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Abstract. Let Y be a Banach space, 1 < p < ∞. We give a simple criterion for embedding ℓp ⊂ Y ,

namely it suffices that the positive cone ℓ+p ⊂ Y . This result is applied to the study of highly smooth
operators from ℓp into Y (p is not an even integer). The main result is that every such operator has a

harmonic behaviour unless ℓ p
K

⊂ Y for some K ∈ N.

In this note we establish a natural criterion for embedding of ℓp or c0 into a given Banach space and
apply it to smooth operators with harmonic behaviour from ℓp spaces.

Recall that the well-known summing basis {ei} of c0 has the property that ‖
∑

aiei‖ =
∑

ai provided
that ai ≥ 0, which means (in our notation) that ℓ+1 ⊂ c0. In fact, and more surprisingly, ℓ+1 ⊂ Y for any
Banach space Y . Moreover, if Y is separable, then there exists a minimal and fundamental system in Y

whose positive cone is isomorphic to ℓ+1 ([S1], [S2], [DJ]). In our paper we prove a result going in the
opposite direction, that Z+ ⊂ Y already implies Z ⊂ Y for Z = ℓp, 1 < p < ∞, or c0.

This simple and somewhat unexpected criterion allows us to completely characterize Banach spaces
Y , for which there exist separating polynomial (or smooth enough) operators from ℓp into Y , as those
for which ℓ p

k
⊂ Y for some integer k.

1. Embedding of the Positive Cone

Let Y be a Banach space, Z be a Banach space with a Schauder basis {ei}. Let us denote the positive
cone of Z by Z+ = { z ∈ Z; z =

∑
aiei, ai ≥ 0 }. We say that Z+ ⊂ Y if there is a basic sequence

{yi} in Y such that ‖
∑

aiei‖Z ≤ ‖
∑

aiyi‖Y ≤ C ‖
∑

aiei‖Z for any
∑

aiei ∈ Z+. We say that C is an
isomorphism constant.

For a ∈ R, let a+ = max{a, 0} and a− = max{−a, 0}.

Theorem 1. Let Y be a Banach space. If c+
0 ⊂ Y then c0 ⊂ Y . Moreover, {yi} is equivalent to the

canonical basis of c0.

Proof. Let
∑

aiyi ∈ Y . Then by assumption
∥∥∥
∑

aiyi

∥∥∥ =
∥∥∥
∑

a+
i yi −

∑
a−

i yi

∥∥∥ ≤
∥∥∥
∑

a+
i yi

∥∥∥ +
∥∥∥
∑

a−
i yi

∥∥∥

≤ C max{a+
i } + C max{a−

i } ≤ 2C max
{
|ai|

}
.

But, as {yi} is a basic sequence,
∥∥∥
∑

aiyi

∥∥∥ ≥
1

2K
max

{
‖aiyi‖

}
≥

1

2K
max

{
|ai|

}
,

where K is a basis constant of {yi}.
⊓⊔

Theorem 2. Let Y be a Banach space, 1 < p < ∞. If ℓ+p ⊂ Y then ℓp ⊂ Y .

First notice the following lemma:

Lemma 3. Let Z be a Banach space with an unconditional Schauder basis {ei}, Y be a Banach space
and Z+ ⊂ Y such that {yi} is an unconditional basic sequence. Then Z ⊂ Y (in fact {yi} is equivalent
to {ei}).
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1



ISOMORPHIC EMBEDDINGS AND HARMONIC BEHAVIOUR OF SMOOTH OPERATORS 2

Proof. There is a K1 ≥ 1 such that K−1
1

∥∥∑
|ai| yi

∥∥
Y
≤

∥∥∑
aiyi

∥∥
Y
≤ K1

∥∥∑
|ai| yi

∥∥
Y

for any
∑

aiyi ∈ Y

and a K2 ≥ 1 such that K−1
2

∥∥∑
|ai| ei

∥∥
Z

≤
∥∥∑

aiei

∥∥
Z

≤ K2

∥∥∑
|ai| ei

∥∥
Z

for any
∑

aiei ∈ Z. Thus

K−1
1 K−1

2

∥∥∑
aiei

∥∥
Z
≤

∥∥∑
aiyi

∥∥
Y
≤ K1CK2

∥∥∑
aiei

∥∥
Z

for any
∑

aiei ∈ Z.
⊓⊔

Proof of Theorem 2. We claim that there is an unconditional normalized block basic sequence of {yi}
such that all its vectors have nonnegative coordinates with respect to {yi}. Then it is easily seen by
Lemma 3 that this block basic sequence is equivalent to the canonical basis of ℓp.

For x =
∑

aiyi ∈ Y we denote x+ =
∑

a+
i yi, x− =

∑
a−

i yi and x̂ =
∑

aiei ∈ ℓp.
Suppose that {yi} is not unconditional and ℓ+p ⊂ Y with isomorphism constant C. Then for any ε > 0

there is y ∈ span{yi} with finite support such that ‖y+‖ = 1 and ‖y‖ < ε. If this was not true for some
ε > 0, then for any x ∈ span{yi}

‖x‖ ≥ εmax
{∥∥x+

∥∥ ,
∥∥x−

∥∥
}
≥

ε

2

(∥∥x+
∥∥ +

∥∥x−
∥∥
)
≥

ε

2

∥∥x+ + x−
∥∥ .

