
On Randomized Online Labeling with
Polynomially Many Labels

Jan Bulánek?1,2, Michal Koucký??2, and Michael Saks? ? ?3

1 Charles University, Prague
2 Institute of Mathematics, Academy of Sciences CR, Prague

3 Department of Mathematics, Rutgers University

Abstract. In this paper we prove an optimal lower bound on the com-
plexity of randomized algorithms for the online labeling problem with
polynomially many labels. All previous work on this problem (both up-
per and lower bounds) only applied to deterministic algorithms, so this is
the first paper addressing the (im)possibility of faster randomized algo-
rithms. Our lower bound Ω(n log(n)) matches the complexity of a known
deterministic algorithm for this setting of parameters so it is asymptot-
ically optimal.
In the online labeling problem with parameters n and m we are presented
with a sequence of n keys from a totally ordered universe U and must
assign each arriving key a label from the label set {1, 2, . . . ,m} so that the
order of labels (strictly) respects the ordering on U . As new keys arrive
it may be necessary to change the labels of some items; such changes
may be done at any time at unit cost for each change. The goal is to
minimize the total cost. An alternative formulation of this problem is the
file maintenance problem, in which the items, instead of being labeled,
are maintained in sorted order in an array of length m, and we pay unit
cost for moving an item.

1 Introduction

In the online labeling problem with parameters n,m, r, we are presented with a
sequence of n items from a totally ordered universe U of size r and must assign
each arriving item a label from the label set {1, 2, . . . ,m} so that the order
of labels (strictly) respects the ordering on U . As new items arrive it may be
necessary to change the labels of some items; such changes may be done at any
time at unit cost for each change. The goal is to minimize the total cost. An
alternative formulation of this problem is the file maintenance problem, in which
the items, instead of being labeled, are maintained in sorted order in an array
of length m, and we pay unit cost for moving an item.

? Partially supported by student project GAUK 344711 and RVO: 67985840.
?? Supported in part by grant IAA100190902 of GA AV ČR, Center of Excellence

CE-ITI (P202/12/G061 of GA ČR) and RVO: 67985840.
? ? ? The work of this author was done while on sabbatical at Princeton University and

was also supported in part by NSF under grant CCF-0832787 and CCF-1218711.

2

The problem, which was introduced by Itai, Konheim and Rodeh [13], is
natural and intuitively appealing, and has had applications to the design of data
structures (see for example the discussion in [10], and the more recent work on
cache-oblivious data structures [4, 8, 5]). A connection between this problem and
distributed resource allocation was recently shown by Emek and Korman [12].

The parameter m, the label space must be at least the number of items n
or else no valid labeling is possible. There are two natural ranges of parameters
that have received the most attention. In the case of linearly many labels we have
m = cn for some c > 1, and in the case of polynomially many labels we have
m = θ(nC) for some constant C > 1. The problem is trivial if the universe U is a
set of size at most m, since then we can simply fix an order preserving bijection
from U to {1, . . . ,m} in advance. In this paper we assume that U = {1, . . . , 2n}
(as is typical in the literature).

Itai et al. [13] gave an algorithm for the case of linearly many labels having
worst case total cost O(n log(n)2). Improvements and simplifications were given
by Willard [15] and Bender et al. [3]. In the special case that m = n, algorithms
with cost O(log(n)3) per item are known [16, 6]. It is also well known that the
algorithm of Itai et al. can be adapted to give total cost O(n log(n)) in the case
of polynomially many labels. All of these algorithms are deterministic.

For lower bounds, the present authors recently proved [9] a tight Ω(n log(n)2)
lower bound for the case of linearly many labels and tight bound Ω(n log(n)3) for
the case m = n. Furthermore, together with Babka and Čunát they also proved
[2] a tight lower bound Ω(n log(n)/(log log(m)− log log(n))) that is valid for m
between n1+ε and 2n

ε

. In particular, this gives the tight bound Ω(n log(n)) for
the case of m being polynomial in n. Both of these papers built on previous
partial results of Dieta, Seiferas and Zhang ([16, 11, 10]. All these lower bounds
apply only to deterministic algorithms, leaving open the possibility of better
randomized algorithms.

Indeed, in the area of online algorithms there are known many situations
where randomized algorithms perform provably better than deterministic ones.
A typical example is the paging problem with k pages for which the best possible
deterministic algorithms have competitive ratio k but randomized algorithms
have the competitive ratio only Θ(log(k)) [7]. In contrast, our results show that
(at least for the polynomial space regime), randomization does not provide a
significant improvement over determinism.

1.1 Our Results

In this paper we prove an Ω(n log(n)) lower bound on the expected number of
relabelings by any randomized online labeling algorithm when labeling n items
by m labels, for m = nC , C ≥ 1. This matches the known deterministic upper
bounds up to constant factors. Our bound also implies an Ω(n log(n)) lower
bound on the message complexity of randomized protocols for Distributed Con-
troller Problem [12, 1].

3

2 Our proof

Our overall proof strategy resembles the one from previous papers [10, 2]. The
proof consist of two parts in the first part for a given randomized algorithm A
we design an adversarial sequence of items, and in the second part we prove that
this sequence of items is expensive for the algorithm. This later part is done
using a new variant of prefix bucketing game [10].

In passing from the deterministic case to the randomized case, both parts of
the proof require some significant changes. In the first part we have to design
an effective deterministic adversary against a randomized algorithm, and in the
second part we have to recourse to a new variant of bucketing game. Not sur-
prisingly, its analysis is more subtle than the analysis of the known variants of
the bucketing game.

For the first part of the proof, we assume we are given a randomized algorithm
A, which we interpret as a probability distribution on deterministic algorithms.
From this we construct an adversarial sequence of n items that will force the
algorithm to perform Ω(n log(n)) relabels in expectation. We design the sequence
item by item, where we try to chose the next item to make the future expected
cost large. Say that an interval of [a, b] of possible label values is crowded if
there are many items whose label is in that range. In the deterministic case, the
adversary constructed in [2] (building on [10]) identifies a small interval [a, b] of
label values such that (roughly) every interval containing the selected interval is
crowded, and then chooses a new item to be an item for which the algorithm is
either forced to give the item a label in the interval [a, b] or to relabel some items.
In the randomized setting this viewpoint does not work since we don’t know the
actual labeling selected by the algorithm, but only a probability distribution
over labelings. So we use a dual point of view, focusing on intervals of inserted
items rather than intervals of labels. If Y t denotes the items inserted up to
time t, a Y t interval is a set which is the intersection of Y t with an interval.
The algorithm determines a probability distribution over labelings of Y t. The
adversary looks for a small Y t-interval with the property that (roughly) for each
superinterval of the selected interval, the algorithm maps the superinterval to a
relatively crowded range of labels with significant probability.

The interaction between our adversary and the algorithm will generate a se-
quence of set hierarchies. The changes in these hierarchies will be proportional
to the cost incurred by the algorithm. In turn we will be able to relate these
changes also to the cost of a certain new variant of a prefix bucketing game, tail
bucketing. Prefix bucketing was originally defined by Dietz at al. for the purpose
of lower-bounding the cost of deterministic online labeling [10]. We will prove
Ω(n log(n)) lower bound on the cost of our tail bucketing game which trans-
lates into almost the same lower bound for the expected cost of the randomized
algorithm.

