The Pervasive Reach of Resource-Bounded Kolmogorov
Complexity in Computational Complexity Thedry

Eric Allender
Rutgers University
Piscataway, NJ, USA

allender@cs.rutgers.edu

Michal Koucky*
Institute of Mathematics of the Academy of Sciences of the Czech Republic
Prague, Czech Republic

koucky@math.cas.cz

Detlef Ronneburgér Sambuddha Roy
Bloomberg LP India Research Laboratory, IBM, New Delhi, India
dronneburger@bloomberg.net sambuddha@in.ibm.com

*Much of this material appeared in preliminary form as “Derandomization and Distinguishing Complexity” in the proceedings of the 2003
IEEE Conference on Computational Complexity [AKRRO3].

TPartially supported by NSF grants DMS-0652582, CCF-0830133, and CCF-0832787. Some of this work was performed while this author
was a visiting scholar at the University of Cape Town.

tSupported in part by NSF grant CCF-0514703 and by grantsQRA201/07/P276 and P202/10/0854, project No. 1M0021620808 of
MSMT CR, Institutional Research Plan No. Av0Z10190503 and grant IAA100190902 of GERV

$This work was done while at York College, City University of New York.

Abstract

We continue an investigation into resource-bounded Kolmogorov complexity [AB which highlights
the close connections between circuit complexity and Levin’s time-bounded Kolmogorov complexity measure
Kt (and other measures with a similar flavor), and also exploits derandomization techniques to provide new
insights regarding Kolmogorov complexity. The Kolmogorov measures that have been introduced have many
advantages over other approaches to defining resource-bounded Kolmogorov complexity (such as much greater
independence from the underlying choice of universal machine that is used to define the measure)GABK
Here, we study the properties of other measures that arise naturally in this framework.

The motivation for introducing yet more notions of resource-bounded Kolmogorov complexity are two-fold:

e to demonstrate that other complexity measures such as branching-program size and formula size can also
be discussed in terms of Kolmogorov complexity, and

e to demonstrate that notions such as nondeterministic Kolmogorov complexity and distinguishing complex-
ity [BFLO2] also fit well into this framework.

The main theorems that we provide using this new approach to resource-bounded Kolmogorov complexity
are:

e A complete setRkn+) for NEXP/poly defined in terms of strings of high Kolmogorov complexity.
e A lower bound, showing thaRkx: is not in NPN coNP.
New conditions equivalent to the conditions “NEXPnonuniform NC” and “NEXP C L/poly”.

Theorems showing that “distinguishing complexity” is closely connected to both FewEXP and to EXP.

Hardness results for the problems of approximating formula size and branching program size.

1 Introduction

The goal of this paper is to develop more fully the relationship between Kolmogorov complexity and computational
complexity — with particular emphasis on circuit complexity. In so doing, we expand on a theme that dates back
to the earliest investigations of the P vs. NP question, and beyond. Let us begin by giving a brief overview of this
history.

Karp’s landmark paper [Kar72], which demonstrated the widespread applicability of the notion of NP-completeness
as a tool for understanding the apparent intractability of computational problems, took Cook’s earlier work
[Coo71] as its starting point. It is known now, but was not known then, that Levin had made similar discover-
ies [Lev73] independently at roughly the same time as Cook. Trakhtenbrot [Tra84] has written an informative
account, outlining the fundamental questions that engaged that segment of the research community in Russia that
was working on theoretical computer science at the time. We now review part of that history.

1.1 The Russian Program

As related by Trakhtenbrot, the attention of the Russian research community focused on problems that seemed
to require ‘perebof or brute-force search. One such problem that was of particular interest was the problem
(called “Task 4" by Trakhtenbrot [Tra84, p. 390]) of taking as input the truth-table of a Boolean function, and
determining if it has Boolean circuits of a given size. More recently, essentially the same computational problem
has been studied under the name MCSP, for the “Minimum Circuit Size Problem” [KCO00]. Levin has said that
he delayed publication of his work on the complexity of SAT ([Lev73]) because he had been hoping to capture
MCSP in this framework [Lev03]. Nearly four decades later, it is still not known if MCSP is NP-complete, and
few seem to expect that it really is complete under Karp reductions [KC0O].

Trakhtenbrot further relates that it was recognized that MCSP was similar in spirit to the problem of taking a binary
string as input and determining its time-bounded Kolmogorov complexity. More precisely, Trakhtenbrot describes
a problem (called “Task 5" in [Tra84, p. 392]) defined in terms of some fixed “universal” Turing mahamel a

fixed time bound(n) (such ag(n) = n?) where one takes as input a stringf lengthn and determines if there is

a descriptiond of a given length, such thaf(d) = « in time ¢(n). Thus these two related threads of inquiry were
already being discussed in Russia in the 1960s — although there was no theorem explicitly linking the two threads.
In the same way that MCSP is not known to be NP-complete, Ko showed that the question of whether computing
this sort of time-bounded Kolmogorov complexity is NP-hard cannot be settled by relativizing methods [Ko91].

A third thread dating to this period is also discussed by Trakhtenbrot, when he mentions a different notion of
time-bounded Kolmogorov complexity that was introduced by Levin. Levin developed this notion as a tool for
proving the second theorem of his 1971 paper [Lev73], in which he presents an optimal search algorithm for
NP problems. (This definition, Kt), does not actually appear in Levin's 1971 paper and the earliest published
definition seems to be more than a decade later [Lev84].) The difference between this definition and the time-
bounded Kolmogorov complexity mentioned in the preceding paragraph lies in the way that time is incorporated
into the complexity measure. Rather than fixing the time botfngl thatU can use to produce from a short
description, instead Kt) is defined by minimizingn + log t, wherem is the length of the descriptiahsuch that

U(d) = x in t time steps. (Formal definitions are found in Section 2.) It seems that no connection was suggested
between Levin’s Kt measure and the Minimum Circuit Size Problem MCSP until roughly three decades later.

1.2 Weaving the threads together

The connections between these three threads were made more explicit just a few years ago. In 2002, it was shown
[ABK *06] that if = is a string of lengtf2” (and thus can be viewed as the truth table of a funcfignthen K{x)

is roughly the same as the size of the smalteatle circuit computingf,, where the oracle is a complete set for

E = DTime(2°(™). Furthermore, the sekk:, defined as the set of all such that K¢z) > |z| (the so-called
Kt-randomstrings) is complete for EXP under P/poly reductions.

This turned out to be a manifestation of a more general phenomenon. A new variant of time-bounded Kolmogorov
complexity in the spirit of Levin's Kt was presented, denoted KT [ABJ6], where KT x) is polynomially-related

to the size of the smallest circuit computirfig (and in the relativized setting K“*l'(x) is polynomially-related to

the size of the smallest circuit with oracle gates forcomputing). Thus the difference between solving
MCSP and computing K{Iz) amounts to not much more than determining the “size” of the smallest circuit for

fz using different notions of “size” (such as counting the number of wires in a circuit as opposed to counting
the number of symbols in an encoding of the circuit). Furthermore, thefefs: and MCSP turned out to

be complete foPSPACE, EXP, EXPSPACE, and doubly-exponential time, etc, for the appropriate choit¢e of
[ABK +06]. For the important case wheh= § (i.e., for the problem MCSP for circuits without oracle gates), we

still have no completeness theorems, although it is known that factoring and other problems that are conjectured
to give rise to cryptographically secure one-way functions are reducible to MCSHR@ndvia probabilistic
reductions [ABK"06, KC00]. More generally, it is known thaio function computable in polynomial time is
cryptographically secure relative to MCSP [ABK6, KCOQ].

The reductions and completeness results that classify the complexity.ofind related problems [ABKO6]

all rely onderandomizatiotechniques [BFNW93, IW97, IW01]. The current paper is motivated largely by the
desire to understand how other previously-studied notions of Kolmogorov complexity and other derandomization
techniques relate to each other.

1.3 Variants of Resource-Bounded Kolmogorov Complexity

Before we state the contributions of this paper, let us briefly recall the main variants of resource-bounded Kol-
mogorov complexity. Li and Vahyi discuss three different approaches to defining time-bounded Kolmogorov
complexity in their book, which is the standard reference for the field [LV08]:

1. Levin's Kt measure, which we have already discussed.

2. The measures‘Gind K that result by adapting the standard plain and prefix Kolmogorov complexity (C
and K, respectively) by allowing the universal machihenly timet(n) to produce a string of length as
output. C and K are polynomially related, and thus for the purposes of this paper we group them together.

3. Distinguishing Complexitydenoted CH and KDY, depending on whether one is using the plain or prefix
version of this notion.

Distinguishing complexity was introduced by Sipser [Sip83] as a tool in his original proof showing that BPP lies
in the polynomial hierarchy. Briefly, CDz) is the length of the shortest descriptidrsuch that/?(y) runs in
timet(|y|) and accepts if and only = «.

Buhrman, Fortnow, and Laplante conducted a thorough study éfd@Biplexity [BFL02], and also introduced a
nondeterministic variant of CDwhich they denote CND

1.4 Our Contributions

The main technical contributions of this paper can be enumerated:

1. We present definitions of deterministic and nondeterministic distinguishing complexity (KDt and KNDt,
respectively) that are in the style of Levin’s Kt measure, and share some of the advantages that Kt enjoys
over C and related measures, such as less dependence on the choice of universal fiaahiheloser
connections with circuit complexity.

2. We observe that KNDt is more-or-less equivalent to a different nondeterministic Kolmogorov complexity
measure KNt that is even more directly analogous to Kt and is more obviously connected to nondeterministic
circuit complexity.

3. We show thatRkn: (the set of strings having high KNt complexity) is complete for NEXP/poly under
P/poly truth-table reductions and hard for FewEXP under NP-Turing reductions, and draw connections
between KNt complexity and techniques that have been developed for derandomizing AM [MV05, SUO5,
SuU09, SU06].

4. We show thaRkny¢ is notin NP1 coNP. In contrast, note that we still have no good lower boundBfgr

5. We observe thaRkkp; shares withRxk the property of being complete for EXP. Howeverffp; and
R4 are polynomially-related, then EX2 FewEXP.

6. We demonstrate the wide applicability of definitions in the mold of Kt and KT, by introducing measures KF
and KB that are polynomially related to formula size and branching program size, respectively. We show
that factoring Blum integers is efficiently reducible the problem of approximating KB and KF complexity.

7. We show that NEXP is contained in nonuniform Ni€and only if KNt and KF are polynomially-related,
and obtain several other statements that are equivalent to this collapse. Many important questions in com-
plexity theory can be re-stated equivalently in terms of questions about the relationships among different
variants of resource-bounded Kolmogorov complexity.

The rest of the paper is organized as follows. In Section 2 we present our basic definitions and background in-
formation. In Section 3 we present our results characterizing the computational complexity of various problems
relating to resource-bounded Kolmogorov complexity. In Section 4 we study nondeterministic Kolmogorov com-
plexity in connection with various tools of derandomization. In Section 5 we investigate the relationship between
Kolmogorov complexity and various possible collapses of NEXP to smaller classes. In Section 6 we study distin-
guishing complexity, and in particular study the consequences that would follow if some of these measures were
polynomially related. We continue this investigation of possible polynomial relationships among various measures
in Section 7. Finally, we offer some concluding remarks in Section 8.

2 Definitions of Resource-Bounded Kolmogorov Complexity Measures

2.1 Universal Turing Machines

Our definitions are not overly sensitive to the particular choice of model of computation, but to avoid ambiguity
we will be precise about the model that we use. We use essentially the same model of Turing machines that was
considered in [BIS90, ABK06]. The machine has one read-only input tape of lemgta constant number of
read-write working tapes of infinite length, and a read-write input address tape. At every time step the machine
can modify the content of its read-write tapes using the appropriate heads and move these heads left or right by
one tape cell. It can also query the content of the input bit whose address is written on the input address tape. If
there is no such input bit the reply to the query is the symbol “*”.

Beside considering deterministic Turing machines we use radgwleterministiand more generadlternating

Turing machines. These machines have in addition to deterministic states also existential and universal states.
We refer the reader to [Pap94] for more background on nondeterministic and alternating Turing machines. An
alternating machine runs in spac@and timet on a given input if each of its possible computations on that input
uses space at maostnd runs for at moststeps.

In the case where the machine is an oracle Turing machine (possibly having more than one oracle), for each oracle
the machine has one read-write oracle tape. At every step the machine can query any of its oracles about whether
the string written on the corresponding oracle tape belongs to the oracle set. We also allow finite oracles. For a
finite oracley € {0, 1}*, the machine obtains as an answer to its qudniy y; if : < |y| and “*” otherwise. Note

that the input tape behaves like an oracle tape accessing a finite oracle.

A place of central importance is occupied bigiversalmachines. Since we are concerned with time and space
bounded computation we will require the universal machines to be space and time efficient. We formalize this
requirement further. Using the technique of Hennie and Stearns [HS66aead[Rir82, Rir84] we can establish

the following proposition.

Proposition 1 (minimal simulation overhead) 1. Thereis a deterministic (nondeterministic/alternating) Tur-
ing machinelJ with two work tapes, such that for any deterministic (hondeterministic/alternating) oracle
Turing machinel! there is a constant,; so that for any finite oraclé there is a finite oraclel’ of length
at most|d| + ¢y such that for any oraclel and inputz, U*% (z) accepts iffM4-¢(z) accepts. The com-

putation time ofUU is at mostcy,tlogt and the space used is at maests, whereMAfd(x) runs for timet
and uses space Furthermore, ifM is a two-tape machine, then the running timéjois bounded by ,t.

2. There is a nondeterministic (alternating) Turing machinavith two work tapes, such that for any non-
deterministic (alternating) oracle Turing machité there is a constant,, so that for any finite oracle
there is a finite oracle’ of length at mosid| + ¢, such that for any oraclel and inputz, U4 () accepts
iff M4-4(z) accepts. The computation timeléfis at mosic,t, whereM 4+4(x) runs in timet.

We call any machiné& that satisfies the first part of the previous propositiomizersalTuring machine; note that

we require our universal Turing machines to be space and time efficient in simulating other machines. We call a
fast universalluring machine any machirig that satisfies the second part of the previous proposition. Note that
the term “fast universal Turing machine” is reserved for nondeterministic and alternating machines.

Definition 2 A Turing machingJ is universalif it satisfies all properties stated in Part 1 of Propositian A
Turing machindJ is fast universaif it satisfies all properties stated in Part 2 of Propositibn

2.2 The measureKs, Kt, KS and KT

The history of Levin's Kt measure was discussed briefly in the introduction. The formal definition of Kt that we
present below is equivalent to the original definition ([Lev84]) up to an additive logarithmic term. We will use the
definition that was used in our earlier paper (JAB86], which also introduced the measures KT and KS), because
it provides us with a uniform framework in which to present the new definitions that are the primary focus of this
paper.

Definition 3 LetU be a deterministic Turing machine, and et {0, 1}*. Define:

Kty(z) = min{|d|+logt : Vb€ {0,1,*}
Vi < |x| 4+ 1 U%@i,b) runsin
timet and accepts ift; = b}
KTy(r) = min{ld|+t: Vbe {0,1,%}
Vi < |x| 4+ 1 U%@i,b) runsin
timet and accepts ift; = b}
Ksy(z) = min{|d|+logs : Vb e {0,1,x*}
Vi < |z| +1U%G,b) runsin
spaces and accepts iff; = b}
KSy(z) = min{ld|+s : Vbe {0,1,*}
Vi < |z| +1U%G,b) runsin
spaces and accepts ift; = b}

Here, we say that; = « if i > |z|.
Universal Turing machines provide time efficient simulations of other machines,{$asifa universal Turing

machine and/’ is any other Turing machine, then Ktz) < Kty (x) + ¢ - log |z|, KSy(z) < ¢ - KSy/ (),
Ksy(x) < Ksyr(x) + ¢-log|x|, and KTy (z) < ¢- KTy (z)log |xz|. Hence, none of these complexity measures

changes much when one changes from one universal mabhine@nother. As usual in studies of Kolmogorov
complexity, we will choose a fixed universal Turing machihand use the notation KiKS, Ks and KT to refer to
Kty, KSU, Ksy and KTy.

