
On Online Labeling with Polynomially Many
Labels

Martin Babka1, Jan Bulánek1,2, Vladimı́r Čunát1 ?, Michal Koucký2,3 ??, and
Michael Saks4 ? ? ?

1 Faculty of Mathematics and Physics, Charles University, Prague
2 Institute of Mathematics, Academy of Sciences, Prague
3 Department of Computer Science, Aarhus University

4 Department of Mathematics, Rutgers University

{babkys,vcunat}@gmail,{bulda,koucky}@math.cas.cz,saks@math.rutgers.edu

Abstract. In the online labeling problem with parameters n and m we
are presented with a sequence of n keys from a totally ordered universe U
and must assign each arriving key a label from the label set {1, 2, . . . ,m}
so that the order of labels (strictly) respects the ordering on U . As new
keys arrive it may be necessary to change the labels of some items; such
changes may be done at any time at unit cost for each change. The goal
is to minimize the total cost. An alternative formulation of this problem
is the file maintenance problem, in which the items, instead of being
labeled, are maintained in sorted order in an array of length m, and we
pay unit cost for moving an item.
For the case m = cn for constant c > 1, there are known algorithms
that use at most O(n log(n)2) relabelings in total [9], and it was shown
recently that this is asymptotically optimal [1]. For the case of m =
θ(nC) for C > 1, algorithms are known that use O(n logn) relabelings.
A matching lower bound was claimed in [7]. That proof involved two
distinct steps: a lower bound for a problem they call prefix bucketing
and a reduction from prefix bucketing to online labeling. The reduction
seems to be incorrect, leaving a (seemingly significant) gap in the proof.
In this paper we close the gap by presenting a correct reduction to prefix
bucketing. Furthermore we give a simplified and improved analysis of the
prefix bucketing lower bound. This improvement allows us to extend the
lower bounds for online labeling to the case where the number m of labels
is superpolynomial in n. In particular, for superpolynomial m we get an
asymptotically optimal lower bound Ω((n logn)/(log logm− log logn)).

Keywords: online labeling, file maintenance problem, lower bounds.

? The first three authors gratefully acknowledge a support by the Charles University
Grant Agency (grant No. 265 111 and 344 711) and SVV project no. 265 314.

?? Currently a visiting associate professor at Aarhus University, partially supported
by the Sino-Danish Center CTIC (funded under the grant 61061130540). Supported
in part by GA ČR P202/10/0854, grant IAA100190902 of GA AV ČR, Center of
Excellence CE-ITI (P202/12/G061 of GA ČR) and RVO: 67985840.

? ? ? The work of this author was done while on sabbatical at Princeton University and
was also supported in part by NSF under grant CCF-0832787.

1 Introduction

In the online labeling problem with parameters n,m, r, we are presented with a
sequence of n keys from a totally ordered universe U of size r and must assign
each arriving key a label from the label set {1, 2, . . . ,m} so that the order of labels
(strictly) respects the ordering on U . As new keys arrive it may be necessary
to change the labels of some items; such changes may be done at any time at
unit cost for each change. The goal is to minimize the total cost. An alternative
formulation of this problem is the file maintenance problem, in which the items,
instead of being labeled, are maintained in sorted order in an array of length m,
and we pay unit cost for moving an item.

The problem, which was introduced by Itai, Konheim and Rodeh [9], is nat-
ural and intuitively appealing, and has had applications to the design of data
structures (see for example the discussion in [7], and the more recent work on
cache-oblivious data structures [3, 5, 4]). A connection between this problem and
distributed resource allocation was recently shown by Emek and Korman [8].

The parameter m, the label space must be at least the number of items n or
else no valid labeling is possible. There are two natural range of parameters that
have received the most attention. In the case of linearly many labels we have
m = cn for some c > 1, and in the case of polynomially many labels we have
m = θ(nC) for some constant C > 1. The problem is trivial if the universe U is a
set of size at most m, since then we can simply fix an order preserving bijection
from U to {1, . . . ,m} in advance. In this paper we will usually restrict attention
to the case that U is a totally ordered set of size at least exponential in n (as is
typical in the literature).

Itai et al. [9] gave an algorithm for the case of linearly many labels having
worst case total cost O(n log(n)2). Improvements and simplifications were given
by Willard [10] and Bender et al. [2]. In the special case that m = n, algorithms
with cost O(log(n)3) per item were given [11, 6]. It is also well known that the
algorithm of Itai et al. can be adapted to give total cost O(n log(n)) in the case
of polynomially many labels. All of these algorithms make no restriction on the
size of universe U of keys.

For lower bounds, a subset of the present authors recently proved [1] a tight
Ω(n log(n)2) lower bound for the case of linearly many labels and tight bound
Ω(n log(n)3) for the case m = n. These bounds hold even when the size of the
universe U is only a constant multiple of m. The bound remains non-trivial (su-
perlinear in n) for m = O(n log(n)2−ε) but becomes trivial for m ∈ Ω(n log(n)2).

