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Introduction

It is well known that in separable Banach spaces, or more generally in WCD Banach
spaces, the existence of a Ck-Fréchet differentiable bump function implies the pos-
sibility of uniform approximation of continuous functions by Ck-smooth functions.
However, the more subtle question of the uniform approximation on bounded sets
of arbitrary equivalent norm on a Banach space by a Ck-smooth norm – assuming
the existence of some equivalent Ck-smooth norm on the space – seems to be of
a different nature, and until now there has not been avaliable examples of spaces
with this property.
In our paper, we give a satisfactory affirmative answer to our question for several
classes of separable normed spaces.
We show that normed spaces with countable algebraic basis, polyhedral Banach
spaces, in particular c0, ℓp spaces for p even integer, and Lp[0, 1] for p even integer
allow for approximations by analytic norms. This result should be compared with
[D] where it is proved that every Banach space with an equivalent C∞-smooth norm
(bump) contains an isomorphic copy of c0 or ℓp, p even integer.
We further show that spaces with Schauder basis that admit a Ck-smooth equiva-
lent norm, whose all derivatives are bounded on bounded sets, also admit approx-
imations by Ck-smooth norms (in general without bounded derivatives). We will
comment on the boundedness condition later on.
Thus approximations in ℓp, Lp[0, 1] for arbitrary 1 < p < ∞ are settled in the best
possible way, since by [Ku] ℓp, p non-even, does not admit a Ck equivalent norm
where k > p.
Since there is a natural correspondence between closed, convex and bounded (CCB)

sets in a normed space, containing ~0 as an interior point and their Minkowski
functionals, the previous statements can be reformulated in the language of convex
sets.
The proof of the above statements is done in two steps.
First it is showed that an arbitrary CCB set S1, ~0 ∈ intS1, can be arbitrary well
approximated by another CCB set S2 = {x ∈ X, fi(x) ≤ 1, i ∈ IN} where {fi}i∈IN

are Ck-smooth convex functions, satisfying some other technical conditions. Above
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all, for every x ∈ ∂S2 there exists an i ∈ IN , fi(x) = 1. (In case fi are linear they
form the so-called boundary of the set S2.)
Then a general Theorem 1.3 is applied. This theorem can be viewed as a nonlinear
generalization of Theorem 1 from [H], using ideas from [FPWZ]. Intuitively, what
this theorem does is ”smoothenning the corners” of the body S2.
The uniform boundedness conditions of the derivatives of {fi}i∈IN in Theorem 1.3
are local. Yet some global boundedness condition on the derivatives of an equivalent
norm on X seem to be necessary in the first step of the constuction, in order to
obtain {fi}i∈IN that meet the local conditions.
Related to this is an example by [NS] of an equivalent norm on ℓ2 not allowing for
approximations by C2-smooth norms whose second derivative is uniformly contin-
uous.
Since the first step of the proof differs for different classes of norms, we decided
to prove the general smoothenning Theorem 1.3 in Section 1, and then deal with
different classes of spaces in the subsequent sections.
Throughout the paper we use the standard notation and terminology of Banach
space theory. By saying that a homogeneous function is of some class of smoothness
we always mean away from the origin. Whenever we say Minkowski functional, we
always mean corresponding to a CCB set containing ~0 as an interior point. By
saying that a CCB set S1, ~0 ∈ intS1 in (X, ‖ · ‖) is arbitrarly approximable by CCB
sets from some class C we mean that for every ε > 0 there exists S2 ∈ C such that

(1 − ǫ)S2 ⊂ S1 ⊂ (1 − ǫ)S2.

This is equivalent to the approximations of the corresponding Minkowski functionals
on bounded sets.

Section 1

As we have already indicated, the question of the possibility of approximation of a
given Minkovski functional on a Banach space X by Minkovski functionals of higher
order of smoothness is equivalent to the possibility of approximations of a CCB set
A, ~0 ∈ intA, by higer order smooth CCB sets, i.e. precisely the sets F−1

(

[−∞, 1]
)

where F is a convex function of the corresponding smoothness. This is in fact the
content of the Implicit Function Theorem, as stated in [DGZ], or [FPWZ] in the

analytic case. Therefore it is our aim to find for a given CCB set A, ~0 ∈ intA a
suitable smooth and convex function F , such that F−1([−∞, 1]) approximates A.

Let (X, ‖ · ‖) be a normed space, A be a CCB set in X, ~0 ∈ intA. Let {fi}i∈IN be
a sequence of homogeneous, continuous and convex functions on X such that

A = {x, fi(x) ≤ 1, i ∈ IN}.

Definition 1.1 We say that {fi}i∈IN as above forms a countable generalized bound-
ary (c.g.b.) of A if for every x ∈ ∂A there exists some i ∈ IN such that fi(x) = 1.

The following facts on complex spaces and functions can be found in [Ku] and
references therein. Given (X, ‖ · ‖) a real normed (Banach) space, we can pass to
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its complexification (Xc, ‖ · ‖c) which, considered as a real normed (Banach) space,
is isomorphic to X ⊕ X with a norm |||(x, y)||| = ‖x‖ + ‖y‖.
For P a k-homogeneous polynomial on X and AP (x1, . . . , xk) the corresponding
symmetric k-linear form, we define a complexified polynomial P c on Xc by the
formula:

P c
(

(x, y)
)

= AP (x + iy, x + iy, . . . , x + iy).