On the other hand

‖x‖ =
∥∥x+ − x−

∥∥ ≤
∥∥x+

∥∥ +
∥∥x−

∥∥ ≤ C
(∥∥x̂+

∥∥
p

+
∥∥x̂−

∥∥
p

)
≤ C21− 1

p

∥∥x̂+ + x̂−
∥∥

p
≤ C21− 1

p

∥∥x+ + x−
∥∥ ,

which means that {yi} would be unconditional.

Thus we can construct a block basic sequence {vi} of {yi} such that ‖vi‖ < 1
2

1
2i and

∥∥v̂+
i

∥∥
p

= 1. Let

{aj}
n
j=1 be a finite sequence of nonnegative real numbers. Then

∥∥∥∥∥

n∑

j=1

ajvj

∥∥∥∥∥ ≤
n∑

j=1

aj ‖vj‖ ≤ max{aj}
n∑

j=1

‖vj‖ ≤
1

2

(
n∑

j=1

a
p
j

) 1
p

and (1)

∥∥∥∥∥

n∑

j=1

ajvj

∥∥∥∥∥ =

∥∥∥∥∥

n∑

j=1

ajv
+
j −

n∑

j=1

ajv
−
j

∥∥∥∥∥ ≥

∥∥∥∥∥

n∑

j=1

ajv
−
j

∥∥∥∥∥ −

∥∥∥∥∥

n∑

j=1

ajv
+
j

∥∥∥∥∥

≥

∥∥∥∥∥

n∑

j=1

aj v̂
−
j

∥∥∥∥∥
p

− C

∥∥∥∥∥

n∑

j=1

aj v̂
+
j

∥∥∥∥∥
p

=

∥∥∥∥∥

n∑

j=1

aj v̂
−
j

∥∥∥∥∥
p

− C

(
n∑

j=1

a
p
j

) 1
p

,

which implies
∥∥∥∥∥

n∑

j=1

aj v̂
−
j

∥∥∥∥∥
p

≤

(
C +

1

2

) (
n∑

j=1

a
p
j

) 1
p

. (2)

As
∥∥v̂+

j

∥∥
p

= 1, we can easily see that

∥∥∥∥∥

n∑

j=1

ajv
+
j

∥∥∥∥∥ ≥

∥∥∥∥∥

n∑

j=1

aj v̂
+
j

∥∥∥∥∥
p

=

(
n∑

j=1

a
p
j

) 1
p

. (3)

On the other hand, take f ∈ S(span{yi})∗ such that f
(∑

ajv
+
j

)
=

∥∥∑
ajv

+
j

∥∥. Let bi = f(yi), i ∈ N

and M =
⋃n

j=1 supp vj (notice that this is a finite set). Define g =
∑

k∈M bky∗
k, g+ =

∑
k∈M b+

k y∗
k,

ĝ =
∑

k∈M bke∗k and ĝ+ =
∑

k∈M b+
k e∗k, where y∗

k and e∗k are the biorthogonal functionals to yk and ek

respectively. Let 1
p + 1

q = 1 and put y =
∑

k∈M (b+
k )q−1yk. Then

∥∥∥ĝ+
∥∥∥

q
=

(
∑

k∈M

(b+
k )q

) 1
q

=

∑
k∈M (b+

k )q

(∑
k∈M (b+

k )q
) 1

p

=
g(y)

‖ŷ‖p

≤ C
g(y)

‖y‖
= C

f(y)

‖y‖
≤ C ‖f‖ = C. (4)
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Using (3) we have
∥∥∥∥∥

n∑

j=1

ajvj

∥∥∥∥∥ ≥ f

(
n∑

j=1

ajvj

)
= f

(
n∑

j=1

ajv
+
j

)
− f

(
n∑

j=1

ajv
−
j

)
=

∥∥∥∥∥

n∑

j=1

ajv
+
j

∥∥∥∥∥ − g

(
n∑

j=1

ajv
−
j

)

≥

∥∥∥∥∥

n∑

j=1

ajv
+
j

∥∥∥∥∥ − g+

(
n∑

j=1

ajv
−
j

)
≥

(
n∑

j=1

a
p
j

) 1
p

− g+

(
n∑

j=1

ajv
−
j

)
.

Let us denote M+ =
⋃n

j=1 supp v+
j , M− =

⋃n
j=1 supp v−

j , ĝ+↾M+=
∑

k∈M+ b+
k e∗k and ĝ+↾M− similarly.

The last inequality together with (1), the Hölder inequality and (2) gives

1

2

(
n∑

j=1

a
p
j

) 1
p

≤ g+

(
n∑

j=1

ajv
−
j

)
≤

∥∥∥ĝ+↾M−

∥∥∥
q

∥∥∥∥∥

n∑

j=1

aj v̂
−
j

∥∥∥∥∥
p

≤
∥∥∥ĝ+↾M−

∥∥∥
q

(
C +

1

2

)(
n∑

j=1

a
p
j

) 1
p

,

which means that ∥∥∥ĝ+↾M−

∥∥∥
q
≥

1

2C + 1
.