For the case of polynomially many labels, Dietz at al. [7] (also in [11]) claim
a matching lower bound for the O(n log(n)) upper bound. Their result consists
of two parts; a lower bound for a problem they call prefix bucketing and a reduc-
tion from prefix bucketing to online labeling. However, the argument giving the
reduction seems to be incorrect, and we recently raised our concerns with one of
the authors (Seiferas), who agrees that there is a gap in the proof.

This paper makes the following contributions:

– We provide a correct reduction from prefix bucketing to online labeling,
which closes the gap in the lower bound proof for online labeling for the case
of polynomially many labels.

– We provide a simpler and more precise lower bound for prefix bucketing
which allows us to extend the lower bounds for online labeling to the case
where the label size is as large as 2n

ε

. Specifically we prove a lower bound
of Ω((n log n)/(log logm − log log n)) that is valid for m between n1+ε and
2n

ε

. Note that for polynomially many labels this reduces to Ω(n log(n)).

We remark that, unlike the bounds of [1] for the case of linearly many labels,
our lower bound proof requires that the universe U is at least exponential in n.
It is an interesting question whether one could design a better online labeling
algorithm for U of size say m log n. We summarize known results in Table 1.
All the results are for deterministic algorithms. There are no known results for
randomized algorithms except for what is implied by the deterministic case.

Table 1. Summary of known bounds for the online labeling problem.

Array size (m) Lower bound Upper bound

m = n Ω
(
n log(n)3

)
[1] O

(
n log(n)3

)
[11]

m = Θ(n),m > n Ω
(
n log(n)2

)
[1] O

(
n log(n)2

)
[9]

m = n1+o(1) Ω
(

n log(n)2

logm−logn

)
[12] O

(
n log(n)2

logm−logn

)
[9]

m = n1+Θ(1) Ω(n log(n)) [this paper] O(n log(n)) [9]

m = nΩ(log(n)) Ω
(

n logn
log logm

)
[this paper] O

(
n logn

log logm

)
[1]

Our proof follows the high level structure of the proof from [7]. In the re-
mainder of the introduction we sketch the two parts, and relate our proof to the
one in [7].

1.1 Reducing Online Labeling to Prefix Bucketing

Dietz et al. [7] sketched a reduction from online labeling to prefix bucketing.
In their reduction they describe an adversary for the labeling problem. They
show that given any algorithm for online labeling, the behavior of the algorithm
against the adversary can be used to construct a strategy for prefix bucketing.
If one can show that the cost of the derived bucketing strategy is no more than
a constant times the cost paid by the algorithm for relabelings then a lower
bound on bucketing will give a similar lower bound on the cost of any relabeling
algorithm. Unfortunately, their proof sketch does not show this. In particular, a
single relabeling step may correspond to a bucketing step whose cost isΩ(log(n)),
and this undermines the reduction. This may happen when inserting Θ(log n)
items into an empty segment of size nε without triggering any relabelings. We

construct a different adversary for which one gets the needed correspondence
between relabeling cost and bucketing steps.

Our goal in constructing an adversary is to force any online algorithm to
perform many relabelings during insertion on n keys. The adversary is described
in detail in Section 2 here we provide a high level description.

The adversary starts by inserting the minimal and maximal element of U , i.e.
1 and r, and five other keys uniformly spread in U . From then on the adversary
will always pick a suitable pair of existing consecutive keys and the next inserted
key will be the average of the pair. Provided that r > 2n there will always be an
unused key between the pair.

It is illuminating to think of the problem in terms of the file maintenance
problem mentioned earlier. In this reformulation we associate to the label space
[m] an array indexed by {1, . . . ,m} and think of a key labeled by j as being
stored in location j. Intuitively, the adversary wants to choose two consecutive
keys that appear in a crowded region of this array. By doing this repeatedly,
the adversary hopes to force the algorithm to move many keys within the array
(which corresponds to relabeling them). The problem is to make precise the
notion of “crowdedness”. Crowding within the array occurs at different scales
(so a small crowded region may lie inside a large uncrowded region) and we need
to find a pair of consecutive keys with the property that all regions containing
the pair are somewhat crowded.

With the array picture in mind, we call an interval of labels a segment, and
say that a label is occupied if there is a key assigned to it. The density of a
segment is the fraction of occupied labels.

In [7], the authors show that there is always a dense point, which is a point
with the property that every segment containing it has density at least half the
overall density of the label space. They use this as the basis for their adversary,
but this adversary does not seem to be adequate.

We design a different adversary (which is related to the adversary constructed
in [1] to handle the case of linearly many labels). The adversary maintains a se-
quence (hierarchy) of nested segments. Each successive segment in the hierarchy
has size at most half the previous segment, and its density is within a constant
factor of the density of the previous segment. The hierarchy ends with a segment
having between 2 and 7 keys. The key chosen to be inserted next is the average
(rounded down) of the two “middle” keys of the smallest segment.