Then

|||P c||| ≤ 2k‖AP ‖ ≤ 2k kk

k!
‖P‖.

For the last inequality see [N, p.7].
It follows from Stirling’s formula that for some K ′ > 0

kk

k!
< K ′ · ek for every k ∈ IN.

Find K > 0 such that K · ||| · ||| ≥ ‖ · ‖c. Then

‖P c‖c ≤ K ′ · (2Ke)k · ‖P‖.

Thus whenever f is a real analytic function at x ∈ X with the radius of convergence
r, we can pass to its holomorphic complexification fc at (x,~0) with the ‖ · ‖c-radius
of convergence at least r

2Ke
.

Definition 1.2 Let k ∈ IN ∪ {+∞}∪{ω}. We say that a sequence {fi}i∈IN of real
functions defined on an open convex set U ⊂ (X, ‖ · ‖) satisfies the condition (k) if
the following holds:
(i) fi are convex and continuous.

(ii) If k ∈ IN then for every l ≤ k and every ~0 6= x ∈ U there exists a neighbourhood
O ⊂ U such that fi

∣

∣

O
are Ck-Fréchet differentiable and ‖Dlfi‖

∣

∣

O
are uniformly

bounded.
(iii) If k = +∞ then for every l ∈ IN and ~0 6= x ∈ U there exists a neighbour-

hood O ⊂ U such that fi

∣

∣

O
are C∞-Fréchet differentiable and ‖Dlfi‖

∣

∣

O
are

uniformly bounded.
(iv) If k = ω then fi are real analytic on U \ {~0}, and for every ~0 6= x ∈ U and

δ > 0 there exist an r > 0 and i ∈ IN such that:

|fc
j (z)| < 1 + δ for ‖z − (x,~0)‖c < r and j > i.

(v) The convex set A = {x, fi(x) ≤ 1, i ∈ IN} is bounded and ~0 ∈ intA.

Theorem 1.3 Let (X, ‖ · ‖) be a separable normed space, D ⊂ X be a CCB set,
~0 ∈ intD. Suppose {fi}i∈IN is a c.g.b. of D satisfying the condition (k) where
k ∈ IN ∪ {+∞} ∪ {ω}. Then the Minkowski functional of D can be approximated
by Ck-smooth Minkowski functionals.

Proof. Choose εi ց 0. Put f̃i = (1 + εi)fi. It is standard to check that {f̃i}i∈IN

again satisfy the (k) condition. Moreover they form a c.g.b. of the set
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D̃ = {x, f̃i(x) ≤ 1, i ∈ IN}.

Also for every x ∈ ∂D̃ there exists an i ∈ IN such that

(1) j > i implies f̃j(x) ≤
1 + εi+1

1 + εi

< 1.

Letting ε1 → 0 gives us arbitrary good approximation of D by D̃. Therefore it is
enough to prove our result for D̃.
Denote by ψ(x) = 1

e
· ex, x ∈ IR. Put hi = ψ ◦ f̃i. It is again standard to check that

{hi}i∈IN satisfies the condition (k), hi are non-negative, D̃ = {x, hi(x) ≤ 1, i ∈ IN}
and moreover, from (1), there exists a sequence δi ց 0 such that for every x ∈ D̃
there exists i(x) ∈ IN and a neighbourhood O(x) ⊂ X of x with the properties:

(2) j > i(x) implies hj(y) < 1 − δi(x) for y ∈ O(x).

In case k = ω we require in addition that for some neighbourhood Oc ⊂ Xc of
(x,~0) where Oc ∩ X = O there exist δ > 0 and i ∈ IN such that:

(3) |hc
j(z)| < 1 − δ for z ∈ Oc and j > i.

Let {pi}i∈IN be an increasing sequence of even integers. It follows from (2) that

G(x) =

∞
∑

i=1

(

hi(x)
)pi

is a well-defined function on D̃, A = G−1
(

[0, 1]
)

⊂ intD̃.
The formula for a sum of a geometric series persuades us that letting p1 → +∞
gives us arbitrary good approximation of D̃ by A. We will prove that if the sequence
{pi}i∈IN grows fast enough, the function G on intD̃ \ {~0} has the same smoothness
properties as functions hi. This will finish the proof of Theorem 1.3.
Let us first prove the case k ∈ IN ∪ {+∞}.
Using the Lindelöf property of (X, ‖ · ‖), choose sequences {xj}j∈IN ⊂ intD̃ and
{Oj}j∈IN consisting of open neighbourhoods of the points xj such that:

(i) intD̃ ⊂
⋃

j∈IN

Oj

(ii) For l ∈ IN , l ≤ k, ‖Dlhi(·)‖ are unifomly bounded on Oj

(iii) x, y ∈ Oj implies i(x) = i(y).

