Smooth functions on C(K)

PETR HAJEK
61. Introduction.

S. Bates has recently investigated separable Banach spaces X satisfying the condition that
for every separable Banach space Y there exists a surjective C°°-Fréchet smooth (nonlinear)
operator from X onto Y. We will denote the class of all these spaces by B. Bates has
shown that every separable superreflexive space belongs to B and he also characterized
spaces for which his method of proof fails.

Theorem 1 (Bates)

Let X ¢ B be an infinite dimensional Banach space. Then at least one of the following
conditions hold:

(i) Every seminormalized weakly null sequence in X* has a subsequence with a spreading
model isomorphic to £y

(11) X* has the Schur property.

Natural examples of spaces satisfying (i) or (ii) are ¢y and the original Tsirelson space,
and Bates asked whether indeed ¢y ¢ B. The question was settled in [9] (i.e. ¢o ¢ B),
a paper which was conducted without any knowledge of S. Bates’ work, and which was
mainly concerned with the behavior of C?-smooth real functions on cj.

In order to reveal the connection between these matters, let us denote by C the class of
Banach spaces X such that for any real function f defined on an open subset U/ of X,
with locally uniformly continuous derivative, f’ is locally compact. That is to say, for
every x € U there exists open neighbourhood V C U, z € V, such that f/(V) is relatively
compact in X*.

A simple use of the Baire category principle implies that if T : X — Y is a surjective
operator with locally continuous derivative (e.g. C2-Fréchet smooth), and X € C, then
Y € C. If, on the other hand, Y € B then X € B. Since ¢y € B, {5 ¢ C we have the
following implication: X € C = X ¢ B, and moreover whenever Y € B, there exists no
surjective Y : X — Y with locally uniformly continuous derivative. A little more can be
said under some additional assumptions.

Proposition 2.



Let X® X € C, Y be an infinitely dimensional Banach space with nontrivial type, T : X —
Y be a Fréchet differentiable operator with locally uniformly continuous derivative. Then
T s locally compact.

The proof of this statement is identical with that of Corollary 11 of [9], using Lemma 5
below instead of Corollary 10 of [9]. It should be noted that some additional assumptions
must be put on Y, because as follows from the Josefson-Nissenzweig theorem, every infinite
dimensional Banach space admits a noncompact linear operator into cg.

Proposition 2 is particularly useful if X & X = X, as is the case when X = C(K), K
countable, or X = T (the original Tsirelson space) (for these results see [4], [5]). Thus in
what follows, we will be mainly interested in showing that X € C for these spaces.

In section 2 we develop methods from [9] to show that the original Tsirelson space T
belongs to C. Also, C(K), K scattered, belong to C. On the other hand, the Schreier
space B ([5,10,11]) yields an example of a polyhedral subspace of C(w*) which belongs to
B. In particular, B is an example of a subspace of C'(w*) which is not a quotient of C'(K),
K scattered.

In section 3 we prove a somewhat finer statement that there exists no surjective oper-
ator from cg onto T™ or from T™* onto ¢y with locally uniformly continuous derivative.
This suggests that there may be many ”incomparable elements” with respect to smooth
surjections.

Section 4 is devoted to proving certain estimates for homogeneous polynomials on cf,
independent of n and the degree of the polynomial, in the spirit of [2].

We are indebted to R. Haydon who first observed that the methods of [9] apply also in
case of the Tsirelson space, and who informed us about S. Bates’ work.

Our paper is a natural continuation of [9], but for the convenience of the reader we will
repeat some important definitions and statements.

Let X,Y be real Banach spaces. We say that an operator T': X — Y is locally compact
if for every = € X there exists an open neighbourhood = € U, such that T'(U) is norm
relatively compact in Y. We say that T' is weakly (w)-sequentially continuous on & C X
if it maps w-Cauchy sequences from U into norm convergent ones.

A modulus of continuity for a given uniformly continuous function f from a metric space
(Xl, dl) into a metric space (Xg, dg) is an increasing real function w(d), 6 > 0, }ii%w(é) =
0, such that

di(z1,22) < implies dao(f(z1), f(x2)) < w(9).
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The following two statements have been proved in [9], and will be used frequently.

Lemma 3.

Lete >0, f be a real function on Bem with uniformly continuous derivative (with modulus

of continuity w(6)) and such that sup [|f'|l1 < w(2). Let v € Ber and {u;}i_, be a block
g

sequence such that v+u; € Bem. If n is large enough (the estimate depends only on w(9)),

then R If(v4+u;) — f(v)| <e.

