourgain and Delbaen ([B℄) have PCP and 
annot help (as wassuggested by Haydon in [Hay℄). Let us �nally re
all the fa
t that due to the redu
tionTheorem 1.5, all results in this se
tion remain valid (upon obvious modi�
ations) for C1;u-smooth operators T : BC(K) ! X, where K is 
ountable (or even s
attered, if we use theappropriate bi
onjugate).Lemma 2.1 9



Let X be a Bana
h spa
e, T : B
0 ! X be a C1;u-smooth operator su
h that T (B
0)is not 
ompa
t. Then there exist sequen
es ffng1n=1 2 BX� and fTng1n=1 2 L(
0; X),sup kTnk < 1 su
h that hTnei; fii � 1 whenever i < n, where feig1i=1 is the 
anoni
albasis of 
0.Proof. We know that T maps weakly Cau
hy sequen
es from B
0 to weakly Cau
hysequen
es from X. The assumption that T (B
0) is non-
ompa
t together with Lemma 12and Proposition 7 of [H2℄ imply that there exist u; fvng1n=1 2 B
0 (fvng � feng) su
h thatlimn!1 T (u+ vn) = T (u) does not hold and therefore fT (u+ vn)g1n=1 
annot be 
onvergent.By passing to a subsequen
e we may assume that for some Æ > 0kT (u+ vn)� T (u+ vm)k > 2Æ if n 6= m:For the rest of the proof, we may WLOG assume that u = 0, vn = en, T (0) = 0 andT 0(0) = 0. Indeed, these 
onditions are easily a
hieved by repla
ing T with~T : B
0 ! X : ~T � 1Xi=1 aiei� = T �u+ 1Xi=1 aivi�� T (u)� T 0(u)� 1Xi=1 aivi�:In the above formula T 0(u) may be assumed to be a 
ompa
t linear operator, sin
eotherwise by Theorem 0.1 
0 ,! X and the 
on
lusion of the lemma follows easily. Asevery 
ompa
t operator from 
0 
an be approximated by �nite dimensional operators (l1has the approximation property - see [LT1, p. 33℄), 
ompa
t perturbations 
annot violatethe 
on
lusion of the lemma. We have kT (ei)k > Æ, and fT (ei)gi=11 � X is weaklynull. By passing to a subsequen
e of feig1i=1, relabelled as feig1i=1 again, yi = T (ei)is a seminormalized basi
 sequen
e in X ([LT1, p. 5℄ or [FHHMPZ, p. 173℄), with itsbiorthogonal fun
tionals 'i 2 1ÆBX� satisfying'n(ym) = � 1 if n = m0 otherwise.In 
ase X is a dual spa
e, using standard perturbation arguments together with Gold-stine's theorem these fun
tionals 
an be assumed to be from the predual X�.Claim 2.2For every � > 0, there exists a subsequen
e fenig1i=1 of feig1i=1 su
h that N � k implies�����'nk Æ T � NXi=1 �ieni�� 'nk Æ T � kXi=1 �ieni������ � � for allj�ij � 1:Proof of Claim. By indu
tion. Set n1 = 1, �x a �nite setS = f�1;� l � 1l ;� l � 2l ; : : : ; l � 1l ; 1g � [�1; 1℄ su
h that !(1l ) < �4 :10



By Corollary 10 of [H1℄ there exists m1 2 IN su
h that N � m1 implies�����'n1 Æ T ��en1 + NXi=m1 �iei�� 'n1 Æ T (�en1)����� < �4for every � 2 S, j�ij � 1. We 
hoose n2 = m1 and 
ontinue by �nding m2 2 IN ,m2 > m1, su
h that N � m2 implies�����'n2 Æ T ��en1 + �en2 + NXi=m2 �iei�� 'n2 Æ T (�en1 + �en2 )����� < �4for every �; � 2 S, j�ij � 1.We set n3 = m2 and 
ontinue in an obvious manner.Using this indu
tive pro
edure, we obtain a sequen
e fenig1i=1 su
h that N � k implies�����'nk Æ T � NXi=1 �ieni�� 'nk Æ T � kXi=1 �ieni������ < �4for every �i 2 S. In order to pass to arbitrary values of �i 2 [�1; 1℄ it suÆ
es to re
allthat !�1l � < �4 .Before we pro
eed, we reindex fenig1i=1 as feig1i=1 again.Claim 2.3For every � > 0 there exists a subsequen
e fenig1i=1 of feig1i=1 su
h that�����'nk Æ T � kXi=1 �ieni�� 'nk Æ T (�kenk )����� � � for all j�ij � 1:Proof of Claim. Relies again on Lemma 5 from [H1℄. It gives us that for k largeenough (and depending only on the modulus of 
ontinuity of T 0), l > k and �l 2 S �xed,there exists i < k su
h thatj'nl Æ T (�iei + �lel)� 'nl Æ T (�lel)j < �4 for j�ij � 1:In fa
t, Lemma 5 of [H1℄ gives an upper bound on the number of i for whi
h the aboveestimate is not valid. Sin
e S is a �nite set, Repeating this argument for ea
h �l 2 S, weget that for k large enough but �xed and any l > k there exists some il < kj'nl Æ T (�ileil + �lel)� 'nl Æ T (�lel)j < �4for �l 2 S, j�il j � 1. 11