Now let us form a sequence {[zj , lj ]}j∈IN consisting of all pairs [xj , l] where j ∈ IN ,
l ∈ IN , l ≤ k.
By induction with respect to m ∈ IN , we construct a system {pm,n}n∈IN of increas-
ing sequences of even integers such that

{p(m+1),n}n∈IN ⊂ {pm,n}n∈IN
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and for every m ∈ IN and every subsequence {qn}n∈IN of {pm,n}n∈IN the function

G(x) =

∞
∑

i=1

(

hi(x)
)qn

restricted to Om is lm-times continuously differentiable.
Put {p0,n}n∈IN = {2n}n∈IN .
Induction step from m to m + 1.
According to the generalized chain rule, see [Fe, p.222] for the notation, we compute
the β-th differential of a composition of a β-differentiable real function f on X with
xp, p an even integer, at a ∈ X as follows:

(4) Dβ
(

f(a)
)p

=
∑

α∈S(β)

DΣα
((

f(a)
)p)

◦
((

D1f(a)
)α1 ⊙ · · · ⊙

(

Dkf(a)
)αk

)

α!
,

where S(β) is the set of all β-termed sequences α of nonnegative integers such that
β
∑

i=1

iαi = β. Notice that (4) is a formula with a fixed number of terms on the right

hand side, regardless of the value of p. If |f(a)| < 1, we obtain:

|DΣα
((

f(a)
)p)

| → 0 as p → +∞ for every α ∈ S(β).

Consequently ‖Dβ
(

f(a)
)p
‖ → 0 as well.

The induction step is as follows:
We put p(m+1),n = pm,n for n ≤ i(zm+1). For n > i(zm+1) we put p(m+1),n to be
as large an element from {pm,n}n∈IN that

‖Dβ
(

hn(y)
)pm+1,n‖ <

1

2n

for all y ∈ Oq (where zm+1 = xq), for all β ≤ lm+1.
Putting {pn}n∈IN to be {pn,n}n∈IN and

G(x) =
∞
∑

i=1

(

hi(x)
)pi

finishes the proof for k ∈ IN ∪ {+∞}.
The analytic case.
As {hi}i∈IN satisfy the condition (ω)(iv) and (3), the complex series

Gc(z) =

∞
∑

i=1

(hc
i (z))2i+k where k is an even integer

is uniformly convergent on some neighbourhood of every point (x,~0) ∈ Xc where

x ∈intD̃. According to the uniform convergence theorem for holomorphic functions,

Gc(z) is holomorphic as well. As a result, G(x) =
∞
∑

i=1

(hi(z))2i+k is real analytic on

intD̃ \ {~0}. Letting k → +∞ gives us arbitrary good approximations of D̃ by the
sets G−1([0, 1]).
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Remark 1.4 It is easy to check that the same proof as above also works for k-times
Gateaux-differentiable approximations.

Section 2

In this section we prove that in normed spaces with countable algebraic basis, every
CCB set can be approximated by polytopes. As a consequence every equivalent
Minkowski functional can be approximated by analytic Minkowski functional. Let
us start with some definitions.

Definition 2.1 Let P be a CCB subset of IRn. Then P is called a (finitely dimen-
sional) polytope iff there exists a finite set {pk}

l
k=1, P = co{pk}

l
k=1. Analogously,

let (X, ‖ · ‖) be a normed space, P ⊂ X be a CCB subset. Then P is called a
polytope if every finite dimensional section of P is a finite dimensional polytope.

Definition 2.2 Let (X, ‖ · ‖) be a normed space, P ⊂ X be a CCB set, ~0 ∈intP ,
P 0 be the polar set. The set S ⊂ P 0 ⊂ X∗ is called a boundary of P , if for every
x ∈ P there exists f ∈ S such that f(x) = 1. Of course we have w∗-clcoS = P 0

The following are some elementary propertis of finite dimensional polytopes:

(*) Every finite dimensional polytope containing ~0 as an interior point has a finite
boundary (namely the set of the extremal points of the dual polytope).

(**) Suppose P is a convex body in IRn, containing ~0 as an interior point, ε > 0.
Then there exists a polytope Q s.t. P ⊂ Q ⊂ (1 + ε)P .

(***) Suppose P , Q are polytopes in IRn, ε > 0 such that P ∩ spanQ ⊂ Q, ~0 ∈ intQ.
Then ext((1 + ε)Q) ⊂ ext(co(P ∪ (1 + ε)Q)).

Theorem 2.3 Let (X, ‖ · ‖) be a normed linear space with countable algebraic basis
. Then every CCB set B, 0 ∈intB, can be approximated by polytopes.

Proof. Choose ε > 0. Choose a sequence εk ց 0, ε1 < 1/10 so that
∞
∏

k=1

(1 + εk) <

1+ε. Suppose {xk}k∈IN is the algebraic basis of X. Denote by Xn = span{xk}
n
k=1,

Bn = Xn ∩B. (We have Bn+1 ∩Xn = Bn). We construct by induction a sequence

{Kn}n∈IN of polytopes in Xn satisfying Bn ⊂ Kn ⊂
n
∏

k=1

(1 + εk)Bn, Kn+1 ∩ Xn =

(1 + εn+1)Kn as follows:
K1 = (1 + ε1)B1.
Inductive step:
Denote by Dn+1 a polytope (by (**)) such that

Bn+1 ⊂ Dn+1 ⊂ (1 +
εn+1

4
)Bn+1.

So we have Dn+1 ∩ Xn ⊂ (1 + εn+1

4 )Bn ⊂ (1 + εn+1

4 )Kn. Consequently

(1 +
εn+1

4
)(Dn+1 ∩ Xn) ⊂ (1 +

3εn+1

4
)Kn.
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Put Kn+1 = co(Dn+1∪(1+εn+1)Kn). By (***) we have Kn+1∩Xn = (1+εn+1)Kn.