Lemma 4.
Let f be a Fréchet differentiable real function with uniformly continuous derivative defined

on B.,. Then f is weakly sequentially continuous on B, .
§2. The class C.

Before we state our next lemma, let us remark that if /1 — X, then by classical results in
[7], £ is a linear quotient of X, so X € B.

Lemma 5.

Let X be a Banach space, {1 4 X. Let f be a real function with uniformly continuous
derivative on Bx. TFAE:

(i) f is w-sequentially continuous

(ii) f'(Bx) is relatively compact.

Proor: (i) = (i). Since K = f/(Bx) is norm compact, given a weakly Cauchy
sequence {z, }n,en in Bx we have:

lim (¢,z, — zy) =0 uniformly in ¢ € K.

n,m-— oo

By the mean value theorem, for some point x in the interval joining x, and x,,, we have:

[f(@n) = flm)| = (f'(2), 20 — zm)| < sup (¢, 2n — 2m)| — 0 as m,n — occ.
€
(i) = (ii). Denote w(d) the modulus of continuity of f’ on Bx. Note that f is
Lipschitz on Bx. If f/(Bx) is not relatively compact, there exist € > 0 and (by Rosenthal’s

theorem) a w-Cauchy sequence {z,}nen in (1 —¢)Bx such that f, = f'(x,) satisfy
3



2> |fall > e | fa = fmll > . If lim f(z,) does not exist, we are done. Otherwise, by
standard argument, we may in addition assume that f(z1) = f(x,),n € IN. By induction,

we find a subsequence ny, of IN and a sequence {yi}ren in Bx such that:

(o = Fa) )| > 7 for k> (1)

€

g for kuke > 1. (2)

’(f’l’bkl - fnk2)(yl)| <
This is done as follows: Choose y; € Bx such that (fi — f2)(y1) > 5. There exists
an increasing subsequence {nj bren of IN satisfying (2) for [ = 1, and satisfying (1) for
either ny = 1 or n; = 2. Fix the choice of n; and assume n; < n% Find y5 € Bx such
that ( fnr — fn%)(yz) > £. There exists an increasing subsequence {n3}remw of {ng}ren
satisfying (2) for [ = 2 and (1) for either ny = nl or ny = nl. We continue in an obvious
manner.
We may assume that {yxtren is w-Cauchy. Conditions (1) and (2) imply that for every
k > 3 we have either |f,, (yx—2 — yx—1)| > § or |fn,_, (Yr—2 — yr—1)| > §. Passing to a
suitable subsequence of {yr—2 — yr—1}rew and {fn, }remw, we obtain a w-null sequence
{z1}ienv such that fp,(2) > §. For a > 0 small enough, we have z,, + az € Bx and
f(@n, +az) > f(zn,)+ a5, This is a contradiction, since 1, Ty, + az1, T2, Tn, + @22, . ..

is w-Cauchy.

Proposition 6.

Let T be the original Tsirelson space, then T* € C.

Proor: Let f be a real function on By« with uniformly continuous Fréchet derivative.
Since T™ is reflexive, using Lemma 5 it is enough to show that f(z,,) converges to f(0) for
every w-null sequence in Bp«. Assume the contrary, i.e. for some {x, },cmn, which may
be choosen to be a l-normalized block sequence, and some € > 0, |f(x,) — f(0)| > . By
properties of T [5], for every N € IN, zn,ZN+1, ..., T2n is 2[l-equivalent to the canonical

basis of ¢}’. This is a contradiction with Lemma 3.

O

Clearly, the same proof also works for 77, 0 < § < 1 (see [5]), so we have a continuum of
mutually totally incomparable reflexive spaces from C.
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Theorem 7.
Let K be a scattered compact. Then C(K) € C.

PROOF: Since every separable subspace of C(K), K scattered, is contained in a separable
subspace of C'(K) isomorphic to C'(K7), where K; is countable (e.g. [6]), we may assume
that K is countable.

Bessaga and Pelczynski in [4] provided an isomorphic classification of C'(K) spaces, K
countable, as those isomorphic to C[0, ], where « is a countable ordinal. We will prove
by transfinite induction on a € [wp,w1) that a function f : Bgjg,q) — IR with a uniformly
continuous derivative is w-sequentially continuous on Bgjg,q)-

Case o = wy was proved in [9)].

Inductive step.

Assume our claim is true for all a € [wp,3), € [wo,w1). We may clearly assume that
C[0,a] 2 C0, 5] for & < B and 3 is a limit ordinal. Choose an increasing sequence «y, /" 3
such that [ag + 1, ax41] are clopen. We will work in Cy[0, 3], continuous functions on [0, 5]
which vanish at 3, as Cy[0, 8] = C]0, 8]. Define for I < m, P"™ : Cy[0, 8] — Cy[0, ] as

P4 (a) = { 0 if a € [a; + 1, )

¢(c)  otherwise.

