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1 Lectures 1 + 2

We present the proof of classical Ramsey theorem, using products of ultrafilters.
First we recall basic properties of ultrafilters, next we present the 2-dimensional
Ramsey theorem and finally we prove the multidimensional non-symmetric version.

1.1 Ultrafilters

We start with some basic definitions, which will be needed later.
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Definition 1.1. An algebra of sets in X is a family A ⊆P(X) such that

(A1) ∅, X ∈ A ,

(A2) A,B ∈ A =⇒ A ∩B ∈ A ,

(A3) A ∈ A =⇒ X \ A ∈ A .

A family of sets B is centered if B0 ∩ . . . Bn 6= ∅ whenever B0, . . . , Bn ∈ B, n ∈ ω.
Let A be an algebra of sets in X. A family F ⊆ A is a filter if it satisfies

(F1) ∅ /∈ F , X ∈ F .

(F2) A,B ∈ F =⇒ A ∩B ∈ F .

(F3) A ∈ F =⇒ {B ∈ A : A ⊆ B} ⊆ F .

A filter that is maximal with respect to inclusion (i.e. not properly contained in any
other filter) is called an ultrafilter.

Below are standard and well-known properties of ultrafilters.

Proposition 1.2. Let A be an algebra of subsets of a nonempty set X.

(i) Every centered subfamily of A extends to an ultrafilter in A .

(ii) A filter F ⊆ A is an ultrafilter if and only if either A ∈ F or X \ A ∈ F ,
for every A ∈ A .

(iii) If F is an ultrafilter in A and A0, . . . , An ∈ A are such that A0∪· · ·∪An ∈ F
then there is j 6 n such that Aj ∈ F .

We shall be interested in ultrafilters in P(X). Namely, we say that p is an
ultrafilter on X if it is an ultrafilter in the algebra P(X). An ultrafilter p on X is
principal if it is of the form

p = {A ⊆ X : x ∈ A}

for some x ∈ X. Otherwise, p is called non-principal. It is an easy exercise to check
that every ultrafilter on a finite set is principal. On the other hand:

Proposition 1.3. Let X be an infinite set. Then there exists a non-principal ultra-
filter on X.

Proof. The family F = {A ⊆ X : |X\A| < ℵ0} is a filter. Every ultrafilter extending
F is non-principal.

Given a set X, we shall denote by βX the family of all ultrafilters on X and by
β∗X the family of all non-principal ultrafilters1 on X.

1Many authors use the notation X∗ instead of β∗X which, in our opinion, may be confusing.
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1.2 Classical Ramsey theorem for pairs

We show how to use ultrafilters for proving infinitary version of Ramsey’s theorem.

Definition 1.4. Let X, Y be two nonempty sets and let p ∈ βX, q ∈ βY . Given a
set S ⊆ X × Y we denote by (C)x its vertical section at x, namely

(C)x = {y ∈ Y : 〈x, y〉 ∈ C}.

Horizontal sections (C)y are defined analogously. We define

p⊗ q = {A ⊆ X × Y : {x ∈ X : (A)x ∈ q} ∈ p}.

It is an easy exercise to show that p ⊗ q is an ultrafilter on X × Y . We shall call
p⊗ q the product of p and q.

It turns out that products of ultrafilters are good enough for proving Ramsey’s
theorem.

Theorem 1.5 (Ramsey). Assume X is an infinite set and

[X]2 = C0 ∪ · · · ∪ C`−1.

Then there exist j < ` and an infinite set Y ⊆ X such that [Y ]2 ⊆ Cj.

Proof. We identify subsets of [X]2 with symmetric subsets of X × X. Fix a non-
principal ultrafilter p on X.

There is j < ` such that Cj ∈ p ⊗ p. We define inductively a decreasing chain
A0 ⊇ A1 ⊇ A2 ⊇ . . . in p and a one-to-one sequence {xn}n∈ω such that

(0) A0 = {x ∈ X : (Cj)
x ∈ p},

(1) xn ∈ An,

(2) An+1 = An ∩ (Cj)
xn .

Actually, starting with any x0 such that (Cj)
x0 ∈ p, conditions (1) and (2) tell us

how to proceed, knowing that p contains only infinite sets.
Finally, if m < n then xn ∈ Am+1 ⊆ (Cj)

xm , which means that {xm, xn} ∈ Cj.
This shows that [Y ]2 ⊆ Cj, where Y = {xn}n∈ω.

