A Brief Introduction to Kolmogorov Complexity

I\{IichaIVKoucky
MU AV CR, Praha
<koucky@mat h. cas. cz>

May 4, 2006

Abstract

In these notes we give a brief introduction to Kolmogorov ptexity. The notes are based on the
two talks given at KAM Spring School, Borova Lada, 2006.

1 Introduction

The set of all finite binary strings is denoted {8, 1}*. Forz € {0,1}*, || denotes the length af.
Kolmogorov complexitiries to answer the fundamental question: “What is a randoject?” Consider
which of the following (decimal) strings seem to be random?

33333333333 1)
31415926535 (2)
84354279521 (3)

Most people would rule out the first one to be random, and teeydcagree that the remaining two are
random. Indeed, most statisticians would agree that tier lato are random as they pass essentially all
possible statistical tests. Yet, the second sequencestemdithe first eleven digits of. The third one is
taken really at random.

From the perspective of probability, all three strings hitneesame probability of being chosen when we
take a string of eleven digits fully at random namely, eacthem has probabilitg0~'*. Hence, they all
are equally likely to be obtained by a random process. Soafity does not really explain the intuitive
notion ofrandomness

Imagine that we would extend our strings to one million digiThen the first string would became a
million times the digit three, the second one would be th¢ firdlion digits of = and the last one would be
84354279521. ... In fact it would take us thousand of pageesaribe the last one. There is no pattern in
it. It is really random.

Hence, the notion of randomness is connected to patterrisngsand to a way how we can describe
them. The first two strings in our example have very shortietsans (few words) whereas the last string
has very long description as it lacks any regularity. Thgéorthe necessary description of a string the more
randomness is in the string. This intuition leads to theofeihg definition ofKolmogorov complexityf
a stringz € {0,1}*: the Kolmogorov complexity of: is the length of the shortest descriptionaof Of

course the length of the description depends on the languagese for our description—we can use Czech
or French or English. ...

We make it formal as follows. Lep : {0,1}* — {0,1}* be apartial recursive function (A partial
recursive function is any functiofi for which there is a program that takes an ingpund produces output
f(y). f(y) may not be defined for somgand the program may not halt on sugk or to produce any
output.)

Definition 1. For a stringx € {0, 1}*, the Kolmogorov complexity af with respect tap is

Cy(x) = min{|p[, p € {0,1}* & ¢(p) = z}.

Let us consider several examples. ¢if is the identity functiong;(z) = x thenCy, (z) = |z|. If
¢2(0) = 10111001011110011010110111 and¢s(1x) = x thenC¢2(10111001011110011010110111) =1
andCy, () = |z| + 1 for all other stringse. So Kolmogorov complexity depends a lot on the chosen
descriptive language. Luckily, the following Invariance Theorem brings somea@rthto this chaos.

Theorem 2. There exists a partial recursive functidn so that for any other partial recursive functiah
there is a constant > 0 such that
Cu(x) < Cy(x) +c

for all strings .

A machineU satisfying the preceding theorem is in some sense minimahgnall machines, and we
will call it universal

Proof. The proof is quite simple. Lebg, ¢1, ¢2, ... be an enumeration of all partial recursive functions.
(Every p.r.f. can be associated with a program that compudéesl that program can be uniquely mapped to
a (possibly huge) integer.) Lét,y) : {0,1}* x {0,1}* — {0, 1}* be some simple to compute one-to-one
mapping, e.g.{x,y) = 0/#11zy. ThenU is defined as follows: On input, decodew into i andp such that
w = (i, p) and rung; on inputp. If ¢;(p) stops then output whatevey had output.

It is easy to verify that such & is partial recursive and that it satisfies our theorem. O

So from now on we fix some machirié which satisfies the Invariance Theorem and we will consider
the Kolmogorov complexity of to beCy;(z). We will write C(x) instead ofCy; (x) from now on.
We are ready to define a random string.

Definition 3. A stringz is Kolmogorov random i€ (x) > |z|.