If we combine this inequality with (4), we obtain

∥∥∥ĝ+↾M+

∥∥∥
q
≤

(∥∥∥ĝ+
∥∥∥

q

q
−

∥∥∥ĝ+↾M−

∥∥∥
q

q

) 1
q

≤

(
Cq −

1

(2C + 1)q

) 1
q

. (5)

This finally allows us to compute
∥∥∥∥∥

n∑

j=1

ajv
+
j

∥∥∥∥∥ = f

(
n∑

j=1

ajv
+
j

)
= g

(
n∑

j=1

ajv
+
j

)
≤ g+

(
n∑

j=1

ajv
+
j

)
≤

∥∥∥ĝ+↾M+

∥∥∥
q

∥∥∥∥∥

n∑

j=1

aj v̂
+
j

∥∥∥∥∥
p

=
∥∥∥ĝ+↾M+

∥∥∥
q

(
n∑

j=1

a
p
j

) 1
p

≤ C

(
1 −

1

Cq(2C + 1)q

) 1
q

(
n∑

j=1

a
p
j

) 1
p

.

The last inequality and (3) shows that we have found a semi-normalized block basis {v+
i } such that

ℓ+p embeds into span{v+
i } with an isomorphism constant strictly less than C. Now either {v+

i } is an
unconditional basic sequence and we are done, or we can iterate the process to find another block basis.
(Notice that in every iteration the constructed block basis is a block basis of {yi} such that all of its
vectors have nonnegative coordinates with respect to the previous basis and hence with respect to {yi}.)

In every iteration, the isomorphism constant drops at least by the factor of
(
1 − 1

Cq(2C+1)q

)1/q

< 1,

where C is the initial isomorphism constant corresponding to {yi}. Therefore after finitely many steps
we obtain an unconditional block basic sequence as we claimed, otherwise the isomorphism constant
would eventually drop below 1, which is impossible.

⊓⊔

Remarks. We have actually proven that ℓp is isomorphic to a subspace spanned by a normalized block
basis with all the blocks having their coordinates with respect to {yi} nonnegative. If the embedding
ℓ+p ⊂ Y is almost an isometry, we can actually show that span{yi} is already isomorphic to ℓp. This is
in fact contained in the previous proof, but direct proof (see Proposition 4) gives optimal constant, as
we will see in Example 5.

Notice further, that in the case Z = ℓp or c0, 1 < p < ∞, we do not need {yi} to be a basic sequence
in the definition of Z+ ⊂ Y , just any sequence suffices. This can be seen as follows: Let f ∈ (span{yi})

∗.

Similarly as in (4) we can show that
∑(

f(yi)
+
)q

< ∞ and
∑(

f(yi)
−

)q
< ∞. This means that yi → 0

weakly, and thus some subsequence of {yi} is a basic sequence (see e.g. [LT, Remark after 1.a.5]).
By closer examination of the proof, we can see that it works more generally for spaces Z with the

following property: Z has an unconditional basis {ei} with unconditional basis constant K, and there
is a nonincreasing function G : (0,+∞) → (0, 1

K ) such that for any two nonzero disjointly supported f ,
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g ∈ span{e∗i }, ‖f + g‖
∗

= 1 we have ‖f‖
∗
≤ G(‖g‖

∗
). (This fact will replace the inequality (5).) Then

the proof gives a block basis of {ei} that is equivalent to the block basis of {yi} generated by the same
(nonnegative) coefficients. (For example for ℓp with the canonical basis and with the canonical norm

we can take G(x) = (1 − xq)1/q. As the canonical basis in ℓp is equivalent to any of its block bases, we
obtain the conclusion of Theorem 2. More generally, such a function exists for example for super-reflexive
spaces, but also clearly for c0.)

Proposition 4. Let Y be a Banach space, 1 < p < ∞. If ℓ+p ⊂ Y with isomorphism constant C < 21− 1
p ,

then {yi} is equivalent to the canonical basis of ℓp.

Proof. By assumption there is a basic sequence {yi} in Y such that
∥∥x̂+

∥∥
p
≤ ‖x+‖ ≤ C

∥∥x̂+
∥∥

p
for any

x ∈ span{yi}.
Let x ∈ span{yi}. Then

‖x‖ =
∥∥x+ − x−

∥∥ ≤
∥∥x+

∥∥ +
∥∥x−

∥∥ ≤ C
∥∥x̂+

∥∥
p

+ C
∥∥x̂−

∥∥
p
≤ 21− 1

p C ‖x̂‖p .

On the other hand, choose f ∈ S(span{yi})∗ such that f(x+) = ‖x+‖. Let bi = f(yi), i ∈ N and
1
p + 1

q = 1. Without loss of generality we may assume that
∥∥x̂+

∥∥
p
≥

∥∥x̂−
∥∥

p
. Similarly as in (4) we can

show that
(∑

(b+
i )q

) 1
q ≤ C. Further,

( ∑

i∈supp x+

(b+
i )q

) 1
q

≥

∑
a+

i b+
i∥∥x̂+

∥∥
p

≥
f(x+)
∥∥x̂+

∥∥
p

=
‖x+‖
∥∥x̂+

∥∥
p

≥ 1.