Define K̃n =
∞
∏

k=n

(1 + εk)Kn. Then Bn ⊂ K̃n ⊂ (1 + ε)Bn and K̃n+1 ∩ Xn = K̃n.

This allows us to define a new polytope K̃ in X such that K̃ ∩ Xn = K̃n.
The approximation condition obviously holds.

Corollary 2.4 On every normed space with countable algebraic boundary every
Minkowski functional (resp.equivalent norm) can be approximated by analytic Minkowski
functionals (resp. equivalent analytic norms).

Proof. The polytope K̃ has a countable boundary {bi}i∈IN due to (*) and the fact
that X =

⋃

n∈IN

Xn.

It is standard to check that {bi}i∈IN satisfies the (ω) condition. The rest of the
proof follows from Theorem 1.3.

Remark 2.5 It should be noted that every separable Banach space E contains an
isomorphic copy of a normed space X with countable algebraic basis that is dense
in E.
Consider for example E = ℓ1, X be the space of finitely supported vectors in ℓ1.
Then the extension of arbitrary analytic norm on X to the completion ℓ1 of the
space X looses all the differentiability properties, since ℓ1 admits no equivalent
Fréchet differentiable norm.

Section 3

In this section we prove results analogous to Theorem 2.3 and Corollary 2.4 for
polyhedral Banach spaces. The method of the proof is however different due to the
completness of the space and the fact that the dual space is separable.
We begin with some definitions. A Banach space E is called polyhedral [K] if its
unit ball BE is a polytope.
As proved in [F5], the algebraic and the topological interiors of a polytope P co-
incide (we mean the topological interior in the space [P ], i.e. in the closure of the
linear span P ).
So it is easily seen that polytopes with non-empty algebraic interior exist in polyhe-
dral Banach spaces only. Thus the problem of finding a polytope that approximates
some body can be posed in polyhedral Banach space only.
So let W be a CCB body in a polyhedral Banach space E such that ~0 ∈ intW.
A polytope P is called a tangential polytope to the body W if P ⊃ W , and each
maximal face of P is tangent to the body W .
We will call a polytope P ε-approximating for the body W if W ⊂ P ⊂ (1 + ε)W.
The main purpose of this section is to prove the following:

Theorem 3.1 Let W be an arbitrary CCB body in a separable polyhedral Banach
space E and ε > 0.Then there exists a tangential ε-approximating polytope P to the
body W.

Let us first list some auxiliary results. Let W be a CCB body in a Banach space
E. From now on we will assume without loss of generality that ~0 ∈ intW .
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The following theorem (see [F3,4,7]) summarizes some of the properties of polyhe-
dral Banach spaces that we will use.

Theorem 3.2 Let (E, ‖ · ‖) be a polyhedral Banach space of weight α. Then there
exists a boundary B ⊂ SE∗ of BE of cardinality α such that for every f ∈ B a face
{x ∈ SE : f(x) = 1} has non-empty interior in the hyperplane {x ∈ E : f(x) = 1}.
Conversely, if a separable Banach space E has a countable boundary {fi}i∈IN then
this space is polyhedral in the equivalent norm

|||x||| = sup{(1 + εi)f(xi), i ∈ IN}.

In the norm ||| · |||, the space E also has a countable boundary B = {hi}i∈IN (actually
hi = (1 + εi)fi) with the following property: every w∗-limit point f of the set B
such that |||f ||| = 1 does not attain its norm. Each functional f ∈ E∗ attaining its
norm ||| · ||| belongs to the set span{hi}.

Proof of the following proposition is based on Theorem 3.2 and uses some ideas
from [F1,2,3,4].

Proposition 3.3 Let P be a polytope (recall that polytope is a body) in a separable
Banach space E. Then there exists a countable boundary B ⊂ P 0 for P .
Conversely, let A be CCB body with a countable boundary (for example a polytope)
and ε > 0. Then there exists a polytope P with the following properties:
1) A ⊂ P ⊂ (1 + ε)A
2) There exists a countable boundary {hi} ⊂ P 0 such that each w∗-limit point h

of the set {hi}i∈IN with the property h ∈ ∂P 0 does not attain its supremum on
P .

3) For every sequence γi ց 0 of positive numbers there exists a sequence {ti}i∈IN

of linear functionals such that:
(a)‖hi − ti‖ < γi

(b) For every sequence {li}i∈IN possessing the property ‖li − ti‖ < γi/4

w∗ − clco{li} ⊃ P 0

(c) The set P1 = {x ∈ E : li(x) ≤ 1, i ∈ IN} is a polytope.

Proof. Let y ∈ intP . We define an affine mapping Ay : P → E by the formula:

Ay(x) = 2y − x, x ∈ P.

Put Py = Ay(P ) and Vy = P ∩ Py. Of course Vy is a symmetric polytope and by
Theorem 3.2 there exists a countable boundary By = {f j

y} for Vy. It is obvious
that ∂Vy ⊂ ∂P ∪ ∂Py. Let x ∈ ∂Vy ∩ ∂P be such a point that there exists δ > 0
with the property:

(x + δBE) ∩ ∂P ⊂ ∂Vy.

If f j
y ∈ By is a supporting functional at a point x, i.e. f j

y (x) = 1 = sup f j
y (Vy) then

it is easily verified that f j
y (x) = 1 = sup f j

y (P ). Let {yi}i∈IN be a dense subset in
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intP . Simple consideration shows that for each x ∈ ∂P there exist yi and δ > 0
such that:

(x + δBE) ∩ ∂P ⊂ ∂Vyi
.