Clearly, there exists an in�nite subsequen
e k < M1 � IN su
h that n1 := il = im forevery l;m 2 M1. Next, 
hoose a large enough initial segment I � M1, so that for everyI < l 2M1, there exists some il, il 6= n1, su
h that for every �n1 ; �l 2 S, and j�il j � 1j'nl Æ T (�n1en1 + �ileil + �lel)� 'nl Æ T (�n1en1 + �lel)j < �8 :Again, there exists an in�nite subsequen
e I < M2 � M1 su
h that n2 := il = im forevery l;m 2 M2. We 
ontinue in an obvious way by indu
tion; after having 
onstru
tedn1; : : : ; nk 2 IN and in�nite sequen
esMk �Mk�1 � � � � �M1 � IN ,Mi�1 3 ni < Mi, theindu
tive step 
onsists of 
hoosing a long enough initial sequen
e I � Mk so that 8l > I,l 2Mk, 9il 2 I, il =2 fn1; : : : ; nkg, su
h that 8j�il j � 1 8�n1 ; : : : ; �nk 2 S, �l 2 S�����'nl Æ T � kXi=1 �nieni + �ileil + �lel�� 'nl Æ T � kXi=1 �nieni + �lel������ < �2k+2 :We then �nd an in�nite subsequen
e I < Mk+1 � Mk su
h that I 3 nk+1 := il = imfor every l;m 2Mk+1. The sequen
e fenig1i=1 obtained in this way satis�es�����'nk Æ T � kXi=1 �ieni�� 'nk Æ T (�kenk)����� ������'nk Æ T �k�2Xi=1 �ieni + �kenk�� 'nk Æ T (�kenk)�����++ �����'nk Æ T � kXi=1 �ieni�� 'nk Æ T �k�2Xi=1 �ieni + �kenk������ ������'nk Æ T �k�3Xi=1 �ieni + �kenk�� 'nk Æ T (�kenk)�����++ �����'nk Æ T �k�2Xi=1 �ieni + �kenk�� 'nk Æ T �k�3Xi=1 �iei + �kenk������+ �2k+2� � � � � j'nk Æ T (�1en1 + �kenk)� 'nk Æ T (�kenk)j+ �� 123 + 124 + � � �+ 12k+2 � �� �� 122 + � � �+ 12k+2 � � �2whenever �i 2 S. Passing to arbitrary �i 2 [�1; 1℄, at the expense of adding �2 on theright hand side, is possible due to !�1l � < 14� .12



Combining Claim 2 and Claim 3 we obtain that given � > 0 we may WLOG assumethat T satis�es (assuming n � k):�����'k Æ T � nXi=1 �iei�� 'k Æ T (�kek)����� � 2�:Re
all that 'k Æ T (0) = 0, 'k Æ T (ek) = 1, k'kk � 1Æ . Sin
e1 = 'k Æ T (ek) = Z 10 'k�hT 0(tek); eki� dtthere exists t0 2 [0; 1℄ where 'k�hT 0(t0ek); eki� � 1. Fix � > 0 satisfying !(�) < Æ8 . Thenfor t 2 [t0 ��; t0 +�℄ we have kT 0(tek)� T 0(t0ek)k � Æ8 and thus'k�hT 0(tek); eki� �'k�hT 0(t0ek); eki�� 1Æ kT 0(t0ek)� T 0(tek)k � 78 :Consequently, 'k Æ T �(t0 + �2 )ek�� 'k Æ T (t0ek) � 78 �2 :If, on the other hand, we have for some r 2 [0; 1℄'k Æ T �(r + �2 )ek�� 'k Æ T (rek) � 68 �2 ;then there exists s 2 [r; r + �2 ℄ for whi
h 'k (hT 0(sek); eki) � 68 and thus for every t 2[r; r+ �2 ℄ we have kT 0(tek)�T 0(sek)k � Æ8 and in parti
ular 'k (hT 0(tek); eki) � 68� 18 = 58 .We now set the value of � = �64 , and we suppose that feng1n=1 satis�es both Claim 2 and3. For every k 2 IN there exists an interval Jk � [0; 1℄ of length � su
h that'k (hT 0(tek); eki) � 78 for t 2 Jk:There exists an in�nite subsequen
e fnig1i=1 of IN su
h that [a; b℄ = J � 1Ti=1 Jni is aninterval of length �2 . We may again WLOG assume that ni = i. We have'k Æ T (bek)� 'k Æ T (aek) � 7�24 :13



