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Abstract. It is shown that an Orlicz sequence space hM admits an equivalent analytic
renorming if and only if it is either isomorphic to ℓ2n or isomorphically polyhedral. As a

consequence, we show that there exists a separable Banach space admitting an equivalent
C∞-Fréchet norm, but no equivalent analytic norm.

In this note, we denote by hM as usual the subspace of an Orlicz sequence space ℓM

generated by the unit vector basis.
More terminology and notation concerning Orlicz spaces can be found in [LT].
Let us also point out that by Ck-smoothness (or analyticity) of a norm we always mean

away from the origin (as is usual in renorming theory).
The characterization of the best order of Ck-Fréchet smoothness of some renorming,

k ∈ N∪{+∞}, for hM was obtained in [M], [MT1], [MT2]. In our present note, we complete
the characterization also for analytic renormings. We show that an Orlicz sequence space
hM has an analytic renorming if and only if hM

∼= ℓ2n, n ∈ N or hM is isomorphically
polyhedral. Let us recall that a separable Banach space X is isomorphically polyhedral if
it has an equivalent polyhedral norm. By a theorem of Fonf [F], this is the case if and only
if X admits an equivalent norm with a countable boundary. More precisely, there exists a
sequence {fi}i∈N in X∗ such that

‖x‖ = max{|fi(x)|, i ∈ N}.

According to one of the results from [DFH], we have the following:

Theorem 1. Every separable isomorphically polyhedral Banach space X admits an equiv-
alent analytic form.

We prove that the converse is also true if we impose additional conditions on the space
X. In connection with our result it should be noted that by recent work of Gonzalo and
Jaramillo ([GJ]) every separable Banach space with a symmetric basis and C∞-Fréchet
smooth norm is isomorphic to ℓ2n, provided it does not contain a copy of c0.

Our approach is entirely different from that in [MT1] and relies on methods from [DFH]
and [H1-2-3]. As a corollary, relying on an example of Leung [L], we show that there exists
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a separable Banach space with C∞-Fréchet smooth norm which admits no analytic norm.
A search of such an example was in fact a motivation of our work, since the previously
known examples of such spaces (e.g. c0(Γ),Γ uncountable, see [P] and [BF] for a result of
Kuiper) were nonseparable.

Let us recall that a Banach space X with an unconditional basis is said to satisfy an
upper p-estimate, p ≥ 1 if for some C > 0:
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whenever ui are disjointly supported in X.
An important notion in our consideration is that of weak sequential continuity.

Definition 2. Let U ⊆ X be an open, convex and bounded subset of a Banach space X,
f be a real function on U . We say that f is weakly sequentially continuous (wsc-for short)
if it maps weakly Cauchy sequences from U into convergent ones. A function f defined on
an open subset O ⊆ X is said to be locally wsc if there exists a covering of O by a family
of open sets U as above such that f is wsc on U for all U .

In order to verify wsc-property for polynomials, it is sufficient to check the convergence
only for weakly convergent sequences in U ([AHV]).

Using this fact, the following lemma follows from results in [G].

Lemma 3. Let X be a Banach space with an unconditional basis satisfying an upper
p-estimate. Then all polynomials of degree n < p on Xare wsc (on BX).

The importance of the notion of wsc stems from the following lemma, which comes from
[H3], and which was shown for polynomials in [AHV].

Lemma 4. Let X be a Banach space ℓ1 6 →֒ X, f be a C2-Fréchet differentiable real function
defined on some open set O ⊆ X. TFAE:

(1) f is locally wsc,
(2) f ′ is locally norm compact.

By f ′ being locally norm compact we mean that there exists a covering by a family of
open sets U of O such that f ′(U) is relatively norm compact in X∗ for all U .

The following is a generalization of the main result in [H1].

Theorem 5. Let (X, ‖ · ‖) be a Banach space, where ‖ · ‖ is analytic. If all polynomials
on X are wsc, then X is separable and isomorphically polyhedral.

Proof. By ∂ we denote the duality map corresponding to ‖ · ‖, i.e.

∂: X\{0} → SX∗ and ∂x(x) = ‖x‖ for all x ∈ X\{0}.

