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MŠMT ČR, Institutional Research Plan No. AV0Z10190503 and grant IAA100190902 of GA AVČR.
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Abstract

We continue an investigation into resource-bounded Kolmogorov complexity [ABK+06], which highlights
the close connections between circuit complexity and Levin’s time-bounded Kolmogorov complexity measure
Kt (and other measures with a similar flavor), and also exploits derandomization techniques to provide new
insights regarding Kolmogorov complexity. The Kolmogorov measures that have been introduced have many
advantages over other approaches to defining resource-bounded Kolmogorov complexity (such as much greater
independence from the underlying choice of universal machine that is used to define the measure) [ABK+06].
Here, we study the properties of other measures that arise naturally in this framework.

The motivation for introducing yet more notions of resource-bounded Kolmogorov complexity are two-fold:

• to demonstrate that other complexity measures such as branching-program size and formula size can also
be discussed in terms of Kolmogorov complexity, and

• to demonstrate that notions such as nondeterministic Kolmogorov complexity and distinguishing complex-
ity [BFL02] also fit well into this framework.

The main theorems that we provide using this new approach to resource-bounded Kolmogorov complexity
are:

• A complete set (RKNt) for NEXP/poly defined in terms of strings of high Kolmogorov complexity.

• A lower bound, showing thatRKNt is not in NP∩ coNP.

• New conditions equivalent to the conditions “NEXP⊆ nonuniform NC1” and “NEXP⊆ L/poly”.

• Theorems showing that “distinguishing complexity” is closely connected to both FewEXP and to EXP.

• Hardness results for the problems of approximating formula size and branching program size.

1 Introduction

The goal of this paper is to develop more fully the relationship between Kolmogorov complexity and computational
complexity – with particular emphasis on circuit complexity. In so doing, we expand on a theme that dates back
to the earliest investigations of the P vs. NP question, and beyond. Let us begin by giving a brief overview of this
history.

Karp’s landmark paper [Kar72], which demonstrated the widespread applicability of the notion of NP-completeness
as a tool for understanding the apparent intractability of computational problems, took Cook’s earlier work
[Coo71] as its starting point. It is known now, but was not known then, that Levin had made similar discover-
ies [Lev73] independently at roughly the same time as Cook. Trakhtenbrot [Tra84] has written an informative
account, outlining the fundamental questions that engaged that segment of the research community in Russia that
was working on theoretical computer science at the time. We now review part of that history.

1.1 The Russian Program

As related by Trakhtenbrot, the attention of the Russian research community focused on problems that seemed
to require “perebor” or brute-force search. One such problem that was of particular interest was the problem
(called “Task 4” by Trakhtenbrot [Tra84, p. 390]) of taking as input the truth-table of a Boolean function, and
determining if it has Boolean circuits of a given size. More recently, essentially the same computational problem
has been studied under the name MCSP, for the “Minimum Circuit Size Problem” [KC00]. Levin has said that
he delayed publication of his work on the complexity of SAT ([Lev73]) because he had been hoping to capture
MCSP in this framework [Lev03]. Nearly four decades later, it is still not known if MCSP is NP-complete, and
few seem to expect that it really is complete under Karp reductions [KC00].
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Trakhtenbrot further relates that it was recognized that MCSP was similar in spirit to the problem of taking a binary
string as input and determining its time-bounded Kolmogorov complexity. More precisely, Trakhtenbrot describes
a problem (called “Task 5” in [Tra84, p. 392]) defined in terms of some fixed “universal” Turing machineU and a
fixed time boundt(n) (such ast(n) = n2) where one takes as input a stringx of lengthn and determines if there is
a descriptiond of a given length, such thatU(d) = x in time t(n). Thus these two related threads of inquiry were
already being discussed in Russia in the 1960s – although there was no theorem explicitly linking the two threads.
In the same way that MCSP is not known to be NP-complete, Ko showed that the question of whether computing
this sort of time-bounded Kolmogorov complexity is NP-hard cannot be settled by relativizing methods [Ko91].

A third thread dating to this period is also discussed by Trakhtenbrot, when he mentions a different notion of
time-bounded Kolmogorov complexity that was introduced by Levin. Levin developed this notion as a tool for
proving the second theorem of his 1971 paper [Lev73], in which he presents an optimal search algorithm for
NP problems. (This definition, Kt(x), does not actually appear in Levin’s 1971 paper and the earliest published
definition seems to be more than a decade later [Lev84].) The difference between this definition and the time-
bounded Kolmogorov complexity mentioned in the preceding paragraph lies in the way that time is incorporated
into the complexity measure. Rather than fixing the time boundt(n) thatU can use to producex from a short
description, instead Kt(x) is defined by minimizingm+log t, wherem is the length of the descriptiond such that
U(d) = x in t time steps. (Formal definitions are found in Section 2.) It seems that no connection was suggested
between Levin’s Kt measure and the Minimum Circuit Size Problem MCSP until roughly three decades later.