Moreover we have for any j�ij � 1'k Æ T �k�1Xi=1 �iei + bek + nXi=k+1�iei�� 'k Æ T �k�1Xi=1 �iei + aek + nXi=k+1�iei� �'k Æ T (bek)� 'k Æ T (aek)� 4� � 7�24 � �24 = 6�24 :Thus, for every 
 2 [a; b℄, j�ij � 1'k�hT 0�k�1Xi=1 �iei + 
ek + nXi=1 �iei�; eki� � 58 :To �nish the proof of Lemma 1 we set for n 2 IN :Tn : 
0 ! X to be Tn = 85Æ T 0� nXi=1 aei�;fn = Æ'n:Our main stru
tural result on non
ompa
t smooth operators is the following.Theorem 2.4Let X be a Bana
h spa
e, T : B
0 ! X be a C1;u-smooth operator su
h that T (B
0) isnot 
ompa
t. Then there exists a point x�� 2 B
��0 , su
h that (T ��)0(x��) 2 L��(
0; X��)is a non
ompa
t linear operator. Moreover, if X is a dual spa
e, we 
an get in addition(T ��)0(x��)(
0) � X, and (T ��)0(x��) �
0 is non
ompa
t.Proof. In the proof of Lemma 2.1, we have established the existen
e of u; fvng1n=1 2B
0 , su
h that vn are disjointly supported ve
tors (fvng � feng), and 
orrespondingbiorthogonal fun
tionals ffng1n=1 2 BX� (or BX� , if X is a dual spa
e) to fT (vn) �T (u)g1n=1 in X, so thathT 0� nXi=1 avi�(vk); fki � � > 0 for every n � k:It suÆ
es to put x�� = w�� limn!1 1Pi=1 avi, sin
e (T ��)0(x��) being a weak operator limitof the sequen
e fT 0� nPi=1 avi�g1n=1 is, due to the above inequality, 
learly a non
ompa
tlinear operator. The 
ase when X is a dual spa
e follows by standard w�-
ompa
tnessargument using the additional information that fi 2 X�.14



The following are immediate 
onsequen
es.Corollary 2.5Let X be a Bana
h spa
e, T : B
0 ! X be a C1;u-smooth operator su
h that T (B
0) isnot 
ompa
t. Then X has the following properties.(i) `1 ,! X��, `1 is a 
omplemented subspa
e of X� and X has a 
0 quotient.(ii) X does not have nontrivial 
otype.(iii) X is not weakly sequentially 
omplete.Proof of (i). (T ��)0(x��) �
0 is a non
ompa
t operator, so by Theorem 0.1, 
0 ,! X��.The rest are general 
onsequen
es of this fa
t, to be found in [LT1℄ or [FHHMPZ℄.Proof of (ii). By the prin
iple of lo
al re
exivity [FHHMPZ, p. 292℄ 
n0 embeds uniformlyto X, whi
h is equivalent to X la
king nontrivial 
otype [DJT, p. 283℄.Proof of (iii). The weak sequential 
ompleteness ofX, together with the w�-to-weak oper-ator topology 
ontinuity of the mapping x�� ! (T ��)0(x��) implies that (T ��)0(x��)(
0) �X, so by (i) we get 
0 ,! X whi
h is however a 
ontradi
tion with the weak sequential
ompleteness of X.Corollary 2.6Let X be a Bana
h spa
e with any of the following properties:(i) X is a dual spa
e,(ii) X is a 
omplemented subspa
e of a Bana
h latti
e,(iii) X is a subspa
e of a spa
e with an un
onditional basis,(iv) X has property (u) of Pel
zynski.Suppose that there exists a C1;u-smooth operator T : B
0 ! X, su
h that T (B
0) is not
ompa
t. Then 
0 ,! X.Proof. (i) follows along the same lines as (iii) of Corollary 2.5, using the fun
tionalsfrom predual. (ii)-(iv) follow from (iii) of Corollary 2.5 and the 
lassi
al results in [LT1,2℄,a

ording to whi
h any Bana
h spa
e from one of these 
lasses is weakly sequentially
omplete unless it 
ontains 
0.Re
all that a Bana
h spa
e X has the point of 
ontinuity property (PCP), if every weakly
losed bounded subset of X 
ontains a point of weak-to-norm 
ontinuity for the identitymapping. Spa
es with the PCP property have been extensively studied by many authors.In parti
ular it is known that all RNP spa
es belong to this 
lass, and in the followingtheorem we will use the fundamental des
ription of separable PCP spa
es as those admit-ting a boundedly 
omplete skipped blo
king �nite dimensional de
omposition. The lastnotion is due to Bourgain and Rosenthal, and its equivalen
e to the PCP was establishedby Ghoussoub and Maurey in [GM℄. We refer to this paper for the result and furtherreferen
es in this area.Theorem 2.7 15