Since ‖ · ‖ is differentiable, ∂x is the derivative of ‖x‖ at x ∈ X\{0}.
Let us first show that ‖ · ‖ is locally wsc on X\{0}.
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Fix x 6= 0. Since ‖ · ‖ is analytic at x we can find δ > 0 so that if ‖h‖ < δ we have

‖x + h‖ =
∞
∑

n=1

pn(h),

where pn are homogeneous polynomials of degree n, and the convergence is uniform with
respect to all ‖h‖ < δ. Since all polynomials pn are wsc, we see that ‖ · ‖ is wsc on
{y: ‖x − y‖ < δ}.

We proceed by showing that X is separable. Since X is an Asplund space, from Lemma 4
we get that there exist 0 < η < δ so that the set {∂y: ‖x − y‖ < η} is norm relatively
compact. Thus the subspace Y of X∗ generated by {∂y: ‖y − x‖ < η} is separable. If
Y = X∗ the proof is finished. Otherwise, assume Y 6= X∗. By the Hahn-Banach theorem,
there exists x∗∗ ∈ SX∗∗ such that

x∗∗(∂y) = 0 whenever ‖y − x‖ < η.

Since ‖·‖ is analytic on X\{0} we get that ∂ is analytic as well on X\{0}. Hence f = x∗∗◦∂

is a real analytic function on X\{0}.
Since f(y) = 0 for ‖y − x‖ < η, clearly f ≡ 0 on X\{0}. On the other hand, by the

Bishop-Phelps theorem, ∂SX is dense in SX∗ , so there exists y ∈ SX such that f(y) =
x∗∗(∂y) 6= 0, a contradiction. So X is separable.

Since X is separable and ‖ · ‖ is locally wsc, by Lemma 4 and the Lindelöf property,
(SX , ‖ · ‖) can be covered by a countable system {Un}n∈N of norm open convex bounded
subsets of X such that ∂Un is relatively compact. Thus the boundary of (X, ‖ · ‖) can be
covered by a countable system of compacts, and the result follows from [H2]. ¤

Theorem 6. Let M be an Orlicz function. Then hM admits an equivalent analytic norm
if and only if either hM

∼= ℓ2n, n ∈ N, or hM is isomorphically polyhedral. In particular if

(1) lim
t→0

M(2t)
M(t) = +∞ then hM has an equivalent analytic norm.

(2) aM = +∞ and there exists a sequence ti ց 0 such that sup
i∈N

M(ati)
M(ti)

< +∞ for all

a ≥ 1 then hM does not admit an equivalent analytic norm.

Proof. The “if” part follows from the well-known result that the canonical norm on ℓ2n,
n ∈ N, is analytic and from Theorem 1.

The “only if” part. By classical results ([LT]), the existence of an analytic norm on X

implies αM = βM ∈ {2n}n∈N ∪ {+∞}.
The case αM = 2n implies that X ∼= ℓ2n by [MT1].
If αM = ∞, then ([LT]) X has an upper p-estimate for every p > 1.
Combination of Lemma 3 and Theorem 5 finishes the proof of the “only if” part.
Leung [L] showed that if M satisfies (1) then hM is isomorphically polyhedral and if M

satisfies (2) hM is not isomorphically polyhedral. ¤

Corollary 7. There exists a c0-saturated separable Banach space which admits an equiv-
alent C∞-Fréchet norm but no equivalent analytic norm.
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Proof. Leung [L] constructed an Orlicz function M satisfying (2). By a result of [MT2]
the corresponding space hM admits an equivalent C∞-Fréchet smooth norm. On the other
hand, by Theorem 6, no equivalent analytic norm exists on this space. ¤

Let us pass to some final remarks.
A natural question is the following: Is there a separable c0-saturated non-polyhedral

Banach space with an equivalent analytic norm?
By a careful analysis of [DFH], we obtain that on every separable polyhedral space

there exists a dense set of equivalent analytic norms whose boundaries can be covered by
countably many compacts. Such norms in turns immediately imply the polyhedrality of
the space (using [H2]).

However, there are examples of polyhedral spaces (e.g. [S], [PS]) with analytic norms
failing this property.

More precisely, the space S of Schreier has an unconditional basis {en} such that the
formal identity operator id from S into ℓ2 is bounded. It is easy to show that given an
equivalent analytic norm ‖·‖ on S whose boundary is covered by countably many compacts,

the equivalent analytic norm |||x‖| = (‖x‖2 + ‖id x‖2
2)

1

2 fails the covering property.
The problem is therefore how to recognize the polyhedrality of S based on its norm

||| · |||.
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