In the traditional study of Kolmogorov complexity without resource bounds, the choice of universal méchine
affects the measures(K) and Gx) only by additive constant terms [LVO08]. In contrast, the choic& dadffects

the value of K{z) by an additive logarithmic term, and it affects Kif) by a multiplicative logarithmic factor.
This comes from the slight slow-down that is incurred in the simulatioti’dfy U. Some of the other measures
that we will study are affected to an even greater degree by the choice of the universal niacHiowever, the
situation is much better for KT and Kt and other measures in this vein, than it is for measures sti@ndC
[ABK T06].

It is worthwhile mentioning how the definition of Kt given here differs from the one given by Levin [Lev84]. In
Levin’s original definition, the machin€ is required to produce the entire strimgas output, whereas here the
machineU gets indexi and has to determine theth bit of stringz. This change allows the running time to

be sublinear in the length aof. As this would allow the machin& not to be aware of the actual length of

we stipulate that foi = |z| + 1 the output should be “*". Since our definition does not requdiréo produce

any output, but merely to accept or reject, it is well-suited for generalization to nondeterministic and alternating
machines.

2.3 The measure&B and KF

The definition of KT complexity is motivated in large part by the fact tha{iTis a good estimate of the circuit
size required to compute the functigp that hasr as its truth table [ABK 06]. More precisely, for any string
of length2™, let Size" () denote the number of wires in the smallest oracle circuit with orddleat computes
fz. The following theorem holds:

Theorem 4 [ABK'06] There is a constant such that for any oraclel and any stringr of length2™,

1. Size'(z) < ¢(KTA(2))2 (KTA(2)? + log |z|) and
2. KT (z) < ¢(Size*(x))? (log Size* () + loglog |z|).

But circuit size is only one of many possible interesting measures of the “complexitf” ®here is also great
interest in knowing the size of the smallest branching program comptitiag well as the size of the smallest
Boolean formula representinfy Do these notions of complexity also give rise to a natural notion of Kolmogorov
complexity? In this subsection, we answer this question by presenting definitions having the same general flavor
as KT.

First, we need to present some background information about branching programs and Boolean formulae. For our
purposes, &8oolean formulas a circuit with AND and QR gates of fan-in two and fan-out one (except for the
output gate, which has fan-out zero), where the inputs to the circuit are literals{frgmy; : 1 < i < n}. The

sizeof a formula is the number of gates; a formula represents a Boolean function anx,, in the obvious way.

A branching progranmis a directed acyclic graph with a single source and two sinks labeled 1 and 0, respectively.
Each non-sink node in the graph is labeled with a variablgrn . . ., x,,} and has two edges leading out of it:

one labeled 1 and one labeled 0. A branching program computes a furfctannputz = xz; ...x, by first
placing a pebble on the source node. At any time when the pebble is on a tadzidedz;, the pebble is moved

to the (unique) vertex that is reached by the edge labeled %;if= 1 (or by the edge labeled 0if; = 0). If the

pebble eventually reaches the sink labdlethen f(z) = b. Details and background on branching programs can
be found in a standard text, such as the one by Vollmer [Vol99]. siteof a branching program is the number of
nodes in the graph.

Definition 5 LetU; be a deterministic Turing machine, and (&t be an alternating Turing machine.

KBy, () = min{|d|+2° : Vbe{0,1,x*}
Vi < n 41U (i,b) runsin
spaces and accepts iff;; = b}
min{|d| + 2" : Vb€ {0,1,*}
Vi < n+41US(i,b) runsin
timet and accepts ift; = b}

KFU2 ((E)

Here, we say that; = x if i > |z|.

Similarly to Kt and KT, KBy, and KRy, are almost invariant under the choicelof andUs. More precisely, if
U, is a deterministic universal machine afi¢d is any other deterministic machine then for some constan®,

for all z, KBy, (z) < (KByy(w))¢. Furthermore, ifUs is a fast universal alternating Turing machine dridis

any other alternating machine then there exists a constartt such that for allr, KFy, (z) < (KFy, (z))¢. Thus
for the rest of the paper we will fix one universal machifieand one fast universal alternating machifeand
measure KB and KF with respect to them.

The following simple proposition shows the relationship between KB and branching program size, and between
KF and Boolean formula size.

Proposition 6 There exists a constant> 1 such that for any string: of length2™ representing the truth table
of a functionf, if BPSIZHx) denotes the size of the smallest branching program compuftirmond FSIZHx)
denotes the size of the smallest Boolean formula represefitingn

1. (KB(z))'/¢ < BPSIZE=x) + log |z| < (KB(x) + log |z|)¢; and
2. (KF(x))Y¢ < FSIZE(z) + log |z| < (KF(z) + log|z|)°.

Proof. To prove the first inequality consider a deterministic macliinghat takes as its finite oractka string
1™0w, wherem is a positive integer and is an encoding of a branching program in variabtes. . ., z,,,. Uy
assumes some hatural encoding of branching programs where a branching prograno seggresented by a
stringw of lengthS(2[log S| + [logm]). There are such encodings. On inpub), U< (i, b) first checks whether

i is a string of length at most + 1 representing an integer betwekand2™. If not, it accepts iffb = x otherwise

it evaluates the branching program represented loy the string: that is them-bit string representing— 1, and
U, accepts iff the output of the branching program equals t€learly U; can be implemented to run in space
O(log |w| +log m). If x is a2™-bit binary string that represents a Boolean function computable by a branching
program of sizeS then KBy, (x) < m + S(2[log S| + [logm]) + 20Ueglwl+losm) < (1,6)¢ for some constant
¢ depending only o/;. The firstinequality follows because KB is measured with respect to somediniedrsal
Turing machine.

We prove now the second inequality. L&t be the fixed universal reference Turing machine for KB. We can
construct another machirig] that on inputi € {0, 1}* with oracled will simulate the computation af{(i’, 1)

wherei’ is the integer binary represented bincremented by 1. Ifi| = m thenU] will require only O(log m)

extra bits of memory for the simulation. For a stringf length2™, letd ands be such thald| +2° = K B(x) and
forall1 <4 < n, U{(i, 1) runsin space and accepts iff;; = 1. Clearly, if f,. is the Boolean function represented
by z thenU? % (i) accepts ifff, (1) = 1. U7 with oracled on anym-bit inputi runs in space + O(log m) so there

are at mosp©(st+log™) distinct reachable configurations on inputs of sizavith oracled where the constant in
big-O depends only od/;. By the usual technique the graph of its configurations can be turned into a branching
program of size?(s+l°e™) whered will be hardwired into the program. Thus, BPSIZE < (KB + log|z|)¢

for some constantdepending only of/;.

Next we provide the main idea of how to prove the third inequality. £ &e a string of lengti2” representing

a Boolean functiory,, computable by a Boolean formula of sike Using usual techniques the formula can be
turned into a balanced formula of size at migt Furthermore, by replication of subformulas it can be turned into
a completely balanced formula with alternating®and Cr gates of size at mof. The depth of the formula is

¢ < [8logk]. Thus, the formula is completely uniform now and it is fully determined by the sequence of literals
(variables and negated variables) accessed at the leaves. This sequence suitably encoded intodf Erigth
2¢(1 + [logm]) = O(k®logm) will be part of the advicel to an alternating maching, that we construct. The
machinel, with adviced = 0°1™0w on input(i, 1) (assuming is of length at mostn + 1) will spendO(¥)
time reading the first bits of d, alternating between universal and existential stateg &dternations (so that its
alternation tree mimics the depttbalanced formula), while keeping track of the patin the alternation tree
that the computation has followed. Then by querying [logm] bits of w it will determine which literal the
formula should read in the leaf corresponding to the pefitom the root of the formula. It computes the bit of
the stringi — 1 corresponding to this literal, and accepts if the literal evaluates to 1. On (hyg)tit computes
similarly but existential and universal states are interchanged and each computation accepts if the corresponding
literal evaluates to 0. On inp(t,) it accepts iffi = 2™ + 1 which can be decided in alternating tirt€log |d|).

A few more details need to be explainéd, checks in parallel thathas the right size, which takes alternating time
at mostO(log |d|); similarly, the binary representation of can be computed in this amount of time. Furthermore,
the input to the formula should be thebit binary representation éf- 1. Any particular bit of that representation
can be determined fromin alternating timeD(log m). HenceUs works in time that is linear in the depth of the
formula andog m, i.e., in timeO(log FSIZE(z) + loglog |x|). By the choice of the fixed fast universal reference
Turing machine for KF we conclude that KB < (FSIZE(z) + log |z|)¢ for some constant

The last inequality follows easily, by constructing a Boolean formula that simulates the computation of an alter-
nating Turing machine [Ruz81].]

2.3.1 KB Complexity and Switching Circuit Size

As a historical footnote, we mention that the measure KB has close connections to another topic listed by Trakht-
enbrot as a major concern of the Russian theoretical computer science community in the mid-twentieth century:
Switching Circuit Size. Aswitching circuitis an undirected graph with two distinguished vertisemnd¢, with

edges labeled by Boolean litergls;, z; : 1 < i < n}. Thesizeof the circuit is the number of edges in the graph.

The circuitacceptsan inputz if there is a path frons to ¢ using only edges that evaluate to 1 on inpufThus a

circuit represents the Boolean functigrsuch thatf () = 1 if and only if the circuit accepts.

Trakhtenbrot's survey [Tra84] discusses at length the central role that was played by switching circuit size in
the study ofpereborin Russia. LetL(f) denote the size of the smallest switching circuit that compiites
Trakhtenbrotdiscusses Task 1, Task 2, and Task 3 [Tra84, p. 388], all of which deal with the problem of computing
L(f) (analogous to the Minimum Circuit Size Problem MCSP, but for switching circuits, instead of Boolean
circuits) and variations on this theme (such as finding-ay functionf with maximalL(f)).

Here, we observe that branching program size is polynomially-related to switching circuit size, and.fience
is polynomially related to KBx) (wherex is a string of lengti2™ representing a functiofi, and hencd (z) =

L(f))-

Proposition 7 There exists a constant> 1 such that for any string: of length2™ representing the truth table of
a functionf,

1. L(z)Y¢ < BPSIZHz) < (L(x) + log|z|)¢; and
2. (KB(z))Y¢ < L(z) + log |z| < (KB(z) + log |z|)®.

Proof. The first statement implies the second, by Proposition 6. Thus we present the proof only of the first
statement.

For the first inequality, assume that theary function f with truth tablez has a branching program of size

We make use of the fact that the undirected reachability problem UGAP is hard for L under projection reductions.
(This follows from the reduction given by Lewis and Papadimitriou [LP82], in showing that UGAP is complete
for “symmetric logspace”, which is now known to coincide with L [Rei08].) That is, given a directed graph
with outdegree 1 with sourceand sinkt and havingl nodes, one can build an undirected gragthavingd®™")
nodes, and where, for any two vertices of G’, the presence or absence of an edge betwéandv’ depends

on at most a single bit in the adjacency matrixfand such that there is a path franto ¢ in G if and only if

there is a path betweenh andt’ in G’. We want to label the edges 6f with literals in the variablegs, . . ., ym,

so that, for any inpug, there is a path fromto ¢ in G’ if and only if f(y) = 1. Itis now clear how to do this: Let

G be the branching program fgr of sized, and construct the undirected graghas above. Consider any two
verticesu’ andv’ of G’. The presence or absence of an edge betwéandv’ depends on (at most) a single bit

of the graphG. If the bit of graphG on which this depends is the bit of the adjacency matri& dhat records if
there is an edge from to v in GG, where this edge is labeled by a litegalor 7, then this determines the literal
that should label this edge 6. Thus we have constructed a switching circuit fonaving size at mos{®),

which establishes the first inequality.

For the second inequality, Igt have a switching circuit of sizé. We describe a branching program ffir On
input y, build the undirected grapff of size at most/ consisting of the edges in the switching circuit that are
labeled with literals that evaluate to 1. Accepf and only if there is a path fromto ¢ in G.

It was shown by Reingold that there this computation can be accomplished inGflagel + logm), given the
switching circuit of sizel and a stringy of lengthm. Thus there is a branching program of siget- m)°(*) for
this task. This establishes the second inequality. a

2.4 The Nondeterministic MeasureKNT and KNt

In the preceding section, we saw that a variant of Kolmogorov complexity defined alkseérgating universal
machines captures certain aspects of Boolean formula size. In this subsection, we investigate similar measures
defined usingnondeterministienachines. By doing so, we will find a natural complete set for NEXP/poly, and we

will see how to use the tools of Kolmogorov complexity to provide a new perspective on the techniques that have
been developed to derandomize nondeterministic classes such as AM [MV05, SUO5].

Here are the nondeterministic variants of Kt and KT:

10

Definition 8 LetU be a nondeterministic Turing machine, anddet {0, 1}*. Define:

KNty (x) = min{|d| +logt : Vb e {0,1,%}
Vi < |z| 4+ 1 U%3i,b) runsin
timet and accepts ift; = b}

min{|d| +t : Vb e {0,1,%}

Vi < |z| 4+ 1 U%3i,b) runsin
timet and accepts ift; = b}

KNT (z)

As in the definition for Kt and KT, any fast universal machiiiehas the property that for all’ there is some
constant: > 0 such that for any:, we have KNi;(z) < KNty (z) + cand KNTy (z) < ¢ - KNT g ().

In precisely the same way that Ki) is polynomially related to the size of (deterministic) circuits computing the
function whose truth table is given hy KNT is polynomially related t@strong nondeterministicircuit size. We
recall for the reader the definitions of nondeterministic and strong nondeterministic circuits:

Definition 9 A nondeterministic Boolean circuff contains, in addition t)AND, OR, and NOT gates, choice-
gates of fan-ir0. The circuit evaluates tb on an inputz, and we say thaf’(z) = 1, if there is some assignment
of truth values to the choice-gates that makes the circuit evaluateAoco-nondeterministic circuit’ is defined
similarly: the circuit evaluates t@ on an inputz, and we say that’(x) = 1, if every assignment of truth values
to the choice-gates makes the circuit evaluaté.t@therwiseC'(z) = 0.

Similarly, astrong nondeterministic circuif computing a functiorf has, in addition to its usual output, an extra
output bit, called the flag. For any input and any setting of the choice-gates, if the flag is on, the circuit should
output the correct value of (z). Furthermore, for anyz, there should be some setting of the choice-gates that
turns the flag on. It is easy to see that a Boolean funcfidras a strong nondeterministic circuit of siéks(n))

if and only if f has a nondeterministic circuit of size(s(n)) and a co-nondeterministic circuit of siz&(s(n)).

Proposition 10 Let StrongSIZEx) denote the size of the smallest strong nondeterministic circuit computing the
function with truth tablec. Then for any string: of length2™,

(1/¢)KNT (2)'/3 < StrongSIZEz) + log || < ¢(KNT(z) + log |z])®.

Proof. To prove the first inequality we first design the following machihe MachineU; takes as its oracle a
stringd = 1™0w, wherew is a description of a strong nondeterministic circuit with inpes. . . , x,,,. Machine
U, with oracled on input (i, b) first checks whethei represents an integer betweermnd 2™. If not then it
accepts iffb = x, otherwise it simulates) on the stringz that is them-bit binary representation af— 1 (with
the choice-gates set nondeterministically). If the output flag of the circuit is set and the outputbetyeals’;
acceptgi, b). Clearly, the machin&; uses its oracld = 10w as a description of the function computedby
It is easy to see that one can choose an encoding of circuits such that a circuit8fisieecoded intav of size
O(S(log S + logm)) and such that/; works in timeO(|d| + |i|)2. Hence, for some’ > 1 depending only on
Uy, KNTy, (x) < ¢/(StrongSIZEx) +log |z|)3. The firstinequality follows by the properties of tfastuniversal
Turing machine in the definition of KNT.