Let X be a Bana
h spa
e with the PCP property. Then every C1;u-smooth operatorT : B
0 ! X is 
ompa
t.Proof. Sin
e PCP is a hereditary property, we may WLOG assume that X is separable.We pro
eed by 
ontradi
tion, assuming that there exists a C1;u-smooth non
ompa
t op-erator T : B
0 ! X, and X has a boundedly 
omplete skipped blo
king �nite dimensionalde
omposition. That is to say, there exists a sequen
e Gi of �nite dimensional subspa
esof X satisfying(1) X = span 1Si=1Gi(2) Gk \ span Si6=kGi = f0g(3) if fmkg1k=1, fnkg1k=1 are sequen
es from IN , mk < nk + 1 < mk+1 then settingHk = span nkSi=mk, fHkg1k�1 is a boundedly 
omplete FDD for span 1Sk=1Hk.In our proof we will use the notation from the proof of Lemma 2.1. The starting pointof our proof are the results obtained there, in parti
ular, we assume that feig1i=1 2 B
0is a seminormalized basi
 sequen
e equivalent to the 
anoni
al basis, yi = T (ei) is aseminormalized basi
 sequen
e in X with its biorthogonal fun
tionals 'i 2 1ÆBX� satisfying'n(ym) = � 1 if n = m0 otherwise.Moreover, the following relations hold for some � > 0.�����'nk Æ T � kXi=1 �ieni�� 'nk Æ T (�kenk )����� � � for all j�ij � 1:�����'k Æ T � nXi=1 �iei�� 'k Æ T (�kek)����� � 2� for all n � k; j�ij � 1:We now pro
eed by 
onstru
ting sequen
es of integers fmkg1k=1, fnkg1k=1, flkg1k=1 as fol-lows:Fix a sequen
e "n & 0, 1Pn=1 "n < 1, put m1 = 1, l1 = 1. Set n1 > m1 su
h thatdist�T (e1); span n1[i=1Gi� < "1:Next, put m2 = n1 + 2 and 
hoose l2 whi
h satis�es for j�ij � 1dist�T (e1 + NXi=l2 �iei)� T (e1); span 1[i=m2Gi� < "2:16



The existen
e of su
h l2 follows sin
e T (e1 + x)� T (e1) maps weakly null sequen
es fxngfrom B
0 to weakly null sequen
es in X, and spanm2�1Si=1 Gi is �nite dimensional. Next
hoose n2 su
h that dist�T (el1 + el2)� T (el1); span n2[i=m2Gi� < "2:Put m3 = n2 + 2, and 
ontinue by indu
tion as follows. Having 
onstru
ted fnigki=1,fmigki=1, fligki=1, we set mk+1 = nk + 2. We then �nd lk+1 > lk for whi
h if j�ij � 1 thendist�T ( kXi=1 eli + NXi=lk+1 �iei)� T ( kXi=1 eli); span 1[i=mk+1Gi� < "k:Finally, �nd nk+1 > mk+1 for whi
hdist�T (k+1Xi=1 eli)� T ( kXi=1 eli); span nk+1[i=mk+1Gi� < "k:Denote y0 = 0, yk = T ( kPi=1 eli), Hk = span nk+1Si=mk+1Gi. With this notation, it is 
lear thatfor some zk, kzkk < "k uk := yk+1 � yk + zk 2 Hk:Sin
e NPk=1uk = yN+1 + NPk=1 zk is a norm bounded sequen
e, it is norm 
onvergent. Thusy = limn!1 yn = limn!1 T ( nXi=1 eli)exists in norm. However, 'ln(yn) � 'ln�T (eln)�� � = 1� �'ln(yn�1) � 'ln�T (0)�+ � = �:Thus kyn � yn�1k � (1� 2�) 1k'lnk � (1� 2�)Æ, a 
ontradi
tion.In parti
ular, and answering a question of Haydon from [Hay℄ in the negative, we have thefollowing.Corollary 2.8 17