Let f : B., — IR have a uniformly continuous derivative on B.,, f(0) =0, f'(0) = 0.

Let us assume, by contradiction, that there is a w-Cauchy sequence {¢}env € Beyo,g);
f(d2n) <0, f(¢2nt1) > 1 and each ¢, is supported by [0, a;] for some i € IN. Similarly to
Claim 7 of [9], and with the same proof, we obtain that there is k € IN and some infinite
sets M; of odd integers and M5 of even integers satisfying, whenever k <[ < m:

for all but finitely many n € M,

|

F(PY™(dn)) <

f(Pl’m(d)n)) > Z for all but finitely many n € M;.

We may assume k = 1 and using the above claim pass to another subsequence {¢,, }icmn,
pi € Ms for ¢ even, p; € M; for ¢ odd, such that

f(or) < =, f(¥ar41) > =, where ¢; = PV (¢y,).

| =
Ol o



In addition, we may also assume supp(¢;) C [0,a1] U [o; + 1,41]. By construction,
{ti }iemw is w-Cauchy. Consider the linear operator L : C[0, 1] = C[0, a1] ® ¢o — Co[0, 7],
defined by formulas:

L((¢7 O)) = 9,

[ai+1,0041]
The real function f o L has uniformly continuous Fréchet derivative on B q,], but fo
L((wi ,ei)) is not convergent, a contradiction.

[0,0&1]

¢

The following suprising example, based on a construction of Schreier [11], was investigated
in [10].

Example 8.
There exists a subspace B of C(w*) with unconditional shrinking basis {e,,} and a biorthog-

onal basis {e} such that e, —> 0 and the spreading model built on {e%} is cq.

It follows immediately from Theorem 1, that B € B. Using [10], one can show by standard
argument that the canonical injection from B into ¢ is bounded. Yet, the space B as
a subspace of a polyhedral space is itself (isomorphically) polyhedral and thus saturated
by copies of ¢g. The space B also indicates that the structure of w-Cauchy sequences in
general C'(K), K scattered, is more complicated than that of ¢y. This is the main obstacle
in trying to prove analogous statements to Proposition 11 for C(K) instead of ¢y. On the
other hand, leaning on the results from [8], with a little bit of work one can show that
every w-Cauchy sequence in the Hagler space JH contains a subsequence equivalent to
either the canonical or the summing basis of ¢y. By Lemma 4 and 5 JH € C.

§3. Operators from cg.

The main Proposition 11 of this section implies that a C?-smooth operators from ¢y into
a space Y with an unconditional basis is locally compact unless c¢g — Y. Together with
Proposition 9 this statement implies that there is no surjective C?-smooth operator from

cp onto T™* or vice versa.
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Proposition 9.
Let X € C be a reflexive space, T : X — Y be an onto operator with locally uniformly

continuous Fréchet derivative. Then'Y € C is reflexive.

Proor: The fact that Y € C is valid in general without the reflexivity assumption on
X. Indeed, it is an easy application of the Baire category principle which implies that for

some open U C X such that T'| has uniformly continuous Fréchet derivative, T'(U) has
c
nonempty interior. To show that Y is reflexive, note that for every open ball Y C X such

that T'| has uniformly continuous derivative, by Lemma 5, T" maps weakly convergent
u ~
sequences from U into weakly convergent sequences in Y. By the Eberlein-Smulyan theo-

rem, T'(U) is relatively weakly compact. However, for some U, T'(U) must have nonempty
interior and thus Y is reflexive.

¢
In particular, there is no C? operator from T* onto cj.

Lemma 10.
Let T : B., — Y be an operator with uniformly continuous Fréchet derivative on B.,.
Assume that for every given u € B, and {v,}nen C co equivalent to the canonical basis

of co, such that uw + v, € B, we have:

lim T(u+v,) =T(u).

n—oo

Then T' is w-sequentially continuous on B, .

