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The classical Stone-Weierstrass theorem claims that the algebra of all real polynomials on

a finite-dimensional real Banach space X is dense, in the topology of uniform convergence

on bounded sets (we will always consider this topology, unless otherwise stated), in the

space of continuous real functions on X.

On the other hand ([12]), on every infinite-dimensional Banach space X there exists a

uniformly continuous real function not approximable by continuous polynomials.

Moreover, on some spaces (e.g. ℓp - see [12], [5]) a new phenomenon occurs; the closure

of the algebra generated by polynomials of degree at most n (An) does not contain all

polynomials of higher degree.

In our paper we completely clarify this situation for the classical Banach spaces.

We also present some partial answers in the general case.

With exception of C(K) Asplund spaces, our results are new.

Our strategy rests on the same basic idea, used to obtain the previous partial results in [12],

[5], that the polynomial P
(

(xi)
)

=
∞
∑

i=1

xn
i on ℓ2 is not approximable by polynomials from

Am(ℓ2) for many values n,m ∈ IN . However, in order to obtain a precise characterization,

we develop a new finite-dimensional method to handle polynomial approximations.

Roughly speaking, we pass from approximation to precise equality by proving that if
∞
∑

i=1

xn
i ∈ An−1(ℓ2) then for some k ∈ IN and a certain finitely generated algebra A of

polynomials on IRk,
k
∑

i=1

xn
i ∈ A. We show that this leads to a contradiction, due the to

algebraic independence of A and {
k
∑

i=1

xn
i }. The method is based on a generalization of

the well-known algebraic theory of symmetric polynomials on IRk.

Before we pass to the mathematical part of our note, we would like to take the opportunity

to thank R. Aron for bringing this problem to our attention, as well as for his exiting

lectures at the Paseky spring School 1996. It was he who had the right intuition that
∞
∑

i=1

xn
i does not belong to An−1(ℓ2) for any n ∈ {2, 3, . . . }, pointing towards the general

solution.

By a subsymmetric polynomial on IRn we mean a real polynomial P satisfying P (x) = P (y)
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for every pair x = (x1, . . . , xn), y = (y1, . . . , yn) of elements of IRn such that the sequences

formed by all nonzero coordinates of x and y coincide (e.g. x = (2, 0, 0, 1.5, π, 0) y =

(0, 2, 1.5, 0, 0, π)). By Hk(IRn) 1 ≤ k ≤ n, we denote the finite-dimensional vector space

consisting of all subsymmetric homogeneous polynomials on IRn of degree k. Hk(IRn)

has a basis consisting of standard polynomials, denoted by (α1, . . . , αm) where αi ∈ IN ,
m
∑

i=1

αi = k. We define

(α1, . . . , αm)(x1, . . . , xn) =
∑

i1<···<im

xα1
i1

· . . . · xαm

im
.

Note that every subsymmetric polynomial on IRn can be written uniquely as a linear com-

bination of standard polynomials (a standard form of a subsymmetric polynomial). The set

of polynomials
k
∪

l=1
Hl(IR

n) generates (using the pointwise addition and multiplication, as

well as the scalar multiplication) an algebra Sk(IRn), which is a subalgebra of the algebra

of all polynomials on IRn.

Analogously, we say that a polynomial P is symmetric on IRn if P (x) = P (y) for every

pair x = (x1, . . . , xn), y = (y1, . . . , yn) such that for some permutation π of {1, . . . , n},

(xπ(1), . . . , xπ(n)) = (y1, . . . , yn).

By Symk(IRn) we denote the algebra generated by symmetric polynomials of degree less

than or equal to k. Important examples of homogeneous symmetric polynomials on IRn

are σk, 1 ≤ k ≤ n. By definition, σk(x1, . . . , xn) =
∑

i1<i2<···<ik

xi1 ·xi2 · . . . ·xik
. By classical

results, for every φ ∈ Symk(IRn), k ≤ n, there exists a unique polynomial P (y1, . . . , yk) in

k variables, such that

φ(x1, . . . , xn) = P
(

σ1(x1, . . . , xn), σ2(x1, . . . , xn), . . . , σk(x1, . . . , xn)
)

.