1.2 Weaving the threads together

The connections between these three threads were made more explicit just a few years ago. In 2002, it was shown
[ABK +06] that ifx is a string of length2m (and thus can be viewed as the truth table of a functionfx), then Kt(x)
is roughly the same as the size of the smallestoraclecircuit computingfx, where the oracle is a complete set for
E = DTime(2O(n)). Furthermore, the setRKt, defined as the set of allx such that Kt(x) ≥ |x| (the so-called
Kt-randomstrings) is complete for EXP under P/poly reductions.

This turned out to be a manifestation of a more general phenomenon. A new variant of time-bounded Kolmogorov
complexity in the spirit of Levin’s Kt was presented, denoted KT [ABK+06], where KT(x) is polynomially-related
to the size of the smallest circuit computingfx (and in the relativized setting KTA(x) is polynomially-related to
the size of the smallest circuit with oracle gates forA computingfx). Thus the difference between solving
MCSP and computing KT(x) amounts to not much more than determining the “size” of the smallest circuit for
fx using different notions of “size” (such as counting the number of wires in a circuit as opposed to counting
the number of symbols in an encoding of the circuit). Furthermore, the setsRKTA and MCSPA turned out to
be complete forPSPACE, EXP, EXPSPACE, and doubly-exponential time, etc, for the appropriate choice ofA
[ABK +06]. For the important case whenA = ∅ (i.e., for the problem MCSP for circuits without oracle gates), we
still have no completeness theorems, although it is known that factoring and other problems that are conjectured
to give rise to cryptographically secure one-way functions are reducible to MCSP andRKT via probabilistic
reductions [ABK+06, KC00]. More generally, it is known thatno function computable in polynomial time is
cryptographically secure relative to MCSP [ABK+06, KC00].

The reductions and completeness results that classify the complexity ofRKt and related problems [ABK+06]
all rely onderandomizationtechniques [BFNW93, IW97, IW01]. The current paper is motivated largely by the
desire to understand how other previously-studied notions of Kolmogorov complexity and other derandomization
techniques relate to each other.
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1.3 Variants of Resource-Bounded Kolmogorov Complexity

Before we state the contributions of this paper, let us briefly recall the main variants of resource-bounded Kol-
mogorov complexity. Li and Vit´anyi discuss three different approaches to defining time-bounded Kolmogorov
complexity in their book, which is the standard reference for the field [LV08]:

1. Levin’s Kt measure, which we have already discussed.

2. The measures Ct and Kt that result by adapting the standard plain and prefix Kolmogorov complexity (C
and K, respectively) by allowing the universal machineU only timet(n) to produce a string of lengthn as
output. Ct and Kt are polynomially related, and thus for the purposes of this paper we group them together.

3. Distinguishing Complexity, denoted CDt and KDt, depending on whether one is using the plain or prefix
version of this notion.

Distinguishing complexity was introduced by Sipser [Sip83] as a tool in his original proof showing that BPP lies
in the polynomial hierarchy. Briefly, CDt(x) is the length of the shortest descriptiond such thatUd(y) runs in
time t(|y|) and accepts if and only ify = x.

Buhrman, Fortnow, and Laplante conducted a thorough study of CDt complexity [BFL02], and also introduced a
nondeterministic variant of CDt, which they denote CNDt.

1.4 Our Contributions

The main technical contributions of this paper can be enumerated:

1. We present definitions of deterministic and nondeterministic distinguishing complexity (KDt and KNDt,
respectively) that are in the style of Levin’s Kt measure, and share some of the advantages that Kt enjoys
over Ct and related measures, such as less dependence on the choice of universal machineU , and closer
connections with circuit complexity.

2. We observe that KNDt is more-or-less equivalent to a different nondeterministic Kolmogorov complexity
measure KNt that is even more directly analogous to Kt and is more obviously connected to nondeterministic
circuit complexity.

3. We show thatRKNt (the set of strings having high KNt complexity) is complete for NEXP/poly under
P/poly truth-table reductions and hard for FewEXP under NP-Turing reductions, and draw connections
between KNt complexity and techniques that have been developed for derandomizing AM [MV05, SU05,
SU09, SU06].

4. We show thatRKNt is not in NP∩ coNP. In contrast, note that we still have no good lower bounds forRKt.

5. We observe thatRKDt shares withRKt the property of being complete for EXP. However, ifRKDt and
RKt are polynomially-related, then EXP= FewEXP.

6. We demonstrate the wide applicability of definitions in the mold of Kt and KT, by introducing measures KF
and KB that are polynomially related to formula size and branching program size, respectively. We show
that factoring Blum integers is efficiently reducible the problem of approximating KB and KF complexity.
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7. We show that NEXP is contained in nonuniform NC1 if and only if KNt and KF are polynomially-related,
and obtain several other statements that are equivalent to this collapse. Many important questions in com-
plexity theory can be re-stated equivalently in terms of questions about the relationships among different
variants of resource-bounded Kolmogorov complexity.

