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§1. Introduction.

S. Bates has recently investigated separable Banach spaces X satisfying the condition that

for every separable Banach space Y there exists a surjective C∞-Fréchet smooth (nonlinear)

operator from X onto Y . We will denote the class of all these spaces by B. Bates has

shown that every separable superreflexive space belongs to B and he also characterized

spaces for which his method of proof fails.

Theorem 1 (Bates)

Let X /∈ B be an infinite dimensional Banach space. Then at least one of the following

conditions hold:

(i) Every seminormalized weakly null sequence in X∗ has a subsequence with a spreading

model isomorphic to ℓ1

(ii) X∗ has the Schur property.

Natural examples of spaces satisfying (i) or (ii) are c0 and the original Tsirelson space,

and Bates asked whether indeed c0 /∈ B. The question was settled in [9] (i.e. c0 /∈ B),

a paper which was conducted without any knowledge of S. Bates’ work, and which was

mainly concerned with the behavior of C2-smooth real functions on c0.

In order to reveal the connection between these matters, let us denote by C the class of

Banach spaces X such that for any real function f defined on an open subset U of X,

with locally uniformly continuous derivative, f ′ is locally compact. That is to say, for

every x ∈ U there exists open neighbourhood V ⊂ U , x ∈ V, such that f ′(V) is relatively

compact in X∗.

A simple use of the Baire category principle implies that if T : X → Y is a surjective

operator with locally continuous derivative (e.g. C2-Fréchet smooth), and X ∈ C, then

Y ∈ C. If, on the other hand, Y ∈ B then X ∈ B. Since ℓ2 ∈ B, ℓ2 /∈ C we have the

following implication: X ∈ C =⇒ X /∈ B, and moreover whenever Y ∈ B, there exists no

surjective Y : X → Y with locally uniformly continuous derivative. A little more can be

said under some additional assumptions.

Proposition 2.
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Let X⊕X ∈ C, Y be an infinitely dimensional Banach space with nontrivial type, T : X →

Y be a Fréchet differentiable operator with locally uniformly continuous derivative. Then

T is locally compact.

The proof of this statement is identical with that of Corollary 11 of [9], using Lemma 5

below instead of Corollary 10 of [9]. It should be noted that some additional assumptions

must be put on Y , because as follows from the Josefson-Nissenzweig theorem, every infinite

dimensional Banach space admits a noncompact linear operator into c0.

Proposition 2 is particularly useful if X ⊕ X ∼= X, as is the case when X = C(K), K

countable, or X = T ∗ (the original Tsirelson space) (for these results see [4], [5]). Thus in

what follows, we will be mainly interested in showing that X ∈ C for these spaces.

In section 2 we develop methods from [9] to show that the original Tsirelson space T ∗

belongs to C. Also, C(K), K scattered, belong to C. On the other hand, the Schreier

space B ([5,10,11]) yields an example of a polyhedral subspace of C(ωω) which belongs to

B. In particular, B is an example of a subspace of C(ωω) which is not a quotient of C(K),

K scattered.

In section 3 we prove a somewhat finer statement that there exists no surjective oper-

ator from c0 onto T ∗ or from T ∗ onto c0 with locally uniformly continuous derivative.

This suggests that there may be many ”incomparable elements” with respect to smooth

surjections.

Section 4 is devoted to proving certain estimates for homogeneous polynomials on cn
0 ,

independent of n and the degree of the polynomial, in the spirit of [2].

We are indebted to R. Haydon who first observed that the methods of [9] apply also in

case of the Tsirelson space, and who informed us about S. Bates’ work.

Our paper is a natural continuation of [9], but for the convenience of the reader we will

repeat some important definitions and statements.

Let X,Y be real Banach spaces. We say that an operator T : X → Y is locally compact

if for every x ∈ X there exists an open neighbourhood x ∈ U , such that T (U) is norm

relatively compact in Y . We say that T is weakly (w)-sequentially continuous on U ⊂ X

if it maps w-Cauchy sequences from U into norm convergent ones.

A modulus of continuity for a given uniformly continuous function f from a metric space
(

X1,d1

)

into a metric space
(

X2,d2

)

is an increasing real function ω(δ), δ ≥ 0, lim
δ→0

ω(δ) =

0, such that

d1(x1, x2) ≤ δ implies d2(f(x1), f(x2)) ≤ ω(δ).
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The following two statements have been proved in [9], and will be used frequently.

Lemma 3.