Next we argue the correctness of the second inequality.Ukdte the fast universal Turing machine from the
definition of KNT. By the Cook-Levin Theorem, for any integerst¢ > 1, there is a hondeterministic circuit
Cm.+ Of sizeO((t + m)?) such that on any input € {0,1}¢,i € {0,1}™ andb € {0,1}, C,, +(d, i, b) evaluates
to 1iff Ug(i + 1,b) accepts in time at most Here,i is interpreted as an integer betweand2™ — 1. Forx of

11

length2™, letd € {0,1}* and integet > 1 be such thald| + ¢t = KNT(z) and for all integers < 2™, U (i, b)
accepts in time iff ; = b. The strongly nondeterministic circuit for the functigrrepresented by consists of
two copies ofC,,, ¢: Cp,+(d, i,1) andCy, (d, i,0), the output is given by the output 6f,, ,(d, i, 1) and the flag
by Cpn.i(d,3,1) V Cpy i (d, 4,0). Here,d is hardwired and is the input to the circuit. O

There is a close connection between KNt complexity and circuit complexity, too. Namelyy Kidtpolynomially
related to oracle circuit size, on circuits that have oracles for a set that is complete for NEXP. This follows from
Theorem 4, when combined with the following theorem.

Theorem 11 If A is a set complete faXE under many-one linear-time reductions then there is a constant
such that for any,
(1/¢)KNt(z) < KTA(z) < ¢(KNt(z) + log |z|) log | .

Proof. Let us prove the first inequality. Léf; be a universal Turing machine used to measuré' Kihie KT
complexity where the universal machine has access to the orack f@ince A is in NE, by Theorem 224

is in NE/lin. We can construct a machig that simulates machin€; but instead of asking queries b it
nondeterministically evaluates the queries by itself. Assumingltias provided with the proper advice fot,
the machind/] will simulateU; in nondeterministic exponential time. More preciselydet {0,1}*,b € {0,1}
andt € IN. There existsv € {0,1}**! such that for any € {0,1}* if U; with oraclesA andd on input(i, b)
runs in timet, thenU; with oracle1!*!0wd on input(i, b) runs in timet - 2°(Y) and accepts iff/; accepts with
oracleA. The constant in the big of the running time depends only 6h andA. Thus if KT (z) = |d|+t then
KNty (z) < |d| + O(t). Since KNt is measured relative tdfast universal Turing machine, the first inequality
follows.

For the second inequality, |1&t; be the fixed universal machine relative to which we measure KNt. Consider the
languagel = {(d,1%,i,b) : d,i € {0,1}*; b € {0,1}; t € IN; machinelU, with oracled acceptgi, b) in time
2t+ldI+1i We construct a machinel that with oracled and1t0d oninput(i, b), whered, i € {0,1}*,b € {0,1},

t € IN, checks whethefd, 1,4, b) is in L. SinceL is reducible toA in linear time,M with oracleA and10d on

input (i, b) works in time linear ind| + ¢ + |i|. Hence, for any: of length2™, KT+, (z) < ¢(KNt(z) + log |z|)

for some constantthat depends only obi; and A. The inequality follows by the choice of universal machine for
KT. O

3 How Hard Is It to Compute These Measures?

3.1 Review of lower bounds forKt, KS, and KT

In this section, we briefly review some relevant facts about the complexity of the sets of strings with high resource-
bounded Kolmogorov complexity. First, let us present a definition that will make precise what we mean by “sets
of strings with high resource-bounded Kolmogorov complexity”.

Definition 12 For any Kolmogorov complexity measufg:, defineRxk,, to be the se{xz : Ku(z) > |z|}.

We remark that our theorems are not very sensitive to this threshold of “randomness”. Every theorem that we state
regardingRk,, carries over to the sdte : Kp(x) > |x|°}, for any fixede > 0.

12

The setsRks, Rkt and Rixg are complete for EXPSPACE, EXP ai$PACE, respectively, under P/poly re-
ductions [ABK"06]. These hardness results both follow from a very general theorem (Theorem 15 below) that
shows how to reducany“PSPACE-robust” setA to any set that contains many strings but has no strings of low
KT“-complexity.

Definition 13 A setA is PSPACE-robustif P* = PSPACE#.

Definition 14 A setA is said to havepolynomial densityif A contains at leas2™ /n* strings of every length,
for some integek:.

Remark: The complete sets of most of the familiar “large” complexity classes (SUBRBACE, EXP and larger
time and space complexity classes) are easily seenB$BA CE-robust.

Theorem 15 [ABK*06, Theorem 31] Lefl be anyPSPACErobust set. Lef, have polynomial density, such that
for everyz € L, KT#(x) > || for some constant > 0. ThenA is reducible tol, via gft/p"ly reductions.

The general idea behind the proof of Theorem 15 is quite simple, once one has some basic tools of derandomization
at one’s disposal. In particular, Babai, Fortnow, Nisan, and Wigderson [BFNW93] developed a pseudorandom
generator that allows one to build, from aRgPACE-robust setd, a pseudorandom generator that takes input of
lengthn® and produces output of length with the property that, ifl" is any statistical test that can distinguish

the output of the pseudorandom generator from truly random inputs, it must be the caAe_:ft{ﬁf’lyT_ The

theorem follows, since the output of the pseudorandom generator has I6vedtiiplexity, and thus any set that
contains many strings but has no strings of low’Kdomplexity is a good statistical test. We review some other
aspects of this reduction later in this paper, in the proof of Theorem 50.

The setRkr is in coNP and is not known to be complete for any interesting complexity class. However, no
one-way function is cryptographically secure relativeer [ABK T06]. Again, the general idea of the proof is
quite simple, once some important tools from cryptography are in hand: Any cryptographically-secure one-way
function can be used to construct pseudorandom function generators [HILL99, GGM86, RR97]. The functions
produced by pseudorandom function generators have low KT-complexity, and thus an oratle faltlows one

to crack any pseudorandom function generator, which in turn provides the power to invert any one-way function
on a significant fraction of the inputs.

Somewhat stronger results were shown for specific examples of problems from cryptography (such as factoring
and computing discrete logs). These problems were shown to be BPP-redudile {BK *06].

Although these completeness and hardness results provide useful information about the compiexityf s,

and Rk, we have disappointingly fewnconditionallower bounds on their complexity. It is known that none
of these problems are in (nonuniform) AQABK *06], but we have absolutely no stronger lower bounds. Even
the most complex of these three sditg;, which is hard for EXP under P/poly reductions, might conceivably be
recognized by linear-size depth three Dlogtime-uniform circuits ®DAOR, and RARITY gates!

3.2 The Complexity of Rxr and Rkg

For each of the two measures KF and KB, the sets of random stRpgsand Rxr lie in coNP. Can we prove
better upper bounds on their complexity? Can we prove any intractability results?

13

As discussed in Section 3.1, related questions have been posed about®hg sahd Kabanets and Cai posed
similar questions earlier for the related Minimum Circuit Size Problem (MCSP) [KC0Q]. Although we are not
able to reduce the factorization problemi@p and Rxr (as was accomplished fdtkr in [ABK T06]), we can
come close.

In this section we prove that factoring Blum Integers can be done if’ZPRnd ZPP%:. (For an oracled, a
function f is in ZPP* if there exists a procedure computed by a probabilistic oracle machine with otahks

on inputz, on every halting path, producgéz), and the expected running time is polynomial.) We use results of
[NRO4] and [BBR99] in order to accomplish this. We define the following computational problem.

Blum Integer FactorizationGiven a Blum Intege?N € IN, find the primesP and@ such thatl < P < @ and
N = PQ. (A 2n-bitintegerN is called aBlum Integerf N = PQ, whereP and(@ are two primes such that
P =@ =3mod4.)

Theorem 16 Blum Integer Factorization is idPP?<* NZPPx® j.e., there ar& PP?<* andZPP?<® procedures
that on inputV that is a Blum Integer produce factoisand@ of N.

Proof. Naor and Reingold construct a pseudo-random function enseffiple(z) : {0,1}" — {0,1}}n,» with
the following two properties (Construction 5.2 and Corollary 5.6 of [NR04]):

1. Thereis a T€circuit computingfy (z), given2n-bit integerN, 4n? + 2n-bit stringr andn-bit stringz.

2. For every probabilistic oracle Turing maching, that on its2n-bit input asks queries of length onty,
and any constant > 0, there is a probabilistic Turing machiog such that for angn-bit Blum Integer
N = PQ, if
| Pr[M/¥r(N) = 1] = Pr[MB(N) = 1]] > 1/n®
whereR,, = {g : {0,1}" — {0,1}},, is a uniformly distributed random function ensemble and the proba-
bility is taken over the random stringand the random bits a¥/, thenPr[A(N) € {P,Q}] > 1/n.

Their factoring construction relativizes, i.e., the propertie§f6f . (z)} 5 hold even ifA/ and.A have an access
to the same auxiliary oracle.

Let fx.-(z) be computable by a TCcircuit of sizen®’, and hence, by an NCcircuit of sizen<”, for some
constants’, ¢’ > 1. Letxy, z,. .., 22 denote strings if0, 1}™ under lexicographical ordering. Clearly, there
is a constant > 1, such that for all large enough all 2n-bit integersN and all4n? + 2n-bit stringsr, the string
obtained by concatenatinfy; - (x1), fv.r(z2), ..., fnvr(2ne) has KF-complexity less thawf /2. Fix such a and
consider the following oracle Turing machiné with oraclesRky and a functiory:

e On2n-bitinput N, M asks oraclg queriesey, xo, . . . , - t0O getanswergy, yo, . . ., yne. Then,M accepts
if y1y2---yne € Rxr and rejects otherwise.

Itis easy to see that f € {f~.(z)}n, thenM always rejects, fon large enough. On the other handgifs
taken uniformly at random fronk,,, theny,y- - - - y, is @ random string and the probability thiat accepts is
at leastl — 27/2. Hence,| Pr[M/~+@)(N) = 1] — Pr[MB~(N) = 1]| > 1/2, for n large enough. By the
properties off v (x) we can conclude that there is a probabilistic Turing machirveth oracleRkr that factors
N with non-negligible probability. We can reduce the error to zero by verifying the outp4t of

Since any function that is computable by N€rcuits is computable by branching programs of polynomial size,
by considering branching programs instead of'N@cuits we get that Blum Integer Factorization is in ZPP.
ad

We close off this section with the only unconditional lower bound that we havegnand Rk5.

14

Proposition 17 None of the set&k:, Rkr, Rks, Rks and Rk are in ACY.

This proposition follows from the proof of [ABK06, Corollary 22], and also carries over to the other Kolmogorov
measure¥ . discussed elsewhere in the paper.

3.3 Hardness of Approximation

Many computational problems that complexity theory studies are decision problems for which an answer is always
either “yes” or “no”. Other problems that are of interest in computational complexity are optimization problems.
Examples of optimization problems are the Maximum Clique — what is the size of the largest clique in &graph

— and the Minimum Circuit Size Problem — what is the size of the smallest circuit computing a Boolean function
f given by its truth table?

For some optimization problems efficient (polynomial time) algorithms are known. For others, no efficient algo-
rithm is known. Moreover, it is known that some optimization problems are hard for NP. Given that the exact
solution of such an optimization problem may be hard to find one can try to find at least an approximation to
the solution. Many optimization problems are known for which even finding an approximation cannot be done
efficiently, unless something unlikely is true, suchPas= NP. For example, [HS$99] shows that the Maximum
Cligue cannot be approximated up to factdr ¢ in polynomial time, unles® = NP.

In this section we study the following optimization problems — given a truth table of a funétiarhat is the
smallest size of a circuit, a branching program or a formula, respectively, that confpiiéss show that under
certain plausible complexity assumptions these optimization problems are hard to approximate.

Related questions about approximating the size of the smalléstifcliits for a given truth table were investigated

in [AHM +08]. For the seemingly even more restrictive problem of approximating the size of the smallest DNF
formula that represents a given truth table, approximating the size is known to be hard for NP [Fel0908HM
KSo08].

For a minimization problenf : ¥* — IN we say thay : ¥* — IN approximates’ up to factorr : IN — IN if for
allz € ¥*,1 < g(x)/f(x) < r(|z]). For a complexity clas§ we say thaif cannot be approximated up to factor
rin Cifno g € C approximateg up to factorr.

We recall definitions of two more problems that are believed to be computationally difficult.

Integer Factorization Given a composite integéy € IN, find two integers? and@ such thatl < P < @ and
N = PQ.

Discrete LogarithmGiven three integers, z, N, 1 < z, z < N, find ani such thatr = z* mod N if suchi exists.

The following result is implicit in [ABK06]:

Theorem 18 Let(0 < v < 1 be a constant and be a set of at least polynomial density such that for ary B,
SIZE(z) > |=|7. Then Integer Factorization and Discrete Logarithm areBiRP”.

This theorem implies the non-approximability of circuit size.

Theorem 19 For any0 < ¢ < 1, SIZE(x) cannot be approximated up to factpr|! = in BPP, unless Integer
Factorization and Discrete Logarithm are BPP.

15

Proof. Assume that for somé < ¢ < 1, there is a functioy € BPP that approximates SIZE) up to factor
|z|* <. We will show that this implies that Integer Factorization and Discrete Logarithm are in BPP.

Consider the seB = {z € {0,1}*; g(z) > |z|'*~</2}. Clearly, B € BPP. Since for al: € {0,1}*, 1
g(x)/SIZE(x) < |z|*~¢, we have that for alt € B, SIZE(z) > |=|/? and also for all: € {0, 1}*, if SIZE(x)
|z|'~</2 thenz € B. By [Lup59], almost all truth tables € {0, 1}* require circuits of size at leaét(n/ logn).

Hence,B is of at least polynomial density. By Theorem 18, Integer Factorization and Discrete Logarithm are in

sppPP C BPP. (In the case of Integer Factorization we can actually verify correctness of the result to get ZPP
computation instead of BPP.)]

<
>

Similar non-approximability results can be obtained for formula and branching program sizes. A proof similar to
the proof of Theorem 16 yields the following claim.

Theorem 20 Let0 < v < 1 be a constant an@ be a set of at least polynomial density such that for ary B,
BPSIZEx) > |z|” or for anyz € B, FSIZEz) > |z|?. Then there is ZPP® procedure that on inpudv that is
a Blum Integer produces factofd and@ of N.

As a corollary to this theorem we obtain:

Theorem 21 For any0 < € < 1, BPSIZEx) andFSIZE(z) cannot be approximated up to factor' < in BPP,
unless Blum Integer Factorization is #PP.

In Theorems 19 and 21, a functighis computable in BPP if there is a polynomial time probabilistic machine

M such that for anye, Pr[M(x) = f(x)] > 2/3. However, the results hold for an even stronger notion of
non-approximability: For ang < e < 1, if there is a polynomial time probabilistic machifé such that for all

z, Pr[l < M(z)/BPSIZEz) < |z|'~¢] > 2/3 or Pr[l < M(z)/FSIZE(z) < n'~¢] > 2/3 then Blum Integer
Factorization is in ZPP. Similarly, if there is a polynomial time probabilistic machinguch that for alke, Pr[1 <

M (z)/SIZE(z) < |z|'~¢] > 2/3 then Integer Factorization and Discrete Logarithm are in BPP. These results
follow by essentially the same proofs as Theorems 19 and 20; one has only to observe that the derandomization
results that we use hold not only relativedmaclesthat distinguish between random and pseudorandom strings

but also relative tgrobabilistic procedurethat distinguish between random and pseudorandom strings with non-
negligible probability.

3.4 The Complexity of Rt

In this subsection, we prove our main results regarding KNt complexity. We prove an upper bound, showing that

Rkt isin pPNEXP (and observe that this class is contained in NEXP/poly) and we showRthat is complete

for NEXP/poly under P/poly reductions. Furthermore, we present an unconditional lower bound, showing that
Rxny is not in NPN co-NP. (This result presents a stark contrast to what we are able to provelgbouthich

is still not known to lie outside of P, or even outside of Dlogtime-unifornf/2C)

3.4.1 Properties ofNE, NEXP, and pNEXP

Before we can present our results ab&uiny, it is necessary to present some fundamental facts about the com-
plexity classes that are most closely relatedteo: .

16

In this paper, we will need to refer both to NE NTime(2°(™)) and NEXP= NTime(Z”O(l)), as well as their
deterministic counterparts E DTime(2°(™)) and EXP= DTime(Z”O(l)). We will also have occasion to refer

to the class FewEXP, which is defined as the class of languages accepted by NEXP machines that have no more
than2"”"” accepting computations on inputs of lengthFewE is defined similarly in terms of NE machines that

have no more tha2®(™ accepting computations on inputs of length

The following theorem is a well-known “folklore” theorem, although the only citation we know to give is to
Fortnow’s Computational Complexity weblog [For04, vMO03].