Let X be a Bourgain-Delbaen L1 spa
e (
f. [B℄), T : B
0 ! X be C1;u-smooth. ThenT (B
0) is 
ompa
t.Proof. Combining the results in [B℄ and [GM℄, these spa
es have the PCP property.3. Summability properties of smooth fun
tions on 
0Given a fun
tion f : B
0 ! IR, we are interested in the value V = 1Pn=1 jf(en)j. Thereare numerous results whi
h give the 
onvergen
e of the last summation. In the 
omplexs
alar 
ase (when 
0 is over the 
omplex �eld and f is 
omplex), Aron and Globevnik [AG℄(generalizing K. John's earlier work [J℄) showed that if f is a homogeneous polynomial,then V � supx2B
0 jf(x)j. This estimate is independent of the degree of the polynomial.Aron, Beauzamy and En
o [ABE℄ treated the 
orresponding real 
ase. The result isthat for a general k-homogeneous polynomial V � 4k2supx2B
0 jf(x)j, but there exists k-homogeneous polynomials for whi
h V � ksupx2B
0 jf(x)j. Thus an upper estimate usingthe supremum of f , independent on the degree, does not exists even for homogeneouspolynomials. However, in [H2℄, we prove the following degree free estimate for everyhomogeneous polynomial: V � 16supx2B
0 kf 00(x)k. The main result of this se
tion is a
onstru
tion of nonhomogeneous real polynomials for whi
h V 
annot be estimated fromabove using f 00 independently of the degree.It turns out that these results are 
losely 
onne
ted with the behaviour of smooth operators,in parti
ular the Question 0.5 (in fa
t, after 
he
king Se
tions 3,4 of this note, the readerwill realize that the validity of the estimate from [H2℄ is essentially equivalent to the validityof Q 0.5). We re
over a sharper form of Pel
zynski Theorem 0.2 from this and Theorem1.5 (answering Q 0.5 in the positive for polynomial operators). In the subsequent se
tionwe 
onstru
t a C1;1-smooth non
ompa
t operator whi
h fails this des
ription (and Q 0.5)and seems to be a half-way 
ounterexample to Question 0.3.Theorem 3.1Let X be a Bana
h spa
e, K be a s
attered 
ompa
t, P : C(K) ! X be a non
om-pa
t polynomial operator (not ne
essarily homogeneous). Then there exists a sequen
efvng1n=0 2 BC(K), su
h that both fvn� v0g1n=1 and fP (vn)�P (v0)g1n=1 are equivalent tothe 
anoni
al basis of 
0.Proof. By the redu
tion theorem we may repla
e C(K) by the spa
e 
0. Let k = deg(P ).As P (B
0) is not relatively 
ompa
t, by [H2℄, Lemma 12, there exists vn 2 B
0 , n =0; 1; : : : , su
h that fvng1n=1 is equivalent to the unit basis of 
0 and k � k� limn!1P (v0+ vn)does not exist. Put y0 = P (v0), yn = P (v0+ vn), zn = yn� y0. As was shown in the proofof Lemma 2.1, by passing to a subsequen
e WLOG fzng1n=1 is a C-seminormalized weaklynull S
hauder basi
 sequen
e (C�1 � kznk � C for some C). We 
laim that fzng1n=1 isequivalent to the 
anoni
al basis of 
0. To this end, it suÆ
es to show that there existsK 2 IR su
h that 18



supj�nj�1 k 1Xn=1�nznk � K:whi
h is equivalent to 1Pn=1 j�(zn)j � K for every � 2 BX� .Assume ~P (x) = P (v0 + x)� P (v0) = kPl=1Pl(x), where Pl are homogeneous polynomials.Fixing l, there exists Kl 2 IR, su
h that for every � 2 BX� , �ÆPl : 
0 ! IR is a real valuedk-homogeneous polynomial satisfying k(� Æ Pl)00(x)k � Kl for all x 2 B
0 .By ([H2℄, Lemma 15) 1Xn=1 j� Æ Pl(vn)j � 16CkKl:Consequently,1Xn=1 j� Æ ( kXl=1 Pl(vn))j = 1Xn=1 j( kXl=1 � Æ Pl(vn))j � kXl=1 16CkKl = K <1:This estimate is true for every � 2 BX� .The improvement of Theorem 3.1 over Theorem 0.2 
onsists of showing that P a
tually
arries a translate of the 
anoni
al basis of 
0 into the range spa
e X, in the spirit ofTheorem 0.1. The next simple example shows that Theorem 3.1 is optimal in the sensethat the shifting of the 
0 basis by y0 is ne
essary, so the result is ne
essarily of aÆnerather than linear nature.Example 3.2Put P (x) : 
0 ! 
0, P ((xi)1i=1) = (x41; x21x22; x21x23; : : : ). Then P is non
ompa
t, butlimn!1P (un) = 0 for every weakly null sequen
e in 
0. Choosing vi = ei+1, i = 1; 2; : : :gives P (v0) = e1, P (v0+ vi) = e1+ ei+1. Sin
e the image of P is 
ontained in the positive
one of 
0, we also see that we 
annot hope for B
0 � P (B
0).We 
ontinue with the main result of this se
tion, a 
onstru
tion of a spe
ial sequen
e ofC1;1-smooth fun
tions failing the good summability properties. These fun
tions will beused later to 
onstru
t a C1;1-smooth non
ompa
t operator whi
h fails the statement ofTheorem 3.1 (and also Q 0.5).Theorem 3.3Let �n : B
n0 ! IR be de�ned as�n(xi) = 1pn nYi=1(1� x4i ):19