In order to generalize this result for the case Sk(IRn), k ≤ n, let us define the notion of

an algebraic basis of a given algebra A over IR. The set B ⊆ A forms an algebraic basis

of A if for every a ∈ A there exists a unique finite subset b1, . . . , bk of B and a unique

polynomial P (y1, . . . , yn) such that

P (b1, . . . , bk) = a.

The set B ⊂ A is called algebraically independent if for no finite subset b1, . . . , bk of B

and no nontrivial polynomial P (y1, . . . , yk) we have P (b1, . . . , bk) = 0. In what follows, we

will also use the fact that Hk(IRk) and Hk(IRn), n > k, are canonically isomorphic (via

the standard form, or equivalently by restriction of elements of Hk(IRn) onto the first k
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coordinates). Thus, the elements Hk(IRk) ⊆ Sk(IRk) will be without mentioning considered

(via the canonical extension using the standard form) to be elements of Hk(IRn) ⊆ Sk(IRn),

n > k and vice-versa.

For every Banach space X, we denote by Pn(X), n ≥ 1 the space of all n-homogeneous real

polynomials on X, by P(X) the space of all polynomials f on X of the form f = f1+ . . . fn

where fi ∈ Pi and by An(X) we denote the algebra generated by elements from
n
∪

i=1
Pn(X).

For classical results on symmetric polynomials we refer to [15]. Results on real analytic

functions (or its holomorphic counterparts) are contained in [8], [9]. Facts about subsym-

metric polynomials can be found in [6], [12], [5].

Lemma 1.

Sn(IRn) has an algebraic basis Bn = {b1, . . . , bk(n)} consisting of standard polynomials.

Moreover, σ1, . . . , σn ∈ Bn.

Proof: By induction. For n = 1, we put b1 = σ1.

Induction step from n to (n + 1): We will assume that bi ∈ {b1, . . . , bk(n)} are homo-

geneous, deg(bi) ≤ n, bi = (αi
1, α

i
2, . . . , α

i
ki

), σ1, . . . , σn ∈ Bn.

For every f ∈ Sn(IRn) there exists a unique polynomial P (y1, . . . , yk(n)) such that

f(x1, . . . , xn) = P (b1(x1, . . . , xn), . . . bk(n)(x1, . . . , xn)). In particular, there exists no non-

trivial polynomial P (y1, . . . , yk(n)) such that

P (b1(x1, . . . , xn), b2(x1, . . . , xn), . . . , bk(n)(x1, . . . , xn)) ≡ 0 (1)

on IRn.

Therefore, bi are algebraically independent as elements of Sn+1(IR
n+1), since for any non-

trivial polynomial P (y1, . . . , yk(n)) there exists some (x1, . . . , xn, 0) such that

P (b1(x1, . . . , xn, 0), . . . ) 6= 0.

We will extend the set Bn ⊂ Sn+1(IR
n+1) into an algebraic basis Bn+1 of Sn+1(IR

n+1) as

follows:

Put

Mn+1 = {bα1
1 · bα2

2 · . . . · b
αk(n)

k(n) , αi ∈ IN are such that
∑

αi · deg(bi) = n + 1}.

Clearly, Mn+1 is a finite set of homogeneous polynomials of degree (n+1) from Sn+1(IR
n+1).

Elements of Mn+1 are linearly independent as vectors from Hn+1(IR
n+1).
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Choose standard polynomials bk(n)+1 = (α
k(n)+1
1 , . . . ), . . . , bk(n+1) = (α

k(n+1)
1 , . . . ) such

that Mn+1 ∪ {bk(n)+1, . . . , bk(n+1)} is a vector space basis of Hn+1(IR
n+1).

(Later we will show that we may choose bk(n)+1 := σn+1, so in particular, Mn+1 is not a

basis of Hn+1(IR
n+1)).

It is clear that Bn is an algebraic basis of Sn(IRn+1). Therefore, Bn+1 generates Sn+1(IR
n+1).

We want to prove that Bn+1 is an algebraic basis of Sn+1(IR
n+1). Assume the contrary,

i.e. there is a nontrivial P (y1, . . . , yk(n+1)) such that

P (b1(x1, . . . , xn+1), . . . , bk(n+1)(x1, . . . , xn+1)) ≡ 0

on IRn+1.