Theorem 22 (Folklore) NE/lin = coNE/lin.

Proof. It suffices to show that coNE- NE/lin. Let A € coNE, whereM is an NE machine accepting the
complement ofd. Definea,, to be the advice string for length wherea,, is the binary encoding of the number
of strings of lengtm in A; note that,, has a linear number of bits. Here is an NE/lin algorithmAotOn inputx

of lengthn, nondeterministically pickR™ — a,, strings of lengtm, and attempt to find an accepting path\éffor
each of these strings. (If this attempt is unsuccessful, then abort.) At this point, we have allisifdlfie strings
of lengthn that arenotin A. Accept if and only ifx is not on the list. O

Corollary 23 NEXP/poly= coNEXP/poly

Similar techniques allow us to show that any NEXP-complete 9e88RA CE-robust; recall from Section 3.1 that
a setd is PSPACE-robust if P! = PSPACE*. This extends a result of Hemachandra [Hem89], where it is shown

that PNE = NPNE = | — E,’;’NE. (Note also that pE _ PNEXP, since there are sets that are polynomial-time
many-one complete for NEXP in NE.)

Theorem 24 PNE — PSPACENE. In fact, PNE is also equal to the clasEXPNE if we restrict theNEXP
oracle machine to pose queries of length polynomial in the length of the input.

Proof. Let A be accepted by a nondeterministic oracle machih¢hat runs for time2™" and asks queries of
length at most:©, and has as oracle a sBte NE. LetC be the sef{ (1", m) : there are at leash strings of
length< nin B}. Clearly,C € NE. Using binary search, a polynomial time machine with acceés (or to an
NE-complete oracle) can determine exactly how many strings of length atuhast inB.

Now consider the seb, defined as the set of paifs, m) for which there is a se¥ C B with exactlym strings
of length at mostz|°, such that\/® (x) accepts.D is easily seen to lie in NEXP (simply guess thestrings,
guess an accepting computation for each of the strings to verify that itBs amd then simulate the computation
of M (z) using them strings as an oracle). Thu3is reducible in polynomial time to a set in NE.

Thus in PVE one can compute the precise vatuesuch thatB hasm strings of length at most<, and then find
outif (z,m) € D, which is equivalent ta: € A. O

Corollary 25 PNE — pspaceNE = EXPL\JP (WhereEXP{\t”3 denotes the class of problems accepted by deter-

ministic oracle machines running in tin2e” " with an oracle inNP, with the property that the complete list of
oracle queries to be posed is composed before the first query is made). This mode of oracle access is known as
“nonadaptive” or “truth-table” reducibility; the queries may be of exponential length.

17

Proof. The first equality is from Theorem 24. The second equality is from [Hem89, Theorem 4.10.2]. O

Combining the techniques of Theorems 24 and 22, we obtain the following equality.
Theorem 26 PSPACENEXP/pon = PNEXP/pon = NEXP/poly.

Proof. Fortnow credits Buhrman with the observation (stated without proof) thatt'\J:PXB contained in
NEXP/poly [For04]. By Corollary 25, this implies the theorem. For completeness, we give a simple direct proof.

By Theorem 24, it suffices to show tha&'gxplpoly is contained in NEXP/poly. Let € pNEXP pe recognized
by an oracle maching/ running in timen® with oracleB € NEXP. Our NEXP/poly algorithm for will use an
advice sequence, listing for eagh< n° the numberm,, of strings of lengthn in B. Our NEXP/poly algorithm
will guessa,, strings of lengthm and guess accepting computations verifying that each of the stringsds in
Then it will simulateM (x) using this list of strings as the oracle, accepting if and ontydf A.]

In order to prove our lower bound fdRky; in Section 3.4.4, we need to establish some conditional collapse
results. In particular, we need to show that if NEXP is(iMP N co-NP)/poly, then NEXP= PSPACE. (We

prove a stronger result below in Theorem 29.) Vinodchandran proves a related result, showing thatdf EXP
(NP N co-NP/poly, then EXP= AM [Vin04, Theorem 8]. We make use of a stronger hypothesis than this
result of Vinodchandran (assuming an upper bound on NEXP instead of EXP), but in order to conclude that
NEXP = AM we would first need to argue that, under this assumption, EXREXP. Instead of presenting the
argument in that form, we first present the following theorem, which improves Vinodchandran’s result (obtaining
the conclusion EXP= AM from a weaker hypothesis).

Theorem 27 EXP C (AM N coAM)/poly if and only ifEXP = AM.

Proof. The backward implication is trivial (since EXP is closed under complement, and thus iEHEXM we
have EXP= AM N co-AM C (AM N coAM)/poly).

For the forward implication, we follow the example of the proof that if EXP P/poly, then EXP= MA
[BFNW93]. That argument proceeds by observing that every problem in EXP has a two-prover interactive proof
[BFL91] where, moreover, the strategy of the provers is computable in EXP. Thus ifERPoly, each problem

in EXP can be solved by an MA protocol where Merlin first sends Arthur the circuits computing the provers’
strategies, and then Arthur uses the circuits to simulate the rest of the multi-prover interactive proof.

We use the weaker assumption that EXRAM N coAM)/poly. Thus each problem in EXP has an i M €0-AM
protocol, where Merlin sends Arthur the advice sequence used for the(8WAM)/poly algorithms for the
provers, and then Arthur uses the AMco-AM oracle to simulate the multi-prover protocol. The result follows

since MAAM M CO-AM C AM AM N co-AM _ A [Sch89]. a

Corollary 28 P#P C (AM n coAM)/poly if and only ifP#P = AM.
PSPACE C (AM N coAM)/poly if and only ifPSPACE = AM.

Proof. #P andPSPACE have interactive proofs where the strategy of the prover is computable in #P and
PSPACE respectively [LFKN92, Sha92]. The rest of the argument is the same as in Theorem 27. o

The same strategy fails in proving a similar result for NEXP, since the strategies of the provers for the two-prover
interactive proofs for NEXP are not known to be computable in NEXP. However, a different strategy succeeds.

18

Theorem 29 NEXP C (AM N coAM)/poly if and only ifNEXP = AM.

Proof. As in the proof of Theorem 27, the backward implication is trivial (since ANEXP C NEXP).

For the forward implication, assume that NEXP (AM N coAM)/poly. This clearly implies that NEXRC
Y2 /poly.

Assume, for the sake of contradiction, that NEXFEXP. Itis known that this implies that AMC io-NTime(2") /n
[IKWO02] (where this means that, by Theorem 27, we can conclude that for every prebleiaXP = AM, there

is a problem in NTim&") /n that agrees wittd for infinitely many input lengths). There is a problen € NE

that is hard for NTimé&™) underlinear-timereductions. It follows from the preceding paragraph that there is
a constant > 0 and aX} algorithm running in timex® with n¢ bits of advice, acceptings, and thus EXPC
io-Yotime(nd) /nd for somed > 0. However, a straightforward diagonalization argument in the style of Kannan
[Kan82] shows that this inclusion does not hold. (That is, an exponential-time algorithm can simulate the first
Y,time(n?) algorithms on each of t&” advice sequences of lengtA and on each of the lexicographically first
n?? strings of lengthh. There must be some function on thesé¢ strings that differs from each of thesen’
functions. Select one such function. This defines a function in EXP that is noigtioye(n?) /n.)

Thus we can conclude that EXP NEXP under this assumption. The theorem now follows from Theoreni27.

For completeness, we mention two more equivalences in the same vein.

Corollary 30 EXPNP ¢ (AM N coAM)/poly if and only ifEXPNP = AM.
FewEXPC (AM N coAM)/poly if and only ifFewEXP= AM.

Proof. Again, the backward implications are trivial.

ifEXPNP € (AM N coAM)/poly, then clearly EXP'P ¢ EXP/poly, which implies that EXBF = EXP [BH92].
Thus we have EXBP = Exp C (AM N coAM)/poly, which implies ExPP = am by Theorem 27.
If FewEXP C (AM N coAM)/poly, then clearly FewEXRC EXP/poly, which implies that FewEXR= EXP

[AKS95]. Thus we have FewEXP- EXP C (AM N coAM)/poly, which implies FewEXP= AM by Theorem
27. a

3.4.2 An Upper Bound for Rkt

Theorem 31 Rint € PNE.

Proof. By Theorem 24, it suffices to show th&k: is in PSPACENE. From the definition, it is clear that

a stringz is notin Rk if and only if there is a stringl of length less thamz| and a timet < 2/*I such that
Vie {1,...,|z|+1}Vb € {0,1,*} U%(4,b) runsin timet and accepts if and only if; = b, where|d| +logt < |z|.

A PSPACE machine can cycle through each choicel@ndt and use an oracle in NE to answer questions about
whether the nondeterministic universal machihaccepts the given input in the allotted time.]

It is natural to wonder if there is a better upper bound on the complexitiigf;. In the next subsection,
we show thatRky; is complete for NEXP/poly under P/poly reductions, which is some evidenceRtkat

19

cannot be too much easier thah'® — but it is actually rather weak evidence, since it is still not proven that
NEXP/poly # P/poly. Although it might seem that any algorithm determining membershixi; would have

to solve problems that are hard for both NE and coNE, we know of no unlikely consequences that f&ligw if
were to lie in NE. In particular, the following proposition shows that it is unlikely that there is a polynomial-time
many-one reduction (or even a truth-table reduction) from NE (or CONE)tQ;.

Proposition 32 If there is a unary language INEXP— Pi\tlp, thenRxkn; is not hard forNEXP under polynomial-
time truth-table reductions.

Proof. Let A be a unary language in NEXP PQ'P, and assume that there is a polynomial-time truth-table
reduction computed by a machifé, reducingA to Rkns. Each query; that is posed by on input0™ has
Kt(¢) = O(logn). Thus, all queries that do not have lengilog n) lie outside of Rk, and hence in order to
compute the value of the reduction, it suffices to determingedf Rkt for those querieg of lengthO(log n).
SinceRknt € PNE via an algorithm that asks queries of length linear in the input size, each such qudrgani

be answered by making unary queries to an oracle in NP. This showd th&ti\":, contrary to assumption. O

The hypothesis to this proposition seems quite plausible. It is known that there are problems that lie ir-NEXP
Pi\th [Moc96, FLZ94], but it does not appear to be known if there areltararylanguages in this difference.

3.4.3 A Completeness Result foRk
Theorem 33 Rk is complete foNEXP/polyunderP/polyreductions.

Proof. It was established in the preceding section tRat, € NEXP/poly. Hardness follows immediately from
Theorem 24 (which tells us that any sethat is complete for NE iSPACE-robust), Theorem 11 (which tells us
that the strings iRk ¢ have high KT* complexity), and Theorem 15 (which tells us that these conditions imply
that A<L/P°Y Ricny). O

We do not know ifRkn; is hard for NEXP under NP reductions. However, we are able to show hardness for some
important subclasses of NEXP.

Theorem 34 UEXP C NPfxxt,

Proof. When Babakt al. showed that EXR= P/poly implies EXP= MA [BFNW93], a crucial step involved
observing that the strategies of the provers in the MIP protocols for EXP [BFL91] are computable in exponential
time. Analysis of the MIP protocols for NEXP [BFL91] reveals that the strategies of the provers for some language
A € NEXP canbe computed in NEXP if there is a language in NEXP that encodes the bits of an accepting
computation path for every stringe A.

Although this condition is not known to hold for every € NEXP, it does hold for everydA ¢ UEXP. LetA be
accepted by a UEXP machind, and consider the sé : {(z,14,b) : the unique accepting path af on input

x hasb as itsith bit}. Clearly, B € UEXP C NEXP. Thus the strategy of the provers is in NEXP and hence by
Theorem 33 can be computed by an oracle circuit of polynomial size with an oradifar

Thus we obtain a MA=Nt protocol forA: Merlin sends Arthur the oracle circuitd , C, that compute the provers’
strategies, and then Arthur uses his probabilistic bits to simulate the MIP protocol, using the €ifcaitd Co
along with the oracléikn¢, to compute the answers provided by the provers in the MIP protocol.

20

We now appeal to the following lemma:

Lemma 35 [ABK'06] LetC be any oracle and. be a set such that € P/poly” and for every: € L, KTC(x) >
|| for some constant > 0. thenMA~ = NP”.

Letting C be any set complete for NE, and lettidgbe Rk, and appealing to Theorem 11, we see that the
hypothesis of the lemma is satisfied. Thiiss NPFx~e,]

Building on this proof, we can prove a stronger result.
Theorem 36 FeWEXPC NPk~

Proof. Let A € FewEXP be accepted by a NEXP machiviethat has no more thaa" accepting computation
paths on any input. We appeal to the following well-known hashing theorem:

Theorem 37 ([FKS84][Lemma 2], [Meh82][Theorem B]) Le§ be a set o2°(™")) numbers, each of whose
binary representation has at maat” bits. Then there is some prime numbpewith O(n*) bits such that for any
x #yin S,z # y(modp).

Now let B = {(z,i,b,p,q) : p is a prime number witlD(|z|*) bits,0 < ¢ < p, and there is an accepting path
of M on inputz, such thay hasb as itsith bit andy = g(mod p)}. Clearly, B € NEXP.

Assume for the moment that p andq are such that there is exactly one accepting computatidd oh inputx
(and recall from Theorem 37 that there must always be such djpajy for anyxz € A). Then an exponential-
time machine)M’ with an oracle forB can query the string&e, i, b, p,q) forallb € {0,1} and alll < i < on”
and construct an accepting computation patiiobn inputz, and given this informatiod/’ can then compute
the strategies of the MIP provers to show that A, given a good paifp, ¢). (We are not concerned with the
behavior ofM’ when given a bad paip, ¢).) Since the queries made By’ are all of length polynomial ifz|,

it follows from Theorem 24 that the language computedibylies in FNE, and hence by Theorems 33 and 26 it
lies in P~ /poly.

Thus we obtain an MA protocol fad, where in the first step Merlin sends Arthur a good gairg) along with
the oracle circuits that simulate’ when providedRk ¢ as an oracle. The rest of the proof proceeds exactly as
in the proof of Theorem 34. |

Our observations about the complexity of the MIP protocols for UEXP and FewEXP also provide us with the
following corollary, which is analogous to the theorem that NEXIP/poly if and only if NEXP= MA [IKWO02].

Corollary 38 UEXP C P/polyif and only ifUEXP = MA
FewEXPC P/polyif and only ifFewEXP= MA

Proof. In each case, the forward implication follows from our observation that the provers’ strategies for MIP
protocols for these classes also lie in the same classes. (Namely, Merlin guesses the circuits for the provers
strategies and sends them to Arthur.)

The other implications follow from exactly the same argument given by Impagliazzo, Kabanets, and Wigderson,
in proving the analogous implication [IKW02].]

21

3.4.4 An Unconditional Lower Bound for Rkn

Theorem 39 Rkt ¢ NP N co-NP.

Proof. If Rixni € NP co-NP, then NEXRC PRx~t/poly C (NP N co-NP/poly by Theorem 33. By Theorem
29, this implies NEXP= AM and hence NEXP= PSPACE.

However, it is known that any polynomially-dense set that has no strings of KS-compléistiard forPSPACE
under ZPP reductions [ABKO6]. SinceRkn: is dense and has no strings of low KS complexity, it follows that
NEXP = PSPACE C zpPe ¢ zppNPNCO-NP _ \p co-NP, in contradiction to the nondeterministic
time hierarchy theorem. a

This lower bound was recently strengthened, to handle a small amount of nonuniform advice. See [All10].

4 Nondeterministic Kolmogorov Complexity

Earlier work has shown that many of the techniques that have been developed to derandomize BPP can be re-castin
terms of arguments in resource-bounded Kolmogorov complexity [AllO1, AB&. In this section, we investigate

the extent to which a similar program can be carried out to study the techniques that have been developed to
derandomize AM. In order to state our results, we first recall some standard definitions.