Thus the countable set B =
⋃

i∈IN

{f j
yi
}∞j=1 is a boundary for the polytope P .

Now let A ⊂ E be a CCB body with a countable boundary {fi}i∈IN and ε > 0.

Without loss of generality we can assume that ~0 ∈ intA. Let εi ց 0 , ε1 < ε. Put

hi =
1 + εi

1 + ε
fi, K = w∗ − clco{hi}, P = {x ∈ E : hi(x) ≤ 1, i ∈ IN}.

It is clear that A ⊂ P ⊂ (1 + ε)A, P 0 = K, and A0 ⊃ K ⊃ (1 + ε)−1A0. Let
h0 = w∗-lim hik

, h0 ∈ ∂K and x0 ∈ ∂P be such that h0(x0) = maxh0(P ) = 1.

Since εi ց 0, we have h0 = w∗-lim fi

1+ε
and therefore h0 ∈ (1 + ε)−1A0. From

x0 ∈ (1 + ε)A we have sup x0
1

1+ε
A0) ≤ 1 and so

h0(x0) = 1 = max x0(1/(1 + ε)A0).

Since { 1
1+ε

fi}i∈IN is a boundary for 1
1+ε

A there exists a functional 1
1+ε

fj such that
1

1+ε
fj(x0) = 1. Thus

1 + εj

1 + ε
fj(x0) = 1 + εj > 1 = max x0(K).

This contradiction shows that each w∗-limit point h0 of the set {hj}j∈IN such that
h0 ∈ ∂K does not attain its supremum on the set P . Let L ⊂ E be a finite-
dimensional subspace. Then by compactness of the set L ∩ P it follows that there
exist a positive number α and an integer m such that:

sup{hj(x), x ∈ L ∩ P} < 1 − α for every j > m.

This proves both that P is a polytope and {hi}i∈IN is a boundary. To prove c) it
is enough to set ti = (1 + γi)hi, for i ∈ IN and to observe that the property:

w∗ − clco{li} ⊃ w∗ − clco{hi}

is equivalent to the following one:

max x(w∗ − clco{li}) ≥ max x(w∗ − clco{hi}) for every x ∈ E.

Since γi → 0 for i → ∞ it follows that each w∗-limit point of the set {ti}i∈IN

belongs to the set w∗−cl{hi}. Thus P1 is a polytope by the same argument as that
P is a polytope. The proof is completed.

Remark 3.4 The proof of the first part of Proposition 3.3 shows that the structure
of a topological boundary of an infinite-dimensional separable polytope P (with
non-empty interior) is similar to the structure of a boundary of a symmetric one
(see Theorem 3.2), i.e. the boundary ∂P consists of countably many maximal faces
that are solid parts of hyperplanes.
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The following lemma is similar to Lemma 4.1 [Zp] and to the first part of Theorem
1 [Ben]. We give a proof that is very close to the consideration in [Ben].

Lemma 3.5 Let E be a Banach space with separable dual E∗ and {xi}i∈IN ⊂ SE be
an M -basis of E such that the linear span of biorthogonal system {x∗

i }i∈IN is dense

in E∗. Let W ⊂ E be CCB body such that ~0 ∈ intW and 0 < ε < 1/2. Then there
exists a w∗-compact subset F ⊂ W 0 such that:

1) 1
1+4ε

W 0 ⊂ w∗ − clcoF ⊂ 1
1+ε

W 0

2) For each integer i the set xi(F ) is finite.

Proof. Let d = inf{‖g‖ : g ∈ ∂W 0} and Ti = {f(xi) : f ∈ W 0} for i ∈ IN. Each
set Ti is bounded and thus there exists a ε

2i+2‖x∗

i
‖ -net Ci in Ti. Put

A =

{

n
∑

i=1

aix
∗
i ∈

1

1 + ε
W 0 : n ∈ N, ai ∈ Ci

}

, F = w∗ − clA.

It is obvious that xi(F ) = xi(A) ⊂ Ci where i ∈ IN . Thus the condition 2)
is satisfied. Of course w∗ − clcoF ⊂ 1

1+ε
W 0. In order to check that 1

1+4ε
W 0 ⊂

w∗ − clcoF let us take f ∈ 1
1+2ε

W 0. Since span{x∗
i } is dense in E∗ there exists

g =

n
∑

i=1

bix
∗
i ∈

1

1 + 2ε
W 0,

such that ‖f − g‖ < εd/6. We have bi ∈ Ti and there exists ai ∈ Ci such that
|bi − ai| < εd

6·2i‖x∗

i
‖ , i ∈ IN. Hence

‖g −
n

∑

i=1

aix
∗
i ‖ <

εd

6
,

and a straight verification shows that h =
n
∑

1
aix

∗
i ∈ 1

1+ε
W 0. Thus by definition

h ∈ F and obviously ‖f − g‖ < εd
3 . From the last inequality taking into account

0 < ε < 1/2 one can deduce that 1
1+4ε

W 0 ⊂ w∗ − clcoF . The proof is completed.

The following Lemma 3.6 is close to some results from [Zp] too. We use the notation
of Lemma 3.5. In addition put Mn = [xi]

n⊥
1 , n ∈ IN.