We now show how to derive the finite version of Ramsey’s theorem from the
infinitary one.

Theorem 1.6. Given k, ` ∈ N, there exists r ∈ N such that whenever [X]2 =
C0 ∪ · · · ∪ C`−1 and |X| > r, then there exists Y ∈ [X]k such that [Y ]2 ⊆ Cj for
some j < `.
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Proof. Suppose the theorem fails for fixed k, ` ∈ N. Then for every n ∈ N there is a
set Xn of cardinality > n and a function cn : Xn → ` such that for every Y ∈ [Xn]k

the restriction cn � [Y ]2 is not constant. Fix p ∈ β∗N and let X =
∏

n∈NXn/p be
the ultraproduct of {Xn}n>2. That is, X is the quotient of

∏
n∈NXn with respect to

the relation ∼p defined by

x ∼p y ⇐⇒ {n : x(n) = y(n)} ∈ p.

Define
c∞(x, y) = i⇐⇒ {n : cn(x(n), y(n)) = i} ∈ p.

By Ramsey’s theorem, there is an infinite set Y ⊆ X such that c∞[Y ]2 = {j} for some
j < `. There is A ∈ p such that |{y(n) : y ∈ Y }| > k and c∞(x, y) = cn(x(n), y(n)) =
j for every x, y ∈ Y and for every n ∈ A. This is a contradiction.

1.3 Multidimensional Ramsey theorem

We shall present a non-symmetric version of Ramsey’s theorem, using products of
ultrafilters.

Lemma 1.7. Let X, Y, Z be sets, let p ∈ βX, q ∈ βY , r ∈ βZ. Then

(p⊗ q)⊗ r = p⊗ (q ⊗ r),

agreeing that (X × Y )× Z = X × (Y × Z).

Proof. We have the following sequence of equivalences:

A ∈ (p⊗ q)⊗ r ⇐⇒ {s ∈ X × Y : (A)s ∈ r} ∈ p⊗ q

⇐⇒
{
x ∈ X :

(
{s ∈ X × Y : (A)s ∈ r}

)x
∈ q
}
∈ p

⇐⇒
{
x ∈ X : {y ∈ Y : ((A)x)y ∈ r} ∈ q

}
∈ p

⇐⇒ {x ∈ X : (A)x ∈ q ⊗ r} ∈ p
⇐⇒ A ∈ p⊗ (q ⊗ r).

We have used the fact that ({s ∈ X × Y : (A)s ∈ r})x = {y ∈ Y : ((A)x)y ∈ r}.

The lemma above says that the operation ⊗ is associative. Having this in mind,
we shall use the abbreviation p⊗n instead of p⊗ · · · ⊗ p (where p occurs n times).

Definition 1.8. Given sets A,B, we shall denote by B←↩A the set of all one-to-one
functions from A to B. If A and B are linearly ordered, we denote by B↖A the set
of all strictly increasing functions from A to B.

The next statement easily implies Ramsey’s theorem.
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Lemma 1.9. Let X be an infinite set, p ∈ β∗X and assume C ∈ p⊗N , where N > 1
is a natural number. Then there exists f ∈ X←↩ω such that

{f ◦ s : s ∈ ω↖N} ⊆ C.

Proof. Given 0 < k < N and s ∈ X←↩(k−1), define

As = {x ∈ X : (C)s
ax ∈ p⊗(N−k)},

where sax means the concatenation of s and the one-element sequence with value
x. Note that As ∈ p whenever (C)s ∈ p⊗(N−k+1). In particular, A∅ ∈ p. Now define
inductively f : →←↩Xω such that for every n ∈ ω the following condition

(∀ k < N)(∀ r ∈ n↖k) (C)f◦r ∈ p⊗(N−k).

We start by choosing any f(0) ∈ A∅. Once f � n has been defined, we choose
f(n) ∈ X \ f [n] so that

f(n) ∈
⋂

r∈n↖(N−1)

(C)f◦r and f(n) ∈
⋂

t∈n↖k

Af◦t for every k < N − 1.

This is possible, because all the sets above are in p. Finally, f is as required.