For the first 8 insertions, the hierarchy consists only of the single segment
[m]. After each subsequent insertion, the algorithm A specifies the label of the
next key and (possibly) relabels some keys. The adversary then updates its
hierarchy. For the hierarchy prior to the insertion, define the critical segment
to be the smallest segment of the hierarchy that contains the label assigned to
the inserted key and the old and new labels of all keys that were relabeled.
The new hierarchy agrees with the previous hierarchy up to and including the
critical segment. Beginning from the critical segment the hierarchy is extended
as follows. Having chosen segment S for the hierarchy, define its left buffer to be
the smallest subsegment of S that starts at the minimum label of S and includes

at least 1/8 of the occupied labels of S, and its right buffer to be the smallest
subsegment that ends at the maximum label of S and includes at least 1/8 of
the occupied keys of S. Let S′ be the segment obtained from S by deleting the
left and right buffers. The successor segment of S in the hierarchy is the shortest
subsegment of S′ that contains exactly half (rounded down) of the occupied
labels of S′. The hierarchy ends when we reach a segment with at most seven
occupied labels; such a segment necessarily has at least two occupied labels.

It remains to prove that the algorithm will make lot of relabels on the se-
quence of keys produced by the adversary. For that proof we need a game intro-
duced by Dietz et al. [7] that they call prefix bucketing.

A prefix bucketing of n items into k buckets (numbered 1 to k) is a one
player game consisting of n steps. At the beginning of the game all the buckets
are empty. In each step a new item arrives and the player selects an index p ∈ [k].
The new item as well as all items in buckets p+1, . . . , k are moved into bucket p
at a cost equal to the total number of items in bucket p after the move. The goal
is to minimize the total cost of n steps of the game. Notice that suffix bucketing
would be a more appropriate name for our variant of the game, however we keep
the original name as the games are equivalent.

We will show that if A is any algorithm for online labeling and we run A
against our adversary then the behavior of A corresponds to a prefix bucketing
of n items into k = dlogme buckets. The total cost of the prefix bucketing will
be within a constant factor of the total number of relabelings performed by the
online labeling algorithm. Hence, a lower bound on the cost of a prefix bucketing
of n items into k buckets will imply a lower bound on the cost of the algorithm
against our adversary.

Given the execution of A against our adversary we create the following pre-
fix bucketing. We maintain a level for each key inserted by the adversary; one
invariant these levels will satisfy is that for each segment in the hierarchy, the
level of the keys inside the segment are at least the depth of the segment in the
hierarchy. The level of a newly inserted key is initially k. After inserting the key,
the algorithm does its relabeling, which determines the critical segment and the
critical level. All keys in the current critical segment whose level exceeds the
critical level have their levels reset to the current critical level.

The assignment of levels to keys corresponds to a bucketing strategy, where
the level of a key is the bucket it belongs to. Hence, if p is the critical level, all
the keys from buckets p, p+ 1, . . . , k will be merged into the bucket p.

We need to show that the cost of the merge operation corresponds to the
number of relabelings done by the online algorithm at a given time step. For this
we make the assumption (which can be shown to hold without loss of generality)
that the algorithm is lazy, which means that at each time step the set of keys
that are relabeled is a contiguous block of keys that includes the newly inserted
keys. The cost of the bucketing merge step is at most the number of keys in the
critical segment. One can argue that for each successor segment of the critical
segment, either all labels in its left buffer or all labels in its right buffer were

reassigned, and the total number of such keys is a constant fraction of the keys
in the critical segment.

1.2 An Improved Analysis of Bucketing

It then remains to give a lower bound for the cost of prefix bucketing. This was
previously given by Dietz et al. [7] for k ∈ Θ(log n). We give a different and
simpler proof that gives asymptotically optimal bound for k between log n and
O(nε). We define a family of trees called k-admissible trees and show that the
cost of bucketing for n and k, is between dn/2 and dn where d is the minimum
depth of a k-admissible tree on n vertices. We further show that the minimum
depth of a k-admissible tree on n vertices is equal gk(n) which is defined to
be the smallest d such that

(
k+d−1
k

)
≥ n. This gives a characterization of the

optimal cost of prefix bucketing (within a factor of 2). When we apply this
characterization we need to use estimates of gk(n) in terms of more familiar
functions (Lemma 11), and there is some loss in these estimates.

2 The Online Labeling Problem

In this paper, interval notation is used for sets of consecutive integers, e.g., [a, b]
is the set {k ∈ Z : a ≤ k ≤ b}. Let m and r ≥ 1 be integers. We assume without
loss of generality U = [r]. An online labeling algorithm A with range m is an
algorithm that on input sequence y1, y2, . . . , yt of distinct elements from U gives
an allocation f : {y1, y2, . . . , yt} → [m] that respects the natural ordering of
y1, . . . , yt that is for any x, y ∈ {y1, y2, . . . , yt}, f(x) < f(y) if and only if x < y.
We refer to y1, y2, . . . , yt as keys. The trace of A on a sequence y1, y2, . . . , yn ∈ U
is the sequence f0, f1, f2, . . . , fn of functions such that f0 is the empty map-
ping and for i = 1, . . . , n, f i is the output of A on y1, y2, . . . , yi. For the trace
f0, f1, f2, . . . , fn and t = 1, . . . , n, we say that A relocates y ∈ {y1, y2, . . . , yt}
at time t if f t−1(y) 6= f t(y). So each yt is relocated at time t. For the trace
f0, f1, f2, . . . , fn and t = 1, . . . , n, Relt denotes the set of relocated keys at step
t. The cost of A incurred on y1, y2, . . . , yn ∈ U is χA(y1, . . . , yn) =

∑n
i=0 |Reli|

where Rel is measured with respect to the trace of A on y1, y2, . . . , yn. The
maximum cost χA(y1, . . . , yn) over all sequences y1, . . . , yn is denoted χA(n).
We write χm(n) for the smallest cost χA(n) that can be achieved by any algo-
rithm A with range m.