Let ε > 0, f be a real function on Bcm
0

with uniformly continuous derivative (with modulus

of continuity ω(δ)) and such that sup
Bcm

0

‖f ′‖1 ≤ ω(2). Let v ∈ Bcm
0

and {ui}
n
i=1 be a block

sequence such that v +ui ∈ Bcm
0
. If n is large enough (the estimate depends only on ω(δ)),

then min
1≤i≤n

|f(v + ui) − f(v)| < ε.

Lemma 4.

Let f be a Fréchet differentiable real function with uniformly continuous derivative defined

on Bc0
. Then f is weakly sequentially continuous on Bc0

.

§2. The class C.

Before we state our next lemma, let us remark that if ℓ1 →֒ X, then by classical results in

[7], ℓ2 is a linear quotient of X, so X ∈ B.

Lemma 5.

Let X be a Banach space, ℓ1 6 →֒ X. Let f be a real function with uniformly continuous

derivative on BX . TFAE:

(i) f is w-sequentially continuous

(ii) f ′(BX) is relatively compact.

Proof: (ii) =⇒ (i). Since K = f ′(BX) is norm compact, given a weakly Cauchy

sequence {xn}n∈IN in BX we have:

lim
n,m→∞

〈φ, xn − xm〉 = 0 uniformly in φ ∈ K.

By the mean value theorem, for some point x in the interval joining xn and xm, we have:

|f(xn) − f(xm)| = 〈f ′(x), xn − xm〉| ≤ sup
φ∈K

|〈φ, xn − xm〉| → 0 as m,n → ∞.

(i) =⇒ (ii). Denote ω(δ) the modulus of continuity of f ′ on BX . Note that f is

Lipschitz on BX . If f ′(BX) is not relatively compact, there exist ε > 0 and (by Rosenthal’s

theorem) a w-Cauchy sequence {xn}n∈IN in (1 − ε)BX such that fn = f ′(xn) satisfy
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1
ε

> ‖fn‖ > ε, ‖fn − fm‖ > ε. If lim f(xn) does not exist, we are done. Otherwise, by

standard argument, we may in addition assume that f(x1) = f(xn), n ∈ IN . By induction,

we find a subsequence nk of IN and a sequence {yk}k∈IN in BX such that:

|(fnk
− fnl

)(yl)| >
ε

4
for k > l (1)

|(fnk1
− fnk2

)(yl)| <
ε

100
for k1, k2 > l. (2)

This is done as follows: Choose y1 ∈ BX such that (f1 − f2)(y1) > ε
2 . There exists

an increasing subsequence {n1
k}k∈IN of IN satisfying (2) for l = 1, and satisfying (1) for

either n1 = 1 or n1 = 2. Fix the choice of n1 and assume n1 < n1
1. Find y2 ∈ BX such

that (fn1
1
− fn1

2
)(y2) > ε

2 . There exists an increasing subsequence {n2
k}k∈IN of {n1

k}k∈IN

satisfying (2) for l = 2 and (1) for either n2 = n1
1 or n2 = n1

2. We continue in an obvious

manner.

We may assume that {yk}k∈IN is w-Cauchy. Conditions (1) and (2) imply that for every

k > 3 we have either |fnk
(yk−2 − yk−1)| > ε

8 or |fnk−1
(yk−2 − yk−1)| > ε

8 . Passing to a

suitable subsequence of {yk−2 − yk−1}k∈IN and {fnk
}k∈IN , we obtain a w-null sequence

{zl}l∈IN such that fnl
(zl) > ε

8 . For α > 0 small enough, we have xnl
+ αzl ∈ BX and

f(xnl
+αzl) > f(xnl

)+ 1
2α ε

8 . This is a contradiction, since x1, xn1
+αz1, x2, xn2

+αz2, . . .

is w-Cauchy.

♦

Proposition 6.

Let T ∗ be the original Tsirelson space, then T ∗ ∈ C.

Proof: Let f be a real function on BT∗ with uniformly continuous Fréchet derivative.

Since T ∗ is reflexive, using Lemma 5 it is enough to show that f(xn) converges to f(0) for

every w-null sequence in BT∗ . Assume the contrary, i.e. for some {xn}n∈IN , which may

be choosen to be a l-normalized block sequence, and some ε > 0, |f(xn) − f(0)| > ε. By

properties of T ∗ [5], for every N ∈ IN , xN , xN+1, . . . , x2N is 2l-equivalent to the canonical

basis of cN
0 . This is a contradiction with Lemma 3.