Definition 40 [Lon82] A StrongNP-procedureomputing a functiorf is a polynomial time nondeterministic pro-
cedure, so that every computation path on inpwither producesf(x) or rejects. Furthermore, at least one
computation path must produgéz).

We will also refer to functions computable in SNP/log. For this, we assume that, for each inputiieigtne

is an advice string,, of lengthO(log n), and a nondeterministic machine as above that prodficeson every
non-rejecting computation path on ingut a|;|). We place no restrictions on the behavior of the nondeterministic
machine on inputéz, z) wherez # a|,).

Definition 41 [ACR98] Ahitting set generatdor a class of circuit€ and thresholdy is a procedures that maps
0" to a setH,, of polynomial size with the property that, for every circuitron n inputs that accepts at least
«a2™ strings inX", the circuit accepts an element &f,.

Definition 42 [AlI89] Let A be a language and I be a Kolmogorov complexity measure. We define the
Kolmogorov complexity ofl for lengthn as

Kpy(n) = min{Ku(z) : |z] =nandz € A}

If ANY™ = 0 thenKu,(n) is undefined.

A typical question that will concern us is the question of how rapitily, (n) can grow, forA residing in various
complexity classes. For example, consider the following theorem:

Theorem 43 [All01, For01, ISW99, KRC00, ACR98] The following are equivalent:

22

1. Kt andKT are exponentially far apart. (That is, there is some- 0 such that for all largen there is a
stringz € X" such thatkT (z) > 2¢(Kt(@)+1og]a]))

2. For all polynomially-densel € P/poly, Kt 4(n) = O(logn).

3. There is a languagel € E and a constané > 0 such that, for all largen, there is no circuit of siz&<"
acceptingA=".

4. There are pseudorandom generat6fgomputable in time°(1), such thaiG : Xklogn — »7,

5. There are hitting set generators fBfpolyand threshold% computable in polynomial time.

One of the most important theorems in the literature on derandomization is that each of these conditions implies
P = BPP [IW97]. Not all work in derandomization has been aimed at BPP; there has also been a significantamount
of work aimed at discovering conditions that imply AM NP. In particular, Klivans and van Melkebeek proved

that if there is a set in NB coNE that does not have oracle circuits of subexponential size that make nonadaptive
queries to SAT, then AM= NP [KvMO02]. This was improved by Miltersen and Vinodchandran [MV05], who
proved that the same conclusion follows from the formally weaker assumption that there is a sehicoNE

that does not have strong nondeterministic circuits of subexponential size, by showing that this assumption implies
that there is a hitting-set generator computable in NP for co-nondeterministic circuits. Shaltiel and Umans [SUQ5]
subsequently presented a better construction of a hitting-set generator that hits co-nondeterministic as well as
nondeterministic circuits. In an earlier version of this paper, we considered several conditions that had been studied
in relation to derandomizing AM, and showed that they are all equivalent [AKRRO3]. Subsequently, Shaltiel and
Umans improved this, to show that even the condition studied by Klivans and van Melkebeek is equivalent to the
others [SUO06].

In contrast to Theorem 43, we are not able to show that the hypotheses that have been used to derandomize AM
have equivalent restatements in terms of resource-bounded Kolmogorov complexity. However, we are able to use
these derandomization techniques to prove a partial analog of Theorem 43:

Theorem 44 The following are equivalent:
1. 3¢ > 0, ¥n, 3z € B KNT(z) > 2¢(KNt@)+log|2)) (That is, KNT andKNt are nearly as far apart as
possible.)
. For all polynomially-densél in coNP/poly KNt 4(n) = O(logn).

. For all polynomially-densel in NP/poly, KNt 4(n) = O(logn).

. For all polynomially-densél in NP/polyn coNP/poly KNt 4(n) = O(logn).
JA eNE/lin, Ja such thatA requires strong nondeterministic circuits of szé'.
. dA eNE/lin, Ja such thatA requires nondeterministic circuits of si2&™.

N o U~ W N

. There exisSNP/logcomputable hitting set generators for nondeterministic polynomial-size circuits and
threshold# (and similar conditions for co-nondeterministic and strong circuits).

Remark: We wish to call attention to the equivalence of conditions 2 and 3. For some notions of complexity such
as KT, there are polynomially-dense sets in coONP with essentially maximal KT complexity (sSBgh psvhereas

there are good reasons to believe that every polynomially-dense language in NP/poly has low KT-complexity.
(Rudich gives evidence for this conjecture in [Rud97].) In contrast, we see here that the KNT complexity of dense
sets in NP and coNP are similar.

23

Proof. (1< 5) This equivalence is proved similarly to related statements in [All01]. Given any sequence of strings
x1, T2, ... With |z,,| = n = 2™, where KNT(z,,) is large and KNtz,,,) is logarithmic in KNT{x,,,) (and hence

is logarithmic in|z,,|), define the languagé to be the set such that the truth tabledt™ is given byz,,. Since
KNt(z,,) = O(log 2™) = O(m), itis immediate thatd € NE/lin. (The description of;,,, showing that KN¢x,,)

is small gives the advice sequence for the NE/lin upper bound.) We need to shaw thqtiires large strong
nondeterministic circuits. But this is immediate from Proposition 10, since by hypothesi&(NT> |z, |¢ for

somee > 0.

Conversely, given any languagk € NE/lin that requires exponential-size strong nondeterministic circuits, the
lengthn prefices of the characteristic sequengehave logarithmic KNt complexity and KNT complexity for
somee > 0.

(5 = 6) We prove the contrapositive6 = —5. Thus assume that evesy € NE has “small” nondeterministic
circuits (that is, of size less tha” for anya > 0). By Theorem 22A < NE/lin, and hence also has “small”
nondeterministic circuits. This yields co-nondeterministic circuitsApmwe can combine the two circuits to get
strong nondeterministic circuits fot. This proves-5. (Similar observations are made by Shaltiel and Umans
[SU05].)

(6 = 5) This is trivial; a strong nondeterministic circuit yields a nondeterministic circuit of roughly the same size.

(5= 2, 3, 4, and 7) Shaltiel and Umans show that for any constdhére is a functiorG,.(0™) computable
in deterministic polynomial time with the property thataifis a string of lengthn®() that is the truth table
of a function requiring exponential size strong nondeterministic circuits, hg0™) produces a sel,, ,, that
is a hitting set for both nondeterministic and co-nondeterministic circuits ofrsiagith threshold# [SUO5,
Corollaries 6.6 and 6.9].

It is now straightforward to obtain a hitting set generator in SNP/log. By assumption there istass&E/lin
that requires large strong nondeterministic circuits. Lt be the advice sequence for length(having length
O(m)). Letn = 2™. On input0™ with adviceh(m) having lengthD(log n) we can, in nondeterministic polyno-
mial time, guess and verify the stringthat is the truth table foA="", and then run the generat@t, (0™).

It is easy to see that any string in the hitting set output by a SNP/log computable hitting set generator has logarith-
mic KNt complexity; this completes the proof of this implication.

The implications (%= 4) (2= 4), and (3= 4) are either trivial or follow via the argument above. Thus it suffices
to prove (4= 5).

(4 = 5). DefineA = {z : |z| = 5m and KNt(z) > m}. We claim thatA is in NE/lin. To see this, recall
that for a stringr of length5m, KNt(x) < m implies3d, |d| < m,Vi U4(i,b) has an accepting path iff, = b,
whereU is a universal nondeterministic Turing machine runningX@rsteps. In order to enumerate als of
length5m that have KNfz) < m, we will define a nondeterministic procedure that will allow us to exclude from
consideration thosé's that are not valid descriptions of strings. Definéo be the number of stringsof length

< m that are indeed valid descriptions of strings of length, (i.e., there exists am for which Vi U4 (i, b) has

an accepting path iff; = b), and we defing’ to be the number of “recognizably bad” descriptions, that is, those
stringsd of length < m for whichVi < 5m + 1, 3b € {0,1,*}, U accepts(i, b) and for some and some

b # b€ {0,1,*}, U< accepts botlji, b) and(i,b’). Our NE/lin machine, on input of length5m, takesa and

(3 as advice (each of length(m)). First it guesseg “recognizably bad” descriptions and verifies that they are
indeed bad by guessing accepting paths for oth) and (¢, '). Then it guessea other strings (corresponding

to candidate “goodd’s), and guesses accepting paths for all of them and prints out the corresponding strings. All
of this takes time exponential in. Now we can accept if and only if it is not in the list that has been generated.

24

Now we need to show thad requires large strong nondeterministic circuits. Assume otherwise, so that for
everyc there is some: such that there is a strong nondeterministic circuit of €€ deciding A for inputs

of lengthn. Then we can construct a polynomially-dense languBge NP/polyn coNP/poly of the form

B = {y : |y| = n and the prefix ofy of lengthc,, - logn is in A} wherec,, is chosen (nonuniformly, as part of
the advice sequence) to be as large as possible, so that the membershipAestridie implemented in size

via a strong nondeterministic circuit. By assumption, the sequence of nufebgis unbounded. It follows that
KNtg(n) # O(logn), contrary to our assumption. O

Although none of the conditions of the preceding theorem are known to imply=ANP, it is trivial to observe
that they imply AM C NP/log. It is worth mentioning that these conditions do imply a nontrivial inclusion for
AM:

Theorem 45 If there existsA eNE/lin, such that4 requires strong nondeterministic circuits of si#¢", for some
a > 0, thenAM ¢ PNPllogn],

Proof. As in [MV05], to determine ifz is in a setB € AM, we model the Arthur-Merlin game using a
nondeterministic circuit with input and some probabilistic inputs Let C, be the result of hardwiring the bits
of x into this circuit; thenr € B = C, accepts every, andz ¢ B = C, rejects at least half of the strings
Thus it suffices to use our NP oracle to determine if there is a sjrih@t is rejected by’,.. By parts 7 and 2 of
the preceding theorem, if such a stripgxists, then there is such a string with KNt = O(log n).

Thus it suffices to design d¥¥llog] procedure to determine if there is a stripgiith KNt(y) < clogn such that
the nondeterministic circult’, rejectsy.

As in the proof of (4= 5) of the previous theorem, let be the number of good descriptions of length at most
clogn and letg be the number of “recognizably bad” descriptiahsf length at most log n. The numbers: and

B can be computed i@ (log n) queries to an NP oracle of the form “do there exisy strings(d:, ds, - - -, d;) of
length at most logn such that for alim and alli < |y| + 1 there is @& € {0, 1, x} such that/¢~ (i, b) has an
accepting path?” and “do there existj strings(di, ds, - - -, d;) of length at mostlogn such that for allm, i
there is @ such that/?~ (i, b) accepts and there is some< |y| + 1 for which there aré # ' € {0,1, x} such
that U4~ (i,b) andU% (i,b') each have an accepting path?” Having computezhd 3 we can ask one more
query to an NP oracle to determine if there grbad descriptions and good descriptions such th&t, accepts

all of the stringgy described by the: good descriptions. |

One might wonder how reasonable it is to expect that a condition suéb as0, Vn, 3z € X", KNT(z) >
2¢(KNt@)+log|z) should hold (saying that KNT and KNt are nearly as far apart as possible). The following
proposition shows that, for at least some of the measures that we consider, there are unconditional results of this
form that one can prove.

Proposition 46 Vn, 3z, € X", KS(x) > n'/? andKs(n) < 2logn + O(1).

Proof. A straightforward diagonalization shows that there is alsetDSpacé2™) that is not in io-DSpad@?"/3 /227/3).
Let z,, be the lengt prefix of the characteristic sequengg. It is immediate that K&e,,) < 2logn + O(1)
(since it is described by the numberand a program ford, which can be simulated in spac¥2™)). Assume

for the sake of contradiction that K8,) < n'/2, and letm be the largest number such that contains the
membership information for all strings of length. Clearlyn > 2™ > n/2. Thus there is a descriptiahof
lengthn!/2 < 2(m+1)/2 gych that for allz of length at mostn, U¢(x, b) runs in space< 2("+1)/2 and accepts if

and only ifz € A. This is counter to our choice of.]

25

5 KF Complexity and the NEXP C NC! Question

Derandomization techniques were usedliKiW02] to show that NEXPC P/poly if and only if NEXP= MA;

it was observed in [All01] that this is also equivalent to conditions concerning the Kt-complexity of sets in P. In
this section we conduct a similar investigation of the question of whether or not NEXP is contained in nonuniform
NC'.

In order to formulate the appropriate generalization of the equivalence NEXPpoly if and only if NEXP=
MA, it will be helpful to present a technical definition. We begin by recalling the definitidiP@®/poly].

Definition 47 [AKS95]IP[P/poly is the class of languages having an interactive proof system where the strategy
of the honest prover can be computed WB/poly circuit family (also see [AK02], where the multiple prover class
MIP[P/poly| is observed to be the sameIagP/poly}).

ClearlyIP[P/poly C MA NP/poly (because Merlin can guess the circuit that implements the Prover’s strategy and
send it to Arthur); it appears to be a proper subclass of MA (since otherwiseé Ripoly). If NEXP C P/poly,

the proof of [IKWO02] actually shows that NEXE IP[P/poly]. We now define an analogous subclass ofMA
nonuniform NC.

Definition 48 MIPNC! refers to the class of languages for which there is a 2-prover one-round interactive proof
protocol where the strategy of each honest prover can be implemented by a (nonumiétnejrcuit family

and the computation of the verifier is computable by a uniform (probabilist&) circuit family. (Although it

is important that the verifier’s circuits be uniform, our results do not depend crucially on the exact notion of
uniformity. They hold foP-uniformity and forDLOGTIME-uniformity.)

We could likewise definBPNC! as the class of languages similar to the above for a single-prover constant-round
interactive proof protocol, but we can easily see MaPNC! andIPNC! coincide.

Definition 49 EveryNEXP search problem is solvable @ if for everyk andevery NEXPmachineM running
in ime 2" on inputs of lengt, there is a functiory in C with the following property. If: is accepted by/,

2|0 (k) i . . .
then there is a witness € {0, 1}2‘ | encoding an accepting computation pathidfon inputa, such that for
all i < 21e1% f(2,i,b) = 1if and only ifw; = b. (Thatis, the unique string) = byb, .. by .00 Such that
f(z,i,b;) = 1 encodes an accepting computation patibbn inputz.)

Theorem 50 The following are equivalent:

1. Forall A € NP, KF4(n) = log®® n.

2. Forall A € DLOGTIME-uniformAC?,
KFA(n) = log?® n,

3. AllNEXP search problems are solvable in nonunifok@’.
4. NEXP C nonuniformNC'.
5. NEXP = MIPNC".

26

Proof. Items (1) and (2) are easily seen to be equivalent, as in the remark before Proposition 62.
The proof that (2= 3) is immediate, once the following two assertions are established:

e (2)= EXPC NC.

e (2) = NEXP search problems are solvable in EXP.

Assume both of these assertions hold. Then for a given NEXP search problem solved in exponential time by
machinel, the languagé (z,4,b) : theith bit output byM on inputz is b} is in NC'. The existence of such

circuit families for NEXP search problems is precisely what is meant by condition (3). Let us examine each
assertion in turn.

Let A € EXP. LetB = {w : wis aprefix ofy 4 }. Bis clearly in P and (since we have already observed that (2
1)) our assumption tells us that Kftn) = log®W) (n). Now Proposition 6 allows us to conclude thaie NC'.

For the second assertion, 12f be any NEXP machine, and consider the languége- {y10* : wherey €

{0, 1}2W is a witness thad/ accepts:}. C'is in DLOGTIME-uniform AC? (assuming an appropriate encoding
of witnesses) and by2f if there is any string irC=" then there is a string i6’=" with small KF complexity. The
exponential-time algorithm solving this search problem involves taking impnd searching through all short
descriptions and seeing if any of the strings thus described encodes an accepting computatiofpathirghut

x.

(3 = 4) This implication requires some explanation. In most cases, assuming that a search problem is easy
trivially implies that the decision problem is easy. However, when we assume that every NEXP search problem
is solvable in NC, it means only that there is an N@ircuit C' such thatC'(z) describes an exponentially long
witness for membership when such a witnessaf@xists. It is notobviousthat there is any easy way to detect
whenC'(z) is describing such a witness. Thus this implication does require proof.