Using these two estimates we obtain

‖x‖ ≥ f(x) = f(x+) − f(x−) = f(x+) −
∑

a−
i bi ≥ f(x+) −

∑
a−

i b+
i

≥
∥∥x̂+

∥∥
p
−

( ∑

i∈supp x−

(b+
i )q

) 1
q ∥∥x̂−

∥∥
p
≥

∥∥x̂+
∥∥

p

(
1 −

( ∑

i∈supp x−

(b+
i )q

) 1
q

)

≥
∥∥x̂+

∥∥
p

(
1 −

(∑
(b+

i )q −
∑

i∈supp x+

(b+
i )q

) 1
q

)
≥

∥∥x̂+
∥∥

p

(
1 − (Cq − 1)

1
q

)
,

and hence

‖x‖ ≥
(
1 − (Cq − 1)

1
q

)
max

{∥∥x̂+
∥∥

p
,

∥∥x̂−
∥∥

p

}
≥ 2−

1
p

(
1 − (Cq − 1)

1
q

)
‖x̂‖p .

As C < 2
1
q , we have

(
1 − (Cq − 1)

1
q

)
> 0 and so {yi} is equivalent to the canonical basis of ℓp.

⊓⊔

Example 5. For any 1 < p < ∞ there is a space X isomorphic to c0 ⊕ ℓp with a Schauder basis {yi},

such that ℓ+p embeds into X onto a positive cone generated by {yi} with isomorphism constant 21− 1
p .

By Theorem 2, there is a block basis of {yi} equivalent to the canonical basis of ℓp, but as X is
isomorphic to c0 ⊕ ℓp, {yi} is not equivalent to a basis of ℓp. This example shows that the constant in
Proposition 4 is optimal.

Proof. Let X be the completion of the space c00 equipped with the norm

‖(ai)‖ = max

{
max{ai},

(∑
|a2i + a2i+1|

p
) 1

p

}
.

This space has a natural basis {yi} consisting of the vectors that has the ith coordinate equal to 1 and
all the others equal to 0. For any vector x ∈ X, the decomposition

x =
∑

aiyi =

(∑ a2i − a2i+1

2
(y2i

− y2i+1)

)
+

(∑ a2i + a2i+1

2
(y2i

+ y2i+1)

)

implies that X is isomorphic to c0 ⊕ ℓp.
For any x =

∑
aiyi ∈ X, where ai ≥ 0 for all i ∈ N, we have

‖x‖ ≤
∥∥∥
∑

a2iy2i

∥∥∥ +
∥∥∥
∑

a2i+1y2i+1

∥∥∥ =
(∑

a
p
2i

) 1
p

+
(∑

a
p
2i+1

) 1
p

≤ 21− 1
p

(∑
a

p
i

) 1
p

.
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On the other hand

‖x‖ ≥
(∑

(a2i + a2i+1)
p
) 1

p

≥
(∑

a
p
i

) 1
p

,

and therefore ℓ+p ⊂ X with isomorphism constant 21− 1
p .

⊓⊔

Remark. If the space Y is complex, Theorem 1 holds by a trivial modification of the proof. Theorem 2
is also valid in the complex case, but the given proof implies only that (the real) ℓp ⊂ YR (i.e. the space
Y considered as a real vector space). The complex embedding requires some additional work, which we
briefly sketch:

Suppose that we already have the real embedding, i.e. for any real sequence {bj} we have C1 ‖
∑

bjej‖p ≤

‖
∑

bjyj‖ ≤ C2 ‖
∑

bjej‖p. Suppose further that {yj} is not equivalent to {ej}. Then (as the upper esti-

mate always holds, just consider the real and imaginary parts), we can construct a block basis {wj} of

{yj} such that ‖wj‖ < ε
2j and ‖Re wj‖ = 1, where ε < C1

C2
(1 + C1

C2
). Then for any complex sequence {aj}

∥∥∥
∑

aj Re wj

∥∥∥ =
∥∥∥
∑

Re aj Re wj +
∑

Im ajiRe wj

∥∥∥

≥
∥∥∥
∑

Re aj Re wj +
∑

Im aj Imwj

∥∥∥ −
∥∥∥
∑

Im aj(iRe wj − Im wj)
∥∥∥

=
∥∥∥
∑

Re aj Re wj +
∑

Im aj Imwj

∥∥∥ −
∥∥∥
∑

i Im ajwj

∥∥∥

≥ C1

∥∥∥
∑

Re aj Re ŵj +
∑

Im aj Im ŵj

∥∥∥
p
− ε

(∑
|aj |

p
) 1

p

= C1

(∑
‖Re aj Re ŵj + Im aj Im ŵj‖

p
p

) 1
p

− ε
(∑

|aj |
p
) 1

p

≥
C1

C2

(∑
‖Re aj Re wj + Im aj Im wj‖

p
) 1

p

− ε
(∑

|aj |
p
) 1

p

≥
C1

C2

(∑∣∣‖Re aj Re wj + i Im aj Re wj‖ − ‖Im aj(Im wj − iRe wj)‖
∣∣p

) 1
p

− ε
(∑

|aj |
p
) 1

p

≥
C1

C2

(∑ ∣∣∣‖aj Re wj‖ −
ε

2j
|aj |

∣∣∣
p) 1

p

− ε
(∑

|aj |
p
) 1

p

=
C1

C2

(∑
|aj |

p
∣∣∣1 −

ε

2j

∣∣∣
p) 1

p

− ε
(∑

|aj |
p
) 1

p

≥
(∑

|aj |
p
) 1

p

(
C1

C2
(1 − ε) − ε

)
.