2.1 The Main Theorem

In this section, we state our lower bound results for χm(n).

Theorem 1. There are positive constants C0, C1 and C2 so that the following

holds. Let m,n be integers satisfying C0 ≤ n ≤ m ≤ 2n
C1

. Let the size of U be
more than 2n+4. Then χm(n) ≥ C2 · n logn

3+log logm−log logn .

To prove the theorem for given algorithm A we will adversarially construct a
sequence y1, y2, . . . , yt of keys that will cause the algorithm to incur the desired
cost. In the next section we will design the adversary.

2.2 Adversary Construction

Any interval [a, b] ⊆ [m] is called a segment. Fix n,m, r > 1 such that m ≥ n
and r > 2n+4. Fix some online labeling algorithm A with range m. To pick the
sequence of keys y1, . . . , yn, the adversary will maintain a sequence of nested
segments Stdepth(t) ⊆ · · · ⊆ St2 ⊆ St1 = [m], updating them after each time step

t. The adversary will choose the next element yt to fall between the keys in the
smallest interval Stdepth(t). In what follows, f t is the allocation of y1, . . . , yt by
the algorithm A.

The population of a segment S at time t is popt(S) = (f t)−1(S) and the
weight of S at time t is weightt(S) = |popt(S)|. For t = 0, we extend the
definition by pop0(S) = ∅ and weight0(S) = 0. The density of S at time t
is ρt(S) = weightt(S)/|S|. For a positive integer b, let densifyt(S, b) be the
smallest subsegment T of S of weight exactly b(weightt(S) − 2b)/2c such that
popt(T) does not contain any of the b largest and smallest elements of popt(S).
Hence, densifyt(S, b) is the densest subsegment of S that contains the appro-
priate number of items but which is surrounded by a large population of S
on either side. If popt(S) = {x1 < x2 < · · · < x`} then midpointt(S) =
d(xd(`−1)/2e + xd(`+1)/2e)/2e.

Let y1, y2, . . . , yt be the first t keys inserted and let Relt be the keys that are
relabeled by A in response to the insertion of yt. The busy segment Bt ⊆ [m] at
time t is the smallest segment that contains f t(Relt)∪f t−1(Relt \{yt}). We say
that the algorithm A is lazy if all the keys that are mapped to Bt are relocated
at step t, i.e., (f t)−1(Bt) = Relt. By Proposition 4 in [1], when bounding the
cost of A from below we may assume that A is lazy.

Adversary(A, n,m, r)
Set p0 = 0.

For t = 1, 2, . . . , n do

– If t < 8, let St1 = [m], bt1 = 1, depth(t) = 1, and pt = 1. Set yt = 1 + d(t−
1) · (r − 1)/6e, and run A on y1, y2, . . . , yt to get f t. Continue to next t.

– Preservation Rule: For i = 1, . . . , pt−1, let Sti = St−1i and bti = bt−1i . (For
t ≥ 8, copy the corresponding segments from the previous time step.)

– Rebuilding Rule:
Set i = pt−1 + 1.
While weightt−1(Sti−1) ≥ 8

• Set Sti = densifyt−1(Sti−1, b
t
i−1).

• Set bti = dweightt−1(Sti)/8e.
• Increase i by one.

– Set depth(t) = i− 1.
– Set yt = midpointt−1(Stdepth(t)).

– The critical level: Run A on y1, y2, . . . , yt to get f t. Calculate Relt and Bt.
Set the critical level pt to be the largest integer j ∈ [depth(t)] such that
Bt ⊆ Stj .

Output: y1, y2, . . . , yn.

We make the following claim about the adversary which implies Theorem 1.
We did not attempt to optimize the constants.

Lemma 1. Let m,n, r be integers such that and 232 ≤ n ≤ m ≤ 2
4
√
n/8 and

2n+4 < r. Let A be a lazy online labeling algorithm with the range m. Let
y1, y2, . . . , yn be the output of Adversary(A, n,m, r). Then the cost

χA(y1, y2, . . . , yn) ≥ 1

512
· n log n

3 + logdlogme − log log n
− n

6
.

Notice, if r > 2n+4 then for any t ∈ [n− 1] the smallest pair-wise difference
between integers y1, y2, . . . , yt is at least 2n+1−t so yt+1 chosen by the adversary
is different from all the previous y’s. All our analysis will assume this.

To prove the lemma we will design a so called prefix bucketing game from
the interaction between the adversary and the algorithm, we will relate the cost
of the prefix bucketing to the cost χA(y1, y2, . . . , yn), and we will lower bound
the cost of the prefix bucketing.

In preparation for this, we prove several useful properties of the adversary.