Certainly (3) implies that NP search problems are solvable ih.Nl6t A € NP be accepted by NP-maching,
and letC be a circuit solving the search problem definedy Thusz € Aifand onlyif C(x,1)C(z,2) - - - C(x, n*)
encodes an accepting computatiomdf This latter condition can also be checked in 'N@hich implies NPC
(nonuniform) NC. NP being contained in NCeasily implies thakt? is contained in NE&. On the other hand, by
[IKWO02], if NEXP search problems are solvable in P/poly, then NEXP i8jn

(4 = 5) To prove this implication, observe that by [IKWO02] if NEX® P/poly then NEXP= MA = PSPACE.

By [CCL94], we know thatPSPACE has2-prover,1-round interactive proof systems, where the honest provers
are inPSPACE. Also we note that the verifier’s protocol is very easy to compute; it sends random sequences
to each prover and receives from the provers sequences of polynomials on which it performs (in parallel) some
consistency checks. The consistency checks involve field operations, which are computable by DLOGTIME-
uniform TC circuits [HABO2]. All the queries to the provers are made in one round (and hence are non-adaptive).
Since by assumptio®?SPACE C NC', we have that every language in NEXP is alsdifiPNC!.

(5 = 2) Now we prove this implication. We largely follow [IKWO02], where it is shown that if NEXPP/poly,

then NEXP search can be performed by P/poly circuits. More precisely, we will show that if there is a set in P
with large KF-complexity, then for every > 0, MIPNC! C io — [NTime(2")/n¢]. As in [IKWO02] this latter
condition implies either thatIIPNC' is a proper subset of NEXP (which is to say that condition (5) is false) or
else EXP#£ NEXP (which also easily implies that condition (5) is false).

Let A € MIPNC!, where the verifier’s strategy is computable by a P-uniform family of probabilistic éi€uits
{C,}. Letp be a polynomial, such th&t, uses at mosi(n) probabilistic bits. Our strategy to determinesie A
is

1. Construct the circuit’ = C),.

27

2. Nondeterministically guess N@ircuits D, D’ that might implement the strategies of the provers in the
MIPNC! protocol forA.

3. Construct a circuiB that, given an inpuy of lengthp(n)

(a) UsesC to compute the query that gets posed to each prover iNfIRNC! protocol for A on inputz
and probabilistic sequenge

(b) UsesD andD’ to answer the queries.
(c) UsesC to compute the actions of the verifier.

4. Estimate the probability th& accepts a randomly-chosen string

By the definition of MIPNC!, if 2 € A then there are fan-in two circuit® and D’ implementing the strategy
of the provers (where the depth 6f and D’ is bounded byilogn for some constand depending only om)
such that the circuiB acceptsall of the inputsy, whereas ifc ¢ A, thenno provers (and hence also no provers
computed by small circuit® and D’) can cause3 to accept more than one-third of the inpyts

All of the steps in this algorithm are easily computable in NP except for the final step 4. In order to complete
the argument that{TPNC! C io — [NTime(2"")/n¢], it suffices to show that for infinitely many input lengths

n, there is an advice string of lengtlf such that a nondeterministic machine running in t@2fie can estimate

the probability that a circuit with fan-in two and deptlog p(n) accepts a randomly-chosen input of length)

(where the constamtand the polynomigb depend only on our language and do not depend ai).

As in [ABKT06], we will make use of the hardness-versus-randomness techniques of [NW94, BFNW93]. In
particular, some of the results of [NW94, BFNW93, KvM02] are summarized in [AB8] in the following
form.

/3

Definition 51 For all large n, anye > 0 and any Boolean functiofi : {0,1}" "~ — {0,1} there is a pseudo-
random generatoGFENW : {0,1}"" — {0, 1}#(") with the property that the functio?¥™" is computable in
spaceO(n¢) given access to the Boolean functipnand such that the following theorem holds.

Theorem 52 ([BFNW93, KvMO02]) There is a constank’ depending ore such that ifT" is a set such that
| Prrcu, [€ T] = Praeu, [GFENY (2) € T]| > 1/3, then there exists an oracle circuit of sizen* with
oracleT that computeg and queried” non-adaptively.

Closer examination of the prooftechniques that are used in [BFNW93, KvM02] shows that the(€iconiiputing
the reduction can actually be implemented asastant deptlircuit of MAJORITY gates and oracle gates. Thus
it can be implemented as a circuit of deptlog n for some constank, consisting of oracle gates (where there is
no path in the circuit from one oracle gate to another) ane And Or gates of fan-in two.

Now we can state oub — [NTime(2"") /n¢] algorithm to estimate the probability that an N@rcuit accepts. Let
L be a language in DTinfe*) such that for every there exist infinitely manyn such that Kk (m) > log’ m.
By our assumption that condition (2) fails, such a5eixists.

On inputz of lengthn, our advice string will be a number with approximately:® bits with § = ¢/3, such that

L contains strings of length:, and all strings of length in L have high KF complexity. Our nondeterministic
algorithm will guess a string of lengthm and verify that: € L. This takes time°("). Let f be the Boolean
function on inputs of lengtiilog m] (roughlyn€) whose truth table hasas a prefix (and is zero elsewhere). By
our assumption o, (combined with Proposition 6), there exist infinitely mamysuch that functiory requires
Boolean formulae of size greater thafn)**+. For any input lengt for which a corresponding: = 2°(*")
exists, the probability that circuiB accepts can be estimated by counting the fraction of stgjngfslengthn®

28

such thatB accepts=?"~W (y). This fraction must be within one-third of the true probability (since otheryiise
is computed by a formula of sizén)**°, by Theorem 52).

SinceGﬁfNW(y) is computable in space’, the entire computation to estimate the acceptance probability of the
NC! circuit B (and to recognize languag8 takes time2© ("),

This completes the proof.]

The following definition ofMIPL combined with an analogous proof yields Theorem 54

Definition 53 MIPL corresponds to the class of languages for which there 2spgover one-round interactive
proof protocol where the strategy of each prover can be implementegboly and the verifier is irL.

Theorem 54 The following are equivalent :

1. NEXP C L/poly

2. All NEXP search problems are solvable lifipoly
3. Forall 4 € P,KB 4(n) = log®Y n.

4. NEXP = MIPL

For completeness, we summarize what is known abguyj for A € P for the other measuré§u that we have
considered.

Theorem 55 The following equivalences hold:

e ([AllO1]) All NEXP search problems are solvable Ripolyif and only ifYA € P, KT 4(n) = log®™® n.
e All NEXP search problems are solvable&P/polyif and only ifYA € P, KNT 4(n) = log®W) n.
e All NEXPsearch problems are solvable RSPACE if and only ifYA € P, KS4(n) = log®™® n.

([AlI89]) All NEXP search problems are solvable EXP if and only ifYA € P, Kt 4(n) = log®) n.

Forall A € P,Kss(n) = O(logn).

Note that in all cases the upper bounds on solvability of search problems for NEXP are giveminyiform
classes, except for the cases concerRBBACE and EXP. However, it is easy to see that a NEXP search problem

is solvable inPSPACE (or EXP) if and only if it is solvable in PSPACE/poly (or EXP/poly, respectively). This is
becaus®SPACE provides enough resources to cycle through all advice sequences of polynomial length; similar
observations were made by [BH92]. Note also that we do not have a crisp statement that is equivalent to every
setA € P having KNt (n) bounded bylog®) n. See also the remark after Proposition 62, regarding the KDt
complexity of sets in P.

Proof. In order to see that Kg(n) = O(logn) for all A € P, it suffices to observe that there is a trivial algorithm
that runs in spacg®(I”) that takes the string as input and searches for the lexicographically least4A=", and
produces this string as output.

29

All of the rest of the implications are proved similarly to each other. For the backward direction, in each case, the
first step is to show that the given assumption implies that every NEXP search problem is solvable in EXP. It will
suffice to consider the weakest of these assumptions; namely:

VA e P, Kta(n) = 1og0(1) n.

Let M be any NEXP machine, and consider the languége {y10” : wherey € {0, 1}2W is a witness that

M acceptsc}. Cisin P and by assumption, if there is any stringIn™ then there is a string i6'=" with small

Kt complexity. The exponential-time algorithm solving this search problem involves taking«rgmd searching

through all short descriptions and seeing if any of the strings thus described encodes an accepting computation
path of M on inputz.

Thus for any NEXP search problem there is a deterministic exponential-time magHiselving it. Hence the
languag€| (z, 7, b) : theith bit output byM’ on inputz is b} € EXP, and hence it is AGreducible to a setl € E.

In order to complete the proof of the backward direction, it suffices to show that thi4$ setontained in the
appropriate class. The sgb : w is a prefix of the characteristic sequenceddfis in P (and contains exactly one
string of each length). Results such as Proposition 10 and Theorem 4 now suffice to give the appropriate upper
bound forA.

For the forward direction, lefl be any set in P, and consider the search problem defined by the NE machine
that takes input and guesses a stringof lengthn, accepting if and only ifc € A. By hypothesis, there is a
function in a given class that takes as inpufi) and returns théth bit of some string of length in A. In each
case, this is precisely what is needed in order to provide the desired upper boking, om). |

6 Distinguishing Complexity

Recall from Section 1.3 that there are three main kinds of resource-bounded Kolmogorov complexity that have
been studied:

e Definitions in the spirit of Levin’s Kt measure.
e Definitions similar to ¢ and K for various time bounds

e Distinguishing complexity.

Thus far in this paper, we have introduced a number of other measures in the spirit of Levin's Kt measure, where
these new measures bear close relationships to different complexity classes (much in the same way as varying the
time bound: causes the measure$ &d K to be related to different complexity classes). But the measures that

we have introduced have more in common witha®d K (in which a description allows a machinepimducea

string) than with distinguishing complexity (in which a description allows a machinectmgnizea stringaz when

it sees it). In this section, we investigate the topic of distinguishing complexity, in the spirit of Levin’s Kt measure.

Distinguishing complexity dates back to the work of Sipser [Sip83], and it has been studied in more depth by
Fortnow and Kummer [FK96] and by Buhrman, Fortnow, and Laplante [BFLOZ2]. In all cases, the focus has been
on the polynomial-time bounded versions of distinguishing complexity. Here are the formal definitions of the
Distinguishing Complexity measures:

Definition 56 Letp be a polynomial, and I€l/; (Us) be a universal (nondeterministic) Turing machine.

30

e CD”(z) is defined to be the minimujai| such that/{(y) accepts in timey(|z|) if and only ify = =.

e CNDP(z) is defined to be the minimuja such that/g(y) accepts in time(|z|) if and only ify = .

The following definitions are the most natural way to formulate notions of Distinguishing Complexity more in line
with Kt and KNt complexity:

Definition 57 Let U; be a fixed deterministic Turing machine, and 1&t be a fixed nondeterministic Turing
machine.

KDty, () = min{|d|+logt : Yy e Sl Ud(y)
runs in timet and accepts ift = y}
KNDty,(z) = min{|d|+logt : Vy € BI*I Ud(y)

runs in timet and accepts ift = y}

As usual, we select fixed universal deterministic Turing machiheand nondeterministi€/,, and define KDt
to be KDty,, and KNDt to be KNDy;,. Via standard arguments it follows that for &lf, we have KDfx) <
KDty (z) + clog|z| for some constant, and for allU”, we have KNDfx) < KNDty (x) 4 ¢. Itis clear that
KNDt(z) — O(1) < KDt(z) < Kt(x) + O(log |x]).

We see no useful way to define a measure bearing the same relationship to KDt as KT bears to Kt, because with
Distinguishing Complexity, the machiiéhas access to themtirestringx, and this would seem to entail run-times
that are at least linear.

When discussing strings having logarithmic distinguishing complexity, it makes little difference if one uées CD
or KDt complexity (and similarly CNB and KNDt agree closely with each other for strings of logarithmic com-
plexity). As we shall see, for a number of the situations wheré @ CND’ complexity have been studied
previously, KDt and KNt are just as useful.

We observe next that KNDt is essentially the same thing as KNt, up to logarithmic terms.
Theorem 58 KNDt(z) = KNt(z) 4+ O(log|z|)

Proof. Showing that KNDfxz) < KNt(z) + O(log |z|) is an easy exercise. Conversely, if KNB} is small
(using descriptiond), then a nondeterministic machine with oradle = (d,n), given input(i,b) can guess
r € ¥" and if U¢(z) accepts, then accept iff thiéh bit of 2 is b. Analysis of the run times easily yields that
KNDt(z) < KNt(z) + O(log |z|). |

Since KNDt is indistinguishable from KNt from our standpoint, we will not refer to KNDt any further.

Since KNDt is so closely related to KNt, one is quickly led to ask if KDt is similarly related to Kt. At first glance,
the following proposition would seem to indicate that tlaeg closely related:

Proposition 59 Rk and Rxp¢ are both complete foEXP underP/poly truth-table reductions an®lP-Turing
reductions.

Proof. For Ry this is proved in [ABK"06], and in fact hardness holds for any polynomially dense set containing
no strings of low Kt-complexity. Since Kt) > KDt(z) — O(log |x|) it follows that Rkp. is also hard for EXP.
Membership in EXP is easy to show. |

31

Nonetheless, it seems unlikely that Kt and KDt are polynomially related; we show below that this would imply
the collapse of some exponential-time complexity classes. Fortnow and Kummer made related observations about
CD? and @ [FK96]; for a given polynomiap, they showed that if there was a polynomiakuch that e (z) <

CD?(z), then every sparse set in FewP is in P, which in turn is equivalent to FewlE[RRW94]. Here, we

show that if KDt and Kt are polynomially related, it not orityipliesa collapse of related classes, but is in fact
equivalento a certain collapse. In order to state this precisely, we need some additional definitions.

Definition 60 We say thaFewEXP search instances are EXP-solvébli®r every NEXPmachineN and every

k there is anEXP machineM with the property that ifV has fewer tharg!" accepting paths on input, then
M (z) produces one of these accepting paths as output if there is one. We skgWaXP decision instances are
EXP-solvabléf, for every NEXPmachineN and eveny there is anEXP machineM with the property that ifV
has fewer thar!*!" accepting paths on input, thenM (z) accepts if and only ifV (x) accepts.

Remark: Note that we do not require thaf is a FewEXP machine, i.e., we do not require thahave a small
number of accepting paths emeryinput.

Theorem 61 The following statements are equivalent.
1. Va,Kt(z) < KDt(x)O™)
. FewEXPsearch instances afeXP-solvable (orEXP/poly-solvable).

. FewEXPdecision instances afgXP-solvable (orEXP/poly-solvable).

2

3

4.V L € P,Ktr(n) < (log|L="| + logn)°™)

5. V¥ L e Dlogtime-uniformACY, Kt (n) < (log |L="| 4 logn)°™)
6

.V, Yy, KDt(z) < (KDt(zy) + log |zy|)°™

Proof. Itis immediate that 2> 3, 4= 5, and 1= 6. We will now prove 3= 1,1=4,5= 2, and 6= 1.

(3= 1) Consider a NEXP machin® that with oracled on input(1¢,i, b, n) guesses a string € {0,1}", runs
Ud(y) for 2¢ steps and then acceptsiff = b andU<(y) accepts. If KDtx) < |d| + ¢, whered is a distinguishing
description for a string: € {0, 1}" andt is sufficiently large, then there is exactly one accepting path/6fon
input (1,4, z;, |z|); there is no accepting path 81< on (1¢,i,7;, |z|), for all 1 < i < |z|. Note that the run-time
2! must be at leastz|, sincel/ must read every bit of in order to distinguish: from all other strings of the same
length. By our assumption, there is a deterministic machinenning in exponential time, that with oracleon
input (1¢,4,b, |z|), given some polynomial advide, can decide whethe¥/? acceptg1,1, b, ||) or not! Thus,
givend, t, |z| and the advicé:, we can generate bit by bit in time exponential irf|d| + ¢ + log || 4 |[)°™).
Thus Kt(z) < (|d + t + log |z| + |h|)°M) = (|d| + t)°1) < KDt(2)°W.