2. Harmonic Behaviour of Smooth Operators

First let us fix some notation. By Cn(BX , Y ), 1 ≤ n < ∞ we denote the space of all n-times
continuously Fréchet differentiable operators from some neighbourhood of BX into Y . We say that
T ∈ Cn,+(BX , Y ) ⊂ Cn(BX , Y ) if T (n)(x) is uniformly continuous and T ∈ Cn,α(BX , Y ) ⊂ Cn,+(BX , Y )
if T (n)(x) is α-Hölder.

Definition. Let X, Y be Banach spaces. We say that an operator T : BX → Y has a harmonic behaviour
if T (BX) ⊂ T (SX). We say that T is separating if inf

x∈SX

‖T (x) − T (0)‖ > 0.

The close relation of these two notions is exposed in Lemma 8. In some sense, a very smooth separating
operator is an analogue of linear embedding. (This claim is justified by Theorem 9.)

Bonic and Frampton in [BF] showed that if Y admits a Ck,α-smooth bump but X does not, then
every Ck,α-smooth operator T : BX → Y has a harmonic behaviour. Some variants of this result were also
presented in [DGZ, chapter III] and [BL, ch. 10], as they are related to smooth uniform homeomorphisms
between Banach spaces.

Recently, Deville and Matheron in [DM] showed that if Y has a nontrivial cotype but X has not,
then every C1,+-smooth operator T : BX → Y has a harmonic behaviour. It is clear that if X admits
a Ck,α-smooth bump then there exists for every Banach space Y a Ck,α-smooth operator T : BX → Y

that has not a harmonic behaviour (as R ⊂ Y ). In our note we investigate for a given X = ℓp and

1 ≥ α > p− [p] the structural conditions on Y which imply that every T ∈ C [p],α(BX , Y ) has a harmonic
behaviour. (Recall that ℓp has a C [p],p−[p]-smooth bump, see [DGZ].) In particular we show that every
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such operator has a harmonic behaviour unless ℓ p
K

⊂ Y for some integer K ≤ [p]. It should be noted in

this connection that by [B] and [H] (see also [BL]), for every ℓp and Y there exists an abundance of even
polynomial operators from Bℓp

into Y such that for example T (Bℓp
) = BY .

The techniques used in this section have their origin in the classical work of Kurzweil ([K]), Bonic and
Frampton ([BF]) and Deville ([D]), and are presented also in the book [DGZ].

Taylor’s theorem provides a connection between smooth operators with a harmonic behaviour and
separating polynomials on ℓp (as we will see in Lemma 8), so in the next we investigate the behaviour of
separating polynomials.

Recall that k-homogeneous polynomials P : X → Y (X and Y are Banach spaces) are defined as
P (x) = M(x, . . . , x), where M : X → Y is a continuous symmetric k-linear operator. We denote the set
of all k-homogeneous polynomials from X into Y by Pk(X,Y ). Recall that a homogeneous polynomial
P is separating if inf

x∈SX

‖P (x)‖ > 0.

Lemma 6. Let X be a Banach space with a normalized Schauder basis {ei} which is equivalent to
any of its normalized block bases (i.e. X is isomorphic to c0 or ℓp, 1 ≤ p < ∞). Let Y be a Banach
space and K ∈ N. Suppose that there is no separating polynomial in Pk(X,Y ) for any 1 ≤ k < K.
Let P ∈ PK(X,Y ) and ε > 0. Then we can find a normalized block basis {zi} of {ei} such that if
‖
∑

aizi‖ ≤ 1, then
∥∥∥∥P

( ∞∑

i=m

aizi

)
−

∞∑

i=m

aK
i P (zi)

∥∥∥∥ <
ε

2m
.

If moreover each polynomial in PK(X,Y ) is non-separating then we can find a normalized block basis
{ui} of {zi} such that sup

{
‖P (x)‖ ; x ∈ Bspan{ui}

}
< ε.

Proof. Let A be the basis constant of {ei}. We prove the lemma by induction on K.
In the case K = 1 pick some bounded linear operator P : X → Y and ε > 0. The “diagonalization”

is trivial (we put zi = ei). Assume there is no separating bounded linear operator P̃ : X → Y . Then P

is not separating and we can choose a finitely supported vector u1 ∈ SX for which ‖P (u1)‖ < 1
2

ε
2A . As

span{ei}i>n is isomorphic to X and so P ↾span{ei}i>n
is not separating, we can inductively construct a

normalized block basis {ui} of {ei} such that ‖P (ui)‖ < 1
2i

ε
2A . If ‖

∑
aiui‖ ≤ 1, then

∥∥∥∥P

( ∞∑

i=1

aiui

)∥∥∥∥ ≤

∞∑

i=1

|ai| ‖P (ui)‖ ≤ 2A

∞∑

i=1

‖P (ui)‖ < ε.