This definition is not void as there is a Kolmogorov randoningtof every length: there arg® — 1
descriptions of length less thanbut there ar@” strings of length. Let us consider couple of strings and
their Kolmogorov complexity:

e 0" has Kolmogorov complexitjogn + O(1) as we only need to specify the integerand a short
program that will reconstrudi™ from n.

e The sequence of the firstdigits of 7 has Kolmogorov complexityogn + O(1). The reason is the
same as above. (Just download a programrfisom Internet.)

e There is a Kolmogorov random stringwith C'(x) > n. See above.

e What about some string of complexity aboyf? Sure, there is one. Considgre {0,1}V" that is
Kolmogorov random. Ther = 30"~ V™ has Kolmogorov complexity aboyfn + O(1). Why? If
it would have a description much shorter thghwe could describg using such description: first
producex and then output only its firs{/ﬁ bits. On the other hand, description gfis a good
description ofz: producey and then appeng)|?> — |y| zeroes. So there are strings of essentially all
possible complexities.

e Every string of lengtln has Kolmogorov complexity at most+ O(1). Why?

¢ How many ones and zeroes has a Kolmogorov random string gifier? About a half, but exactly?
There are(n%) strings which have the same number of ones and zeroes. €aeétiof such strings
53/2- These string can be easily identified and enumerated bygrgmo Hence, given andi, we
can find thei-th string s; in 53/2 and output it. Thus('(s;) is at most the size of a description of
i, plus the size of a description af plus some constant for the program described abm‘gléﬂ\ <

(,1)2) < 2" /y/n for some constant, hence to specify we only need at most — 1/2logn + log
bits. n does not really have to be specified as it can be deduced freherigth of the description of
i. Thus, all stringss; € S}, have Kolmogorov complexity at most— 1/2logn + O(1).

It turns out that Kolmogorov random strings of lengtthaven /2 + ¢/n zeroes. By Chernoff bound
there are relatively few strings of lengththat have the number of ones farther fran2 thanc,/n,
and by extending the argument above there are also rejatexglstrings that have the number of ones
closer ton/2 thanc,/n. Since these strings are few and easy to identify, they haedl £olmogorov
complexity. (In fact, the deviation from/2 in the number of ones have to be Kolmogorov random
by itself.) The following proposition generalizes this angent.

Proposition 4. Let A be a recursive (recursively enumerable) set artgk an integer. Le#l,, = AN{0, 1}".
For all stringsz in A,, it holds,C(x) < log |A,| + 2logn + O(1).

Often the tern® log n can be omitted as can be deduced from the length of the description.

Proof. The proof is straightforward. Sincéis recursive (recursively enumerable) we can design a pnogr
that giveni andn prints thei-th string of 4,, in some enumeration. Hence, all stringsdip can be described

by giving i, n and the program for enumerating. The description of, n and the program has to be
concatenated into one string in such a way thatand the program can be recovered from the string. One
can use the pairing function from the proof of Theorem 2 fdnddhat. The factor two in the logarithmic
term comes from there. O

It is useful to note that the set of strings that acé Kolmogorov random is recursively enumerable—
given a stringe we can run all programs of length shorter thaim parallel and see if any one of them ever
outputsz. If that happens we accept

This brings us to the fact that the number of strings of lengthat are Kolmogorov random is Kol-
mogorov random by itself. It is abo@t' /c for some constant > 1. If that were not the case, we could find
all strings of length that are not Kolmogorov random, and then print the first onelwvéhould be random.
Program for such a computation would only need to know thelbmrmof non-random strings of length
The number of non-random strings2% minus the number of random strings, i.e., we can easily céenpu
one from the other one. Since the above program prints outrad@orov random string, both the numbers
of random and non-random strings must require closeltis to specify. Hence, they are both abatyc.

Proposition 5. It is uncomputable (undecidable) whether a string is Kolorog random.

We have seen that non-random strings are recursively emineerThis proposition thus implies that
Kolmogorov random strings are not recursively enumerabletherwise we could decide about a string
whether it is Kolmogorov random or not.

Proof. We give two proofs. The first one is very simple, the secondismeore complex but it shows that
deciding Kolmogorov randomness is as hard as deciding tiengi@roblem.