We may assume that for some 1 ≤ j ≤ k(n + 1), ∂P
∂yj

(y0
1 , . . . , y0

k(n+1)) 6= 0, where y0
j =

bj(x
0
1, . . . , x

0
n) for some (x0

1, . . . , x
0
n) ∈ IRn+1.

Indeed, otherwise we would choose ∂P
∂yj

in place of P . By repeated choices we would get

that ∂P
∂yi,∂yj ,...

≡ 0 on IRn+1 for all choices of yi, yj , . . . and so P (y1, . . . , yk(n+1)) = 0 on

IRk(n+1).

By the real analytic implicit function theorem, in some neighbourhood of the point y0
i =

bi(x
0
1, . . . , x

0
n), we have

yj = Φ(y1, . . . , yj−1, yj+1, . . . )

where Φ is real analytic.

Therefore, in some neighbourhood of (x0
1, . . . , x

0
n), using the Taylor expansion of Φ, we

have:

bj(x1, . . . , xn) = Φ(b1(x1, . . . , xn), . . . ) =

=
∞
∑

α1=0

· · ·
∞
∑

αn+1=0

βα1,...,αn(k+1)
· bα1

1 · bα2
2 · . . . b

αn+1

n(k+1).

On both sides, we have real analytic functions in variables x1, . . . , xn. Thus the corre-

sponding coefficients must be equal. So

∑

∑

αi·deg(bi)=deg(bj)

βα1,...b
α1
1 . . . b

αn+1

n(k+1) = bj .

This is a contradiction. Indeed, if deg(bj) < n + 1, we would have that Bn is not alge-

braically independent, and if deg(bj) = n + 1, Mn+1 ∪ {bk(n)+1, . . . } would not be linearly

independent.
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We established the existence of the algebraic basis for Sn+1(IR
n+1).

Before we proceed further, let us make the following easy observation.

Suppose that, for 1 ≤ i ≤ l, there are ρi ∈ IN such that
l

∑

i=1

ρi = ρ < n. Consider the

differential operator

D =
∂ρ

∂xρ1
n ∂xρ2

n−1 . . . ∂xρl

n−l+1

acting from Sn(IRn) into P(IRn).

By putting xn = 0, . . . , xn−ρ+1 = 0 we may consider an operator D̃ : Sn(IRn) → P(IRn−ρ):

D̃(p)(x1, . . . , xn−ρ) = D(p)(x1, . . . , xn−ρ, 0, 0, . . . , 0).

Observation.

D̃ sends polynomials of degree d to polynomials of degree at most d − ρ.

D̃(Sn(IRn)) ⊆ Sn−ρ(IR
n−ρ).

D̃( Symn(IRn)) ⊆ Symn−ρ(IR
n−ρ).

Proof: The first part is well known. To show that D̃(P ) is a subsymmetric polynomial for

every p ∈ Sn(IRn), it is enough to show this for any standard polynomial p = (α1, . . . , αm),
∑

αi ≤ n. However, for such p

D̃(p) =

{

ρ1! · ρ2! . . . · ρl! · (α1, . . . , αm−l) iff αm = ρ1, αm−1 = ρ2, . . . , αm−l+1 = ρl

0 otherwise.

The symmetric case is similar.

♦

We proceed by showing that bk(n)+1 can be chosen to be σn+1. This is equivalent to σn+1

being linearly independent of the set Mn+1. Assume, by contradiction, that this is not the

case, i.e.

σn+1 =
∑

∑

αi·deg(bi)=n+1

βα1,...,αk(n)
bα1
1 . . . b

αk(n)

k(n) .

By classical results, σ1, . . . , σn+1 form an algebraic basis of the space of symmetric polyno-

mials on IRn+1. Thus, there exists some bj ∈ Bn, which is not symmetric, and α0
1, . . . α

0
k(n)

such that
∑

α0
i deg(bi) = n + 1, α0

j ≥ 1 and βα0
1,...,α0

k(n)
6= 0.
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We may assume WLOG that there is no nonsymmetric bl having the same property and

such that deg(bl) > deg(bj). Also, suppose that α0
j is the maximal possible. Let us rewrite

the right hand side as follows:

σn+1 =
∑

∑

αi·deg(bi)=n+1

αj<α0
j

βα1,...,αk(n)
bα1
1 . . . b

αk(n)

k(n) + b
α0

j

j ·
∑

∑

αi·deg(bi)=

=n+1−deg(bj)·α
0
j

βα1,...,αk(n)
bα1
1 . . . b

αk(n)

k(n) =

=
∑

∑

αi·deg(bi)=n+1

αj<α0
j

βα1,...,αk(n)
bα1
1 . . . b

αk(n)

k(n) + b
α0

j

j · Q(b1, . . . , bk(n))

where Q
(

b1(x1, . . . , xn), . . . , bk(n)(x1, . . . , xn)
)

is a homogeneous polynomial of degree n +

1 − deg(bj) · α
0
j . Suppose

Q
(

b1(x1, . . . , xn), . . .
)

=
∑

βi>0
∑

βi=n+1−deg(bj)·α
0
j

γβ1,...,βl
· (β1, . . . , βl)

is the standard form for Q
(

b1(x1, . . . , xn), . . .
)

. Let γβ0
1 ,...,β0

l
6= 0. Consider the differential

operator

D =
∂n+1−deg(bj)·α

0
j

∂x
β0

l
n ∂x

β0
l−1

n−1 . . . ∂x
β0
1

n−l+1

.

We have:

D̃σn+1 = D̃

(

∑

∑

αi·deg(bi)=n+1

αj<α0
j

βα1,...,αk(n)
bα1
1 . . . b

αk(n)

k(n) + b
α0

j

j · Q(b1, . . . , bk(n))

)
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D̃σn+1 =
∑

∑

αi·deg(bi)=n+1

(

l
∑

i=1

β
j

i
>0) or (αj<α0

j )

βα1,...,αk(n)
·

·

(

∑

∑

1≤p≤k(n)
1≤q≤l

βp
q =n+1−deg(bj)·α

0
j

βp
q≥0

∂

l
∑

i=1

β1
i

(bα1
1 )

∂β1
l xn · ∂β1

l−1xn−1 · . . . · ∂β1
1xn−l+1

·

·
∂

l
∑

i=1

β2
i

(bα2
2 )

∂β2
l xn · ∂β2

l−1xn−1 · . . . · ∂β2
1xn−l+1

· . . .
∂

l
∑

i=1

β
k(n)
i

(b
αk(n)

k(n) )

∂β
k(n)

l xn · ∂β
k(n)

l−1 xn−1 · . . . · ∂β
k(n)
1 xn−l+1

)

+

+ b
α0

j

j · D̃(Q).

Note that D was chosen in order that D̃(Q) = γβ0
1 ,...,β0

l
· β0

1 ! · . . . · β0
l ! = c 6= 0 is constant.

On the left hand side we have a symmetric polynomial D̃σn+1 expressible in terms of

σ1, . . . , σdeg(bj)·α0
j

as P1(σ1, . . . , σdeg(bj)·α0
j
). It follows from our construction, that if we

express D̃(righthandside) in terms of the elements of Bdeg(bj)·α0
j

as P2(b1, . . . , bdeg(bj)·α0
j
),

it will contain the term c · b
α0

j

j . In particular,

P1(σ1, . . . , σdeg(bj)·α0
j
) − P2(b1, . . . , bdeg(bj)·α0

j
) = 0

which is a contradiction with the algebraic independence of Bdeg(bj)α0
j
.

This ends the proof.

♦

From what we proved, it easily follows that Bn forms an algebraic basis for every Sn(IRm),

m > n. In particular, there exists no element f ∈ Sn(IRm) such that

f(x1, . . . , xm) = σn+1(x1, . . . , xm).

We will now strengthen this statement in the sense of approximation.
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Lemma 2.

For every n,m ∈ IN , m ≥ k(n) + 1, there exists ε > 0 such that

sup
m
∑

1

|xi|≤1

|f(x1, . . . , xm) − σn+1(x1, . . . , xm)| ≥ ε

for every f ∈ Sn(IRm).

Proof: WLOG we may assume that m = k(n)+1. Consider the mapping M : IRm → IRm

defined as

M(x1, . . . , xm) = (b1(x1, . . . , xm), b2(x1, . . . , xm), . . . , bk(n)(x1, . . . , xm), bm(x1, . . . , xm)).