Lemma 2. For any t ∈ [n], depth(t) ≤ logm.

Proof. The lemma is immediate for t < 8. For t ≥ 8, it suffices to show that the
hierarchy St1, S

t
2, . . . satisfies that for each i ∈ [1,depth(t)− 1], |Sti+1| ≤ |Sti |/2.

Recall that Sti is obtained from Sti−1 by removing the left and right buffer to
get a subsegment S′ and then taking Sti+1 to be the shortest subsegment of S′

that contains exactly half of the keys (rounded down) labeled in S′. Letting L′

be the smallest b|S′|/2c labels of S′ and R′ be the largest b|S′|/2c labels of S′,
one of L′ and R′ contains at least half of the occupied labels (rounded down) in
S′, which implies |Sti+1| ≤ |S′|/2 < |Sti |/2. ut

Lemma 3. For any t ∈ [n] and i ∈ [depth(t)− 1], 64 · bti+1 ≥ weightt−1(Sti)−
weightt−1(Sti+1).

Proof. For t < 8 the lemma is true trivially so we assume that t ≥ 8. For any
integers s, s′ such that start(t, i) ≤ s < s′ < end(t, i),

weights−1(Sti) = weights
′−1(Sti) + (s′ − s).

Let s = start(t, i+ 1). Then start(t, i) ≤ s ≤ t < end(t, i+ 1) ≤ end(t, i) so

weightt−1(Sti)−weightt−1(Sti+1) = weights−1(Sti)−weights−1(Sti+1)

= weights−1(Ssi)−weights−1(Ssi+1).

Also

bti+1 = bsi+1 = dweights−1(Ssi+1)/8e ≥ weights−1(Ssi+1)/8.

Since 8 ≤ weights−1(Sti) and weightstart(t,i)−1(Sti) ≤ weights−1(Sti)

bsi = b
start(t,i)
i = dweightstart(t,i)−1(Sti)/8e

≤ weights−1(Ssi)/4

Hence,

weights−1(Ssi+1) = b(weights−1(Ssi)− 2bsi)/2c ≥ bweights−1(Ssi)/4c
≥ weights−1(Ssi)/8.

Thus, bti+1 ≥ weights−1(Ssi)/64 ≥ (weights−1(Ssi)−weights−1(Ssi+1))/64. The
claim follows. ut

Corollary 1. For any t ∈ [n] and i ∈ [depth(t) − 1], 8 + 64 ·
∑depth(t)
j=i+1 btj ≥

weightt−1(Sti).

Lemma 4. If A is lazy then for any t ∈ [n], |Relt| ≥
∑depth(t)
i=pt+1 bti.

Proof. If pt = depth(t) then the lemma is trivial. If pt = depth(t) − 1 then
the lemma is trivial as well since |Relt| ≥ 1 and btdepth(t) = 1 always. So let us

assume that pt < depth(t)−1. By the definition of pt we know that at least one
of the following must happen: f t−1(min(Relt)) ∈ Stpt \ Stpt+1, f t(min(Relt)) ∈
Stpt \ Stpt+1, f t−1(max(Relt)) ∈ Stpt \ Stpt+1 or f t(max(Relt)) ∈ Stpt \ Stpt+1.

Assume that f t−1(min(Relt)) ∈ Stpt \ Stpt+1 or f t(min(Relt)) ∈ Stpt \ Stpt+1, the

other case is symmetric. Let Y = {y ∈ {y1, y2, . . . , yt−1}; min(Relt) ≤ y < yt}.
Since A is lazy, Y ⊆ Relt. Stpt+1 \ Stdepth(t) is the union of two subsegments,
the left one SL and the right one SR. The population of SL at time t − 1
must be contained in Y . For any i ∈ [depth(t) − 1], the population of the left
subsegment of Sti \ Sti+1 at time t − 1 is at least bti, by the definition of Sti+1.

Hence,
∑depth(t)−1
i=pt+1 bti ≤ |popt−1(SL)| ≤ |Y | < |Relt|. Since btdepth(t) = 1, the

lemma follows. ut

Corollary 2. Let A be a lazy algorithm. Then 64 · χA(y1, y2, . . . , yn) + 8n ≥∑n
t=1 weightt−1(Stpt).

3 Prefix Bucketing

A prefix bucketing of n items into k buckets is a sequence a0, a1, . . . , an ∈ Nk of
bucket configurations satisfying: a0 = (0, 0, . . . , 0) and for t = 1, 2, . . . , n, there
exists pt ∈ [k] such that

1. ati = at−1i , for all i = 1, 2, . . . , pt − 1,
2. atpt = 1 +

∑
i≥pt a

t−1
i , and

3. ati = 0, for all i = pt + 1, . . . , k.

The cost of the bucketing a0, a1, . . . , an is c(a0, a1, . . . , an) =
∑n
t=1 a

t
pt . In

Section 3.1 we prove the following lemma.

Lemma 5. Let n ≥ 232 and k be integers where log n ≤ k ≤ 4
√
n/8. The cost of

any prefix bucketing of n items into k buckets is greater than n logn
8(log 8k−log logn)−n.