PROOF: Assume, by contradiction, that 7" is not w-sequentially continous on B,,, i.e. there
exist ¢ > 0 and a w-Cauchy sequence {z, }new € B, such that T'(z,) is not convergent. If
{T(x) }nem is relatively compact, then there exists y* € Y* such that {y*oT(zy)}nem is
not convergent, a contradiction with Lemma 4. We therefore assume that {T'(z,,) }nemn is
not relatively compact. By passing to a subsequence, changing notation and disregarding
quantities that can be made arbitrary small, we can assume that there is a w-Cauchy
sequence {z, }nen € B, satisfying:

(i) dist{span{T'(z1), ..., T(zn)}, T(xp+1)} > >0

(ii) {z,} are supported in an increasing sequence of finite intervals I,, = [1, m,]

(iii) all the z;, for j > n are equal on I,,.
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By assumption, for every z,, and every block sequence {yi}remn such that =, + yx € Be,,

klin;o T(xy, + yr) = T(xy).
Thus for every n € IN there exists l,, € IN, l,, > m,, such that | T(x, + u) — T'(z,)|| < g
for every u € ¢g, x,, + u € Be,, supp(u) C [l,,,00). Consequently, for every N € IN we can
choose a finite sequence xy,, , ..., Ty,, satisfying l,,, <my,,,,i=1,...,2N —1. We obtain
the following;:

B
HT(xn’b _I_X[l"iamn]\]] ) an) - T(a:nz) | < 5 1= 17 cee 72N — 1L
Put wn, = Tnoy — (Tnay + X(tny, may] - Tny)s ¢ = 1,...,N —1. Then up, is a block

2-sequence, supported by [Mn,, ,,ln,;]. Using (i), choose y* € By« satisfying:

Yy (T(zn,))=0 i=1,...,2N — 1,

Y (T(@nsn)) > -

<§ i=1,...,N—1,|y* oT(xy,)| > . Because N is

arbitrary large, it is a contradiction with Lemma 3.

Thus we have |y* o T'(x,,, — Un,)

%

Proposition 11.
Let'Y be a separable Banach space with an unconditional basis. Suppose T : co — Y has a
locally continuous Fréchet derivative. Then either co — Y or T s locally compact.

PRrROOF: We proceed by contradiction, assuming that ¢y <~ Y and T is not locally compact.
By standard shifting and scaling arguments together with Lemma 10, we may assume
that 7" has uniformly continuous derivative on B.,, T(0) = 0 and ||T(ex)|| > 2¢ > 0.
Denote by {zj}ren the unconditional normalized basis of Y, {2} } ke its dual basis. By
Lemma 4, {T(ex)}remn is w-null, so on passing to a subsequence we may assume that
there exist a sequence Jy = [ik,ji] of consecutive intervals of integers and fy € By-,
fr € span{x] ,...,x} }, such that f o T(ex) > 3—25 > 0. Put P : Y — Y to be a
projection defined as P* (i a;T;) = % a;x;. Our aim now is to pass to a subsequence

i=1 =1

{ki}iemnv of IN such that:



n
fr, © T(Z er,) > € forevery 1 <[ <n.
i=1
Before we present the construction, let us observe how this implies the statement of Propo-
sition 11. By compactness, we may find an increasing sequence of integers {n,},emn such
that for every [ € IN

i P(ECY c0) =

exists.
By the unconditionality of {zj}ren and boundedness of T, {u;};e v forms a block basis
in Y satisfying

n
Cimax{|ay[} < ||y || < Comax{|ay|}  where Cy,Cy > .
1=1
In other words, {u; };ev is equivalent to the canonical basis of ¢g.
The sequence {k;};cn is constructed by induction as follows. Given r € IN, put n, to be
a large enough integer (Lemma 3) so that whenever f € By-, v € B, {ui},=; € ¢y are
such that v 4+ u; € B,,, and u; are 1-equivalent to the canonical basis of ¢;”, we have

FoT(+u)—foT() < (5"

for some i € [1,n,].

Using Lemma 3 again, there exists 1 € IN, Q1 > ny such that f; o T'(e; +u) > (1 + i)&?
whenever i € [1,n1], u € B.,,supp(u) C [@Q1,00). On the other hand, for every j > @
there exists some i € [1,n1] such that f; o T'(e; + ;) > (14 %1)e. Thus there exists
k1 € [1,n1] and an infinite increasing sequence {mi,mi,...} = M; C IN such that for
every u € B, ,supp(u) C My and every k € M; we have k > k; and

1 1
fro o Tlew, +u) 2 (1+ 2)e fiwoTlew, +ex) 2 (1+ J)e.
Similarly, there exists Q2 > mj_ such that f; o T(ex, + €; + u) > (1 + g)e whenever
i€ {mi,... ,m}w}, u € Bey,supp(u) C [Q — 2,00). Also, whenever j > @2, there exists

i € {mi,...,m} } such that f; o T(ex, +¢€; +€;) > (1 + §)e. Thus, there exist ko €
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{mi,...,m}, } and an infinite increasing sequence {mi,m3,...} = M, C M, such that for
every u € BCO,supp( ) C My and every k € My we have k > ko and

1

1
=)e, froT(ex, +en, +ex) > (1+ 3

Jry o T(er, +ep, +u) > (1+ 3

S Je.