4

2.1 Adversary

We provide here a brief overview of the adversary. The adversary will be com-
pletely deterministic although its behavior will be determined by the expected
behavior of the randomized algorithm. The adversary will maintain a hierarchy
of nested sets of items inserted so far

S1 ⊃ T2 ⊃ S2 ⊃ T3 ⊃ · · · ⊃ Td ⊃ Sd

and it will always pick the next item to fall in between items in Sd. The set
S1 will consist of all the items inserted so far, and Sd will consist of at most 7
items. To construct the hierarchy one starts from the set S1. Given Si we pick
Ti+1 to consist of either the first half of elements of Si or the second half of the
elements according to their order whichever of the two halfs is more likely to be
compressed. Namely, we look at the median of Si and check whether it is more
likely that its label is closer to the label of the minimum or to the maximum
element of Si. If the median is more likely to have label close to the minimum
we pick the first half as Ti+1 otherwise the second half. From the set Ti+1 we
remove two thirds of items, the smallest third and the largest third. What is left
is Si+1. We repeat this process until Si is of size at most seven where we stop.
Once the adversary determines Sd it choses the next item to lie in between the
items of Sd. The adversary checks how the algorithm responds to the new item
and updates the hierarchy of sets.

In the deterministic case, the algorithm would respond by relabeling some
items and assigning a label to the new item. We can assume that the algorithm
is lazy in the sense that all the relabeled items form a sub-interval of the inserted
items. The adversary would check for which sets Ti their maximum or minimum
element got relabeled by the algorithm, it would destroy all such sets and their
corresponding sets Si, and it would rebuild the hierarchy from the smallest
remaining set Sq. By the laziness of the algorithm we would destroy all sets
from a certain index up. This would be very much akin to the adversary in
[2]. A point to note in this case is that the number of items in destroyed sets
is within a constant to the number of relabeled items since the items in Ti \ Si
form buffers of items that were moved (at least half of them) and their number is
proportional to Si−1 \Si. Hence the work done by the algorithm and the number
of items in the destroyed sets is in linear relation. This allows us to account for
the cost of the algorithm.

In the randomized case the problem is that there might be an algorithm
having a small but non-zero probability that at each step relabels all the items.
Using the same strategy as in the deterministic case would destroy the whole hi-
erarchy. Then we would lose the relationship between the expected cost incurred
by the algorithm and the number of items in destroyed sets. The expected cost
to the randomized algorithm could be negligible but our adversary would incur
the largest possible cost. To mitigate this issue we will destroy a set Ti and all its
descendants only when the accumulated expected number of relabels of items in
Ti\Si is proportional to the size of Si−1\Si. This will guarantee at least that the
expected cost to the algorithm is proportional to Si−1 \ Si although it will not

5

guarantee that the number of items in the destroyed sets is proportional to this
expected cost. Still we will be able to relate the expected cost of the algorithm
to the behavior of our adversary. The smallest surviving set will be denoted by
Sq and rebuilding of the hierarchy will start from it.

One of the crucial parts in designing the adversary is to make sure that the
hierarchy never grows too deep. The choice of the set Ti at each level of the
hierarchy together with the rule when to destroy it allows us to control the
depth so that it never grows to more than 4 log(m+ 1) levels.

We can then relate the hierarchy maintained by the adversary to a particular
version of a bucketing game. The cost of the bucketing game and the relation-
ship between the hierarchy and the game is set so that the cost of the game
corresponds to the sizes of sets Sq at each step of the game. We describe the
bucketing game next.

2.2 Bucketing games

A prefix bucketing game with n items and k buckets starts with k empty buckets
indexed 1, . . . , k. At each step we insert the next item in a chosen bucket p and
we move all the items from buckets 1, . . . , p−1 into the bucket p as well. For such
a step the original definition of Dietz et al. [10, 2] charges a cost proportional to
the number of items in buckets 1, . . . , p before the merge, i.e., proportional to
the number of items in bucket p after the merge. The total cost is the sum of
the costs of each step. The goal is to select the sequence of indexes p so that we
would minimize the total cost. In the previous papers, there a correspondence
was shown that any deterministic labeling algorithm could be associated to a
bucketing strategy such that the cost of the labeling algorithm against our adver-
sary was bounded below by a constant times the cost of the bucketing strategy.
It is also shown that the minimal cost of any bucketing strategy (for more than
2 log(n) buckets) is Ω(n log(n)/(log(k)−log log(n)) [10, 2]. These results together
gave the lower bound on deterministic labeling. We use the same basic idea for
the randomized case, but require several significant changes to the game.

The first difficulty is that in relating the cost of an algorithm to the cost of
bucketing in the randomized case, we must replace the cost function in bucketing
by a smaller cost function, which is the number of items in the bucket p before the
merge, not after. In general, this cost function is less expensive (often much less
expensive) than the original cost function and we call it the cheap cost function.
The argument relating the cost of a randomized algorithm to a bucketing strategy
requires that the number of buckets be at least 4 log(m) buckets. If we could prove
a lower bound on the cost of bucketing under the cheap function similar to the
bound mentioned above for the original function this would be enough to deduce
the desired lower bound on randomized labeling. However with this cheap cost
function this lower bound fails: if the number of buckets is at least 1 + log(n),
there is a bucketing strategy that costs 0 with the cheap cost function! So this
will not give any lower bound on cost of a randomized labeling algorithm

We overcome this problem by observing that we may make a further modi-
fication of the rules for bucketing and still preserve the connection between the

6

cost of a randomized algorithm against our adversary and the cheap cost of a
bucketing. This modification is called tail bucketing. In a tail bucketing, after
merging all the items into the bucket p, we redistribute these items back among
buckets 1, . . . , p, so that bucket p keeps 1 − β fraction of the items and passes
the rest to the bucket p − 1, bucket p − 1 does the same, and the process con-
tinues down until bucket 1 which keeps the remaining items. It turns our that
our adversary can be related to tail bucketing for β = 1/6. We can prove that
the minimal cheap cost of tail bucketing is Ω(n log(n)) when k = O(log n). This
lower bound is asymptotically optimal and yields a similar bound for randomized
online labeling.

The lower bound proof for the cheap cost of tail bucketing has some inter-
esting twists. The proof consists of several reductions between different versions
of bucketing. The reductions show that we can lower bound the cheap cost of
tail bucketing with C log(n) buckets (for any C) by the cheap cost of ordinary
prefix bucketing with k = 1

4 log n buckets. Even though the cheap cost of ordi-
nary bucketing dropped to 0 once k = log(n) + 1, we are able to show that for
k = 1

4 log(n) there is a θ(n log(n)) bound for ordinary bucketing with the cheap
cost.

Due to space limitations large portion of the proofs is in the appendix. Unless
otherwise specified, logarithms in this paper are to base 2.

3 The Online Labeling Problem

We first define the deterministic version of online labeling. We have parameters
n ≤ m < r, and are given a sequence of n numbers from the set U = [1, r] and
must assign to each of them a label in the range [1,m]. (Here, and throughout
the paper, interval notation is used for consecutive sets of integers). A deter-
ministic online labeling algorithm A with parameters (n,m, r) is an algorithm
that on input sequence (y1, y2, . . . , yt) with t ≤ n of distinct elements from U
outputs a labeling fA : {y1, y2, . . . , yt} → [m] that respects the natural ordering
of y1, . . . , yt, that is for any x, y ∈ {y1, y2, . . . , yt}, fA(x) < fA(y) if and only if
x < y. We refer to y1, y2, . . . , yt as items.

Fix an algorithm A. Any item sequence y1, . . . , yn determines a sequence
f0, f1, . . . , fn of labelings where f t is the labeling of (y1, . . . , yt) determined by
A. We say that A relabels y ∈ {y1, y2, . . . , yt} at time t if f t−1

A (y) 6= f tA(y). In
particular, yt is relabeled at time t. ReltA denotes the set of items relabeled at
step t. The cost of A on y1, y2, . . . , yn is χA(y1, . . . , yn) =

∑n
t=1 |ReltA|.