(Remember, bm = σn+1, {σ1, . . . , σn} ⊂ {b1, . . . , bm}). By standard argument, there

exists an open subset O ⊆ {(x1, . . . , xm);
∑

|xi| ≤ 1} such that the rank r of the Jacobi

matrix JM

(

∂bi

∂xj

)

is constant on O. In case r = m, using the inverse function theorem

we obtain that there exists an open set U ⊂ O such that M(U) is an open set in IRM .

Choose a pair of points p1, p2 ∈ M(U), p1 = (p1
1, . . . , p

1
m−1, p

1
m), p2 = (p1

1, . . . , p
1
m−1, p

2
m),

|p1
m − p2

m| = 2ε 6= 0. Put x1 = M−1(p1), x2 = M−1(p2). Then, for every polynomial

P (y1, . . . , yk(n)) we have:

P (b1(x
1), b2(x

1), . . . , bk(n)(x
1)) = P (b1(x

2), b2(x
2), . . . , bk(n)(x

1)).

However, |bm(x1) − bm(x2)| = 2ε. Thus, for every f ∈ Sn(IRm), (f = P (b1, . . . , bm−1)) we

have either

|f(x1) − σn+1(x
1)| ≥ ε

or

|f(x2) − σn+1(x
2)| ≥ ε.

In case r < m, by the real-analytic rank theorem, we have that for some 1 ≤ j ≤ m,

bj = Φ(b1, . . . , bj−1, bj+1, . . . , bm)

where Φ is real-analytic. Using the fact that bi are actually polynomials in x1, . . . , xn (as

in the proof of Lemma 1), we conclude that Φ may be chosen to be polynomial. This is a

contradiction with the algebraic independence of Bn+1(IR
n+1).
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♦

Denote sn(x1, . . . , xm) =
m
∑

i=1

xn
i ∈ Symn(IRm). For the future use in infinite dimensional

setting we will need the following Corollary.

Corollary 3.

For every n,m ∈ IN , m ≥ k(n) + 1, there exists ε > 0 such that

sup
∑

|xi|≤1

|f(x1, . . . , xm) − sn+1(x1, . . . , xm)| ≥ ε

for every f ∈ Sn(IRm).

Proof: This follows immediately from the previous theorem and Newton’s formulas:

sn − sn−1σ1 + sn−2σ2 − . . . (−1)n · n · σn = 0

valid on IRm.

Indeed, arbitrary close approximations of sn+1 would produce via the Newton’s formula

arbitrary close approximation of σn+1.

♦

We remark that it follows from Newton’s formulas that {s1, . . . , sn} forms another algebraic

basis of Symn(IRm), m ≥ n.

Theorem 4.

Given an ℓp space, 1 ≤ p < ∞, we have the following:

A1(ℓp) = · · · = An−1(ℓp)⊂
6=
An(ℓp)⊂

6=
An+1(ℓp)⊂

6=
. . .

where n − 1 < p ≤ n.

Proof: It was shown in [3] that every polynomial of degree m < p is weakly sequentially

continuous on ℓp. By results of [1, 2] this implies its presence in A1(ℓp).

In case m ≥ p, consider the polynomial P (x) =
∞
∑

i=1

xm
i . It is well-known ([6, 12]) that,

if this polynomial is approximable by elements from Am−1(ℓp), it is approximable by

subsymmetric polynomials from Am−1(ℓp). This leads to a contradiction with Corollary 3.
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♦

Corollary 5.

Given X = Lp[0, 1], 1 ≤ p < ∞, we have the following:

A1(X)⊂
6=
A2(X)⊂

6=
. . .

Proof: By classical results, if p > 1, ℓ2 is isomorphic to a complemented subspace of

Lp[0, 1]. If p = 1, ℓ1 is isomorphic to a complemented subspace of L1[0, 1]. Thus the

results follows from Theorem 4.

♦

In order to obtain similar results for other classical Banach spaces, we state the following

Lemma.

Lemma 6.

Given a Banach space X, suppose there exists a noncompact bounded linear operator T :

X → ℓp 1 ≤ p < ∞. Then

A1(X)⊂
6=
An(X)⊂

6=
An+1(X)⊂

6=
. . .

where n ≥ p.

Proof: We present the proof in case p > 1, since the necessary adjustments in case p = 1

are only minor.