A symmetric variant of the lemma above could be proved slightly simpler, by
using induction on N . We leave the details to the readers.

Theorem 1.10 (Ramsey). Let X be an infinite set, let N > 0 be a natural number
and assume [X]N = C0 ⊆ Ck−1 for some k ∈ ω. Then there exist j < k and an
infinite set Y ⊆ X such that [Y ]N ⊆ Cj.

Proof. Identify each Ci with a symmetric subset of XN and use Lemma 1.9, noting
that C0 ∪ · · · ∪ Ck−1 ∈ p⊗N whenever p ∈ β∗X.

A finite version of Ramsey’s theorem can be obtained by the same argument as
in the proof of Theorem 1.6.
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2 Lectures 3 + 4

We discuss topological counterparts of Ramsey’s theorem. Ramsey theorem says,
roughly speaking, that if N -tuples of a ‘big’ set are partitioned into finitely many
pieces then there is a ‘big’ subset whose all N -tuples are in one piece of the partition.
In the classical setting, ‘big’ means ‘infinite’. Once we deal with topology, a natural
meaning of ‘big’ is ‘perfect’. Recall that a set P is perfect if it is nonempty, completely
metrizable and dense-in-itself (i.e. has no isolated points). We are going to work with
separable metric spaces, where a typical example of a perfect set is the Cantor set.
In fact, proving the existence of a perfect set with certain properties is almost always
reduced to constructing a suitable Cantor set.

2.1 Scattered spaces, Cantor sets and trees

We now recall some basic definitions from topology. We shall work mostly with
second countable metric spaces, however some of the definitions below make sense
for arbitrary topological spaces.

Definition 2.1. A topological space X is scattered if every nonempty subset of X
has an isolated point.

Definition 2.2. Fix a topological space X. The Cantor-Bendixson derivative of
X, denoted by X ′, is the subset of X consisting of all non-isolated points of X.
Specifically,

X ′ = X \ {x ∈ X : there is a neighborhood U of x such that U ∩X = {x}}.

The Cantor-Bendixson derivative can be iterated, using ordinals. Namely, the αth
Cantor-Bendixson derivative X(α) of X is defined by induction as follows:

X(0) = X,

X(α+1) = (X(α))′,

X(δ) =
⋂
ξ<δ

X(ξ) for a limit ordinal δ.

Note that each X(α) is a closed subset of X. The Cantor-Bendixson rank of X is
the minimal α such that X(α) = ∅. If such α does not exist, we say that the Cantor-
Bendixson rank of X is ∞.

Proposition 2.3. Let X be a topological space. Then:

(1) There exists an ordinal α such that X(α) = X(β) for every β > α.

(2) X is scattered if and only if X(α) = ∅ for some ordinal α.
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Proof. Property (1) is obvious, because {X(α)}α is a decreasing chain of subsets of
X, therefore it has to stabilize.

Suppose X(α) = X(α+1) 6= ∅ for some α. Then X(α) witnesses that X is not
scattered. Suppose now that X(α) = ∅ for some α and fix A ⊆ X. Let ξ < α be the
minimal ordinal such that A 6⊆ X(α). Then α = ξ+ 1 and A ⊆ X(ξ). Any element of
A \X(ξ+1) is an isolated point of A. This shows that X is scattered.

Recall that a topological space is second-countable if its topology is generated by
countably many open sets (equivalently: it has a countable base for open sets).

Proposition 2.4. Let X be a second-countable topological space. If X is scattered
then its Cantor-Bendixson rank is a countable ordinal and X is countable.

Proof. In a second-countable space, every strictly decreasing chain of closed sets
is countable. Thus, there exists a countable ordinal α such that X(α) = X(α+1). If
X(α) 6= ∅, then X is not scattered. Otherwise, X is scattered, its Cantor-Bendixson
rank is 6 α. Finally, X is countable, because every second-countable space can have
only countably many isolated points and therefore X(ξ) \ X(ξ+1) is countable for
every ξ < α.

We have already seen the definition of a perfect set (a nonempty, dense-in-itself,
completely metrizable space). It is quite obvious that being perfect is totally opposite
to being scattered. In fact, being perfect is close to ‘being a Cantor set’. Namely:

Proposition 2.5. Every perfect set contains a subset homeomorphic to the Cantor
set.