A randomized online labeling algorithm A is a probability distribution on
deterministic online labeling algorithms. Given a item sequence y1, . . . , yn, the
algorithm A determines a probability distribution over sequences of labelings
f0, . . . , fn. The set Relt is a random variable whose value is a subset of y1, . . . , yt.
The cost of A on y1, y2, . . . , yn ∈ U is the expected cost χA(y1, . . . , yn) =
E
[
χA(y1, . . . , yn)

]
. The maximum cost χA(y1, . . . , yn) over all sequences y1, . . . , yn

is denoted χA(n). We write χm(n) for the smallest cost χA(n) that can be
achieved by any algorithm A with range m.

7

We state our main theorem.

Theorem 1. For any constant C0, there are positive constants C1 and C2 so
that the following holds. Let A be a randomized algorithm with parameters (n,m, r),
where n ≥ C1, r ≥ 2n and m ≤ nC0 . Then χA(n) ≥ C2n log(n).

To prove the theorem we will need some additional definitions. Let S ⊆ Y ⊆
U . We write min(S) and max(S) for the least and greatest elements, respectively.
We say that S is a Y -interval if S = Y ∩ [min(S),max(S)]. We write med(S) for
the median of S which we take to be the d|S|/2e-th largest element of S. We define
left-half(S) = {y ∈ S|y ≤ med(S)} and right-half(S) = {y ∈ S|y ≥ med(S)}
(note that med(S) is contained in both). Also define left-third(S) to be the
smallest b|S|/3c elements, right-third(S) to be the largest b|S|/3c elements
and middle-third(S) = S − left-third(S)− right-third(S).

Given a labeling f of Y and a Y -interval S, we say that the Y -interval S is
left-leaning with respect to f if med(S) has a label that is closer to the label
of min(S) than it is to the label of max(S), i.e. (f(med(S)) − f(min(S))) ≤
(f(max(S))− f(med(S)). It is right-leaning otherwise.

A deterministic labeling algorithm is lazy if at each step t, the set of relabeled
items is a Y t-interval (which necessarily contains yt), and a randomized algo-
rithm is lazy if it is a distribution over lazy deterministic algorithms. In [9], it
was shown that there is an optimal deterministic algorithm that is lazy, and the
same proof works to show that there is an optimal lazy randomized algorithm.
(Intuitively this is the case because if the relabeled items at step t do not form
a Y t-interval and W is the largest Y t interval of relabeled items containing yt

then we can defer relabeling the items in Y t \W until later.)

3.1 The adversary

We now specify an adversary Adversary(A, n,m) which given an online label-
ing algorithm A, a length n, and label space size m, constructs a item sequence
y1, y2, . . . , yn from the universe U = {1, . . . , 2n−1}. Our adversary and notation
borrow from past work in the deterministic case ([10, 9].

We think of the adversary as selecting y1, . . . , yn online, but after each step
the adversary only knows a probability distribution over the configurations of
the algorithm. It is important to keep in mind that the adversary knows the
randomized algorithm A but does not know the random coins of the algorithm.

To avoid having to deal with special cases in the description of the adversary,
it is convenient to imagine that the set of items is augmented by items 0 and
2n which are given (permanent) labels 0 and m + 1 respectively. We write Y t

for the set {y1, . . . , yt} ∪ {0, 2n} of labeled items after step t. At the beginning
of step t, having chosen items Y t−1, the adversary will select a Y t−1-interval,
denoted St∗, of size at least 2 and select yt to be min(St∗) + 2n−t. It is easy to see
by induction on t that the items chosen through step t are multiples of 2n−t, and
it follows that yt is strictly between the smallest and second smallest elements
of St∗. Therefore all of the chosen items are distinct.

8

The selection of St∗ is done as follows. The adversary constructs a nested
sequence of subsets of Y t−1.

Y t−1 = St1 ⊃ T t2 ⊃ St2 ⊃ T t3 ⊃ · · · ⊃ T tdt ⊃ Stdt

called the hierarchy at step t, and chooses St∗ = Stdt .

Note that the superscript for the hierarchy is one larger than the superscript
of the containing set Y t−1. This is because the hierarchy is constructed at the
beginning of step t in order to determine yt. Each of the sets Sti and T ti is a
Y t−1-interval of size at least 2. The depth dt of the hierarchy may vary with t.
The sets Sti and T ti are said to be at level i in the hierarchy.

The pseudo-code for the adversary is given in Figure 3.1.

The hierarchy for t = 1 has d1 = 1 and S1
1 = {0, 2n}. The hierarchy at

step t > 1 is constructed based on the hierarchy at the previous step t − 1 and
the expected behavior of the algorithm on y1, . . . , yt−1 as reflected by the joint
probability distribution over the sequence of functions f1

A, . . . , f
t−1
A .

We build the sets for the hierarchy at step t in order of increasing level (i.e.,
decreasing size). Intervals are either preserved (carried over from the previous
hierarchy, with the addition of yt−1) or rebuilt. To specify which intervals are
preserved, we specify a critical level for step t, qt which is at most the depth
dt−1 of the previous hierarchy. We’ll explain the choice of qt below. At step t, the
intervals Sti for i ≤ qt are preserved, which means that Sti is obtained simply by
adding yt−1 to St−1

i , and the rest are rebuilt. The rule for rebuilding the hierarchy
for i > qt is defined by induction on i as follows: If |Sti−1| < 7 then the hierarchy
is terminated with dt = i− 1. Otherwise, consider the labeling of Sti−1 by f t−1

(which is randomly distributed depending on A). If the probability that Sti−1 is
left-leaning with respect to f t−1 is at least 1/2, then set T ti = left-half(Sti−1)
otherwise T ti = right-half(Sti−1). Set Sti = middle-third(T ti). Observe that
since |Sti−1| ≥ 7, we have |T ti | ≥ 4 and |Sti | ≥ 2.

It remains to explain how the critical level qt is selected. When constructing
each set Sti of the hierarchy for i ≥ 2, the adversary defines a parameter birthti
which is set equal to t if Sti is rebuilt, and is otherwise set to birtht−1

i . It is easy
to see (by induction on t), that birthti is equal to the largest time u ≤ t such
that Sui was rebuilt. It follows that for each u ∈ [birthti, t], min(Tui) = min(T ti)
and max(Tui) = max(T ti).

Say that item y has stable label during interval [a, b] if for each step u in [a, b],
fu(y) has the same value, and has unstable label on [a, b] otherwise. We define
the event Stableti to be the event (depending on A) that min(T ti) and max(T ti)
have stable labels during interval [birthti − 1, t].

We are finally ready to define qt. If there is at least one level i ≥ 2 for which
Pr[Stablet−1

i] ≤ 3/4, let imin be the least such level, and choose qt = imin − 1.
Otherwise set qt = dt−1.

We will prove the following lemma about the adversary, which immediately
implies Theorem 1.

9

Adversary(A, n,m)

t = 1: S1
1 ←− {0, 2n} and birth1

1 = 1, y1 = 2n−1.

For t = 2, . . . , n do

– St
1 ←− St

1 ∪ {yt−1};
– (Choose critical level) Consider the sequence of (dependent) random functions
f1, . . . , f t−1 produced by A in response to y1, . . . , yt−1. If there is an index i ≥ 2
for which Pr[Stablet−1

i] ≤ 3/4, let imin be the least such index and let qt = imin−1.
Otherwise set qt = dt−1.

– i←− 1.
– (Preserve intervals up to the critical level) While i < qt do:
• i←− i+ 1.
• T t

i ←− T t−1
i ∪ {yt−1}

• St
i ←− St−1

i ∪ {yt−1}
• birtht

i ←− birtht−1
i

– (Build intervals after the critical level) While |St
i | ≥ 7 do:

• i←− i+ 1
• If St

i−1 is left-leaning with respect to f t−1 with probability at least 1/2 then
T t
i ←− left-half(St

i−1) otherwise T t
i ←− right-half(St

i−1)
• St

i ←−middle-third(T t
i).