Then 9C independent of n su
h that �00n : B
n0 ! L(
n0 ; `n1 ),�00n(x) = ��2�n(x)�xi�xj �ni;j=1 satis�es k�00nkL(
n0 ;`n1 ) � C:Proof. First note that for (aij)ni;j=1 = L 2 L(
n0 ; `n1 ), we have kLkL(
n0 ;`n1 ) = max"j=�1 nPi=1 j nPj=1aij"j j �nPi=1 nPj=1 jaij j. Now we have�2�n(x)�xi�xj = 8>>>>><>>>>>: �12pn x2i nQk=1k 6=i(1� x4k) if i = j;16pnx3ix3j nQk=1k 6=i;j(1� x4k) if i 6= j:We wish to estimate for x 2 B
n0 the quantitiesA = supx2B
n0 nXi=1 �����2�n(x)�x2i ���� ;B = supx2B
n0 nXi=1 nXj=1i6=j �����2�n(x)�xi�xj ���� :WLOG assume that 0 � x1 � x2 � � � � xn � 1, so that (1� x4k) � (1� x4n) and putF �(xi)n�1i=1 � := 12pn + 12pn�n�1Xi=1 x2i n�1Yk=1(1� x4k)� �12pn� nXi=1 x2i n�1Yk=1(1� x4k)� � 12pn nXi=1 x2i nYk=1k 6=i (1� x4k):The reason for introdu
ing F instead of estimating dire
tly the original term is the usefulsymmetry of rF , as we will see below. There exists z = (zi)n�1i=1 2 B
n�10 su
h thatF (z) = maxx2B
n�10 F (x) � A. Clearly, either z 2 �B
n�10 or else rF (z) = 0. In the �rst 
ase,zi = 1 for some i � n� 1 and thus F (z) = 12pn . Suppose z =2 �B
n�10 .rF (z) = 12pn�2zi n�1Yk=1(1� z4k)� 4z3i (n�1Xj=1 z2j ) n�1Yk=1k 6=i(1� z4k)�n�1i=1 = 0:20



Put 
 = n�1Pj=1 z2j . Unless zi = 0, we have (1� z4i )� 2
z2i = 0. Solving this equation for z2igives z2i = �
 �p
2 + 1. However, sin
e z2i > 0, we have z2i = p
2 + 1 � 
 = z2j forevery i; j � n � 1, for whi
h zi; zj 6= 0. Suppose that m = 
ardfi : zi 6= 0g � n � 1 andjzij = � whenever zi 6= 0. Thus � = 14p1+2m , andF (z) = 12pn�1 +m�2(1� �4)m� = 12pn�1 + mp1 + 2m (1� 11 + 2m )m� �� 12pn + 12pmpn (1� 11 + 2m )m � K;whereK is a 
onstant independent of n andm < n. Indeed, re
all that limm!1(1� 11+2m)m =1pe . In order to estimate B, suppose WLOG 0 � x1 � x2 � � � � � xn. Then16pn nXi=1 nXj=1j 6=i x3ix3j nYk=1k 6=i;j(1� x4k) � 16pn�n�2Xi=1 n�2Xj=1 x3ix3j n�2Yk=1(1� x4k) + S0 + S1 + 1�where S� = x3n�� n�2Pj=1 x3j n�2Qk=1(1 � x4k). By 
omparing this expression with the formula forF (x), and keeping in mind that x2j � x3j we get 16pn (S0+S1+1) � 4K. In order to estimateB, set (again for reasons of symmetry of rG whi
h makes the 
al
ulations easier)G(x) = 16pn�n�2Xi=1 n�2Xj=1j 6=i x3ix3j n�2Yk=1(1� x4k) + n�2Xi=1 12x6i n�2Yk=1(1� x4k)�;and note that 
learlymaxx2B
n�20 G(x) + 4K � maxx2B
n�20 G(x) + 16pn (S0 + S1 + 1) � B:Suppose z 2 B
n�20 , G(x) = maxx2B
n�20 G(x) (and WLOG zi � 0). In 
ase z 2 �B
n�20 , wehave zi = 1 for some i and G(z) = 0. Thus z =2 �B
n�20 and so rG(z) = 0. A straitforward
al
ulation gives �G�xi (z) = 16pn�3z2i n�2Yk=1(1� z4k)�� 4z3i n�2Yk=1k 6=i (1� z4k)�� = 021