Lemma 3.6 For arbitrary ε > 0 there exists a sequence of points {gk} in the set F ,
a sequence of integers {nk}, nk → ∞, and a decreasing sequence {Fα} of w∗-closed
subsets of F such that:

1)
⋃

k∈IN

((gk + Mnk
) ∩ Fk) = F .

2) diam((gk + Mnk
) ∩ Fk) < ε.

Proof. We will use the following well-known property of w∗-compacts in a separable
dual space: for every ε > 0 there exist a point g ∈ F and w∗-neighborhood G of g
such that G ∩ F 6= ∅ and diam(G ∩ F ) < ε.
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Becouse of the structure of the set F , the sets (h + Mn) ∩ F, h ∈ F, n ∈ N form
a base of w∗- topology on F and each such set is both closed and open subset of
(F,w∗). Moreover the family

ℑ = {h + Mn : h ∈ F, n ∈ N}

contains countably many (different) sets and obviously each w∗- compact subset of
F has the same structure as F .

For each ordinal α we define sets Fα and (hα + Mn(α)) by transfinite induction as
follows:

F0 = F, Fα+1 = Fα \ (hα + Mn(α)),

where (hα + Mn(α)) is a member of the family ℑ such that (hα + Mn(α)) ∩ Fα 6= ∅
and diam ((hα+Mn(α))∩Fα) < ε. If α is a limit ordinal we put Fα = ∩β<αFβ . Since
the family ℑ is countable and each set Fα is w∗-compact there exists a countable
ordinal η such that Fη 6= ∅ and Fη+1 = ∅. It is clear that:

⋃

α≤η

(

(hα + Mn(α)

)

∩ Fα) = F.

Let us reindex the countable family {hα + Mn(α)}α≤η into {hk + Mnk
}∞k=1. Since

for each integer q there exist only finite many members h + Mn of the family ℑ
such that n ≤ q it follows that nk → ∞ for k → ∞. Lemma is proved.

The following lemma was proved in [H].

Lemma 3.7 Let X be a Banach space that admits a boundary that can be covered
by countable union of ‖.‖-compacts.Then for every ε > 0 there exists an ε-isometric
norm on X with countable boundary.

Lemma 3.8 Let E be a separable polyhedral Banach space with norm possesing the
properties of the second part of Theorem 3.2. Let L ⊂ E be a finite-dimensional
subspace of E , M = L⊥, x ∈ E and h ∈ SM be such that h(x) = maxx(SM ). Then
there exists h0 ∈ (span{hi} ∩S(M), ({hi}i∈IN comes from Theorem 3.2), such that
h0(x) = maxx(SM ).

Proof. If max x(SM ) = 0 then let h0 be arbitrary functional from (span{hi})∩SM .
If h(x) 6= 0, we can assume without loss of generality that h(x0) = 1. Let q : E →
E/L be a quotient map. Of course ‖q(x0)‖ = 1 and since L is a finite-dimensional
subspace there exists an element x1 ∈ SE ∩ (x0 + L). It is clear that h(x1) =
h(x0) = 1. Thus funcional h attains its norm and by Theorem 3.2 h ∈ span{hi},.
It is enough to put h0 = h to complete the proof.

Lemma 3.9 Let W be CCB body in a Banach space E , 0 ∈ intW , ε > 0 and A be
a polytope possessing the property:

W ⊂ A ⊂ (1 + ε)W.
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Then for every ε1 > ε there exists a tangential polytope P1 for body W such that
W ⊂ P1 ⊂ (1 + ε1)W .

Proof. Let ε2 > 0 be such that (1 + ε)(1 + ε2) < (1 + ε1). By Proposition
3.3 there exists a polytope P possessing the properties 1)-2)-3), with ε2 instead
of ε. From property 1) of Proposition 3.3 and the above assumption we have
W ⊂ P ⊂ (1 + ε2)(1 + ε)W . Thus

W 0 ⊃ P 0 ⊃
1

(1 + ε2)(1 + ε)
W 0,

and hence

W 0 ⊃
(1 + ε)(1 + ε2)

1 + ε1
P 0 ⊃

1

1 + ε1
W 0.

Put λ = (1 + ε)(1 + ε2)/(1 + ε1) < 1. Actually we have λP 0 ⊂ λW 0. Using the
notation of Proposition 3.3 we can assert that:
10) {λhi}i∈IN is a boundary for 1

λ
P such that each w∗-limit point h of the set

{λhi}i∈IN such that h ∈ ∂(λP 0) does not attain its supremum on the set 1
λ
P .

20) For every α > 0 there exists a sequence of linear functionals {ti}i∈IN such that:
(a) ‖λhi − ti‖ < α/2i.
(b) For every sequence {li}i∈IN possessing the property ‖li − ti‖ < α/2i+2

w∗ − clco{li} ⊃ λP 0

(c) The set P1 = {x ∈ E : li(x) ≤ 1, i ∈ IN} is a polytope.

Let a number α > 0 be small enough to have every sequence {li}i∈IN (from property
(b)) inside intW 0 and let {fi}i∈IN ⊂ S∗

E be an arbitrary sequence w∗-tending to
zero. Let us denote by Ti the straight line that the contains functionals li and
li + fi (as points). Denote by u1

i and u2
i the points (i.e.functionals) of intersection

of the line Ti with the boundary ∂W 0 (recall that li ∈ intW 0). Using Bishop-Phelps
theorem on the density of the set of functionals that attain their supremum on the
set W it is not difficult to establish the existence of the functionals li (‖li − ti‖ <
α/2i+2) and gi (‖fi − gi‖ < 2−i) such that both functionals u1

i and u2
i attain their

supremum on the set W . It is easily seen that:

(5) w∗ − lim(u1
i − λhi) = w∗ − lim(u2

i − λhi) = 0.