Let {xi}
∞
i=1 ⊂ BX be such that {Txi}

∞
i=1 forms a ε-net in ℓp. In what follows, we use

the standard Schauder basis technique as in [10]. By Rosenthal’s theorem we may assume

that {Txi}
∞
i=1 is weakly convergent. By passing to a subsequence we may assume that

{Tx2i − Tx2i−1}
∞
i=1 is weakly null and there exists a block sequence {bi}

∞
i=1 in ℓp such

that
∞
∑

i=1

‖bi − T (x2i − x2i+1)‖ < ∞. Finally, we may assume without loss of generality,

that {T (x2i − x2i+1)}
∞
i=1 forms a basic sequence in ℓp which is equivalent to the canonical

ℓp-basis, and which spans a complementary subspace of ℓp. By composing T with the

corresponding projection P , we obtain the following:

T̃ = P ◦ T maps X into ℓp, and

T̃ yi = ei where yi = x2i − x2i+1, and ei are the basic vectors in ℓp.
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A similar procedure based on Rosenthal’s theorem applied to {yi}
∞
i=1 yields the following.

We may assume that either {yi}
∞
i=1 is equivalent to the canonical basis of ℓ1, or {yi}

∞
i=1

is weakly null (by passing to differences if necessary). In the former case, using the proof

of Theorem 4 we obtain that the polynomial P̃ defined on X by P̃ (x) = P (T̃ x) where P

is a polynomial P (x) =
∞
∑

i=1

xn
i on ℓp, n ≥ p, satisfies P̃ /∈ An−1(X). In the latter case,

we adopt the technique from [5], which uses the spreading model ideas. We suppose, by

contradiction, that the above defined polynomial P̃ can be approximated by Q ∈ An−1(X),

sup
x∈BX

|P (x) − Q(x)| < ε
4 where ε comes from Lemma 2. Adopting the spreading model

ideas, we obtain a finite sequence {yi1 , . . . , yik(n)+1
} such that Q|span{yi1 ,...,yik(n)+1

} can be

approximated by Q̃ ∈ Sn−1(IR
k(n)+1) within ε

4 . Thus

sup
x∈BX

x∈span{yi1 ,...,yik(n)+1
}

|P̃ − Q̃| ≤
ε

2
,

a contradiction with Lemma 2.

For details on the procedure, we refer the reader to [5] and references therein.

♦

Lemma 6 provides the following.

Corollary 7.

Let ℓ1 →֒ X (in particular, X = C(K), K non-scattered). Then

A1(X)⊂
6=
A2(X)⊂

6=
. . .

Proof: By classical results [7, 14], ℓ1 →֒ X implies L1[0, 1] →֒ X∗, in particular ℓ2 →֒ X∗.

Thus ℓ2 is a quotient of X and Lemma 6 applies.

♦

For completeness, we state the following known result.

Proposition 8.

Let X be a Banach space with the Dunford-Pettis property, ℓ1 6 →֒ X (in particular X =

C(K), K scattered). Then

A1(X) = A2(X) = . . . .
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Proof: By [13], members of P(X) are weakly sequentially continuous. For spaces not

containing a copy of ℓ1, this implies that members of P(X) are weakly uniformly continuous

on bounded sets ([1]). [2] finishes the proof.

♦

As a last example, we have the following proposition.

Proposition 9.

Let X be an infinite dimensional Banach space with nontrivial type (in particular, every

superreflexive space). Then for n > cotype(x) we have

A1(X)⊂
6=
An(X)⊂

6=
An+1(X)⊂

6=
. . . .

Proof: In [4], the authors prove that every Banach space with nontrivial type is a poly-

nomially Schur. In the course of their proof, they produce a normalized subspace {yn} in

X∗ which has upper p-estimate for some 1 < p < ∞, i.e. ‖
∑

αnyn‖ ≤ (
∑

|αn|
p)

1
p for any

scalars αn. In fact, since X has a type, given ε > 0, p can be chosen to be cotype(x)
cotype(x)−1 − ε

([11]). Thus, T : ℓp → X∗, T (en) = yn is a noncompact bounded linear operator. Since T

is weakly compact, T ∗ : X → ℓp′ , 1
p

+ 1
p′

= 1 is a noncompact operator. Now Lemma 6

applies (put n = [p′] + 1).

♦
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