• birtht
i ←− t. [Record that St

i and T t
i were rebuilt]

– dt ←− i.
– yt ←− min(St

dt) + 2n−t.

Output: y1, y2, . . . , yn.

Fig. 1. Pseudocode for the adversary

10

Lemma 1. Let n ≤ m be integers. Let A be a lazy randomized online labeling al-
gorithm with the range m. Let y1, y2, . . . , yn be the output of Adversary(A, n,m).
Then the cost satisfies:

χA(y1, y2, . . . , yn) ≥ 5

96

(
1

6

)28c log(2c)

(n+ 1) log(n+ 1)− n

4
,

where c = log(m+ 1)/ log(n+ 1).

The proof of this lemma has two main steps. The first step is to bound the
cost χA(y1, . . . , yn) from below by the minimum cost of a variant of the prefix-
bucketing game. The prefix-bucketing game was introduced and studied before
to get lower bounds for deterministic online labeling. The variant we consider
is called tail-bucketing. The second step is to give a lower bound on the cost of
tail-bucketing.

To prove the first step we will need two properties of Adversary(A, n,m).
In what follows, we fix A, n,m. Adversary(A, n,m) determines y1, . . . , yn and
the critical levels q1, . . . , qn. Note that the definition of qj only depends on
the expected behavior of the algorithm through the construction of f j−1. For
purposes of analysis, we also define the critical level qn+1 based on the expected
behavior of f1, . . . , fn in exactly the same way.

Lemma 2. For any t ∈ [1, n], dt ≤ 4 log(m+ 1).

Lemma 3. The cost of A on y1, . . . , yn satisfies:

χA(y1, y2, . . . , yn) ≥ 1

40

∑
t

|Stqt+1 \ St1+qt+1 |,

where the sum ranges over time steps t ∈ [1, n] for which qt+1 < dt.

For the proofs of these two lemmas we need certain random variables asso-
ciated with the execution of A on y1, . . . , yn. Since all of the randomness comes
from the distribution over A, the value of each random variable is determined
by the random selection of A, and we sometimes subscript random variables by
A to emphasize this dependence. Furthermore, we replace A by a deterministic
algorithm A in the subscript to indicate the value of the random variable when
A = A.

For any subset S of Y t, lengthtA(S) = f tA(max(S))− f tA(min(S)).
For a (i, t) such that i < dt, shrinkti,A is the 0-1 indicator of the event that

lengtht−1
A (Sti+1) ≤ lengtht−1

A (Sti)/2.

Define shrinktA =
∑dt−1
i=1 shrinkti,A.

Proof of Lemma 2. For t = 1 the claim is trivial so assume t > 1. For any algo-
rithm A, lengtht−1

A (St1) = m+1 and lengtht−1
A (Stdt) ≥ 2, and lengtht−1

A (Sti) >

lengtht−1
A (Sti+1) for i ∈ [1, dt − 1]. Therefore shrinkti,A can be 1 for at most

log(m+ 1)− 1 values of i. Thus shrinktA ≤ log(m+ 1)− 1.

11

Next we claim that for i ∈ [1, dt − 1], Pr[shrinkti = 1] ≥ 1/4. This claim
implies E

[
shrinktA

]
≥ (dt−1)/4 which then gives dt ≤ 4 log(m+1) to complete

the proof of the lemma.

So it remains to prove the claim. Consider first the case that i + 1 > qt.
Sets T ti+1 and Sti+1 are rebuilt at time t. By definition of the adversary T ti+1 is
either left-half(Sti) or right-half(Sti). Furthermore this choice is made so that
lengtht−1(T ti+1) ≤ lengtht−1(Sti)/2 with probability at least 1/2 and since

Sti+1 ⊆ T ti+1, Pr[shrinkti = 1] ≥ 1/2.

Next consider the case that i + 1 ≤ qt so that T ti+1 and Sti+1 are preserved

at step t. These intervals were most recently rebuilt at step s = birthti+1 =

birtht−1
i+1 and the endpoints of Tui+1 are the same for all u ∈ [s, t]. Since i+1 > 1,

s > 1. We now claim and prove below that if both shrinksi and Stablet−1
i+1

happen then shrinkti happens. From this claim, and the assumption that i +
1 ≤ qt we deduce: Pr[shrinkti] ≥ Pr[shrinksi ∩ Stablet−1

i+1] ≥ Pr[shrinksi] +

Pr[Stablet−1
i+1]− 1 ≥ 1/2 + 3/4− 1 = 1/4, as required.

To see the final claim, assume that the event Stablet−1
i+1 occurred. For each

endpoint of T t−1
i+1 , its label remained the same under each of the functions

fs−1, . . . , f t−1, and by the laziness of the algorithm, it also happened that for
each endpoint of St−1

i , its label remained the same under each of the functions
fs−1, . . . , f t−1. Thus if, in addition, shrinksi happens then so does shrinkti. ut
Proof of Lemma 3.

An item-step pair (y, u) is a pair where y ∈ Y u. For each step t such that
qt+1 < dt we will define a set W t of item-step pairs. The sets W t will be disjoint
for different steps t and will consist of some set of item-step pairs (y, u) with
u ≤ t. Say that the item-step pair (y, u) is a relabel event if fu(y) 6= fu−1(y).
Define relabst be the (random) number of relabel events in W t. It follows that
the cost of the algorithm is at least

∑
t:qt+1<dt E

[
relabst

]
. We will show that

E
[
relabst

]
≥ 1

40 |S
t
qt+1\St1+qt+1 |, which will suffice to prove the lemma.

We now define W t for each t such that qt+1 < dt. Let bt = birtht1+qt+1 . For
all steps u ∈ (bt, t] the sets Tu1+qt+1 are preserved and also the sets Su1+qt+1 are
preserved and so from step u− 1 to u they each change only by the addition of
yu−1. Defining for all steps s and levels i, ∆s

i = T si \Ssi , we have that the sets
∆u

1+qt+1 are all the same for each u ∈ [bt, t]. We define W t to be the set of pairs

(y, u) with y ∈ ∆u
1+qt+1 and u ∈ [bt, t], i.e., W t = ∆t

1+qt+1 × [bt, t].

We now show that the sets W t and W t′ are disjoint for all pairs of steps
t < t′. Suppose for contradiction that W t ∩W t′ 6= ∅. Then [bt, t] ∩ [bt

′
, t′] 6= ∅

and so bt
′ ≤ t. This means that level 1 + qt

′+1 is not rebuilt at step t + 1 but
level 1 + qt+1 is rebuilt at step t+ 1, so qt+1 > qt

′+1. But then this contradicts
∆u

1+qt+1 ∩ ∆u
1+qt′+1 6= ∅ since ∆u

1+qt+1 ⊂ Tu1+qt+1 ⊂ Su
1+qt′+1 while ∆u

1+qt′+1 ∩
Su

1+qt′+1 = ∅.
Finally, let us bound E

[
relabst

]
from below. By the definition of the ad-

versary ∆t
1+qt+1 is the union of the two equal-sized sets left-third(T t1+qt+1) ∪

right-third(T t1+qt+1). By the definition of qt+1, the probability that both min(T t1+qt+1)

12

and max(T t1+qt+1) have stable label during [bt − 1, t] is at most 3/4. By the

laziness of the algorithm, on any run in which the left (resp. right) endpoint of
T t1+qt+1 has unstable label during [bt−1, t] all items in left-third(T t1+qt+1) (resp.

right-third(T t1+qt+1)) have unstable label during [bt − 1, t] and so at least half

the items of ∆t
1+qt+1 have unstable label during [bt−1, t]. Since this occurs with

probability at least 1/4, thus the expected number of relabel events is at least
|∆t

1+qt+1 |/8.