(1 = 4) Buhrman, Fortnow, and Laplante use hashing to show that for ank s®tre is a polynomial time
algorithm with oracle access 0, such that for every € L there is a descriptiod,, of length2log |L:|z‘} +
O(log |x|), such that the algorithm accefts d,,) if and only if = = « [BFL02]. If L € P, then oracle access fo
is not necessary, and for everye L we conclude that KOt:) < 2log |L=|‘”‘\ + O(log |z|). Assuming that KDt
and Kt are polynomially related we obtain(&y < (log |L=I*!| + log |z[)9().

INote that it would have been sufficient to use a formally weaker assumption, dealing only with the case where there is a single accepting
path. Similarly, in condition 4, it would be sufficient to consider only thager which |[L="| = 1.

32

(5 = 2) Let L be decidable by a nondeterministic machiNerunning in time2"", for ¥ > 1. Define the
setC = {wl0® : wherew € {0, 1}22‘m‘k is a witness thatV(z) accepts}. (Here, we identifyx with the
integer having binary representation.) Clearly, we can choose an encoding of NEXP computations s@tlkat
Dlogtime-uniform AC. Letz be a string, such tha¥ (z) has few accepting paths, i.60="+| < 21217 "where
ng = 221" 4 2 4 1. By assumption, there is a witnesswith Kt(w10?) < |x|O(1). So in order to find a witness

for z € L we just need to search through all stringwith Kt(y) < |x|o(1), which can be done in exponential
time.

(6 = 1) Assume that there is a constant 1, such that for every string and every prefix: of z, KDt(z) <
(KDt(z) + log|z])¢. Let z be a string of lengtm. If KDt(z) > n'/¢, then clearly Ktz) will be bounded by
KDt(z)¢' for some constant, which establishes the claim in this case. Thus assume that:KBt n'/¢. Let

a = max{KDt(z) : zis a prefix ofz}. By assumptiong < (KDt(z) + log |z])¢ < n. We construct a sequence
Sa, ..., Sy Of sets with|.S;| < 2%, whereS; contains (at least) all of the string=of lengthi such that: and every
prefix of x has KDt complexity< a. We initially start withS, = {0, 1}* and then proceed iteratively as follows.

Siz1 = {s€Sio{0,1} : 3d, € {0,1}*

U (s) accepts, and i’ € S; 0 {0,1}
ands # s’ thenU® (s') rejects}

It is fairly straightforward to verify that these sets have the property mentioned above, namely that they are not
too big and that they contain all the simple strings having simple prefices. Zkus,,. Let z be any prefix of

z = xy, having length. Observe that there is an algorithm running in tin2(*) that takes inputn, a, i,), and
computes each sé&,, ..., .S; and then produces as output th#h string inS;. Hence, Ktz) < |(n,a,i,7)| +
log(n29(®) 4+ O(logn) = O(a + logn) = (KDt(zy) + log |zy|)°™). O

Remark: The final condition of Theorem 61 deserves some comment. For all of the other resource-bounded
Kolmogorov complexity measurdsy. studied in this paper (other than KDt) it is easy to see that the following
three conditions are equivalent:

e ForallA NP,K,UA(TL) < 1Og0(1) n.
e Forall4d e P,Ku,(n) <1log®W n.

e For all A € DLOGTIME-uniform AC’,
Kpi,(n) <log®M n,

(For a proof, see Theorem 3 in [All01].) The simple observation that forms the main part of the proof of this
equivalence is the fact that for allandy, Ku(z) can be bounded b u(zy) + log |zy|. (That is, the complexity

of a string does nadecreaseéby much if more information is appended to it, accordindtp.) Distinguishing
complexity does not seem to work this way; appending some informatiannb@y make the KDt complexity
plummet. The next proposition shows that the last two of these three conditions are equivalent, but it remains
unknown if they are equivalent to the first condition.

Proposition 62 The following are equivalent:

e Forall A € P,KDty(n) < log®W n.

e Forall A € DLOGTIME-uniformAC®, KDt 4 (n) < log®® n.

33

Proof. It suffices to prove that the second condition implies the first. Thus assume that the second condition holds,
and letA € DTime(n*) be recognized by some deterministic machiderunning in timekn”. Let B be the set
{(z,Co,C1,...,Cn) : |(z,Co,C1,...,Cn)| = £z|%, Co encodes an initial configuration af on inputz, C,,
encodes an accepting configurationMdf C; - C;1, for all i < m}, wherel is chosen so that there is a string
in A of lengthn iff there is a string inB of length¢n’. For a stringz in A we denote the corresponding string in
B by y, (if there is any). Itis easy to see th&te Dlogtime-uniform AC. Let U be the universal machine used
to define KDt. In order to show that KQitn) < logo(l) n, assume that there is some strin@f lengthn in A
and if there are several pick one such that there is a correspondingistiim@, and a descriptiod showing that
KDt(y,) < 1og®M n, i.e.,U%4y,) acceptsin time°e” "’ » | and there is no other stringof length|y.,| for which
U4(z) accepts. A new deterministic machifié can use oraclé to perform the following computation on input
w: Compute the candidate string, by simulating) onw, and simulatd/?(y,,). If U%(y,,) accepts, thed/’
acceptsao. By choice ofd, the only string of lengthe| thatU’® accepts is itself. The proposition now follows,
by the properties of the universal machine defining KDt, and by analyzing the run time of the mi@thine O

Remark: The proof of the preceding proposition shows one could define a somewhat artificial (and messy) notion
of what it means for all NEXP search problems to be “solvable in UEXP/poly,” which would be equivalent to
KDt 4(n) < log®™M nforall A € P.

The preceding discussion indicates that it is unlikely that KDt is polynomially-related to Kt. Since KDt is interme-
diate between KDt and KNt, one might ask if KDt instead is polynomially-related to KNt. The following theorem
shows both that this is unlikely, and that KDt and Kt again share several similarities.

Theorem 63 The following are equivalent:

1. KDt(x) < KNt(z)°W
2. Kt(z) < KNt(z)°W
3. NEXP C EXP/poly.

Proof. (2=-1) Thisis trivial.

(1= 2) If KDt(z) is always polynomially bounded by Kit), then it follows that for every: andy we have
KDt(z) < KDt(zy) + log(|zy|)°™). Hence Theorem 61 yields Kt) < KDt(x)°"), and we obtain the desired
conclusion.

(1 & 3) This is established in Corollary 64.]

Remark: This theorem is similar in spirit to [BFL02, Theorem 7.6], in which it is shown that RP if and only
if either & (z|y) or CDP (z|y) is polynomially-related to CNBz|y) for appropriate polynomials, p’, andp”.

7 Which Kolmogorov Measures are Polynomially Related?

In the preceding section, we saw that KNDt and KNt are polynomially related, but that it is unlikely that KDt
and Kt are. In this section, we examine what would happen if some of the other resource-bounded Kolmogorov
complexity measures that we have introduced should happen to be polynomially related. We state the following
theorem, and in the appendix we provide a table summarizing the relationships.

Theorem 64 The following equivalences hold:

34

1. KF vs. the rest:

e KF(z) < (KB(z) + log|z|)°™ if and only ifL C nonuniformNC!.

e KF(z) < (KT(z) + log|z)°™ if and only ifP C nonuniformNC'.

e KF(z) < (KNT(z) + log |z])®™) if and only ifNP/polyn coNP/poly= nonuniformNC'.
o KF(z) < (KS(x) + log |=|)°™ if and only ifPSPACE C nonuniformNC".

e KF(z) < (Kt(z) + log |z)°™ if and only ifEXP C nonuniformNC'.

e KF(z) < (KNt(z) + log |=|)°™ if and only ifNEXP C nonuniformNC'.

2. KB vs. the rest:

e KB(z) < (KT (z) + log |z[)°Y) if and only ifP C L/poly.

e KB(z) < (KNT(z) + log |z]|)°™) if and only ifNP/polyn coNP/polyC L/poly.
e KB(z) < (KS(x) + log |=|)°™) if and only ifPSPACE C L/poly.

e KB(z) < (Kt(z) + log |2)°™ if and only ifEXP C L/poly.

e KB(z) < (KNt(x) + log |z|)°™) if and only ifNEXP C L/poly.

3. KT vs. the rest:

e KB(z) < (KNT(x) + log |z|)°™) if and only ifNP/polyn coNP/poly= P/poly.
o KT(x) < (KS(z) + log|2)°™ if and only ifPSPACE C P/poly.

e KT(z) < (Kt(x) + log |=|)°™) if and only ifEXP C P/poly.

e KT(z) < (KNt(z) + log|z|)°™ if and only ifNEXP C P/poly.

4. KNT vs. the rest:

e KS(z) = (KNT(x) + log |z|)®™) if and only ifPSPACE C NP/poly.

e Kt(x) = (KNT(z) + log|z)°™ if and only ifEXP C NP/poly.

e KNt(z) = (KNT () + log |z|)°™) if and only ifNEXP C NP/poly.
5. KSvs. the rest:

o KS(z) < (Kt(z) + log |z|)°™ if and only if EXP C PSPACE.

e KS(z) < (KNt(z) + log|=|)°™ if and only ifNEXP C PSPACE/poly
6. Kt vs. the rest:

e Kt(x) < (KNt(z) + log|z)°™ if and only ifNEXP C EXP/poly.

e Kt(x) < (Ks(x) + log |=|)°™) if and only ifEXPSPACEC EXP/poly.

Proof. All the proofs of the equivalences follow essentially the same pattern and spelling all of them out would
serve little purpose. Thus we provide a sample proof of one of the equivalences and point out the remaining
subtleties. We prove: K&) < (KNt(z) + log |z|)°() if and only if NEXP C L/poly.

(=) Assume that there is a constant 0 such that for alke, KB(z) < (KNt(z) + log |z|)°. Let A be a language
in NEXP. Denote by,, the truth table ofd restricted to strings of size. By Corollary 23,B = {(1™, 4, (t»):) :
n € IN, 1 <4 < n}isin NEXP/poly. Hence, there is > 1 such that for all, KNt(t,,) < kn*. Thus, by our

35

assumption, KBt,,) < (2kn)*. Furthermore, BPSIZ&,) < k'n*" for some constarit’ > 1. The implication
follows by noting that L/poly consists precisely of functions computable by branching programs of polynomial
size.

(«=) Assume that NEXPC L/poly. Let A be the sef{(d,i,b,17) : j € N, d € {0,1}, 1 <i <27 b€
{0,1}, U%(i,b) accepts in time’} whereU is the universal machine that is used to define KNt NEXP and
thus lies in L/poly. Thus for any: there is an advice string,, of lengthm? such that queries of length(m) to
A can be answered in spa¥log m) using access to the advice string.

Pick an arbitrary string:. Let KNt(z) = m. Thus there is a descriptiahof length at mostn such that for all

i < |z|, U%(i,b) runs in time at mos2™ and accepts if and only if; = b. Consider the oracle maching
that uses oracléd, a.,,, m), and on input(i, b) determines if(d,,b,1™) is in A. This machinelM/ with oracle
(d,a.,,m) runs in space)(logm), and accepts if and only /% (i, b) accepts (which happens if and only if
x; = b). The length of the descriptiof, a, m) is O(m"), and thus KB, (z) < (m + log |z|)¢ for some constant
c. The theorem now follows, by the properties of the universal madiiinsed to measure KB.

There are also some minor subtleties that arise in the implications involving KNT. We illustrate with a sample
equivalence. We prove: Kiit) = (KNT(z) + log |z|)©(") if and only if NEXP C NP/poly.

(«<=) Assume that KNtz) = (KNT () + log ||)°™), and letA € NEXP. Since coNEXRZ NEXP/poly it is easy

to see that the™+!-bit prefix of the characteristic sequencedhas KNt' complexityn©() and by assumption
also has KNT complexity:©(1). Thus there is a descriptiaf), of lengthO(n*) for somek such that for all

r < 2"*1 the nondeterministic universal Turing machiié (z, b) runs in at most:* time and accepts if and
only if € A. The descriptionl,, can be used as an advice sequence to showdtlraNP/poly.

(=) Conversely, if NEXPC NP/poly, it follows that NEXP/poly= coNEXP/poly= NP/poly = coNP/poly. If
KNt(x) = m, then there is a descriptiahsuch that the nondeterministic machitié(i, b) runs in time2™ and
accepts if and only if;; = b. The languagéd(d,i,b,1™) : U? accepts(i, b) accepts in im@™} is in NEXP,

and by assumption lies in NP/patycoNP/poly. It follows tha{d, k1, hs) is a suitable description of the string
described byl, whereh,; andh, are the advice strings for the NP/poly and coNP/poly algorithms, respectively, to
show that KNTz) is polynomially related to KNtz). This completes the proof of this implication.

The following subtlety is involved in establishing equivalences with EXPSPACE. Instead of proving equiv-
alence with EXPC PSPACE one proves equivalence with EXP PSPACE/poly using a proof similar to above
proof and then invokes the following lemma.]

Lemma 65 EXP C PSPACE/polyif and only ifEXP C PSPACE.

Proof. We only show that if EXRC PSPACE/poly then EXP- PSPACE.

This follows since EXP has a complete sethat is self-reducible [Bal90]. That is, there is a polynomial time
oracle machinél/ that decides membership i using A as an oracle, with the property that on inpytM
asks queries only to words that lexicographically precedé A is in PSPACE/poly, then let/’ be aPSPACE
machine that acceptd using advice sequeneg,. Now aPSPACE machine can determine if a stringis in

A by searching through all possible advice sequemoeslength polynomial in|z| until it finds a sequencé
with the property that, for all stringg that lexicographically precede runningM’(y) with adviceb agrees with
the result of runningV/ (y), where any oracle queryasked byM is answered by running/’(z) with adviceb.

By assumption, at least one such sequence exists, and thus one will be found. Ruiqingvith this advice
sequence correctly determinegifs in A.

The other implication is trivial. |

36

We close this section with a brief discussion of how to define relativized measures of the fotranBKF!,

since we have found measures of the formki® be quite useful. Unfortunately, there are substantial difficulties

that arise when attempting to provide oracle access to an alternating machine [Bus88], and thus we do not know
of a useful way to define K& The situation is somewhat better for KBbut it does require us to alter the
conventions that we have adopted thus far.

Up until this point in the paper, we have followed the convention that space-bounded oracle Turing machines must
respect the space bound on their oracle tapes. Indeed, this is the customary convention when considering classes
of the formPSPACE*. However, there is an equally venerable tradition of allowing a logspace-Turing reduction

to ask queries of polynomial length [LL76]. In order to prove the following theorem (which allows us to relate
KT# and KBP) we found that it was more appropriate to defineKi terms of oracle Turing machines that have

a write-only oracle tape that it subject to the space bound.

Theorem 66 Let A and B be oracles. TheKBZ (z) < (KT (z) + log|z|)°™ if and only ifP* C LZ/poly.

Proof. Assume that, for ali:, KB (z) < (KT4(x) + log|z|)*. LetC be any language in‘® By Theorem

4, the2"+1-bit prefix of the characteristic sequenge has KT* complexityn®®), and by assumption has KB
complexity O(n¢) for somec. Thus there is a descriptiofy, of length O(n¢) such that for allz < 27+1,

UB-d= (2, b) uses space at moStlog n) (not counting the space that is used on the oracle tape, which must be at
mostn®M)) and accepts if and only if € C. The conclusion that’ € LZ/poly now follows.

Conversely, assume that'PC LZ/poly. Let KT#(z) = m. Thus there is a descriptiaf of length at most
m such that for alli < ||, U4(4,b) runs in time at mostn and accepts if and only if; = b. Let C be
the set{(d,i,b,17) : UA4(i,b)accepts intimg}. C' € P* and thus lies in E/poly. Thus there is an advice
string a of length (m + log|z|)! such that queries of lengt®(m + log|z|) to C' can be answered in space
O(log(m + log |z|)) using queries td3 and access to the advice string Consider the oracle machidé that
uses oracle® and(d, a, m), and on inpufi, b) determines ifd, ¢,b,1™) is in C. This machine\/ runs in space
O(log(m + log |z|)) using queries td3, and accepts if and only iF4-%(i, b) accepts (which happens if and only
if z; = b). The length of the descriptiof, a, m) is O(m'), and thus KB (x) < m! + (m + log |z|)¢ for some
constant. The theorem now follows, by the properties of the universal madtiine]

8 Concluding Comments

We began this paper with a brief historical review, pointing out that parallel investigations of computational
complexity theory and resource-bounded Kolmogorov complexity date back to the dawn of the theory of NP-
completeness. We cited the historical survey by Trakhtenbrot [Tra84], and recalled how the various computational
tasks discussed by Trakhtenbrot (that is, his Tasks 1 through 5) relate to the themes that are the focus of the present
paper.