where � = n�2Pj=1 z3j and � = n�2Pl=1 n�2Pj=1 z3l z3j + n�2Pj=1 12z6j . Therefore, whenever zi 6= 0, we have3(1 � z4i )� � 4zi� = 0. Thus zi; zj 6= 0 implies 1zi � z3i = 1zj � z3j . As the real fun
tion�(t) = 1t � t3 is de
reasing on IR+, this gives zi = zj = �. Denote by m = 
ardfi : zi 6= 0g.We have G(z) = 16pn�m2�6(1� �4)m + 12m�6(1� �4)m� � 2 16pnm2�6(1� �4)m:In order to estimate the last expression, �xm and de�ne a fun
tion �(�) = �6(1��4)m. Onthe interval [0; 1℄ � has only one 
riti
al (and 
learly a lo
al maximum) point � = 4q 33+2m .So G(z) = 2�16pnm2� 11+ 23m� 32 �1� 11+ 23m�m. Sin
e m � n� 2 and limm!1�1� 11+ 23m�m = e� 32 ,there exists a 
onstant L, independent of the values n;m < n, for whi
h G(z) � L. Finally,setting C = L+ 5K � A+ B satis�es the requirements.4. Range of C1;1 smooth operator.Using the fun
tions 
onstru
ted above, we are now going to 
onstru
t an C1;1-smoothnon
ompa
t operator su
h that the set T (B
0) does not 
ontain a translate of the 
anoni
albasis of 
0 (and 
onsequently fails Question 0.5). This phenomenon 
annot o

ur withpolynomials, or real analyti
 operators. In fa
t we are able to 
ontrol the "positive" spanof T (B
0) as well. However, using negative 
oeÆ
ients generates the 
opy of 
0 in therange. Changing the 
onstru
tion somewhat, we are able to eliminate 
0 basis from spans
ontaining a limited number of negative 
oordinates. We do not present these modi�
ationshere (as they are te
hni
al and do not suÆ
e for a general 
ounterexample), but they mayshed some light on the deli
a
y of the problem.Let T : 
0 ! `1 be an operator, T (x) = (fn(x))1n=1.Lemma 4.1Let T : B
0 ! `1 be a C1-smooth operator. Then T 0 : B
0 ! L(
0; `1) is uniformly
ontinuous with modulus of 
ontinuity !(t) i� every f 0n : B
0 ! `1 is uniformly 
ontinuouswith modulus of 
ontinuity !(t).Proof. Consider an in�nite matrix (aij)1i;j=1, whi
h represents L 2 L(
0; `1). Morepre
isely, L(ek) = (aik)1i=1 2 `1:Sin
e L is bounded, we have supi2IN 1Xk=1 jaikj = kLkL(
0;`1):22