♦

Clearly, the same proof also works for T ∗
θ , 0 < θ < 1 (see [5]), so we have a continuum of

mutually totally incomparable reflexive spaces from C.
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Theorem 7.

Let K be a scattered compact. Then C(K) ∈ C.

Proof: Since every separable subspace of C(K), K scattered, is contained in a separable

subspace of C(K) isomorphic to C(K1), where K1 is countable (e.g. [6]), we may assume

that K is countable.

Bessaga and Pelczynski in [4] provided an isomorphic classification of C(K) spaces, K

countable, as those isomorphic to C[0, α], where α is a countable ordinal. We will prove

by transfinite induction on α ∈ [ω0, ω1) that a function f : BC[0,α] → IR with a uniformly

continuous derivative is w-sequentially continuous on BC[0,α].

Case α = ω0 was proved in [9].

Inductive step.

Assume our claim is true for all α ∈ [ω0, β), β ∈ [ω0, ω1). We may clearly assume that

C[0, α] 6∼= C[0, β] for α < β and β is a limit ordinal. Choose an increasing sequence αk ր β

such that [αk +1, αk+1] are clopen. We will work in C0[0, β], continuous functions on [0, β]

which vanish at β, as C0[0, β] ∼= C[0, β]. Define for l < m, P l,m : C0[0, β] → C0[0, β] as

P l,m(φ)(α) =

{

0 if α ∈ [αl + 1, αm]

φ(α) otherwise.

Let f : Bc0
→ IR have a uniformly continuous derivative on Bc0

, f(0) = 0, f ′(0) = 0.

Let us assume, by contradiction, that there is a w-Cauchy sequence {φ}n∈IN ∈ BC0[0,β],

f(φ2n) < 0, f(φ2n+1) > 1 and each φn is supported by [0, αi] for some i ∈ IN . Similarly to

Claim 7 of [9], and with the same proof, we obtain that there is k ∈ IN and some infinite

sets M1 of odd integers and M2 of even integers satisfying, whenever k ≤ l < m:

f
(

P l,m(φn)
)

<
1

4
for all but finitely many n ∈ M2,

f
(

P l,m(φn)
)

>
3

4
for all but finitely many n ∈ M1.

We may assume k = 1 and using the above claim pass to another subsequence {φpi
}i∈IN ,

pi ∈ M2 for i even, pi ∈ M1 for i odd, such that

f(ψ2k) <
1

4
, f(ψ2k+1) >

3

4
, where ψi = P 1,i(φpi

).
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In addition, we may also assume supp(ψi) ⊂ [0, α1] ∪ [αi + 1, αi+1]. By construction,

{ψi}i∈IN is w-Cauchy. Consider the linear operator L : C[0, α1] ∼= C[0, α1]⊕ c0 → C0[0, β],

defined by formulas:

L
(

(φ, 0)
)

= φ,

L
(

(0, ei)
)

= ψi

∣

∣

∣

∣

[αi+1,αi+1]

.

The real function f ◦ L has uniformly continuous Fréchet derivative on BC[0,α1], but f ◦

L
(

(ψi

∣

∣

∣

∣

[0,α1]

, ei)
)

is not convergent, a contradiction.

♦

The following suprising example, based on a construction of Schreier [11], was investigated

in [10].

Example 8.

There exists a subspace B of C(ωω) with unconditional shrinking basis {en} and a biorthog-

onal basis {e∗n} such that e∗n
w
−→ 0 and the spreading model built on {e∗n} is c0.

It follows immediately from Theorem 1, that B ∈ B. Using [10], one can show by standard

argument that the canonical injection from B into ℓ2 is bounded. Yet, the space B as

a subspace of a polyhedral space is itself (isomorphically) polyhedral and thus saturated

by copies of c0. The space B also indicates that the structure of w-Cauchy sequences in

general C(K), K scattered, is more complicated than that of c0. This is the main obstacle

in trying to prove analogous statements to Proposition 11 for C(K) instead of c0. On the

other hand, leaning on the results from [8], with a little bit of work one can show that

every w-Cauchy sequence in the Hagler space JH contains a subsequence equivalent to

either the canonical or the summing basis of c0. By Lemma 4 and 5 JH ∈ C.

§3. Operators from c0.

The main Proposition 11 of this section implies that a C2-smooth operators from c0 into

a space Y with an unconditional basis is locally compact unless c0 →֒ Y . Together with

Proposition 9 this statement implies that there is no surjective C2-smooth operator from

c0 onto T ∗ or vice versa.
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Proposition 9.