To complete the proof of the lemma, we show that |∆t
1+qt+1 | ≥ 1

5 |S
t
qt+1\St1+qt+1 |.

The sets Suqt+1\Su1+qt+1 are the same for all u ∈ [bt, t] and the same is true for

the sets ∆u
1+qt+1 . We compare these two sets for u = bt. Letting c = |Sbtqt+1 | we

have c ≥ 7 since qt+1 is not the last level at step bt. Since T b
t

1+qt+1 and Sb
t

1+qt+1

are rebuilt, |T bt1+qt+1 | ≥ dc/2e and |∆bt

1+qt+1 | ≥ 2b(dc/2e)/3c ≥ c/5 (where the

final inequality uses c ≥ 7, and is tight for c = 10). ut

4 Prefix bucketing and Tail bucketing

We will need several different variants of prefix bucketing game introduced by
Dietz, Seiferas and Zhang [10]. We have k buckets numbered 1, . . . , k in which
items are placed. A bucket configuration is an arrangement of items in the buck-
ets; formally it is a mapping C : {1, . . . , k} to the nonnegative integers, where
C(i) is the number of items in bucket i. It will sometimes be convenient to
allow the range of the function C to be the nonnegative real numbers, which
corresponds to allowing a bucket to contain a fraction of an item.

A bucketing game is a one player game in which the player is given a sequence
of groups of items of sizes n1, . . . , n` and must sequentially place each group of
items into a bucket. The case that the sequence n1 = · · · = n` = 1 is called
simple bucketing. The placement is done in a sequence of ` steps, and the player
selects a sequence p1, . . . , p` ∈ [1, k]`, called an (`, k)-placement sequence which
specifies the bucket into which each group is placed.

Bucketing games vary depending on two ingredients, the rearrangement rule
and the cost functions.

When a group of m items is placed into bucket p, the items in the configu-
ration are rearranged according to a specified rearrangement rule, which is not
under the control of the player. Formally, a rearrangement rule is a function R
that takes as input the current configuration C, the number m of new items
being placed and the bucket p into which they are placed, and determines a new
configuration R(C,m, p) with the same total number of items.

The prefix rearrangement rule is as follows: all items currently in buckets
below p are moved to bucket p. We say that items are merged into bucket p.
Formally, the new configuration C ′ = R(C,m, p) satisfies C ′(i) = 0 for i < p,
C ′(p) = C(1) + · · ·+C(p) +m and C ′(i) = C(i) for i > p. Most of the bucketing
games we’ll discuss use the prefix rearrangement function, but in Section 4.1
we’ll need another rearrangement rule.

13

The cost function specifies a cost each time a placement is made. For the
cost functions we consider the cost of placing a group depends on the current
configuration C and the selected bucket p but not on the number m of items
being placed. We consider four cost functions

– In cheap bucketing, the cost is the number of items in bucket p before the
placement:

costcheap(C, p) = C(p).

– In expensive bucketing, the cost is the number of items in buckets p or higher
before the placement:

costexp(C, p) =

k∑
i=p

C(i).

– For γ ∈ [0, 1], in the γ-discounted bucketing, the cost is:

costγ−disc(C, p) =

k∑
i=p

C(i)γi.

(Note that cost1−disc = costexp.)
– For b ∈ N, in the b-block bucketing, the cost of step t is

costb−block(C, p) =

s(p)∑
i=p

C(i),

where s(p) is the least multiple of b larger or equal to p. (Note that cost1−block =
costcheap and costk−block = costexp.)

Fix a rearrangement rule R and a cost function c. A placement sequence
p1, . . . , p` and a load sequence n1, . . . , n` together determine a sequence of con-
figurations B = (B0, B1, . . . , B`), called a bucketing where B0 is the empty
configuration and for i ∈ [1, `], Bi = R(Bi−1, ni, pi). Each of these ` placements
is charged a cost according to the cost rule c. We write c[R](p1, . . . , p`|n1, . . . , n`)

for the sum
∑`
i=1 c(B

i−1, pi), which is the sum of the costs of each of the ` rear-
rangements that are done during the bucketing. If R is the prefix rule, we call B
a prefix bucketing and denote the cost simply by c(p1, . . . , p`|n1, . . . , n`). In the
case of simple bucketing, n1 = . . . = n` = 1, we write simply c[R](p1, . . . , p`) or
c(p1, . . . , p`) in the case of simple prefix bucketing.

4.1 Tail bucketing and the online labeling

We will also need an alternative rearrangement function, called the tail rear-
rangement rule. The bucketing game with this rule is called tail bucketing. The
tail rearrangement rule Tailβ with parameter β acts on configuration C, bucket
p and group size m by first moving all items below bucket p to bucket p so that

14

w = C(1) + · · · + C(p) + m items are in bucket p (as with the prefix rule), but
then for j from p down to 1, β fraction of the items in bucket j are passed to
bucket j − 1, until we reach bucket 1. (Here we allow the number of items in a
bucket to be non-integral.) So the number of items in bucket j for j ∈ [2, p] is
w(1− β)(β)p−j and the number of items in bucket 1 is wβp−1.

A bucketing B produced with the tail bucketing rearrangement rule is called
a tail bucketing.

We will consider tail bucketing with the cheap cost function. We will now re-
late the expected cost of randomized online labeling algorithm A on the sequence
y1, y2, . . . , yn which was produced by our adversary Adversary(A, n,m) to the
cost of a specific tail bucketing instance.

For a lazy online labeling algorithm A and t = 1, . . . , n, let f tA, S
t
i , q

t, yt

be as defined by the Adversary(A, n,m) and the algorithm A. Denote Y =
{y1, y2, . . . , yn}. Set k = b4 log(m+1)c. Let q1, . . . , qn be the sequence of critical
levels produced by the algorithm. As mentioned prior to stating Lemma 2, we
define qn+1 for analysis purposes. For integer i ∈ [k] define ī to be ī = (k+1)− i.
Define the placement sequence p1 = q̄2, . . . , pn = q̄n+1, and consider the tail
bucketing B0, . . . , Bn+1 determined by this placement sequence with parameter
β = 1/6, and all group sizes 1 (so it is a simple bucketing). The following lemma
is used to relate the cost of online labeling to the tail bucketing.

Lemma 4. Let {Sti : 1 ≤ t ≤ n, 1 ≤ i ≤ dt} be the interval hierarchy com-
puted by Adversary(A, n,m) and BA = (B0, . . . , Bn) be the corresponding
tail-bucketing. Then for any t ∈ [1, n] and any j ∈ [1, dt]:

|Stj\Stj+1| ≥ Bt−1
j̄
− 3.

Here, for the case j = dt, we take Stj+1 to be ∅.

Proof. We will actually prove:

d
∑
i≤j̄

Bt−1
i e+ 2 ≥ |Stj | ≥ d

∑
i≤j̄

Bt−1
i e. (1)

Given this we get:

|Stj\Stj+1| ≥ d
∑
i≤j̄

Bt−1
i e − (d

∑
i≤j̄−1

Bt−1
i e+ 2) ≥ Bt−1

j̄
− 3,

as required.
We prove (1) by induction on t. For t = 1 we have d1 = 1, so we only need

to check the case j = 1. We have |S1
1 | = 2, and j̄ = k and

∑
i≤k B

0
i = 0.

Let t ≥ 2 and assume the claim is true for t − 1. Let j ∈ [1, k]. Suppose
first j ≤ qt. By the definition of the critical level, qt ≤ dt−1. Therefore j ≤ dt−1

and we may apply the induction hypothesis with t − 1 and j. Since j ≤ qt

|Stj | = |S
t−1
j |+ 1. The conclusion then follows by induction if we can show that∑

i≤j̄ B
t−1
i −

∑
i≤j̄ B

t−2
i = 1. This holds because pt−1 = q̄t and so j̄ ≥ pt−1 and

15

therefore Bt−1 is obtained from Bt−2 by adding a single item at position pt−1

and redistributing items among the first pt−1 buckets, so that the difference in
the two sums is indeed 1.