The inductive process continues in an obvious manner, at the r-th step choosing
k. € {m™1 .. .,mp ' C M,_y and a subset M, C M,_; satisfying

1 1
fr. oTZek + u) 1+2T+1)5, koTZek +ek)2(1+2r+1)
=1

whenever u € B, supp(u) C M, and k € M,. This finishes the proof.

As an immediate consequence, there exists no C? operator form ¢y onto 7.
§4. Analytic functions on cg.

In the last part of our paper, we will obtain a finer description of the behavior of real
analytic functions on cg, in the spirit of Lemma 4. A similar statement was obtained in the
complex setting by Aron and Globevnik in [1]. In fact, using the standard complexification
argument, their result implies our Proposition 13.

Our proof uses ideas from [2], but adds a new ingredient of estimating the second deriva-
tive, which yields certain estimates independent of the degree of the polynomial and is of
independent interest.

We refer to [2] for most of our notation.

Given a real C%-smooth function f on some domain U in %, we denote by D?f : U —
L(cg, 1) the usual second derivative of f, which can be represented by a symmetric matrix
(%aij)mzlwm. For T € L(cf, 1), | T stands for the usual operator norm. Let us denote

— n 52
Af =215kl
1=

Lemma 12.
Let f € C?, f: Bep — IR, |D*f]| <1 on Ben. Then Af <1 on Bep

PROOF: Let x € Bcg. Put T = D2f($> = (aij)i’j:l,_“’n. Clearly,
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1T} = max{[|T(z)l1, 2 = Ziez}

For any choices of signs e; = +1,0; = £1,1 <4,j < n, we have

1T} > Z|Z€yaw| > Z (diai +0; Zejaw).

=1 j=1 YES

n
Keeping §; fixed and averaging over all choices of €; we obtain ||T|| > )~ d;a;:, so ||T|| >
i=1

Af(x). ¢

Lemma 13.

Let p be a homogeneous polynomial of degree k on Ben . IfAp <1 on Ben, then ) [p(e:)| <
i=1
16.

ProoF: We may assume that n is odd and p is a symmetric polynomial, and we need to
prove our estimate with 8 rather than 16. Indeed, otherwise assuming p(e;) > 0 (here is
why we need a better estimate, in general we have to pass to a suitable subset of {e;}I" ,
where the signs of f remain constant) we can consider p defined on Bep, m > n, m odd,

as

Zazez —_ Z Za‘ﬂ'(l)el

' well,, 1=1

where II,,, is the group of permutations of {1,...,m}. Clearly,  is symmetric, Ap < 1
m n
and > |p(e;)| = >_ [p(es)]-
k

Assume p(z1,...,2,) = Y, aux]'...zo", denote a; the coefficient by z7. Clearly,

n n
Ip(e;)| = > |di|. To estimate > |d;|, consider the polynomial
1 i=1 i=1

ol
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Then ¢ is a homogeneous polynomial of degree k — 2, |¢g| < 1 on Ben and due to the
symmetry of p and n being odd, the leading coefficients of ¢ by acf_z are (—1)'%k(k — 1)a;.
n n

By Theorem 1.2 of [2], k(k—1) _ |d;| < 4k%. Thus Y |a;| < 8, and the proof is completed.
i=1 i=1
¢

Unfortunately, uniform estimates of this type, independent of the dimension n and degree
n
of the polynomial are not valid for nonhomogeneous polynomials (consider e.g. [] (1 —z7)
i=1
on cj). This is the reason for which no analogue of the following proposition is valid under

the weaker assumption of C? smoothness rather than analyticity.

Proposition 14.
Let f be a real analytic function on some domain U in cy, 0 € U, f(0) =0 and f'(0) = 0.

o0
Then there exists some € > 0 such that Y |f(ee;)| < 00.
i=1

PROOF: Let us assume that the Taylor series of D?f at 0:

D?f(x) = Py + Pi(x) + Po(x) + ...,

where Py () is a k-homogeneous polynomial form ¢y into £(cg, ¢1), is uniformly convergent

on €B,, and moreover satisfies

sup || Pi(2)]| < K(1—¢)",
:EEEBCO

where K is some constant. By Lemma 12, 13 and an easy homogeneity argument we obtain

SO If(eei)] < 16Ke? Y (1 —e)* = 16Ke.
i=1 k=0
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