Let X ∈ C be a reflexive space, T : X → Y be an onto operator with locally uniformly

continuous Fréchet derivative. Then Y ∈ C is reflexive.

Proof: The fact that Y ∈ C is valid in general without the reflexivity assumption on

X. Indeed, it is an easy application of the Baire category principle which implies that for

some open U ⊂ X such that T

∣

∣

∣

∣

C

has uniformly continuous Fréchet derivative, T (U) has

nonempty interior. To show that Y is reflexive, note that for every open ball U ⊂ X such

that T

∣

∣

∣

∣

U

has uniformly continuous derivative, by Lemma 5, T maps weakly convergent

sequences from U into weakly convergent sequences in Y . By the Eberlein-Šmulyan theo-

rem, T (U) is relatively weakly compact. However, for some U , T (U) must have nonempty

interior and thus Y is reflexive.

♦

In particular, there is no C2 operator from T ∗ onto c0.

Lemma 10.

Let T : Bc0
→ Y be an operator with uniformly continuous Fréchet derivative on Bc0

.

Assume that for every given u ∈ Bc0
and {vn}n∈IN ⊂ c0 equivalent to the canonical basis

of c0, such that u + vn ∈ Bc0
, we have:

lim
n→∞

T (u + vn) = T (u).

Then T is w-sequentially continuous on Bc0
.

Proof: Assume, by contradiction, that T is not w-sequentially continous on Bc0
, i.e. there

exist ε > 0 and a w-Cauchy sequence {xn}n∈IN ∈ Bc0
such that T (xn) is not convergent. If

{T (xn)}n∈IN is relatively compact, then there exists y∗ ∈ Y ∗ such that {y∗ ◦T (xn)}n∈IN is

not convergent, a contradiction with Lemma 4. We therefore assume that {T (xn)}n∈IN is

not relatively compact. By passing to a subsequence, changing notation and disregarding

quantities that can be made arbitrary small, we can assume that there is a w-Cauchy

sequence {xn}n∈IN ∈ Bc0
satisfying:

(i) dist{span{T (x1), . . . , T (xn)}, T (xn+1)} > β > 0

(ii) {xn} are supported in an increasing sequence of finite intervals In = [1,mn]

(iii) all the xj , for j > n are equal on In.
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By assumption, for every xn and every block sequence {yk}k∈IN such that xn + yk ∈ Bc0
,

lim
k→∞

T (xn + yk) = T (xn).

Thus for every n ∈ IN there exists ln ∈ IN , ln > mn such that ‖T (xn + u) − T (xn)‖ < β
2

for every u ∈ c0, xn + u ∈ Bc0
, supp(u) ⊂ [ln,∞). Consequently, for every N ∈ IN we can

choose a finite sequence xn1
, . . . , xn2N

satisfying lni
< mni+1

, i = 1, . . . , 2N −1. We obtain

the following:

‖T (xni
+ χ[lni

,mnN
] · xnN

) − T (xni
)‖ <

β

2
i = 1, . . . , 2N − 1.

Put uni
= xn2N

− (xn2i
+ χ[ln2i

,mnN
] · xnN

), i = 1, . . . , N − 1. Then uni
is a block

2-sequence, supported by [mn2i−1
, ln2i

]. Using (i), choose y∗ ∈ BY ∗ satisfying:

y∗(T (xni
)) = 0 i = 1, . . . , 2N − 1,

y∗(T (xn2N
)) > β.

Thus we have |y∗ ◦ T (xnN
− uni

)| < β
2 i = 1, . . . , N − 1, |y∗ ◦ T (xnN

)| > β. Because N is

arbitrary large, it is a contradiction with Lemma 3.

♦

Proposition 11.

Let Y be a separable Banach space with an unconditional basis. Suppose T : c0 → Y has a

locally continuous Fréchet derivative. Then either c0 →֒ Y or T is locally compact.

Proof: We proceed by contradiction, assuming that c0 6 →֒ Y and T is not locally compact.

By standard shifting and scaling arguments together with Lemma 10, we may assume

that T has uniformly continuous derivative on Bc0
, T (0) = 0 and ‖T (ek)‖ ≥ 2ε > 0.