This fact is well-known. Instead of proving it directly, we shall discuss briefly
the notion of a Cantor tree. Let 〈X, %〉 be a metric space. A Cantor tree of open
subsets of X is a family {Us}s∈2<ω consisting of nonempty open subsets of X with
the following properties:

1. clUsai ⊆ Us for every s ∈ 2<ω,

2. Us ∩ Ut = ∅ whenever s, t ∈ 2k and s 6= t,

3. diam(Us) 6 2−|s| for every s ∈ 2<ω.

Here, sai denotes the end-extension of the sequence s by adding the value i. It is clear
that the last condition can be weakened, we only to take care that the diameters of
Us tend to 0 with respect to the length of s. Cantor trees provide a canonical way of
constructing Cantor sets with various properties. This will be demonstrated later.
For the moment, let us recall the following folklore fact.

Proposition 2.6. Let {Us}s∈2<ω be a Cantor tree of open subsets of a Polish space
X. Then the set

P =
⋂
n∈ω

⋃
s∈2n

Us

is homeomorphic to the Cantor set 2ω.
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We shall call P the Cantor set induced by {Us}s∈2<ω .

Proof. Note that, given x ∈ P , there is a unique σ ∈ 2ω such that x ∈
⋂
n∈ω Uσ�n.

This defines a map h : P → 2ω. Clearly, h is one-to-one. Cantor’s theorem says that
h is onto. Finally, it is straightforward to check that h is a homeomorphism.

2.2 Partitions of planes and topology

Ramsey’s theorem suggests the following question:

(∗) Assume C ⊆ [X]2 is such that for every n ∈ N there is Yn ⊆ X satisfying
[Yn]2 ⊆ C. Is it true that there is an infinite set Y∞ ⊆ X satisfying [Y∞]2 ⊆ C?

The answer is easily seen to be negative:

Example 2.7. Let X = ω × ω and define C ⊆ [X]2 to consist of all pairs {x, y},
where x = 〈k, l〉, y = 〈m,n〉 so that k < m and l > n. It is obvious that for each
n ∈ N there is Yn such that [Yn]2 ⊆ C (Yn could be the graph of the function
x 7→ −x + n restricted to ω). On the other hand, there is no infinite Y satisfying
[Y ]2 ⊆ C, because such a set would violate the fact that ω is well-ordered.

Now suppose that the set X and C ⊆ [X]2 have some reasonable topological
structure and we look for a criterion giving a “large” set P satisfying [P ]2 ⊆ C. One
of the obvious meanings of “large”, in the realm of separable metric spaces, is the
notion of being perfect. In fact, every perfect set contains a homeomorphic copy of
the Cantor set.

Recall that a metrizable space is analytic if it is a continuous image of some
Polish (i.e. separable complete metrizable) space.

Given C ⊆ [X]2, we shall say that P is C-homogeneous if [P ]2 ⊆ C. The next
result offers a criterion for the existence of a homogeneous perfect set. It is attributed
to Todorčević, although it was probably noticed by several people independently.
The book of Todorčević & Farah [9] is probably the first text where this result is
presented in full detail.

Theorem 2.8. Let X be an analytic space and assume C ⊆ [X]2 is open. Then either
there exists a perfect C-homogeneous set (i.e. a set P ⊆ X such that [P ]2 ⊆ C) or
else

X =
⋃
n∈ω

Xn

where [Xn]2 ∩ C = ∅ for every n ∈ ω.

Proof. Step 1: Let f : Y → X be a continuous surjection, where Y is a Polish space.
Define C ′ = {s ∈ [Y ]2 : f [s] ∈ C}. Then C ′ is open, by the continuity of f . If P is
a C ′-homogeneous perfect set then P contains a homeomorphic copy of the Cantor
set K. Furthermore, f � K is one-to-one and therefore f [K] is homeomorphic to the
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Cantor set and [K]2 ⊆ C. If Z ⊆ Y is such that [Z]2 ∩C ′ = ∅ then [f [Z]]2 ∩C = ∅.
This shows that it suffices to prove our statement for Polish spaces. In other words,
without loss of generality we may assume that X is Polish.