Now assume j > qt. We hold t fixed and prove the equality by induction
on j, where we use the already proved case j = qt as the basis. Suppose that
dt ≥ j > qt and that the desired equality holds for (t, j − 1).

Define β(j) =
∑
i≤j̄ B

t−1
i . For dt ≥ j > qt we have j̄ < pt−1 and the tail-

bucketing rule implies β(j) = β(j−1)/6. Also, the rebuilding rule for Stj implies
|Stj | is between dStj−1/6e and dStj−1/6e + 1 (which is verified by case analysis
depending on |Stj−1| mod 6).

Thus:

|Stj | ≤ d
1

6
|Stj−1|e+ 1

≤ d1
6

(dβ(j − 1)e+ 2)e+ 1

≤ d1
6
β(j − 1)e+ 2

= dβ(j)e+ 2,

where the second inequality uses the induction hypothesis and the third is a
simple arithmetic fact. This proves the first inequality of (1). Similarly for the
second inequality:

|Stj | ≥ d
1

6
|Stj−1|e

≥ d1
6

(dβ(j − 1)e)e

≥ d1
6
β(j − 1)e

= dβ(j)e.

Corollary 1. The cost of randomized labeling algorithm A with label space [1,m]
on y1, . . . , yn satisfies:

χA(y1, y2, . . . , yn) ≥ 1

40
(min costcheap[Tail1/6](p1, . . . , pn)− 10n),

where the minimum is over all placement sequences (p1, . . . , pn) into b4 log(m+
1)c buckets.

Proof. Consider the placement sequence p derived from the sequence of critical
levels as in Lemma 4. The total cost is

∑
tB

t−1
pt =

∑
tB

t−1
q̄t+1 , which by Lemma 4

is bounded above by
∑
t |Stqt+1\St1+qt+1 |+ 3n. Split this latter sum according to

qt+1 < dt or qt+1 = dt. The terms for which qt+1 = dt are each at most 7 (since
|Stdt | ≤ 7) and so:

16

∑
t

Bt−1
q̄t+1 − 10n ≤

∑
t:qt+1<dt

|Stqt+1\St1+qt+1 |.

Now apply Lemma 3.

5 Lower bounds on tail bucketing

Armed with Corollary 1, it now suffices to prove a lower bound on the cheap
cost of simple tail bucketing when the number of items is n and the number of
buckets is b4 log(m+ 1)c.

The first step is to bound the cost of (simple) tail bucketing by the cost of
(simple) prefix bucketing under the cost function costγ−disc.

Lemma 5. Let k ≥ 1 be an integer and p1, . . . , p` be the placement sequence
into k buckets. Then:

costcheap[Tailβ](p1, . . . , p`) ≥ (1− β) · costβ−disc(p1, . . . , p`)..

Proof. Refer to the item loaded in step j as item j. We can partition the cost of
step s as the sum of the contributions due to each of the items 1, . . . , s− 1. We
now show that for each item j and each step s > j, the contribution of item j
to the cost at step s using costcheap with the tail rearrangement rule is at least
1− β times the contribution of item j to the cost at step s using costβ−disc.

Let h be an index in j, j + 1, . . . , s − 1 such that ph is maximum. After
step s − 1, under the prefix rearrangement rule, j is located in bucket ph. If

ps ≤ ph then the contribution to costβ−disc by item j is (β)p
h−ps , otherwise the

contribution is 0.
Under tail rearrangement j is split among buckets 1, . . . , ph with (1−β)βp

h−i

of j in bucket i for 2 ≤ i ≤ ph and βp
h−1 located in bucket 1. If ps > ph then

under costcheap the contribution of item j to step s is 0. If 1 < ps ≤ ph then

under costcheap the contribution is (1−β)βp
h−ps and for ps = 1 the contribution

is βp
h−ps . This is at least 1−β times the contribution to costβ−disc under prefix

bucketing.

The next step is an easy reduction from costγ−disc to costb−block.

Lemma 6. Let γ ∈ (0, 1] and 1 ≤ b. Let p1, . . . , p` be a placement sequence.
Then:

costγ−disc(p1, . . . , p`) ≥ γbcostb−block(p1, . . . , p`).

Proof. Since in both games we are using the prefix rearrangement rule, the con-
figuration after each step in the two games is the same. Consider the contribution
of the tth step of the bucketing to each side. Items are loaded into bucket pt. Let
s be the least multiple of b with s ≥ pt and let r = s− pt. In b-block bucketing
we pay only for items that step t − 1 were in buckets of the form pt + i where
0 ≤ i ≤ r. Since r ≤ b, in γ-discounted bucketing we pay at least γb for each of
these items.

17

Applying this lemma with b = 1 gives costγ−disc(p1, . . . , pn) ≥ costcheap(p1, . . . , pn).
This lower bound does not help us directly because it can be shown that with
log(n − 1) buckets there is an (n, k)- placement sequence with k = log(n + 1)
with costcheap(p1, . . . , pn) = 0. This follows from the following lemma, which
we state in greater generality so that we can use it later:

Lemma 7. For any `, k and for any load sequence n1, . . . , n` there is an (`, k)-
placement sequence r1, . . . , r` into k buckets satisfying:

costcheap(r1, . . . , r`|n1, . . . , n`) =

`−2k+1∑
j=1

nj(`− j − 2k + 2).

In particular, if k ≥ log(`+ 1) then costcheap(r1, . . . , r`|n1, . . . , n`) = 0.

Proof. Let m = max(` − 2k + 1, 0). The sequence consists of loading all items
into bucket 1 for the first m steps. For all steps m + j for j ≤ 2k − 1 load new
items in step j in bucket α(j) + 1 where α(j) is the largest power of 2 dividing
j.

It is easy to prove by induction on j that after step m+ j the set of occupied
buckets are exactly those whose positions correspond to the 1’s in the binary
expansion of j . Furthermore, for all j ≥ 2, α(j) + 1 is empty at the end of step
j − 1. It follows that during the last 2k − 2 steps there is no cost incurred.

It remains to bound the total cost during the first m + 1 steps. Each item
loaded at step j ≤ m is charged m+1−j steps (at each step in j+1, . . . ,m+1).

Thus the total charge is
∑m+1
j=1 nj(m+ 1− j).

As mentioned, this gives an upper bound of 0 if the number of buckets is at
least log(` + 1). We now show that a small reduction in the number of buckets
is enough to give a good lower bound on costcheap.

Lemma 8. For any (`, k)-placement sequence p1, . . . , p`,

costcheap(p1, . . . , p`) ≥ (`+ 1)(log(`+ 1)− 2k).

Proof. We lower bound costcheap(p1, . . . , p`) by induction on `, where the base
case ` = 0 is trivial.Let m1 < m2 < < mr be the indices such that pmi = k.
Also define m0 = 0 and mr+1 = ` + 1. For i ∈ [1, r + 1], the interval [mi−1 +
1,mi − 1] is called phase i. Each phase consists only of placements to buckets
k − 1 or lower and (except possibly the last phase) is followed immediately by
a placement to bucket k. We define `i = mi −mi−1 − 1 to be the length of the
phase. Let γi = (`i + 1)/(`+ 1) so that

∑r+1
i=1 γi = 1.