Denote by {xk}k∈IN the unconditional normalized basis of Y , {x∗
k}k∈IN its dual basis. By

Lemma 4, {T (ek)}k∈IN is w-null, so on passing to a subsequence we may assume that

there exist a sequence Jk = [ik, jk] of consecutive intervals of integers and fk ∈ BY ∗ ,

fk ∈ span{x∗
ik

, . . . , x∗
jk
}, such that fk ◦ T (ek) > 3ε

2 > 0. Put P k : Y → Y to be a

projection defined as P k(
∞
∑

i=1

αixi) =
jk
∑

i=ik

αixi. Our aim now is to pass to a subsequence

{ki}i∈IN of IN such that:
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fkl
◦ T (

n
∑

i=1

eki
) ≥ ε for every 1 ≤ l ≤ n.

Before we present the construction, let us observe how this implies the statement of Propo-

sition 11. By compactness, we may find an increasing sequence of integers {np}p∈IN such

that for every l ∈ IN

lim
p→∞

P kl
(

T (

np
∑

i=1

eki
)
)

= ul

exists.

By the unconditionality of {xk}k∈IN and boundedness of T , {ul}l∈IN forms a block basis

in Y satisfying

C1max{|αl|} ≤ ‖
n

∑

l=1

αlul‖ ≤ C2max{|αl|} where C1, C2 ≥ ε.

In other words, {ul}l∈IN is equivalent to the canonical basis of c0.

The sequence {ki}i∈IN is constructed by induction as follows. Given r ∈ IN , put nr to be

a large enough integer (Lemma 3) so that whenever f ∈ BY ∗ , v ∈ Bc0
, {ui}

nr

i=1 ∈ c0 are

such that v + ui ∈ Bc0
, and ui are 1-equivalent to the canonical basis of cnr

0 , we have

|f ◦ T (v + ui) − f ◦ T (v)| <
(ε

2

)r+1

for some i ∈ [1, nr].

Using Lemma 3 again, there exists Q1 ∈ IN , Q1 > n1 such that fi ◦ T (ei + u) ≥ (1 + 1
4 )ε

whenever i ∈ [1, n1], u ∈ Bc0
, supp(u) ⊂ [Q1,∞). On the other hand, for every j > Q1

there exists some i ∈ [1, n1] such that fj ◦ T (ei + ej) ≥ (1 + 1
4 )ε. Thus there exists

k1 ∈ [1, n1] and an infinite increasing sequence {m1
1,m

1
2, . . . } = M1 ⊂ IN such that for

every u ∈ Bc0
, supp(u) ⊂ M1 and every k ∈ M1 we have k > k1 and

fk1
◦ T (ek1

+ u) ≥ (1 +
1

4
)ε, fk ◦ T (ek1

+ ek) ≥ (1 +
1

4
)ε.

Similarly, there exists Q2 > m1
n2

such that fi ◦ T (ek1
+ ei + u) ≥ (1 + 1

8 )ε whenever

i ∈ {m1
1, . . . ,m

1
n2
}, u ∈ Bc0

, supp(u) ⊂ [Q − 2,∞). Also, whenever j > Q2, there exists

i ∈ {m1
1, . . . ,m

1
n2
} such that fj ◦ T (ek1

+ ei + ej) ≥ (1 + 1
8 )ε. Thus, there exist k2 ∈
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{m1
1, . . . ,m

1
n2
} and an infinite increasing sequence {m2

1,m
2
2, . . . } = M2 ⊂ M1 such that for

every u ∈ Bc0
, supp(u) ⊂ M2 and every k ∈ M2 we have k > k2 and

fk2
◦ T (ek1

+ ek2
+ u) ≥ (1 +

1

8
)ε, fk ◦ T (ek1

+ ek2
+ ek) ≥ (1 +

1

8
)ε.

The inductive process continues in an obvious manner, at the r-th step choosing

kr ∈ {mr−1
1 , . . . ,mr−1

nr
} ⊂ Mr−1 and a subset Mr ⊂ Mr−1 satisfying

fkr
◦ T (

r
∑

i=1

eki
+ u) ≥ (1 +

1

2r+1
)ε, fk ◦ T (

r
∑

i=1

eki
+ ek) ≥ (1 +

1

2r+1
)ε,

whenever u ∈ Bc0
, supp(u) ⊂ Mr and k ∈ Mr. This finishes the proof.

♦

As an immediate consequence, there exists no C2 operator form c0 onto T ∗.

§4. Analytic functions on c0.

In the last part of our paper, we will obtain a finer description of the behavior of real

analytic functions on c0, in the spirit of Lemma 4. A similar statement was obtained in the

complex setting by Aron and Globevnik in [1]. In fact, using the standard complexification

argument, their result implies our Proposition 13.