Moreover the point li lies on the segment [u1
i , u

2
i ], i ∈ IN and hence

w∗ − clco{u1
i , u

2
i }i∈IN ⊃ w∗ − clco{li} ⊃ λP 0.

Put P1 = {x ∈ E : u1
i ≤ 1, u2

i ≤ 1, i ∈ IN}, then P1 ⊂ 1
λ
P. Let h be w∗-limit

point of the set {u1
i , u

2
i } such that h ∈ ∂P 0

1 . From (5) and P 0
1 ⊃ λP 0 it follows

that h ∈ ∂(λP 0) and by 10) functional h does not attain its supremum on the set
1
λ
P. But sup h(P1) = suph( 1

λ
P ) = 1 and P1 ⊂ 1

λ
P, hence the functional h does not

attain its supremum on the set P1 either. Thus P1 is a polytope with the boundary
{u1

i , u
2
i }. Since P 0

1 = w∗ − clco{u1
i , u

2
i }

∞
1 ⊂ W 0 and P 0

1 ⊃ λP 0 ⊃ 1
1+ε1

W 0 we have:
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W ⊂ P1 ⊂ (1 + ε1)W.

It is clear from our construction that P1 is a tangential polytope for W . The proof
is completed.

Now we are ready to give the proof of Theorem 3.1.

Proof. We assume that the norm on the space E possesses all the properties from
Theorem 3.2. In view of Lemma 3.9 it is sufficient to prove the existence of a
δ-approximating polytope. Let ε > 0 and let w∗-compact F ⊂ W 0, sequence of
functionals {gk}k∈IN and subspaces Mnk

, k ∈ IN come from Lemmas 3.5 and 3.6.
It is clear that:

(6)
⋃

k∈IN

(gk + εBMnk
) ⊃ F,

where BMnk
is a unit ball of the space (Mnk

, ‖ · ‖).
By Lemmas 3.7 and 3.8 there exists an ε-isometric norm ||| · ||| on the quotient-space
Xk = E/[xi]

nk

1 possessing a countable boundary. Let VMnk
be a unit ball of the

space (Mnk
, ||| · |||) and {vk

i }
∞
i=1 ⊂ VMnk

be a countable boundary. Of course we can
assume that:

(1 − ε)VMnk
⊂ BMnk

⊂ VMnk
for k ∈ IN.

From (6) we have

C =
⋃

k∈IN

(gk + εVMnk
) ⊃ F

Define B =
⋃

k∈IN{gk + vk
i }

∞
i=1, Q = {x ∈ E : f(x) ≤ 1, f ∈ B} and let us show

that B is a boundary for the body Q. We show first that C is w∗-closed set. Let

{hm}m∈IN ⊂ C, hm
w∗

→ h0. If infinitely many of hm are in one of the sets gk +εVMnk

then of course h0 ∈ C. So let us assume that hm ∈ gkm
+ εVMnkm

where m ∈ IN ,

km → ∞, m → ∞. Set hm = gkm
+ εum where um ∈ VMnkm

, m ∈ IN . Since

km → ∞, we have nkm
→ ∞ (see Lemma 3.6) and therefore w∗− limum = 0. Thus

h0 = w∗ − lim gkm
∈ F ⊂ C, which completes the proof of w∗-closeness of the set

C. Also:

Q0 = w∗ − clcoC = w∗ − clcoB,

and hence C is a boundary for Q. Let x ∈ ∂Q and h ∈ C, so that h(x) = 1 =
max x(Q0). Since h ∈ C there exists an integer k such that h ∈ gk + εVMnk

. If

gk(x) = 1 then x(VMnk
) = 0 and for each i ∈ IN :

(7) (gk + vk
i )(x) = 1.

If gk(x) < 1 then
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supx(VMnk
) =

1 − gk(x)

ε
6= 0.

Hence there exists a functional vk
i such that vk

i (x) = supx(VMnk
), (the set {vk

i }
forms a boundary). Thus it is proved that Q has a countable boundary and we can
apply Proposition 3.3. It is clear that for ε small enough we will be able to make
δ-approximation. The theorem is proved.

Corollary 3.10 Arbitrary Minkowski functional (resp. equivalent norm) on a sep-
arable polyhedral Banach space can be approximated by analytic Minkowski func-
tionals (resp. equivalent analytic norms).

Proof. The countable boundary of the approximating polytope satisfies the con-
dition (ω), so Theorem 1.3 applies.

Let us note that among classical Banach spaces, in particular c0 and C(K) where
K is a countable compact are polyhedral.

Section 4

Theorem 4.1 Let (X, ‖ · ‖) be a separable Banach space with Schauder basis
{xi}i∈IN . Let k ∈ IN ∪ {+∞}, ‖ · ‖ be Ck-(Gateaux or Fréchet) smooth, and
Dl‖ · ‖ be bounded on BX for l ∈ IN , l ≤ k. Then every Minkowski functional
(resp.equivalent norm) on X can be approximated by Ck-smooth Minkowski func-
tionals (resp.equivalent norms).