Put gi = (aik)1k=1 2 `1. We 
an write L = (gi)1i=1, kLkL(
0;`1) = supi2IN kgik`1 . Now givenx; y 2 B
0 , kx � yk = t, �f 0n(x)�1n=1 = T 0(x) = L = (gi)1i=1, �f 0n(y)�1n=1 = T 0(y) = S =(hi)1i=1 we have kL� SkL(
0;`1) = supi2IN kgi � hik`1 :Clearly, kL� SkL(
0;`1) � !(t) i� for every i 2 IN kgi � hik`1 � !(t).In the rest of the note we will 
onstru
t simultaneously a Bana
h spa
e X ,! `1 and aC1;1-smooth and non
ompa
t operator T : B
0 ! X, su
h that T (B
0) does not "
ontain"a 
anoni
al basis of 
0.First, let C be from Theorem 3.3, �x a sequen
e ni = 24i, and put  ni : IRni ! IR, ni(x) = 12iC � 1pni � �ni(x)�:Clearly,  ni(0) = 0,  0ni(0) = 0,  ni is symmetri
 and k 00nik � 2�i on B
ni0 . Sin
e  ni isa symmetri
 fun
tion, given A � IN , jAj = ni, we may put  Ani : B
0 ! IR to be Ani�(xj)1j=1� =  ni�(xj)j2A�:The system of tuples of setsSk = f(A1; A2; : : : ; Al) : Ai � IN; jA1j < jA2j < � � � < jAlj; jAij 2 fnig1i=1; jAlj = nkgis 
ountable, and so is S = 1Sk=1Sk. For (A1; : : : ; Al) 2 S put  (A1;:::;Al) : B
0 ! IR, (A1;:::;Al)(x) = lPi=1 AijAij(x). Fix a bije
tion ! : S ! IN . We de�ne �n : B
0 ! IR by�n(x) =  !�1(n)(x), and T : B
0 ! `1 by T (x) = (�1(x); �2(x); : : : ). By Lemma 4.1, T isC1;1-smooth. We de�ne X = spanT (B
0) ,! `1.Theorem 4.2T : B
0 ! X is a non
ompa
t, C1;1-smooth operator, with the property that there is nosequen
e fyng1n=0 in T (B
0) su
h that fyn� y0g1n=1 is equivalent to the 
anoni
al basis of
0.Proof. It remains to prove the statement about fyn � y0g1n=1. We pro
eed by 
ontra-di
tion, assuming yn = T (un), where un 2 
00. Clearly, by passing to a subsequen
e offung1n=1 WLOG there exists some m 2 IN , Æ > 0 and a sequen
e m < j1 < j2 < : : : , su
hthat supp(u0) � [1;m℄, unjn > Æ. Take a set A � fjkg1k=1, jAj = np = 24p. We have23



 Anp(un) = 12pC 1pnp �1�Yi2A(1� uni 4)� � 12pCpnp � Æ4 for n 2 A; Anp(u0) = 0:Thus �!((A))(u0) = 0, yi!(A) = �!((A))(uj) � 12pC 1pnp Æ4. So k Pj2A(yj � y0)k � Pj2A yj!(A) �12pC � pnpÆ4, whi
h is a 
ontradi
tion, sin
e the last expression 
an be made arbitrarilylarge (by the 
hoi
e of p).In fa
t, our 
onstru
tion enables us to prove a somewhat more general statement. LetNn 2 IN , ani 2 IR where 1 � i � Nn, yn;i = T (xn;i). The main 
onje
ture on 
ontainmentof 
0 in X would be disproved if for ea
h su
h system, fNnPi=1 ani yn;ig1n=1 is not equivalentto the 
anoni
al basis of 
0. We are able to prove this statement under assumption thatani � 0. This is not suÆ
ient to ensure that 
0 6,! X, and in fa
t in our 
onstru
tion thesequen
e fT (k+1Pi=1 ei)� T ( kPi=1 ei)g1k=1 is equivalent to fekg1k=1 and thus 
0 ,! X. However,further modi�
ations of our 
onstru
tion may lead to the full 
ounterexample. Sin
e thefollowing result is not 
entral in this work, we present only a sket
h of the argument.Proposition 4.3In the notation above, assume that ani � 0. Then fNnPi=1 ani yn;ig1n=1 is not equivalent to the
anoni
al basis of 
0.Sket
h of Proof. Assume, By 
ontradi
tion, that fNnPi=1 ani yn;ig1n=1 is equivalent to the
anoni
al basis of 
0. Let fmng1n=1 be a sequen
e form IN su
h that 9� > 0NnXi=1 ani yn;imn � �:We will distinguish two 
ases (whi
h involve passing to subsequen
es).Case I.9fmng1n=1 as above and su
h that!�1(mn) = (An1 ; : : : ; Anln) where limn!1 jAn1 j =1:Case II.limn!1k!1 supjA1j=nk NnPi=1 ani yn;i!(A1;:::;Al) = 0In Case I, we may 
learly assume, by passing to a subsequen
e, that ~n > n impliesjAnln j < jA~n1 j. Thus 24



NnXi=1ani yn;i!(A11;:::;A1l1 ;A21;:::;A2l2 ;:::;A~n1 ;:::;A~nl~n ) �� NnXi=1 ani yn;i!(An1 ;:::;Anln) � �:In parti
ular, k pPn=1 NnPi=1 ani yn;ik1 � p�� a 
ontradi
tion. (Note that this 
ase 
an be handledwithout the assumption ani � 0.)In Case II, we may WLOG assume that 9p 2 IN su
h that !�1(mn) = (An), jAnj = np.Next, 
hoose a set A, jAj = nr, An � A for 1 � n � nrnp . It is easy to observe that Anr (x) � 12rC 1pnr �1� Yi2An(1� x4i )� = 12r�p pnppnr  Annp (x):Thus (due to ani � 0) nrnpXn=1 NnXi=1 ani yn;i!(A) � nrnp 12r�prnpnr� = 2r�p�a 
ontradi
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