We want to relate the cost of online labeling to some prefix bucketing. We
will build a specific prefix bucketing as follows. Set k = dlogme. For a lazy
online labeling algorithm A and t = 1, . . . , n, let f t, Sti , B

t, pt, yt and f0, p0 be
as defined by the Adversary(A, n,m, r) and the algorithm A. Denote Y =
{y1, y2, . . . , yn}. For t = 0, 1, . . . , n and i = 1, . . . , k, define a sequence of sets
Ati ⊆ Y as follows: for all i = 1, . . . , k, A0

i = ∅, and for t > 0:

– Ati = At−1i , for all i = 1, . . . , pt − 1,
– Atpt = {yt} ∪

⋃
i≥pt A

t−1
i , and

– Ati = ∅, for all i = pt + 1, . . . , k.

The following lemma relates the cost of online labeling to a prefix bucketing.

Lemma 6. Let the prefix bucketing a0, a1, . . . , an be defined by ati = |Ati|, for all
t = 0, . . . , n and i = 1, . . . , k. The cost of the bucketing a0, a1, . . . , an is at most
64 · χA(y1, y2, . . . , yn) + 9n.

Lemmas 5 and 6 together imply Lemma 1. The following lemma will be used
to prove Lemma 6.

Lemma 7. For any t ∈ [n] and i ∈ [depth(t)], if i 6= pt then f t−1(Ati) ⊆ Sti
otherwise f t−1(Ati \ {yt}) ⊆ Sti .

Proof. We prove the claim by induction on t. For t = 1, the only non-empty set
is A2

1 = {y1} so the claim is true. Let assume that it is true for t − 1 and we
prove it for t. The Adversary(A, n,m, r) produces the sets Sti and yt, and then
the algorithm A outputs f t. Based on it the adversary defines Bt, Relt and pt.
We distinguish two cases.

Case pt−1 < pt: For all i ≤ pt−1, Ati = At−1i , and for all i > pt−1, if i 6= pt

then Ati = ∅ otherwise Ati = {yt}. For all i ≤ pt−1, Bt−1 ⊆ St−1pt−1 ⊆ St−1i = Sti ,

where the first containment follows from the definition of pt−1 and the last
equality follows from the definition of Sti . For all i < pt−1, yt−1 6∈ At−1i = Ati
so using the induction hypothesis f t−1(Ati) ⊆ f t−2(Ati) ∪ Bt−1 ⊆ St−1i = Sti .
Similarly for i = pt−1, f t−1(Ati) ⊆ f t−2(Ati \ {yt−1}) ∪ Bt−1 ⊆ St−1i = Sti . For
each i > pt−1, either Ati = ∅ or i = pt and Ati = {yt}. In either case the lemma
follows trivially.

Case pt−1 ≥ pt is similar: For all i < pt, Ati = At−1i , for i = pt, Ati =
{yt} ∪

⋃
j≥pt A

t−1
j , and for i > pt, Ati = ∅. Again, for all i ≤ pt, Bt−1 ⊆ St−1pt−1 ⊆

St−1i = Sti . For all i < pt, yt−1 6∈ At−1i = Ati so using the induction hypothesis
f t−1(Ati) ⊆ f t−2(Ati) ∪ Bt−1 ⊆ St−1i = Sti . It only remains to consider the case
of i = pt as the claim is trivial for i > pt. Since pt−1 ≥ pt, for i > pt, St−1i ⊆

Stpt . Using the induction hypothesis, f t−1(Atpt \ {yt}) ⊆ f t−1(
⋃
j≥pt A

t−1
j) ⊆⋃

j≥pt f
t−2(At−1j \ {yt−1}) ∪Bt−1 ⊆ Stpt . The lemma follows. ut

Proof of Lemma 6. Using the previous lemma we see that for t ∈ [n], |Atpt | ≤
weightt−1(Stpt) + 1. The lemma follows by Corollary 2. ut

3.1 Lower Bound for Bucketing

In this section we will prove Lemma 5. To do so we will associate with each
prefix bucketing a k-tuple of ordered rooted trees. We prove a lower bound on
the sum of depths of the nodes of the trees, and this will imply a lower bound
for the cost of the bucketing.

An ordered rooted tree is a rooted tree where the children of each node are
ordered from left to right. Since these are the only trees we consider, we refer to
them simply as trees. The leftmost principal subtree of a tree T is the subtree
rooted in the leftmost child of the root of T , the i-th principal subtree of T is the
tree rooted in the i-th child of the root from the left. If the root has less than
i children, we consider the i-th principal subtree to be empty. The number of
nodes of T is called its size and is denoted |T |. The depth of a node is one more
than its distance to the root, i.e., the root has depth 1. The cost of T , denoted
c(T), is the sum of depths of its nodes. The cost and size of an empty tree is
defined to be zero.

We will be interested in trees that satisfy the following condition.

Definition 1 (k-admissible). Let k be a non-negative integer. A tree T is k-
admissible if it contains at most one vertex or

– its leftmost principal subtree is k-admissible and
– the tree created by removing the leftmost principal subtree from T is (k− 1)-

admissible.