Now suppose that the assertion holds for K−1 and let ε > 0 and M be a symmetric K-linear operator
such that P (x) = M(x, . . . , x). Put D = K!(2A)2K and z1 = e1.

M(z1, . . . , z1, x) is (by assumption) a non-separating linear operator (in x) on span{ei}, so by the in-
duction hypothesis we can find a normalized block basis {v1

i } of {ei} for which sup
{
‖M(z1, . . . , z1, x)‖ ; x ∈

Bspan{v1
i
}

}
< 1

24

ε
D

(
2+K−2

K−1

)−1
. M(z1, . . . , z1, x, x) is (by assumption) a non-separating 2-homogeneous

polynomial on span{v1
i }, so by the induction hypothesis we can find a normalized block basis {v2

i } of

{v1
i } for which sup

{
‖M(z1, . . . , z1, x, x)‖ ; x ∈ Bspan{v2

i
}

}
< 1

24

ε
D

(
2+K−2

K−1

)−1
and so on until we find

a normalized block basis {vK−1
i } of {vK−2

i } for which sup
{
‖M(z1, x, . . . , x)‖ ; x ∈ Bspan{vK−1

i
}

}
<

1
24

ε
D

(
2+K−2

K−1

)−1
. Put z2 = vK−1

2 .

M(z1, . . . , z1, x) is a non-separating linear operator on span{vK−1
i }, so again by the induction hy-

pothesis we can find a normalized block basis {w1,1
i } of {vK−1

i } for which sup
{
‖M(z1, . . . , z1, x)‖ ; x ∈

Bspan{w1,1
i

}

}
< 1

25

ε
D

(
3+K−2

K−1

)−1
. M(z1, . . . , z1, z2, x) is a non-separating linear operator on span{w1,1

i },

so we can find a normalized block basis {w1,2
i } of {w1,1

i } for which sup
{
‖M(z1, . . . , z1, z2, x)‖ ; x ∈

Bspan{w1,2
i

}

}
< 1

25

ε
D

(
3+K−2

K−1

)−1
. Further we find a normalized block basis {w1,3

i } of {w1,2
i } for which

sup
{
‖M(z1, . . . , z1, z2, z2, x)‖ ; x ∈ Bspan{w1,3

i
}

}
< 1

25

ε
D

(
3+K−2

K−1

)−1
and so on until we can choose a

normalized block basis {w1,K
i } of {w1,K−1

i } for which sup
{
‖M(z2, . . . , z2, x)‖ ; x ∈ Bspan{w1,K

i
}

}
<

1
25

ε
D

(
3+K−2

K−1

)−1
.
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M(z1, . . . , z1, x, x) is a non-separating 2-homogeneous polynomial on span{w1,K
i }, so we can find

a normalized block basis {w2,1
i } of {w1,K

i } for which sup
{
‖M(z1, . . . , z1, x, x)‖ ; x ∈ Bspan{w2,1

i
}

}
<

1
25

ε
D

(
3+K−2

K−1

)−1
. M(z1, . . . , z1, z2, x, x) is a non-separating 2-homogeneous polynomial on span{w2,1},

so we can find a normalized block basis {w2,2
i } of {w2,1

i } for which sup
{
‖M(z1, . . . , z1, z2, x, x)‖ ; x ∈

Bspan{w2,2
i

}

}
< 1

25

ε
D

(
3+K−2

K−1

)−1
. Further we find a normalized block basis {w2,3

i } of {w2,2
i } for which

sup
{
‖M(z1, . . . , z1, z2, z2, x, x)‖ ; x ∈ Bspan{w2,3

i
}

}
< 1

25

ε
D

(
3+K−2

K−1

)−1
and so on until we can choose a

normalized block basis {w2,K−1
i } of {w2,K−2

i } for which sup
{
‖M(z2, . . . , z2, x, x)‖ ; x ∈ Bspan{w2,K−1

i
}

}
<

1
25

ε
D

(
3+K−2

K−1

)−1
.

We end with a normalized block basis {wK−1,2
i } of {wK−1,1

i } for which sup
{
‖M(z2, x, . . . , x)‖ ; x ∈

Bspan{wK−1,2
i

}

}
< 1

25

ε
D

(
3+K−2

K−1

)−1
. Put z3 = w

K−1,2
3 .

We continue inductively in the same spirit. In the nth step, in order to define zn, we consider all
the

(
n+K−2

K−1

)
− 1 operators M(zj1 , . . . , zjK−l

, x, . . . , x︸ ︷︷ ︸
l

), j1 ≤ · · · ≤ jK−l ≤ n − 1, 1 ≤ l < K, so that

sup
{∥∥M(zj1 , . . . , zjK−l

, x, . . . , x)
∥∥ ; x ∈ Bspan{wi}

}
< 1

2n+2

ε
D

(
n+K−2

K−1

)−1
for a corresponding block basis

{wi}.
Clearly, {zi} is a normalized block basis of {ei} and if ‖

∑
aizi‖ ≤ 1, then

∥∥∥∥P

( ∞∑

i=m

aizi

)
−

∞∑

i=m

aK
i P (zi)

∥∥∥∥ ≤ K!
∑

m≤j1≤···≤jK

j1<jK

|aj1 · · · ajK
| ‖M(zj1 , . . . , zjK

)‖

≤ K!(2A)K
∑

m≤j1≤···≤jK

j1<jK

‖M(zj1 , . . . , zjK
)‖

< K!(2A)K
∞∑

n=m+1

∑

m≤j1≤···≤jK=n
j1<jK

1

2n+2

ε

D

(
n + K − 2

K − 1

)−1

≤
ε

(2A)K

∞∑

n=m+1

1

2n+2

∑

1≤j1≤···≤jK=n

(
n + K − 2

K − 1

)−1

=
1

2m+2

ε

(2A)K
<

ε

2m
.