Let us now analyze the cost of the sequence phase by phase. At the beginning
of phase i there are no items in any bucket below k. The phase itself is an (`i, k−1)
bucketing so by induction has cost at least (`i + 1)(log(`i + 1) − 2(k − 1)) =
(` + 1)γi(2 + log γi + log(` + 1) − 2k). Except for i = r + 1, the placement pmi

immediately following the phase costs mi−1 = (`+ 1)(
∑i−1
j=1 γj) since that is the

18

number of items in bucket k prior to that placement. Summing over phases and
rearranging gives:

costcheap(p1, . . . , p`) ≥ (`+ 1)(

r∑
j=1

(r − j)γj + 2 +

r+1∑
i=1

γi log(γi)) + (`+ 1)(log(`+ 1)− 2k)

Note that the final term is the lower bound we are aiming for so it suffices
to show:

r∑
j=1

(r − j)γj + 2 ≥
r+1∑
i=1

γi log(1/γi).

Since
∑r+1
i=1 γi = 1 the lefthand side is at least

∑r+1
j=1(r− j+ 2)γj . Observing

that
∑r+1
i=1 2−(r−j+2) ≤ 1, the desired inequality follows from:

Proposition 1. Let α1, . . . , αs be nonnegative reals summing to 1. Then for
all choices of x1, . . . , xs of nonnegative reals with sum at most 1, the function∑
i αi log(1/xi) is minimized when (x1, . . . , xs) = (α1, . . . , αs).

This is essentially equivalent to the well known fact that the KL-divergence of
two distributions is always nonnegative and is easily proved by first noting that
we may assume

∑
i xi = 1, and then using Lagrange multipliers, or induction on

s.

5.1 From costb−block to costcheap

So far we have shown that the cost of online labeling can be bounded below by
the cheap cost of tail-bucketing, which can be bounded below by the costb−block
for simple bucketing.

Below we will prove Lemma 11 which shows that costb−block can be bounded
below by costcheap with fewer buckets. In preparation, we begin by bounding
costexp from below by costcheap with fewer buckets.

Lemma 9. Let k ≥ 1 and b = 2k − 1. Let n1, . . . , n` be an arbitrary load se-
quence. Then for any placement sequence p1, . . . , p` into b buckets there is a
placement sequence r1, . . . , r` into k buckets such that

costcheap(r1, . . . , r`|n1, . . . , n`) ≤ costexp(p1, . . . , p`|n1, . . . , n`).

Proof. We begin with a lower bound on costexp(p1, . . . , p`|n1, . . . , n`). At step
j, any item inserted before j that is in bucket pj or higher incurs a charge of
1. Any previously loaded item that is in a bucket less than pj incurs no charge,
but is moved to bucket pj . Thus, once an item is loaded, in every step it incurs

19

a charge of 1 or increases its bucket number. An item loaded at step j incurs no
cost at step j and incurs a cost of 1 in every step that it does not move, which
means that it incurs a cost of one in at least (` − j) − (b − 1) steps. Summing
over the first `− b items we get.

costexp(p1, . . . , p`|n1, . . . , n`) ≥
`−b∑
j=1

nj(`− j − b+ 1).

Now, setting b = 2k − 1, Lemma 7 completes the proof of the lemma.

For a step i let ci(p1, . . . , p`|n1, . . . , n`) be the cost of the placement into pi

at step i. For I ⊆ [1, `], let

cI(p1, . . . , p`|n1, . . . , n`) =
∑
i∈I

ci(p1, . . . , p`|n1, . . . , n`). (2)

Lemma 10. Let p1, . . . , p` be a placement sequence with b buckets. Let θ ∈ [1, b]
and let I = {i1 < · · · < ih} be the indices in [1, `] such that pij > θ. Let
s1, . . . , sh be the placement sequence into b− θ buckets given by sj = pij − θ and
let n1, . . . , nh be given by n1 = i1 and for j > 1, nj = ij − ij−1. Then for cost
function c ∈ {costcheap, costexp},

cI(p1, . . . , p`) = c(s1, . . . , sh|n1, . . . , nh).

Proof. It suffices to show that for each j ∈ [1, h], cij (p1, . . . , p`) = cj(s1, . . . , sh|n1, . . . , nh).
Let B1, . . . , B` be the bucketing sequence associated to (p1, . . . , p`), and let
B̃1, . . . , B̃h be the bucketing sequence associated to (s1, . . . , sh|n1, . . . , nh).

We claim that for each j ∈ [1, h] the configuration Bij restricted to [θ+ 1, b]
is identical to the configuration B̃j restricted to [1, b − θ]. This is easily shown
by induction on j. The base case j = 0 is trivial. Assume j > 0. The result holds
for j−1 so Bij−1 restricted to [θ+1, b] is identical to Bj−1 restricted to [1, b−θ].

For the sequence s1, . . . , sh, at step j, all buckets above sj are unchanged,
all buckets below sj are emptied, and sj increases by the number of items that
were in buckets below sj , together with the load of nj .

Now consider the change in the configuration B from Bij−1 to Bij . For each
s ∈ ij−1 + 1 to ij − 1, ps ≤ θ, which implies that B restricted to [θ + 1, b]
is unchanged. Next consider the placement pji at step ji. All buckets above
pji = sj + θ are unchanged and all buckets below pj are emptied, and bucket pj

gets all of the items that were in buckets [θ+ 1, pij − 1] after step ij−1 together
with all of the nj new items that arrived since ij−1 of the buckets in B. This
exactly matches the change in bucket sj at step j in the other bucketing, as
required to establish the claim.

By the claim, the cost of step ij for p1, . . . , p` is the same as the cost of step
j for s1, . . . , sh|n1, . . . , nh as required to prove the lemma.

Next we come to a crucial reduction which lower bounds costb−block in terms
of costcheap with a fewer number of buckets.

20

Lemma 11. Let k ≥ 1, m ≥ 1 and b = 2k − 1. Let p1, . . . , p` be a placement
sequence into bm buckets. There exists a placement sequence s1, . . . , s` for km
buckets such that

costcheap(s1, . . . , s`) ≤ costb−block(p1, . . . , p`).

Proof. Fix p1, . . . , p`. We first describe the construction of the sequence s1, . . . , s`

and then prove the properties.
To specify the sequence s1, . . . , s` we will define a partition of [1, `] into

(generally non-consecutive) subsequences, and for each set ĥ in the partition

separately specify si for i ∈ ĥ.
The definition of the partition takes a few steps. Define the level of a bucket

w for block size b to be the largest λ such that λb < w, and the remainder of
w to be w − λb. For i ∈ [1, n], define λi to be the level of pi and ri to be the
remainder of pi. By the hypotheses of the lemma each λi ∈ [0,m− 1] and each
remainder is in [1, . . . , b]. We also define λ0 = λ`+1 =∞.

A chain of level j and order v is a sequence h of indices h0 < h1 < · · · < hv <
hv+1 (with possibly h0 = 0 or hv+1 = `+ 1) satisfying the following properties:

– λh0 > j and λhv+1 > j,
– λh1 = · · · = λhv = j,
– For any index i belonging to [h0,hv+1]− {h0,h1, . . . ,hv+1}, λi < j.

The indices h0,hv+1 are the endpoints of h, and the other indices are the
interior indices. We write ĥ for the interior of h. Thus the order of h is equal
to |ĥ|. A chain of order 0 is trivial, others are non-trivial. Every chain of level j
can be obtained in the following way: consider the sequence 0 = g0 < g1 < · · · <
gw−1 = gw = `+ 1 consisting of all indices at level higher than j. Then between
each consecutive pair gj and gj+1 from the sequence there is a unique chain of
level j. The interiors of these chains partition the set of indices at level j. The
collection of all nontrivial chains is denoted H, and the set of interiors of these
chains partitions [1, `].

We write λ(h) for the level of h and v(h) for the order of h.
For a chain h as above, we define its difference sequence to be the sequence of

length v(h) to be the sequence∆1
h, . . . ,∆

v(h)
h given by∆j

h = hj−hj−1. (We could

also define ∆
v(h)+1
h but we won’t need it.) The sum of the difference sequence

is just hv(h) − h0. Finally we define the remainder sequence of h to be the

subsequence rh1 , . . . , rhv(h) of the remainder sequence r1, . . . , rv(h) corresponding
to the interior indices of h.