Step 2: Let W be the set of all x ∈ X for which there is a neighborhood Ux
satisfying Ux =

⋃
n∈ω U

n
x , where [Un

x ]2 ∩ C = ∅ for every n ∈ ω. Obviously, W is an
open set. If W = X then we are done (we get the second part of the dichotomy),
because X has a countable base. Suppose W 6= X and let A = X \W . Since now
we are aiming at the first part of the dichotomy, we may assume that A = X.

Step 3: We shall construct a suitable copy of the Cantor set in A. The key
fact is that [U ]2 ∩ C 6= ∅ whenever U ⊆ X is a nonempty open set. Thus it is
straightforward to construct a Cantor tree of open sets {Us}s∈2<ω satisfying

(1) {x, y} ∈ C whenever x ∈ Us, y ∈ Ut and s, t ∈ 2<ω are incomparable.

Having defined Us, we choose {x, y} ∈ [Us]
2∩C and, using the fact that C is open, we

enlarge the points x, y to open sets Usa0, Usa1 (of diameter < 2−n, where n = |s|+1)
so that {x′, y′} ∈ C whenever x′ ∈ Usa0, y

′ ∈ Usa1. The tree {Us}s∈2<ω induces a
C-homogeneous Cantor set.

As an immediate corollary, we obtain the following classical fact:

Corollary 2.9. Every analytic set is either countable or contains a perfect set.

Proof. Let X be an analytic set and let C = [X]2. If there is no C-homogeneous
perfect set then, by Theorem 2.8, we have that X =

⋃
n∈ωXn, where each Xn is at

most a singleton; in other words, X is countable.

As we have mentioned, Theorem 2.8 gives a criterion for the existence of a
homogeneous set:

Corollary 2.10. Let X be an analytic space and let C ⊆ [X]2 be open. If there
exists an uncountable C-homogeneous set then there exists a perfect one as well.

Proof. Clearly, the second part of the dichotomy cannot hold if X has an uncount-
able C-homogeneous set.

We now present a Ramsey-type version of Theorem 2.8. Recall that a set A in a
topological space X has the Baire property if A = (U \F )∪G, where U is open and
F , G are of first category (i.e. meager sets). It is well-known that every Borel set
has the Baire property (just because the family of all sets with the Baire property
forms a σ-algebra of sets).

Proposition 2.11 (Mycielski [7]). Let X be an uncountable Polish space and assume
C ⊆ [X]2 has the Baire property. Then there exists a perfect set P ⊆ X such that
C ∩ [P ]2 is open in [P ]2.
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Proof. Passing to a closed subspace, we may assume that X is dense-in-itself. By
assumption, C = (U \ F ) ∪ G, where F and G are meager (it may happen that
U = ∅). Let F ∪ G =

⋃
n∈ωHn, where Hn is nowhere dense. It suffices to find a

perfect set P ⊆ X such that [P ]2 ∩ Hn = ∅ for every n ∈ ω. We may assume that
H0 ⊆ H1 ⊆ H2 ⊆ . . . .

For this aim, we construct a Cantor tree {Vs}s∈2<ω of open subsets of X so that

(x) {x, y} /∈ Hn whenever x ∈ Vs, y ∈ Vt and s, t ∈ 2n are such that s 6= t.

Once we have defined Vs, using the fact that [Vs]
2 6⊆ clHn+1, we find x0 6= y0 in Vs

such that {x0, y0} /∈ clHn+1. Enlarge x0 and y0 to disjoint open sets Vsa0, Vsa1 (of
diameter less than 1/n, where n is the length of s) so that (x) holds. Finally, the
Cantor set P =

⋂
n∈ω
⋃
s∈2n Vs has the property that [P ]2 ∩ (F ∪G) = ∅.

The result above is actually valid when 2 is replaced by a bigger natural number,
although we shall not need it here.

Theorem 2.12 (Galvin, Mycielski). Let X be an uncountable Polish space and let

[X]2 = C0 ∪ · · · ∪ Ck−1

where each Ci has the Baire property. Then there exist j < k and a perfect set
P ⊆ X such that [P ]2 ⊆ Cj.