In the case that all K-homogeneous polynomials are non-separating, we can (similarly as for K = 1)

find a normalized block basis {ui} of {zi} such that ‖P (ui)‖ < 1
2i+1

ε
(2A)K . Let ui =

∑βi

j=αi
bjzj . Then

(as ui is normalized)
∥∥∥P (ui)−

βi∑
j=αi

bK
j P (zj)

∥∥∥ < 1
2αi+2

ε
(2A)K ≤ 1

2i+2

ε
(2A)K . Thus, if ‖

∑
aiui‖ ≤ 1, we have

∥∥∥∥P

( ∞∑

i=1

aiui

)
−

∞∑

i=1

aK
i P (ui)

∥∥∥∥

≤

∥∥∥∥P

( ∞∑

i=1

ai

βi∑

j=αi

bjzj

)
−

∞∑

i=1

aK
i

βi∑

j=αi

bK
j P (zj)

∥∥∥∥ +

∥∥∥∥
∞∑

i=1

aK
i P (ui) −

∞∑

i=1

aK
i

βi∑

j=αi

bK
j P (zj)

∥∥∥∥

<
ε

4
+

∞∑

i=1

|ai|
K

∥∥∥∥P (ui) −

βi∑

j=αi

bK
j P (zj)

∥∥∥∥ <
ε

2
,

and so ∥∥∥∥P

( ∞∑

i=1

aiui

)∥∥∥∥ ≤

∥∥∥∥P

( ∞∑

i=1

aiui

)
−

∞∑

i=1

aK
i P (ui)

∥∥∥∥ +

∞∑

i=1

|ai|
K
‖P (ui)‖ < ε.

⊓⊔

Theorem 7. Let Y be a Banach space, 1 ≤ p < ∞, K ∈ N.
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Suppose that all polynomials in Pk(ℓp, Y ) are non-separating for all 1 ≤ k < K. If K is odd and
K ≤ p, or if K is even and K < p, then there is a separating P ∈ PK(ℓp, Y ) if and only if ℓ p

K
⊂ Y .

There is a separating homogeneous polynomial P : c0 → Y if and only if c0 ⊂ Y if and only if there is
a separating homogeneous polynomial P ∈ PK(c0, Y ) for any K ∈ N.

Proof. First we prove the ℓp case.
The “if” part: Clearly, P : ℓp → ℓ p

K
defined as P (

∑
aiei) =

∑
aK

i ei is a separating K-homogeneous
polynomial. Hence if T is an isomorphism of ℓ p

K
into Y , then T ◦ P is a corresponding separating

K-homogeneous polynomial.
The “only if” part: Put ε = infSℓp

‖P (x)‖ > 0. By Lemma 6 we can construct an appropriate “ε-

diagonal” normalized block basis {zi}. Put yi = P (zi). If K is odd then for any sequence {ai} satisfying∑
i |ai|

p
K = 1 we have

∥∥∥∥
∞∑

i=1

aiyi

∥∥∥∥ =

∥∥∥∥
∞∑

i=1

(
a

1
K

i

)K

P (zi)

∥∥∥∥ <

∥∥∥∥P

( ∞∑

i=1

a
1
K

i zi

)∥∥∥∥ +
ε

2
≤ ‖P‖

∥∥∥∥
∞∑

i=1

a
1
K

i zi

∥∥∥∥
K

+
ε

2
= ‖P‖ +

ε

2
.

On the other hand,
∥∥∥∥

∞∑

i=1

aiyi

∥∥∥∥ =

∥∥∥∥
∞∑

i=1

(
a

1
K

i

)K

P (zi)

∥∥∥∥ >

∥∥∥∥P

( ∞∑

i=1

a
1
K

i zi

)∥∥∥∥ −
ε

2
≥ ε

∥∥∥∥
∞∑

i=1

a
1
K

i zi

∥∥∥∥
K

−
ε

2
= ε −

ε

2
=

ε

2
.

This implies that span{yi} ⊂ Y is a subspace isomorphic to ℓ p
K

.

If K is even, ai = (a
1/K
i )K only if ai ≥ 0 and therefore we obtain merely ℓ+p

K

⊂ Y . (In view of the

second remark after Theorem 2 we do not need {yi} to be a basic sequence.) Now Theorem 2 finishes
the proof for K even.