This paper introduced a wide range of Kolmogorov-complexity measures in the spirit of Levin's Kt measure,
ranging from KNt (which is polynomially related to circuit size on oracle circuits with an NE-complete oracle) to
KB and KF (polynomially related to branching program size and formula size, respectively).

Itis natural to wonder if it is possible (and useful) to define even more restrictive notions of Kolmogorov complex-
ity, in order to capture even more limited models of computation. One could consider placing more restrictions
on the universal alternating machine in the definition for KF complexity, for instance by restricting the number of
alternations, or by making it deterministic. At first glance, it seems that one might obtain a measure that is related

37

to depthk ACP circuit size for fixedk — but it seems that such machines cannot do much interesting computa-
tion on input(z, b) with oracled without looking at all ofi, which means that their running time is so high that

the framework developed here does not yield a very interesting measure. Is there a useful definition that can be
developed to capture this notion?

For the more “limited” notions of Kolmogorov complexity KB and KF, we are not able to prove as strong in-
tractability results as were proved for KT in [ABK6]. However, it is not clear that this needs to be the case.
For instance, although it is not known if the minimum circuit size problem is NP-complaéss;amplete when
restricted to DNF circuits [Cz099, Mas79, Fel09, AHEIB]. Is there a natural, restricted notion of Kolmogorov
complexity, for which the “random” strings do indeed provide a complete set for coNP? Vazirani and Vazirani
present a related problem that is complete under randomized reductions [VV83], but the computational problem
that they present does not capture a very satisfactory notion of Kolmogorov complexity.

Acknowledgments

We thank Holger Spakowski for comments that improved the presentation.

References

[ABKT06] E. Allender, H. Buhrman, M. Kougk D. van Melkebeek, and D. Ronneburger. Power from random
strings.SIAM Journal on Computing35:1467-1493, 2006.

[ACR98] A. E. Andreev, A. E. F. Clementi, and J. D. P. Rolim. A new general derandomization method.
ACM, 45(1):179-213, 1998.

[AHM *08] E. Allender, L. Hellerstein, P. McCabe, T. Pitassi, and M. E. Saks. Minimizing disjunctive normal
form formulas and A€ circuits given a truth tableSIAM J. Comput.38(1):63—84, 2008.

[AKO2] V. Arvind and J. Kobler. New lowness results for ZPP and other complexity classedournal of
Computer and System Sciend@s(2):257-277, 2002.

[AKRRO3] E. Allender, M. Koucly; D. Ronneburger, and S. Roy. Derandomization and distinguishing com-
plexity. In Proceedings of the 18th IEEE Conference on Computational Complpziges 209-220,
2003.

[AKS95] V. Arvind, J. Kébler, and R. Schuler. On helping and interactive proof systémtexnational Journal
of Foundations of Computer Science (IJFC&PR):137-153, 1995.

[AlIB9] E. Allender. Some consequences of the existence of pseudorandom genelatonsl of Computer
and System Scien¢e39:101-124, 1989.

[AllO1] E. Allender. When worlds collide: Derandomization, lower bounds, and Kolmogorov complexity. In
Proc. Conf. on Found. of Software Technology and Theo. Comp. Sci. (FST&I@8e 2245 of
Lecture Notes in Computer Scienpages 1-15, 2001.

[All10] E. Allender. Avoiding simplicity is complex. IfProc. Computability in Europe (CiE).ecture Notes
in Computer Science, 2010. To appear.

38

[Bal9o] J. L. Bal@zar. Self-reducibilityJ. Comput. Syst. Sci1(3):367—388, 1990.

[BBR99] E.Biham, D. Boneh, and O. Reingold. Breaking generalized Diffie-Hellmann modulo a composite is
no easier than factoring. Information Processing Letters 70(ages 83-87, 1999.

[BFL91] L. Babai, L. Fortnow, and C. Lund. Non-deterministic exponential time has two-prover interactive
protocols.Computational Complexifyl:3—40, 1991.

[BFLO2] H. Buhrman, L. Fortnow, and S. Laplante. Resource-bounded Kolmogorov complexity revisited.
SIAM Journal on Computing1(3):887-905, 2002.

[BFNW93] L. Babai, L. Fortnow, N. Nisan, and A. Wigderson. BPP has subexponential time simulations unless
EXPTIME has publishable proof€omputational Complexity8:307-318, 1993.

[BH92] H. Buhrman and S. Homer. Superpolynomial circuits, almost sparse oracles and the exponential
hierarchy. InProc. Conf. on Found. of Software Technology and Theo. Comp. Sci. (FST&TCS)
volume 652 ofLecture Notes in Computer Scienpages 116-127, 1992.

[BIS90] D. Mix Barrington, N. Immerman, and H. Straubing. On uniformity wittNi'!. Journal of Com-
puter and System Sciencd4(3):274-306, December 1990.

[Bus88] J. F. Buss. Relativized alternation and space-bounded computhti@omput. Syst. ScB6(3):351—
378, 1988.

[CCL94] J.-Y.Cali, A. Condon, and R. J. Lipton. PSPACE is provable by two provers in one réomchal of
Computer and System Sciencé3:183-193, 1994.

[Coo71] S. A. Cook. The complexity of theorem-proving proceduresProc. ACM Symp. on Theory of
Computing (STOGCpages 151-158, 1971.

[Cz099] S. L. A. Czort. The complexity of minimizing disjunctive normal form formulas. Master’s thesis,
University of Aarhus, 1999.

[Fel09] V. Feldman. Hardness of approximate two-level logic minimization and PAC learning with member-
ship queriesJ. Comput. Syst. S¢if5(1):13-26, 2009.

[FK96] L. Fortnow and M. Kummer. On resource-bounded instance compleXiteoretical Computer
Sciencel61(1-2):123-140, 1996.

[FKS84] M. Fredman, J. Kimlos, and E. Szemedi. Storing a sparse table widh(1) worst case access time.
J. ACM 31(3):538-544,1984.

[FLZ94] Bin Fu, Hong-Zhou Li, and Yong Zhong. An application of the translational metMathematical
Systems Theoy7(2):183-186, 1994.

[For01] L. Fortnow. Comparing notions of full derandomization. Aroc. IEEE Conf. on Computational
Complexity '01 pages 28-34, 2001.

[For04] L. Fortnow. A little theorem. Entry for Friday, January 30, 2004, in the Computational Complexity
Weblog. Available at http://blog.computationalcomplexity.org/2004/01/little-theorem.html, 2004.

[FUr82] M. Rirer. The tight deterministic time hierarchy. Rroc. ACM Symp. on Theory of Computing
(STOC) pages 8-16, 1982.

39

[Furs4]

[GGM86]

[HABO2]

[H&s99]
[Hem89]

[HILL99]

[HS66]

[IKWO02]

[ISW99]

[IW97]

[IWO01]

[Kan82]

[Kar72]

[KCO0]

[Ko91]

[KRCOO]

[KS08]

[KVMO02]

[Lev73]

M. Rirer. Data structures for distributed countingournal of Computer and System Sciences
28(2):231-243,1984.

O. Goldreich, S. Goldwasser, and S. Micali. How to construct random functionmal of the ACM
33(4):792-807, 1986.

W. Hesse, E. Allender, and D.A.M. Barrington. Uniform constant-depth threshold circuits for division
and iterated multiplicationJournal of Computer and System Sciené&&s695-716, 2002.

J. K&stad. Clique is hard to approximate withiti©. Acta Mathematical82:105-142, 1999.

L. A. Hemachandra. The strong exponential hierarchy collapgsé3omput. Syst. S¢i39(3):299—
322, 1989.

J. Hastad, R. Impagliazzo, L. Levin, and M. Luby. A pseudorandom generator from any one-way
function. SIAM Journal on Computing8:1364—-1396, 1999.

F. Hennie and R. Stearns. Two-tape simulation of multitape Turing machloesal of the ACM
13:533-546, 1966.

R. Impagliazzo, V. Kabanets, and A. Wigderson. In search of an easy witness: Exponential time vs.
probabilistic polynomial timeJ. Comput. Syst. S¢b5(4):672—-694, 2002.

R. Impagliazzo, R. Shaltiel, and A. Wigderson. Near-optimal conversion of hardness into pseudo-
randomness. IRroc. IEEE Symp. on Found. of Comp. Sci. (FO@apes 181-190, 1999.

R. Impagliazzo and A. Wigderso2 = BPP if E requires exponential circuits: Derandomizing the
XOR lemma. InProc. ACM Symp. on Theory of Computing (STOC) {#ages 220-229, 1997.

R. Impagliazzo and A. Wigderson. Randomness vs. time: de-randomization under a uniform assump-
tion. J. Comput. Syst. Scb3(4):672—-688, 2001.

R. Kannan. Circuit-size lower bounds and non-reducibility to sparselsédsmation and Contrql
55(1-3):40-56, 1982.

R. M. Karp. Reducibility among combinatorial problems. In R.E. Miller and J.W. Thatcher, editors,
Complexity of Computer Computatigpaiges 85-104. New York, 1972.

V. Kabanets and J.-Y. Cai. Circuit minimization problem.Hroc. ACM Symp. on Theory of Com-
puting (STOC)pages 73-79, 2000.

K.-1 Ko. On the complexity of learning minimum time-bounded Turing machirf@&#M Journal on
Computing 20:962-986, 1991.

V. Kabanets, C. Rackoff, and S. Cook. Efficiently approximable real-valued functions. Technical
Report TR00-034, Electronic Colloquium on Computational Complexity, 2000.

S. Khot and R. Saket. Hardness of minimizing and learning DNF expressioRsodnlEEE Symp.
on Found. of Comp. Sci. (FOC®)ages 231-240, 2008.

A. Klivans and D. van Melkebeek. Graph nonisomorphism has subexponential size proofs unless the
polynomial-time hierarchy collapseSIAM Journal on Computing1(5):1501-1526, 2002.

L. A. Levin. Universal sequential search probler®soblems of Information Transmissio@:265—
266, 1973.

40

[Lev84]

[LevO3]
[LFKN92]

[LL76]

[Lon82]

[LP82]

[Lup59]
[LVO8]

[Mas79]
[Meh82]

[Moc96]

[MVO5]

[INRO4]

[NW94]

[Pap94]
[Rei08]
[RR97]

[RRW94]

[Rud97]

[Ruz81]
[Sch89]

L. A. Levin. Randomness conservation inequalities; information and independence in mathematical
theories.Information and Contrgl61:15-37, 1984.

L. Levin. Personal communication. 2003.

C. Lund, L. Fortnow, H. Karloff, and N. Nisan. Algebraic methods for interactive proof systems.
Journal of the ACM39:859-868, 1992.

R. Ladner and N. Lynch. Relativization of questions about log space reducibNigthematical
Systems Theoyy0:19-32, 1976.

T. J. Long. Strong nondeterministic polynomial-time reducibiliti#heor. Comput. Sgi21:1-25,
1982.

Harry R. Lewis and Christos H. Papadimitriou. Symmetric space-bounded compuTdtenretical
Computer Sciencd 9:161-187, 1982.

O. B. Lupanov. A method of circuit syntheslgvestiya VUZ, Radiofizikd (1):120-140, 1959.

M. Li and P. Vitanyi. Introduction to Kolmogorov Complexity and its Applicatior&pringer, third
edition, 2008.

W.J. Masek. Some NP-complete set covering problems. Unpublished manuscript, 1979.

K. Mehlhorn. On the program size of perfect and universal hash functiosotn IEEE Symp. on
Found. of Comp. Sci. (FOC)ages 170-175, 1982.

S. Mocas. Separating classes in the exponential-time hierarchy from classesThé&dd. Comput.
Sci, 158:221-231, 1996.

P. Bro Miltersen and N. V. Vinodchandran. Derandomizing Arthur-Merlin games using hitting sets.
Computational Complexity14(3):256—-279, 2005.

M. Naor and O. Reingold. Number-theoretic constructions of efficient pseudo-random fundtions.
ACM, 51(2):231-262, 2004.

N. Nisan and A. Wigderson. Hardness vs. randomnéssarnal of Computer and System Sciences
49:149-167, 1994.

C. PapadimitrioulComputational ComplexityAddison-Wesley, New York, 1994.
Omer Reingold. Undirected connectivity in log-spaieurnal of the ACM55(4), 2008.

A. A. Razborov and S. Rudich. Natural proafsurnal of Computer and System Scienéés24-35,
1997.

R. P. N. Rao, J. Rothe, and O. Watanabe. Upward separation for FewP and related dfdsses.
Process. Lett.52(4):175-180, 1994.

S. Rudich. Super-bits, demi-bits, anBAypoly-natural proofs. lfProceedings of RANDOMolume
1269 ofLecture Notes in Computer Sciend®97.

W. L. Ruzzo. On uniform circuit complexity. Comput. Syst. ScR2(3):365-383, 1981.
U. Scbining. Probabilistic complexity classes and lowneds Comput. Syst. S¢i39(1):84-100,
1989.

41

[Sha92]
[Sip83]

[SUO5]

[SUO06]

[SU09]

[Tra84]

[Vin04]
[vMO03]
[VoI99]
[VV83]

A. Shamir. IP = PSPACBournal of the ACM39:869-877, 1992.

M. Sipser. A complexity theoretic approach to randomnessPrac. ACM Symp. on Theory of
Computing (STOCpages 330-335, 1983.

R. Shaltiel and C. Umans. Simple extractors for all min-entropies and a new pseudorandom generator.
J. ACM 52(2):172-216, 2005.

R. Shaltiel and C. Umans. Pseudorandomness for approximate counting and sai@plimguta-
tional Complexity 15(4):298-341, 2006.

R. Shaltiel and C. Umans. Low-end uniform hardness vs. randomness tradeoffs for AM. volume 39,
pages 1006-1037, 2009.

B. A. Trakhtenbrot. A survey of Russian approaches to perebor (brute-force searches) algorithms.
IEEE Annals of the History of Computing(4):384—-400, 1984.

N. V. Vinodchandran. ANaxp (NP N coNP)/poly.Inf. Process. Lett.89(1):43-47, 2004.
D. van Melkebeek. Personal communication. 2003.
H. Vollmer. Introduction to Circuit ComplexitySpringer, 1999.

U. V. Vazirani and V. V. Vazirani. A natural encoding scheme proved probabilistic polynomial com-
plete. Theoretical Computer Scienc24:291-300, 1983.

42

Appendix

| KB | KT | KNT | KS
KF | L C nonuniform NC' | P C nonuniform NC' | NP /poly N coNP /poly = nonuniform NC' | PSPACE C nonuniform NC*
KB P C L/poly NP /poly N coNP /poly = L/poly PSPACE C L/poly
KT NP /poly N coNP /poly = P /poly PSPACE C P/poly
KNT PSPACE C NP /poly
Kt KDt KNt Ks
KF | EXP C nonuniform NC! | FewEXP instances are solvable in nonuniform NC' | NEXP C nonuniform NC* FALSE
KB EXP C L/poly FewEXP instances are solvable in L/poly NEXP C L/poly FALSE
KT EXP C P/poly FewEXP instances are solvable in P/poly NEXP C P/poly FALSE
KNT EXP C NP/poly FewEXP instances are solvable in NP /poly NEXP C NP/poly FALSE
KS EXP C PSPACE FewEXP instances are solvable in PSPACE NEXP C PSPACE/poly FALSE
Kt FewEXP instances are solvable in EXP NEXP C EXP/poly EXPSPACE C EXP/poly
KDt NEXP C EXP/poly EXPSPACE C EXP/poly
KNt EXPSPACE C NEXP /poly

If the measure in column 4 is polynomially bounded by the measure in row j, then the condition in entry (j,¢) holds.

41

	post.galleys (2).pdf
	appendix.pdf