At last we are ready to define si. Fix h ∈ H; we define si for i ∈ ĥ. Now view
the remainder sequence rh1 , . . . , rhv of h as a placement for the load sequence
∆h

1 , . . . ,∆
h
v(h). All of these placements are in the range [1, 2k − 1] so by Lemma

9, there is a placement u1, . . . , uv(h) into buckets in the range [1, k] such that:

costcheap(u1, . . . , uv(h)|∆1
h, . . . ,∆

v(h)
h) ≤ costexp(r1, . . . , rv(h)|∆1

h, . . . ,∆
v(h)
h).

21

Now for each i ∈ [1, v(h)] let shi = λ(h)k+ ui. This defines the values si for

i ∈ ĥ, and by doing this for all h ∈ H we get the sequence s1, . . . , sn.

Since j ∈ [0,m − 1] and ui ∈ [1, k] we have that all s values are in [1, km].
When we refer to the level of an si we mean its level with respect to block size k.
Observe that the sequence λi of levels (with respect to block size b) corresponding
to the placement sequence p is the same as the sequence of levels (with respect
to block size k) corresponding to placements in s.

To prove the inequality of the lemma, we need a bit more notation. Write ph
for the consecutive subsequence of p of length hv−h0 starting with ph0+1. Thus
pih = ph0+i. Define sh analogously. Also let h− = (h1 − h0,h2 − h0, . . . ,hv(h) −
h0). Thus h− is the set of indices of ph corresponding to ĥ.

The inequality of the lemma is obtained from the following chain (where we
use the notation from 2) of relations:

costb−block(p1, . . . , p`)
(A1)
=

∑
h∈H

cost
{ĥ1,...,ĥv(h)}
b−block (p1, . . . , p`)

(A2)
=

∑
h∈H

cost
{h−1 ,...,h

−
v(h)
}

exp (p1
h, . . . , p

hv(h)−h0

h)

(A3)
=

∑
h∈H

costexp(rh1 , . . . , rhv(h) |∆1
h, . . . ,∆

v(h)
h)

(A4)

≥
∑
h∈H

costcheap(uh1 , . . . , uhv(h) |∆1
h, . . . ,∆

v(h)
h)

(A5)
=

∑
h∈H

cost
{h−1 ,...,h

−
v(h)
}

cheap (s1
h, . . . , s

hv(h)−h0

h)

(A6)
=

∑
h∈H

cost
{ĥ1,...,ĥv(h)}
cheap (s1, . . . , s`)

(A7)
= costcheap(s1, . . . , s`).

We now justify each of these steps. We work from both ends to the middle.
Equalities (A1) and (A7) follow from the fact that H is a partition of [1, `]. For
all of the other relations, we fix an h ∈ H and show it holds term by term. For
(A2) observe first that at the start of epoch E, all items currently stored are in
buckets higher than level j and so contribute nothing to the costb−block during
epoch E so in accounting for the cost of steps of F we can omit all placements
prior to E. During E there are no placements above block j so costexp coincides
with costb−block. This proves (A2) and a similar argument gives (A6). For (A3),
we apply Lemma 10 with θ = jb, and for (A5) we apply the same lemma with
θ = jk. Finally Lemma 9 implies (A4).

22

Lemma 12. Let p1, . . . , pn be an arbitrary placement sequence into b4 log(m+
1)c buckets. Then

costcheap[Tail1/6](p1, . . . , pn) ≥ 5

12

(
1

6

)28c log(2c)

(n+ 1) log(n+ 1),

where c = log(m+ 1)/ log(n+ 1).

Now Lemma 1 follows from the above Lemma and Corollary 1.
Proof of Lemma 12. Using Lemmas 5, 6 and 11 we obtain the following chain
of inequalities

costcheap[Tail1/6](p1, . . . , pn) ≥ (5/6) · cost1/6−disc(p1, . . . , pn)

≥ (5/6)(1/6)b · costb−block(p1, . . . , pn)

≥ (5/6)(1/6)bcostcheap(s1, . . . , sn),

where (p1, . . . pn) is (n, b4 log(m + 1)c)-placement sequence and (s1, . . . sn) is
(n, km)-placement sequence, where km is defined as in Lemma 11. To obtain
the lower bound we use Lemma 8. However we have to define the size of block
b first, because it determines the actual number of buckets km. We choose b
so that we obtain Ω(n log n) lower bound, therefore we choose b = 28c log(2c)
where c = log(m+ 1)/ log(n+ 1). This implies

km =
b4 log(m+ 1)c

b
· k

≤ 4c log(n+ 1) · log(28c log(2c) + 1)

28c log(2c)

≤ log(n+ 1) log(210c2)

26 log(2c)

≤ log(n+ 1) log(210c2)

4 log(216c16)
≤ log(n+ 1)

4
,

where the first equality follows from the fact that bm = b4 log(m+ 1)c and the
second one uses that b = 2k − 1. The third inequality uses x > log x for x > 0
and c ≥ 1. Therefore we obtain from Lemma 8 that costcheap(s1, . . . , sn) ≥
1
2 (n+ 1) log(n+ 1) and thus the proof is finished. ut

References

1. Afek, Y., Awerbuch, B., Plotkin, S., Saks, M.: Local management of a global resource
in a communication network. J. ACM, 43(1), 1–19 (1996)

2. Babka, M., Bulánek, J., Čunát, V., Koucký, M., Saks, M.: On Online Labeling with
Polynomially Many Labels. In ESA, 121–132 (2012)

3. Bender, M., Cole, R., Demaine, E., Farach-Colton, M., Zito, J.: Two simplified
algorithms for maintaining order in a list. In ESA, 152–164 (2002)

23

4. Bender, M., Demaine, E., Farach-Colton, M.: Cache-oblivious B-trees. SIAM J.
Comput., 35(2), 341–358 (2005)

5. Bender, M., Duan, Z., Iacono, J., Wu, J.: A locality-preserving cache-oblivious dy-
namic dictionary. J. Algorithms, 53(2), 115–136 (2004)

6. Bird, R., Sadnicki, S.: Minimal on-line labelling. Inf. Process. Lett., 101(1), 41–45
(2007)

7. Borodin, A., El-Yaniv, R.: Online computation and competitive analysis. Cambridge
University Press, (1998)

8. Brodal, G., Fagerberg, R., Jacob, R.: Cache oblivious search trees via binary trees
of small height. In SODA, 39–48, (2002)

9. Bulánek, J., Koucký, M., Saks, M.: Tight lower bounds for online labeling problem.
In STOC, 1185–1198 (2012)

10. Dietz, P., Seiferas, J., Zhang, J.: A tight lower bound for online monotonic list
labeling. SIAM J. Discrete Math., 18(3), 626–637 (2004)

11. Dietz, P., Zhang, J.: Lower bounds for monotonic list labeling. In SWAT, 173–180
(1990)

12. Emek, Y., Korman, A.: New bounds for the controller problem. Distributed Com-
puting, 24(3-4), 177–186 (2011)

13. Itai, A., Konheim, A., Rodeh, M.: A sparse table implementation of priority queues.
In ICALP, 417–431 (1981)

14. Korman, A., Kutten, S.: Controller and estimator for dynamic networks. In PODC,
175–184 (2007)

15. Willard, D.: A density control algorithm for doing insertions and deletions in a
sequentially ordered file in good worst-case time. Inf. Comput., 97(2), 150–204 (1992)

16. Zhang, J.: Density Control and On-Line Labeling Problems. PhD thesis, University
of Rochester (1993).