Notice that when a tree is k-admissible it is also k′-admissible, for any k′ > k.
The following easy lemma gives an alternative characterization of k-admissible
trees:

Lemma 8. A rooted ordered tree T is k-admissible if and only if for each i ∈ [k],
the i-th principal subtree of T is (k − i+ 1)-admissible.

Proof. We show both directions at once by induction on k. For a single-vertex
tree the statement holds. Let T be a tree with at least 2 vertices and let L be
its leftmost principal subtree and T ′ be the subtree of T obtained by removing
L. By definition T is k-admissible if and only if L is k-admissible and T ′ is k− 1
admissible, and by induction on k, T ′ is k − 1 admissible if and only if for each
2 ≤ i ≤ k the i-th principal subtree of T , which is the (i−1)-st principal subtree
of T ′ is (k − i+ 1)-admissible. ut

We will assign a k-tuple of trees T (ā)1, T (ā)2, . . . , T (ā)k to each prefix buck-
eting ā = a0, a1, . . . , at. The assignment is defined inductively as follows. The
bucketing ā = a0 gets assigned the k-tuple of empty trees. For bucketing ā =

a0, a1, . . . , at we assign the trees as follows. Let pt be as in the definition of prefix
bucketing, so 0 6= atpt 6= at−1pt and for all i > pt, ati = 0. Let ā′ = a0, a1, . . . , at−1.

Then we let T (ā)i = T (ā′)i, for 1 ≤ i < pt, and T (ā)i be the empty tree, for
pt < i ≤ k. The tree T (ā)pt consists of a root node whose children are the
non-empty trees among T (ā′)pt , T (ā′)pt+1, . . . , T (ā′)k ordered left to right by
the increasing index.

We make several simple observations about the trees assigned to a bucketing.

Proposition 1. For any positive integer k, if ā = a0, a1, . . . , at is a prefix buck-
eting into k buckets then for each i ∈ [k], |T (ā)i| = ati.

The proposition follows by a simple induction on t.

Proposition 2. For any positive integer k, if ā = a0, a1, . . . , at is a prefix buck-
eting into k buckets then for each i ∈ [k], T (ā)i is (k + 1− i)-admissible.

Again this proposition follows by induction on t and the definition of k-
admissibility. The next lemma relates the cost of bucketing to the cost of its
associated trees.

Lemma 9. For any positive integer k, if ā = a0, a1, . . . , at is a prefix bucketing
into k buckets then

∑k
i=1 c(T (ā)i) = c(ā).

Proof. By induction on t. For t = 0 the claim is trivial. Assume that the claim
is true for t− 1 and we will prove it for t. Let ā′ = a0, a1, . . . , at−1 and pt be as
in the definition of prefix bucketing.

c(ā) = c(ā′) + 1 +

k∑
i=pt

at−1i =

k∑
i=1

c(T (ā′)i) + 1 +

k∑
i=pt

|T (ā′)i|

=

pt−1∑
i=1

c(T (ā)i) + 1 +

k∑
i=pt

(c(T (ā′)i + |T (ā′)i|)

where the first equality follows by the induction hypothesis and by Proposition
1, and the last equality follows by the definition of T (ā)i, for i = 1, . . . , pt − 1.
For i ≥ pt, the depth of each node in T (ā′)i increases by one when it becomes
the child of T (ā)pt hence

c(T (ā)pt) = 1 +

k∑
i=pt

(c(T (ā′)i + |T (ā′)i|) .

For i > pt, c(T (ā)i) = 0 so the lemma follows. ut
Now, we lower bound the cost of any ordered rooted tree.

Lemma 10. Let k, d ≥ 1 and T be a k-admissible tree of depth d. Then c(T) ≥
d · |T |/2 and |T | ≤

(
k+d−1
k

)
.

Proof. We prove the lemma by induction on k+ d. Assume first that k = 1 and
d ≥ 1. The only 1-admissible tree T of depth d is a path of d vertices. Hence,
|T | = d =

(
1+d−1

1

)
and c(T) =

∑d
i=1 i = d · (d+ 1)/2.

Now assume that k > 1 and that T is k-admissible. Denote the leftmost
principal subtree of T by L and the tree created by removing L from T by
R. By the induction hypothesis and definition of k-admissibility it follows that
|T | = |L| + |R| ≤

(
k+d−2
k

)
+
(
k+d−2
k−1

)
=
(
k+d−1
k

)
. Furthermore, c(T) = c(L) +

|L|+ c(R) ≥ ((d− 1) · |L|/2) + |L|+ (d · (|T | − |L|)/2) ≥ d · |T |/2. ut

Lemma 11. Let n, k and d be integers such that 232 ≤ n, log n ≤ k ≤ 4
√
n/8,

and d ≤ logn
4(log 8k−log logn) . Then

(
k+d
k

)
< n.

Proof. First notice that the expression
(
k+d
k

)
is increasing in d. Therefore to prove

the lemma it suffices to set d =
⌊

logn
4(log 8k−log logn)

⌋
and show that

(
k+d
k

)
< n. For

this particular choice of d it also holds that d < log n ≤ k.
To estimate the binomial coefficient we use the fact that for two integers

integers a, b such that 0 < b ≤ a/2 it holds that
(
a
b

)
≤ 2H(b/a)a where H(x) =

−x log x − (1 − x) log(1 − x) is the binary entropy function. For 0 < x < 1/2,
one can bound H(x) < −2x log x.