Proof. For k = 1 the above result is known-see [DGZ, p.53].
For k > 1 the space X is superreflexive [DGZ, p.203], so the basis {xi}i∈IN is
shrinking.
Suppose {x∗

i }i∈IN is the dual basis, K be the basis constant of {xi}i∈IN . Suppose

W is a CCB subset of X, ~0 ∈ intW . Using the basis {xi}i∈IN in Lemmas 3.5 and
3.6 from Section 3 we obtain sequences {gk}k∈IN ⊂ F and {Mnk

}k∈IN such that

⋃

k∈IN

(

gk + ε · BX∗ ∩ Mnk

)

⊃ F.

Let us define a sequence {Pk}k∈IN of linear isomorphisms on X defined as:

Pk

(

∞
∑

i=1

aixi

)

= εk ·
nk
∑

i=1

aixi +
∞
∑

i=nk+1

aixi,

where 1 > ε1, εk ց 0 are chosen so that:

(8) sup{dist
(

x∗,Mnk

)

, x∗ ∈ P ∗
k

(

BX∗

)

} → 0 as k → +∞.

As

‖Pk‖ ≤ sup
x∈BX

(

‖εk ·
nk
∑

i=1

aixi‖ + ‖
∞
∑

i=nk+1

aixi‖
)

,
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we have

(9) ‖Pk‖ ≤ 3K for k ∈ IN.

Thus

(10) diam‖·‖∗P ∗
k

(

B∗
X

)

≤ 3K.

Put
S∗ =

⋃

k∈IN

(

gk + ε · P ∗
k

(

BX∗

))

.

Then F ⊂ S∗, and a similar argument to the one in proof of Theorem 3.1 yields
that S∗ is w∗-closed.
From (10) we have that w∗-clcoS∗ approximate W ◦ arbitrary well. Put S = {x ∈
X, S∗(x) ≤ 1}. It follows that {fk}k∈IN , where:

(11) fk(x) = sup{y(x), y ∈ gk + εP ∗
k

(

BX∗

)

} = gk(x) + ε · ‖Pk(x)‖

forms a generalized boundary of S. It follows from (6) and the generalized chain
rule that {fk}k∈IN satisfies the condition (k). By Theorem 1.3 we are done.

Corollary 4.2 On spaces Lp[0, 1], ℓp where 1 < p < +∞, p /∈ IN , every equivalent

norm can be approximated by C [p]-Fréchet smooth norms. On spaces Lp[0, 1], ℓp

where p is odd, every equivalent norm can be approximated by Cp−1-Fréchet smooth
norms.

Proof. It is well-known that these spaces have a Schauder basis. The explicit
calculation of the derivatives of its canonical norm, carried out e.g. in [DGZ, 184],
finishes the proof. It should be noted that this is the best possible result besause,
as shown in [DGZ, p.222], these spaces do not admit equivalent norms of higher
order of Fréchet smoothness than the ones used for the approximation.

Theorem 4.3 Let (X, ‖ · ‖) be a separable Banach space with Schauder basis
{xi}i∈IN . Assume that there exist an even p ∈ IN and a convex homogeneous

p-polynomial P (·) on X such that ‖ · ‖ = P (·)
1
p . Then every Minkowski func-

tional (resp. equivalent norm) on X can be approximated by analytic Minkowski
functionals (resp. equivalent norms).

Proof. The construction of {fk}k∈IN is exactly the same as in Theorem 4.1. In
order to verify that {fk}k∈IN satisfy the (ω) condition, it is enough to realize that:

(12) fc
k = gc

k + ε ·
(

P c(P c
k )

)
1
p

where gc
k, P c

k are uniformly continuous on a neighbourhood of (x,~0) and P c is

uniformly continuous on every bounded set. As for x ∈ X we have: ‖P c
k ((x,~0))‖c →

0 for k → 0 and gk lie in the polar of D̃, we are done.
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Corollary 4.4 On spaces Lp[0, 1], ℓp where p is an even integer, every Minkowski
functional (resp. equivalent norm) can be approximated by analytic Minkowski func-
tionals (resp. analytic norms).

As we mentioned in the Introduction, the existence of a Ck-Fréchet smooth bump
function on a separable space implies the possibility of approximations on bounded
sets of arbitrary continuous function by Ck-Fréchet smooth functions.
Similarily, the existence of a separating polynomial implies the possibility of analytic
approximations, as shown in [Ku].
A refinement of these results can be obtained for convex functions on certain spaces.
We will give only a sketch of proof of the following statement:

Corollary 4.5 Let (X, ‖ · ‖) be a separable normed space that satisfies the as-
sumptions of any of the following theorems contained in this paper: Corollary 2.4,
Corollary 3.10, Theorem 4.1 and Theorem 4.3.
Then arbitrary convex function on X can be approximated on bounded sets by convex
functions of the same degree of smoothness as are the approximations of norms in
the corresponding theorem.

Sketch of proof. It is easy to verify that if a space X satisfies the above as-
sumptions, the space X × IR does as well. Now use the ideas from [Ph2, p.96].
For a given convex function f on X, pass to its epigraph in X × IR. Now use the
above results to approximate the Minkowski functional of a suitable bounded part
of the epigraph in X × IR by smooth Minkowski functionals. Then use the Implicit
Function Theorem to go back to X.
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