Our proof uses ideas from [2], but adds a new ingredient of estimating the second deriva-

tive, which yields certain estimates independent of the degree of the polynomial and is of

independent interest.

We refer to [2] for most of our notation.

Given a real C2-smooth function f on some domain U in cn
0 , we denote by D2f : U →

L(cn
0 , ℓn

1 ) the usual second derivative of f , which can be represented by a symmetric matrix

( ∂2f
∂xi∂xj

)i,j=1,...,n. For T ∈ L(cn
0 , ℓn

1 ), ‖T‖ stands for the usual operator norm. Let us denote

∆f =
n
∑

i=1

|∂
2f

∂x2
i

|.

Lemma 12.

Let f ∈ C2, f : Bcn
0
→ IR, ‖D2f‖ ≤ 1 on Bcn

0
. Then ∆f ≤ 1 on Bcn

0
.

Proof: Let x ∈ Bcn
0
. Put T = D2f(x) = (aij)i,j=1,...,n. Clearly,
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‖T‖ = max{‖T (x)‖1, x =
n

∑

i=1

±ei}.

For any choices of signs εj = ±1, δi = ±1, 1 ≤ i, j ≤ n, we have

‖T‖ ≥

n
∑

i=1

|

n
∑

j=1

εjaij | ≥

n
∑

i=1

(δiaii + δi

∑

j 6=i

εjaij).

Keeping δi fixed and averaging over all choices of εj we obtain ‖T‖ ≥
n
∑

i=1

δiaii, so ‖T‖ ≥

∆f(x). ♦

Lemma 13.

Let p be a homogeneous polynomial of degree k on Bcn
0
. If ∆p ≤ 1 on Bcn

0
, then

n
∑

i=1

|p(ei)| ≤

16.

Proof: We may assume that n is odd and p is a symmetric polynomial, and we need to

prove our estimate with 8 rather than 16. Indeed, otherwise assuming p(ei) ≥ 0 (here is

why we need a better estimate, in general we have to pass to a suitable subset of {ei}
n
i=1,

where the signs of f remain constant) we can consider p̃ defined on Bcm
0

, m ≥ n, m odd,

as

p̃(
m

∑

i=1

aiei) =
1

m!

∑

π∈Πm

p(
n

∑

i=1

aπ(i)ei),

where Πm is the group of permutations of {1, . . . ,m}. Clearly, p̃ is symmetric, ∆p̃ ≤ 1

and
m
∑

i=1

|p̃(ei)| =
n
∑

i=1

|p(ei)|.

Assume p(x1, . . . , xn) =
∑

|α|=k

aαxα1

1 . . . xαn
n , denote ãi the coefficient by xk

i . Clearly,

n
∑

i=1

|p(ei)| =
n
∑

i=1

|ãi|. To estimate
n
∑

i=1

|ãi|, consider the polynomial

q(x1, . . . , xn) =
n

∑

i=1

(−1)i ∂2p

∂x2
i

.
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Then q is a homogeneous polynomial of degree k − 2, |q| ≤ 1 on Bcn
0

and due to the

symmetry of p and n being odd, the leading coefficients of q by xk−2
i are (−1)ik(k − 1)ãi.

By Theorem 1.2 of [2], k(k−1)
n
∑

i=1

|ãi| ≤ 4k2. Thus
n
∑

i=1

|ãi| ≤ 8, and the proof is completed.

♦

Unfortunately, uniform estimates of this type, independent of the dimension n and degree

of the polynomial are not valid for nonhomogeneous polynomials (consider e.g.
n
∏

i=1

(1−x4
i )

on cn
0 ). This is the reason for which no analogue of the following proposition is valid under

the weaker assumption of C2 smoothness rather than analyticity.

Proposition 14.

Let f be a real analytic function on some domain U in c0, 0 ∈ U , f(0) = 0 and f ′(0) = 0.

Then there exists some ε > 0 such that
∞
∑

i=1

|f(εei)| < ∞.

Proof: Let us assume that the Taylor series of D2f at 0:

D2f(x) = P0 + P1(x) + P2(x) + . . . ,

where Pk(x) is a k-homogeneous polynomial form c0 into L(c0, ℓ1), is uniformly convergent

on εBc0
and moreover satisfies

sup
x∈εBc0

‖Pk(x)‖ ≤ K(1 − ε)k,

where K is some constant. By Lemma 12, 13 and an easy homogeneity argument we obtain
∞
∑

i=1

|f(εei)| ≤ 16Kε2
∞
∑

k=0

(1 − ε)k = 16Kε.
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