1. Assume we can decide whether a string is Kolmogorov ranapsome progran®. We can then specify
the lexicographically first Kolmogorov random string of¢ghn usinglog n+ O(1) bits: run progranP on
all strings of lengthn in the lexicographical order until you find a string that islidogorov random; print
out the Kolmogorov random string. This only requires to #yetbe programP andn. Hence, no sucl®
can exist.

2. Define the Halting Problem by = {z; programz halts on the input p. Assume we can decide
which strings are Kolmogorov random by some progrBmWe can then decide for any stringwhether
the programz halts on the input O or not as follows: Let= |z|. Using P decide for each string of
length2n whether it is Kolmogorov random or not. For each strintpat is not random find some program
py Of length less tham that prints it out. Let, be the number of steps that it takespipto outputy. Set
t, = maxy t,. Runz onthe input O fot, steps and if it accepts withiry steps then output € H otherwise
outputz & H.

The reason why the above program would dedifleorrectly is that ifx € H but the running time of
on the input 0 is more tham then the actual running time afcan be used as an upper bound for the running
time of all p,'s. As the running time of can be specified using+ O(1) bits (namely by specifying)) we
could specify all non-random strings of length using onlyn + 2log n + O(1) bits. (Run all programs of
length less than for ¢, steps and see what they output.) Hence, we could describexibegraphically
first Kolmogorov random string of lengtin using onlyn + 2logn + O(1) bits. Thus the running time of
z must be smaller thaty,.

Since our program could correctly decide the Halting Pnobléolmogorov randomness of strings must
be undecidable. O

2 Applications

We give here several applications of Kolmogorov complexity

2.1 Graph labelings

We start with an example related to the talk of Arnaud Labloomegraph labelings. For a (finite) class of
graphsg alabeling scheme of label lengthis a functionA : {0,1}* x {0,1}* — {0,1} together with
a labelinglg : V(G) — {0,1}* of every graphG' € G so that for allz,y € V(G), (z,y) € E(G) iff
A(l(x),l(y)) = 1. We have already seen in the talk of Arnaud that the clasd tifatrees om vertices has
labeling scheme with labels of lenglibg » + O(1). The natural question is how large labels are needed to
label the class of all the graphs anvertices. We claim that this length+ig/2 + O(log n).

First, we show that labels of lengtty2 + log n are sufficient. This is due to Jifi Sgall. Each vertex is
going to be labeled by its vertex number plus a bit-vectoenfithn /2 which specifies to which of the next

n/2 vertices under a cyclic ordering of vertices the vertex isnaxted. Given two vertex labels at least one
of the labels contains the required adjacency information.

Using Kolmogorov complexity we want to show that2 bits are needed. First notice that by exhaustive
search we can actually find the best labeling scheme for graptm vertices. In fact we can write a
program that will find it. This program will produce the fuiwt A. Each graphG on n vertices can
be fully described by listing labels of its verticés(1),1z(2),...,lz(n) in the optimal labeling scheme.
Such a description requirés bits. Hence, every graph can be describedby- 21logn + O(1) bits, by
providing the vertex labels; and the program to computé. On the other hand, a graph envertices
may contain(},) = n(n — 1)/2 different edges. Hence, there are at lexst2— different graphs om
vertices and each of them is uniquely described by a deswrigtf length/n + 2logn + O(1). Thus
In+2logn+ O(1) > n?/2 —n,i.e..f > n/2 — 2, for n large enough. Thus a labeling scheme for graphs
onn vertices requires labels of length abeyt.

2.2 Prime Number Theorem

We provide another application of Kolmogorov complexityniamber theory. Lep; denote the-th prime
number. We will show the following theorem:

Theorem 6 (Weak Prime Number TheoremYhere is a constant such that for infinitely many, p; <
c-i-log?i.

This theorem is a weak version of the usual Prime Number EBmedhatp; /ilni — 1 asi — oo.

Proof. For a positive integer let 17 be its binary representation with € {0,1}*. Clearly2/"l < n <
2l"1+1 " Fix a large enough integer with Kolmogorov randonmiz. We will make several observations
regardinge.