Since
(
k+d
k

)
=
(
k+d
d

)
and d < (k + d)/2 we conclude that(

k + d

k

)
=

(
k + d

d

)
≤ 2H(d

k+d)(k+d) < 2−2d log(
d
k+d).

From the assumption k ≤ 4
√
n/8 it follows that⌊

log n

4(log 8k − log log n)

⌋
≥ log n

8(log 8k − log log n)
.

By substituting for d we get

log

(
k + d

k

)
< 2d log

(
k + d

d

)
< 2d log

(
2k

d

)
≤ 2 · log n

4(log 8k − log log n)
· log

(
16k(log 8k − log log n)

log n

)
=

log n

2
· log 2 + log 8k − log log n+ log(log 8k − log log n)

log 8k − log log n

≤ log n

2
·
(

1

3
+ 1 +

log 3

3

)
< log n.

In the next to last inequality we use the fact that log 8k − log log n ≥ 3 and
that log x

x is decreasing when x ≥ 3. ut

Proof of Lemma 5. Consider a prefix bucketing ā = a0, a1, . . . , at of n items
into k buckets, where log n ≤ k ≤ 4

√
n/8. Let a′t = (n, 0, 0, . . . , 0) be a k-tuple

of integers and let ā′ = a0, a1, . . . , at−1, a′t. Clearly, ā′ is also a prefix bucketing
and c(ā′) ≤ c(ā) +n− 1. Hence, it suffices to show that c(ā′) ≥ n logn

8(log 8k−log logn) .

Let T be T (ā′)1. By Proposition 1, |T | = n, and by Proposition 2, T is k-

admissible. Furthermore, by Lemma 9, c(ā) =
∑k
i=1 c(T (ā)i) = c(T). So we only

need to lower bound c(T). By Lemma 10 a k-admissible tree has size at most(
k+d−1
k

)
, where d is its depth. For d ≤ logn

4(log 8k−log logn) ,
(
k+d−1
k

)
≤
(
k+d
k

)
< n by

Lemma 11 so T must be of depth d > logn
4(log 8k−log logn) . By Lemma 10, c(T) ≥

n logn
8(log 8k−log logn) . The lemma follows. ut

References

1. Martin Babka, Jan Bulánek, Vladimı́r Čunát, Michal Koucký, and Michael Saks.
On Online Labeling with Superlinearly Many Labels. Manuscript 2012.

2. Jan Bulánek, Michal Koucký, and Michael Saks. Tight lower bounds for the online
labeling problem. In Proc. of 66th Symp. of Theory of Computation, (STOC’12),
Howard J. Karloff and Toniann Pitassi, editors, pages 1185–1198. ACM, 2012.

3. Michael A. Bender, Richard Cole, Erik D. Demaine, Martin Farach-Colton, and
Jack Zito. Two simplified algorithms for maintaining order in a list. In Proc. of
10th Annual European Symposium on Algorithms, (ESA), Rolf H. Möhring and
Rajeev Raman, editors, volume 2461 of LNCS, pages 152–164. Springer, 2002.

4. Michael A. Bender, Erik D. Demaine, and Martin Farach-Colton. Cache-oblivious
b-trees. Journal on Computing, 35(2):341–358, 2005.

5. Michael A. Bender, Ziyang Duan, John Iacono, and Jing Wu. A locality-preserving
cache-oblivious dynamic dictionary. Journal of Algorithms, 53(2):115–136, 2004.

6. Gerth Stølting Brodal, Rolf Fagerberg, and Riko Jacob. Cache oblivious search
trees via binary trees of small height. In Proc. of 13th ACM-SIAM Symp. on
Discrete Algorithms, (SODA), D. Eppstein, editor, pages 39–48. ACM/SIAM, 2002.

7. Richard S. Bird and Stefan Sadnicki. Minimal on-line labelling. Information Pro-
cessing Letters, 101(1):41–45, 2007.

8. Paul F. Dietz, Joel I. Seiferas, and Ju Zhang. A tight lower bound for online
monotonic list labeling. SIAM J. Discrete Mathematics, 18(3):626–637, 2004.

9. Yuval Emek and Amos Korman. New bounds for the controller problem. Dis-
tributed Computing, 24(3-4):177–186, 2011.

10. Alon Itai, Alan G. Konheim, and Michael Rodeh. A sparse table implementation of
priority queues. In Proc. of 8th International Colloquium on Automata, Languages
and Programming, (ICALP’81) Shimon Even and Oded Kariv, editors, volume 115
of LNCS, pages 417–431. Springer, 1981.

11. Dan E. Willard. A density control algorithm for doing insertions and deletions in
a sequentially ordered file in good worst-case time. Information and Computation,
97(2):150–204, 1992.

12. Ju Zhang. Density Control and On-Line Labeling Problems. PhD thesis, University
of Rochester, 1993.