Proof. Applying Proposition 2.11 k times, we find a perfect set Q ⊆ X such that
Ci∩ [Q]2 is open in [Q]2 for each i < k. Now we apply Theorem 2.8 until we reach the
required perfect set. Namely, if there is no perfect P0 for which [P0]

2 ⊆ C0, then Q
is a countable union of sets whose symmetric squares omit C0. Since Q is compact,
we can shrink it to a smaller perfect set Q1 such that [Q1]

2 ∩C0 = ∅. Continue this
way until we reach j < k such that the first part of the dichotomy in Theorem 2.8
occurs.

Remark 2.13. (a) Theorem 2.8 fails when the word “open” is replaced by “closed”.
A counterexample is not trivial, namely, there exists a partition [R]2 = K0∪K1 such
that K0 is open, K1 is closed, there are no uncountable K1-homogeneous sets and
R cannot be covered by a countable union of K0-homogeneous sets. The details are
contained in the book of Todorčević & Farah [9, p. 85].

(b) Theorem 2.8 fails for co-analytic sets: there exist co-analytic sets of cardi-
nality ℵ1, without perfect subsets.

(c) Theorem 2.8 does not generalize to colorings of triples. The simplest example,
perhaps first noticed by Blass [2] is as follows. Let X = 2ω be the Cantor set
with the lexicographic ordering. Let C ⊆ [X]3 consist of all triples {x, y, z} such
that, assuming x < y < z with respect to the lexicographic ordering, it holds that
∆(x, y) > ∆(x, z) = ∆(y, z), where ∆(s, t) is the maximal n such that s � n = t � n.
Then C is open and closed at the same time and every Y ⊆ X such that [Y ]2 ⊆ C
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or [Y ]2 ∩ C = ∅ has Cantor-Bendixson rank at most 1. In particular, every set that
is either C-homogeneous or ([X]2 \ C)-homogeneous is countable.

(d) Actually, Blass [2] proved the following interesting partition result: whenever
X is an uncountable Polish space, N > 0 is a natural number and [X]N is partitioned
into finitely many of open (or just having the Baire property) pieces, then there exists
a perfect set P ⊆ X such that [P ]N intersects at most (N − 1)! pieces.

(e) One has to mention a set-theoretic axiom, called Open Coloring Axiom, which
reads as follows:

(OCA) Given a separable metric space X, given an open set C ⊆ [X]2, either there
exists an uncountable set Y ⊆ X such that [Y ]2 ⊆ C or else X =

⋃
n∈ωXn,

where [Xn]2 ∩ C = ∅ for each n ∈ ω.

This axiom, introduced by Abraham, Rubin and Shelah [1] is known to be indepen-
dent of the usual axioms of set theory.

2.3 An application to real functions

Let us mention the following application of Theorem 2.8 to real functions, part
of it due to Filipczak [3]. In order to avoid confusion, we assume that a function
is increasing if it preserves the 6 ordering, in particular a constant function is
increasing. A one-to-one increasing function is called strictly increasing. The same
remarks apply to decreasing functions.

Theorem 2.14. Let f : R→ R be a function whose graph is an analytic set. Then
f has one of the following properties:

(+) R =
⋃
n∈ω An such that f � An is increasing for each n ∈ ω.

(−) R =
⋃
n∈ω An such that f � An is decreasing for each n ∈ ω.

(¶) There exist perfect sets P,Q ⊆ R such that f � P is continuous and strictly
increasing and f � Q is continuous and strictly decreasing.

Furthermore, if f [R] is uncountable then there exists a perfect set D such that f � D
is strictly monotone (i.e. either strictly increasing or strictly decreasing).

Proof. Let X = {〈t, f(t)〉 : t ∈ R} be the graph of f . Suppose (¶) fails, e.g., there
is no perfect P such that f � P is strictly increasing and continuous. Since an
increasing function has at most countably many points of discontinuity, there is also
no perfect set P such that f � P is strictly increasing. In other words, we may forget
about the continuity condition.

Define C ⊆ [X]2 to consist of all {x, y} such that x = 〈s, f(s)〉, y = 〈t, f(t)〉
and, f � {s, t} is strictly increasing. Then C is open, as a symmetric subset of
X × X. Using the assumption and Theorem 2.8, we find that X =

⋃
n∈ωXn such
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that [Xn]2 ∩ C = ∅ for each n ∈ ω. Let An be the projection of Xn onto the first
coordinate. Then f � An is decreasing, which shows that (−) holds.