1. x = p°y, for somep, e andy, wherep is a prime ang° > log x/ log log x. If all maximal prime-power
factors ofz were at mostog z/ log log z, thenz < (log z/ log log z)! < log z'°8%/loglogz — 4

2.e¢ = 1. Note,2¢/Pl . 2191 < pey = 2. Hence,

elpl + [yl < [z] < C(2).

At the same timegx can be specified by giving, p, andy. Hence,z can be given by some encoding
of €, p andy into one binary string so that we would be able to tell apdrthake of them. The pairing
function used in the proof of Theorem 2 is too inefficient far purposes. We can use the following pairing
function: (u,v) = [,,01uv, wherel,, is the binary representation pf| in which each digit is doubled. Thus
| (u,v) | < |ul + |v| + 2log |u| + 2. Using this pairing function we can describgp andy to obtain:

C(z) < [el + Ip| + |g| + 21og |e] + 21og |p| + O(1).

But this implies thate = 1. (If e > 1 is small thenp must be large and hende — 1)|p| outweighs
le] + 2log |e] + 2log |p| + O(1). If eis large thene — 1)|p]| also outweighs the additional terms.)

From 1. and 2. we can deduce that= py for some primep > logx/loglogx. Leti be such that
p = p;. Primep; can be described by giving its indexlus a short program that will reconstrygtfrom 7.
Hence, R
C(2) < [i| + [9] + 21og [i| + O(1).

Together with the above lower bound 6f{z) we get
5| < [il +2log [i] + O(1).

Using the relationship betweenandn, we concludep; < ¢ - ilog? i, for some constant independent of
i. From the fact that this is true for arbitrarily large cométa andp; > log x/loglog = we conclude the
theorem. O

2.3 Godel Incompleteness Theorem

Let T be a sound logical theory over a countable language withrsg@ly enumerable axioms. T is rich
enough to describe computation of Turing machines thendoresconstant; and integerr, the formula
“C(x) > er”is true but unprovable, whereis the constant describing (This is all; formula saying that
for all programsp smaller tharer and for all computations, if 7 is a computation op then the output of

is notz.) If for all = and allcz such formula were provable whenever it would be true thennoyresrating.

all proofs, for givency we could find the firstarge « with C'(x) > ¢p. But if we choose:p with succinct
representation (very low Kolmogorov complexity), then widl tae able to produce: of high Kolmogorov
complexity merely from the description ef, the description of” and some small program. Of course, that
is impossible. SoC'(z) > ¢7” cannot be provable for any large enough Kolmogorov nordoamcr and
any x although it is true for many: andcy.

2.4 Universal search procedure

The problem SAE {y; 1 is a satisfiable Boolean formylas a well known NP-complete problem. A
related problem is SAT-search where given a satisfiabled&2oolormula) we want to output an assignment
a to ¢ such that satisfiesi). The computational complexities of SAT and SAT-search &sety related.
If SAT has an efficient algorithm then SAT-search has one dk perform a binary search for a satisfying
assignment ofy by choosing the assignment bit by bit. On the other hand if-S&drch has an efficient
algorithm (and we know its running time) then SAT has an effitialgorithm as well: run algorithm for
SAT-search ony and if it produces an assignment within its allowed runnimgetand the assignment
satisfiesy) theni) belongs to SAT. We will present an (almost) optimal algartfor SAT-search. We will
need the following definition.

Let (-,-) be a pairing function. Levin defines the time-bounded Kolorog complexity of a string
relative to a stringy by:

Ci(xly) = min{[p| + logt, p € {0,1}* & U({(p,y)) = x in t steps}.

The algorithm for SAT-search works as follows: on input fafem), for¢ = 1,2,... try all stringsa
with Cy(aly)) = i, and see if any of them satisfiés If yes, output such an.

We leave implementation details of this algorithm to theifasted reader. | is the optimal algorithm
for SAT-search and is its running time on formula) then the satisfying assignment forwill be found
in time about2/?/¢2 by our algorithm. Hence, our algorithm for SAT-search is astrguadratically slower
than the best algorithm for SAT-search. The only thing thahds in our way toward$1, 000, 000 is that
we do not have a good estimate on the running time of our SAfekealgorithm.