For c0, we start by considering the separating polynomial of the smallest degree, and analogously as
above we conclude that c0 ⊂ Y . Then we use the fact that P : c0 → c0 defined as P (

∑
aiei) =

∑
aK

i ei

is a separating K-homogeneous polynomial.
⊓⊔

Theorem 7 implies the well-known fact that there is no separating P ∈ Pk(ℓp, R) for 1 ≤ k < p < ∞
(otherwise ℓp/k ⊂ R for some k < p) and there is no separating P ∈ Pp(ℓp, R) for p odd integer. If p is

an even integer then P (x) = ‖x‖
p

is a separating p-homogeneous polynomial and so the statement of
the Theorem 7 does not hold for K = p.

Notice that Cn,+(BX , Y ) ⊂ Cn−1,1(BX , Y ) and Pk(X,Y ) ⊂ Cn,1(BX , Y ) for any k, n ∈ N.

Lemma 8. Let Y be a Banach space, 1 ≤ p < ∞. Let n ∈ N and α ∈ (0, 1] be such that n + α > p. All
T ∈ Cn,α(Bℓp

, Y ) have a harmonic behaviour if and only if there is no separating P ∈ Pk(ℓp, Y ) for all
1 ≤ k ≤ n. All T ∈ Cp,+(Bℓp

, Y ), p ∈ N, have a harmonic behaviour if and only if there is no separating
P ∈ Pk(ℓp, Y ) for all 1 ≤ k ≤ p.

Proof. Clearly, a separating polynomial has not a harmonic behaviour. Let T ∈ Cn,α(Bℓp
, Y ) have not

a harmonic behaviour. Pick a finitely supported y ∈ BX \ SX such that ε = inf
x∈SX

‖T (x) − T (y)‖ > 0.

Choose N ∈ N such that 1
n! (1 − ‖y‖

p
)

n+α
p N1−n+α

p < ε
2 . By Taylor’s theorem, for any x, x + h ∈ Bℓp

,

T (x + h) − T (x) =

n∑

k=1

1

k!
T (k)(x)(h) + Rn(x)(h), where ‖Rn(x)(h)‖ ≤

‖h‖
n+α

n!
. (6)

(We use an abbreviation T (k)(x)(h) = T (k)(x)(h, . . . , h), which is a k-homogeneous polynomial in h.)
Suppose that all polynomials in Pk(ℓp, Y ) for all 1 ≤ k ≤ n are non-separating. By Lemma 6 we can

find normalized block bases {uk
i } of {ei} such that span{uk

i } ⊂ span{uk−1
i } and sup

{∥∥T (k)(y)(h)
∥∥ ; h ∈

Bspan{uk
i
}

}
< ε

2
k!

nN for 1 ≤ k ≤ n. Thus we can pick a finitely supported h1 ∈ ℓp such that max supp y <

min supph1, N ‖h1‖
p

= 1−‖y‖
p

and 1
k!

∥∥T (k)(y)(h1)
∥∥ < ε

2
1

nN for all 1 ≤ k ≤ n. Similarly for 1 < j ≤ N

we choose finitely supported hj ∈ ℓp such that max supphj−1 < min supphj , N ‖hj‖
p

= 1 − ‖y‖
p

and
1
k!

∥∥∥T (k)
(
y +

∑j−1
i=1 hi

)
(hj)

∥∥∥ < ε
2

1
nN for all 1 ≤ k ≤ n. Then

∥∥∥y +
∑N

i=1 hi

∥∥∥
p

= ‖y‖
p

+
∑N

i=1 ‖hi‖
p

= 1
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and (6) gives
∥∥∥∥T

(
y +

N∑

i=1

hi

)
− T (y)

∥∥∥∥ ≤

N∑

j=1

∥∥∥∥T

(
y +

j∑

i=1

hi

)
− T

(
y +

j−1∑

i=1

hi

)∥∥∥∥

≤

N∑

j=1

(
n∑

k=1

1

k!

∥∥∥∥T (k)

(
y +

j−1∑

i=1

hi

)
(hj)

∥∥∥∥ +

∥∥∥∥Rn

(
y +

j−1∑

i=1

hi

)
(hj)

∥∥∥∥

)

<
ε

2
+

N

n!

(
1 − ‖y‖

p

N

)n+α
p

< ε,

which is a contradiction.
The proof for Cp,+ is analogous.

⊓⊔

Let Y be any Banach space, 0 6= y ∈ Y . We put T (x) = ‖x‖
p
p y, x ∈ ℓp, which is an operator without

a harmonic behaviour from Bℓp
into Y . If p is an even integer, then T ∈ Pp(ℓp, Y ). If p is not an even

integer and we let n be the largest integer strictly smaller than p, then T ∈ Cn,p−n(Bℓp
, Y ). Therefore

if we want all sufficiently smooth operators to have a harmonic behaviour, we need to rule out p even
integer and consider smoothness higher than C [p],p−[p]. By putting together Lemma 8 and Theorem 7
we immediately obtain

Theorem 9. Let Y be a Banach space, 1 ≤ p < ∞, p is not an even integer. Let C = C [p],α(Bℓp
, Y ) for

some 1 ≥ α > p − [p] if p is not an integer, or C = Cp,+(Bℓp
, Y ) if p is an odd integer. Then either all

operators in C have a harmonic behaviour or ℓ p
k
⊂ Y for some 1 ≤ k ≤ [p].
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