Concerning the “furthermore” part, supposing it is false, Theorem 2.8 would say
that f satisfies both (+) and (−), which is possible only if f [R] is countable.

2.4 Bernstein sets

We now show that the Ramsey-type Theorem 2.12 fails for arbitrary partitions. This
is a straightforward consequence of the existence of Bernstein sets.

Definition 2.15. A subset B of a topological space X is called a Bernstein set if
for every perfect set P ⊆ X it holds that P ∩B 6= ∅ 6= P \B.

Below is the well-known fact concerning Bernstein sets.

Theorem 2.16. Every uncountable Polish space contains a Bernstein set.

Proof. Let X be an uncountable Polish space and let {Pα}α<c be an enumeration
of all perfect subsets of X. Construct inductively one-to-one sequences {aα}α<c,
{bα}α<c so that the following conditions are satisfied:

(i) aξ 6= bη for every ξ, η < c,

(ii) aξ, bξ ∈ Pξ for every ξ < c.

It is clear that the construction can be carried out, because every perfect subset of
X has cardinality c. By conditions (i) and (ii), it is obvious that B = {bα}α<c is a
Bernstein set.

Corollary 2.17. Let X be an uncountable Polish space and let B be a Bernstein
set in X. Then for every perfect sets P,Q ⊆ X it holds that (P ×Q)∩ (B ×B) 6= ∅
and (P ×Q) \ (B ×B) 6= ∅.

2.5 A criterion for perfect homogeneous sets

As we have seen in Remark 2.13(c) above, there is no hope for a Ramsey-type
theorem involving perfect sets and open colorings of triples. Below we present a
criterion for the existence of perfect homogeneous sets with respect to Gδ colorings.

Theorem 2.18 ([4]). Let X be a Polish space, let N > 0 be a natural number and
let C ⊆ [X]N be Gδ. Then either

(s) there exists a countable ordinal δ such that S(δ) = ∅ whenever [S]N ⊆ C, or
else

(P) there exists a perfect set P such that [P ]N ⊆ C.
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Proof. Suppose (s) fails. Let us call a family F of subsets of X admissible if for every
countable ordinal γ there exists a C-homogeneous set S such that S(γ) ∩ A 6= ∅ for
every A ∈ F . Note that {X} is an admissible family. Fix a complete metric on X
such that diamX 6 1. Let C =

⋂
n∈ω Cn, where each Cn is open. We shall construct

a Cantor tree {Us}s∈2<ω in X such that the following conditions are satisfied for
each k < ω:

(1) Given pairwise distinct s0, . . . , sN−1 ∈ 2k, it holds that {x0, . . . , xN−1} ∈ Ck
whenever xi ∈ Usi for i < N .

(2) The family {Us}s∈2k is admissible.

Condition (1) ensures us that the Cantor set induced by this tree is Ck-homogeneous
for every k ∈ ω, therefore it is C-homogeneous. Condition (2) will allow us to
continue the inductive construction.

We start with U∅ = X (here we use the fact that diam(X) is small enough). Fix
k > 0 and suppose Us have already been constructed for all s ∈ 2<k. Fix a countable
base B for the open sets in X. Fix γ < ω1. Let S be such that S(γ+1) ∩ Us 6= ∅
for every s ∈ 2k−1. Then S(γ) ∩ Us is infinite for every s ∈ 2k−1. Choose a set
W = {xt}t∈2k such that xsai ∈ S ∩ Us for s ∈ 2k−1, i ∈ 2 and xt 6= xr whenever
t 6= r. Note that [W ]N ⊆ C, because W ⊆ S. As Ck is open and W is finite, we
can enlarge each element xt of W to an open set Vt ∈ B so that diam(Vt) 6 2−k,
clVsai ⊆ Us for every s ∈ 2k−1, and

(∗) {x0, . . . , xN−1} ∈ Ck for every 〈x0, . . . , xN−1〉 ∈ Vt0 × · · · × VtN−1
,

whenever t0, . . . , tN−1 ∈ 2k are pairwise distinct. In particular, the family Vγ =
{Vt}t∈2k is pairwise disjoint. The problem is to show that Vγ is admissible for some
γ. Notice, however, that there are only countably many possibilities for the indexed
family Vγ, therefore there exists an uncountable set F ⊆ ω1 such that V = {Vt}t∈2k
does not depend on γ, whenever γ ∈ F . We claim that the family V is admissible.

Fix α < ω1 and choose γ ∈ F such that γ > α. Let S be chosen above for γ.
Then S(α) ∩ Vt ⊆ S(γ) ∩ Vt 6= ∅ for every t ∈ 2k, by the choice of the set W above.
This shows that V is admissible, completing the proof.

A sample application to real functions yields the following:

Corollary 2.19. Let f : K → L be a continuous map of compact metric spaces.
Then either there exists q ∈ L such that f−1(q) contains a Cantor set, or else there
exists a countable ordinal γ such that for every y ∈ L the set f−1(y) is scattered and
its Cantor-Bendixson rank is < γ.

2.6 Coverings by functions

We are going to present an example showing that Theorem 2.18 fails for σ-compact
colorings. There is actually a longer story here, contained in Shelah [8] and Kubís &
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Shelah [5], where σ-compact colorings with ‘large’ but not perfect squares are con-
structed. For our purposes, it suffices to present a simple example of a set consisting
of countably many graphs of continuous functions.

Definition 2.20. Let X be a set and let F be a family of partial functions from
subsets of X into X. We say that A ⊆ X×X is covered by F if for every 〈a, b〉 ∈ A
there exists f ∈ F such that either b = f(a) or a = f(b).

Proposition 2.21 (Sierpiński). There exists a countable family F of functions from
ω1 to ω1 such that ω1 × ω1 is covered by F .

Proof. Given 0 < α < ω1, choose a surjection ϕα : ω → α and define fn(ξ) = ϕξ(n).
Then F = {idω1} ∪ {fn}n∈ω is as required.

Proposition 2.22. Suppose F is a countable family of partial functions and S×T
is covered by F . If S is uncountable then |T | 6 ℵ1.

Proof. Suppose |T | > ℵ1 and assume that |S| = ℵ1. Given s ∈ S, let

Fs = {f(s) : f ∈ F}.

Then Fs ⊆ T is countable. Let F =
⋃
s∈S Fs. Then |F | 6 ℵ1, therefore F 6= T .

Choose t ∈ T \ F . Then for every s ∈ S there exists fs ∈ F such that fs(t) = s.
This is impossible, because S is uncountable and F is countable.

The two statements above provide good motivations for asking whether uncount-
able squares can be covered by countable families of continuous functions in the
plane. This is answered below.

Theorem 2.23 ([6]). There exists a countable family F of continuous functions
from the Cantor set 2ω into itself such that every maximal set S such that S × S is
covered by F is uncountable.

Furthermore, there are no perfect sets P,Q such that P ×Q is covered by F .

Note that, by the Zorn’s Lemma, every set whose square is covered by F is
contained in a maximal one.

Proof. Let ω = B ∪
⋃
n∈ω An, where the family {B} ∪ {An}n∈ω is pairwise disjoint

and consists of infinite sets. Given n ∈ ω, let ϕn : ω → An be a bijection and let
fn : 2ω → 2ω be defined by

fn(x)(k) = x(ϕn(k)).

Suppose S = {sn}n∈ω is such that S × S is covered by F = {fn}n∈ω. Let x ∈
2ω be such that x � Bn = sn ◦ ϕ−1. Then fn(x) = sn for every n ∈ ω, therefore
(S ∪ {x}) × (S ∪ {x}) is covered by F . Finally, notice that we had a freedom to
define x � B, and there are continuum many possibilities. Thus, we can ensure that
x /∈ S. This shows the first part.
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Concerning the ‘furthermore’ part, fix two Cantor sets P and Q. We construct
a sequence {Un × Vn}n∈ω of open subsets of P ×Q respectively such that clUn+1 ×
clVn+1 ⊆ Un × Vn and Un × Vn is disjoint from fn ∪ f−1n for every n ∈ ω. At each
step we use the fact that Un and Vn are dense-in-itself and therefore the graph of
every continuous function is nowhere dense in Un×Vn. In particular, Un×Vn cannot
be covered by finitely many functions. Finally, by compactness, we find 〈x, y〉 ∈⋂
n∈ω Un × Vn that is not covered by F .
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