The rest of the paper is organized as follows. In Section 2 we present our basic definitions and background in-
formation. In Section 3 we present our results characterizing the computational complexity of various problems
relating to resource-bounded Kolmogorov complexity. In Section 4 we study nondeterministic Kolmogorov com-
plexity in connection with various tools of derandomization. In Section 5 we investigate the relationship between
Kolmogorov complexity and various possible collapses of NEXP to smaller classes. In Section 6 we study distin-
guishing complexity, and in particular study the consequences that would follow if some of these measures were
polynomially related. We continue this investigation of possible polynomial relationships among various measures
in Section 7. Finally, we offer some concluding remarks in Section 8.

2 Definitions of Resource-Bounded Kolmogorov Complexity Measures

2.1 Universal Turing Machines

Our definitions are not overly sensitive to the particular choice of model of computation, but to avoid ambiguity
we will be precise about the model that we use. We use essentially the same model of Turing machines that was
considered in [BIS90, ABK+06]. The machine has one read-only input tape of lengthn, a constant number of
read-write working tapes of infinite length, and a read-write input address tape. At every time step the machine
can modify the content of its read-write tapes using the appropriate heads and move these heads left or right by
one tape cell. It can also query the content of the input bit whose address is written on the input address tape. If
there is no such input bit the reply to the query is the symbol “*”.

Beside considering deterministic Turing machines we use alsonondeterministicand more generalalternating
Turing machines. These machines have in addition to deterministic states also existential and universal states.
We refer the reader to [Pap94] for more background on nondeterministic and alternating Turing machines. An
alternating machine runs in spaces and timet on a given input if each of its possible computations on that input
uses space at mosts and runs for at mostt steps.

In the case where the machine is an oracle Turing machine (possibly having more than one oracle), for each oracle
the machine has one read-write oracle tape. At every step the machine can query any of its oracles about whether
the string written on the corresponding oracle tape belongs to the oracle set. We also allow finite oracles. For a
finite oracley ∈ {0, 1}∗, the machine obtains as an answer to its queryi bit yi if i ≤ |y| and “*” otherwise. Note
that the input tape behaves like an oracle tape accessing a finite oracle.

A place of central importance is occupied byuniversalmachines. Since we are concerned with time and space
bounded computation we will require the universal machines to be space and time efficient. We formalize this
requirement further. Using the technique of Hennie and Stearns [HS66] and F¨urer [Für82, Für84] we can establish
the following proposition.

Proposition 1 (minimal simulation overhead) 1. There is a deterministic (nondeterministic/alternating) Tur-
ing machineU with two work tapes, such that for any deterministic (nondeterministic/alternating) oracle
Turing machineM there is a constantcM so that for any finite oracled there is a finite oracled′ of length
at most|d|+ cM such that for any oracleA and inputx, UA,d′

(x) accepts iffMA,d(x) accepts. The com-
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putation time ofU is at mostcM t log t and the space used is at mostcMs, whereMA,d(x) runs for timet
and uses spaces. Furthermore, ifM is a two-tape machine, then the running time ofU is bounded bycM t.

2. There is a nondeterministic (alternating) Turing machineU with two work tapes, such that for any non-
deterministic (alternating) oracle Turing machineM there is a constantcM so that for any finite oracled
there is a finite oracled′ of length at most|d|+cM such that for any oracleA and inputx, UA,d′

(x) accepts
iff MA,d(x) accepts. The computation time ofU is at mostcM t, whereMA,d(x) runs in timet.

We call any machineU that satisfies the first part of the previous proposition auniversalTuring machine; note that
we require our universal Turing machines to be space and time efficient in simulating other machines. We call a
fast universalTuring machine any machineU that satisfies the second part of the previous proposition. Note that
the term “fast universal Turing machine” is reserved for nondeterministic and alternating machines.

Definition 2 A Turing machineU is universalif it satisfies all properties stated in Part 1 of Proposition1. A
Turing machineU is fast universalif it satisfies all properties stated in Part 2 of Proposition1.

2.2 The measuresKs, Kt, KS and KT

The history of Levin’s Kt measure was discussed briefly in the introduction. The formal definition of Kt that we
present below is equivalent to the original definition ([Lev84]) up to an additive logarithmic term. We will use the
definition that was used in our earlier paper ([ABK+06], which also introduced the measures KT and KS), because
it provides us with a uniform framework in which to present the new definitions that are the primary focus of this
paper.

Definition 3 LetU be a deterministic Turing machine, and letx ∈ {0, 1}∗. Define:

KtU (x) = min{|d|+ log t : ∀b ∈ {0, 1, ∗}
∀i ≤ |x|+ 1 Ud(i, b) runs in

timet and accepts iffxi = b}
KTU (x) = min{|d|+ t : ∀b ∈ {0, 1, ∗}

∀i ≤ |x|+ 1 Ud(i, b) runs in

timet and accepts iffxi = b}
KsU (x) = min{|d|+ log s : ∀b ∈ {0, 1, ∗}

∀i ≤ |x|+ 1 Ud(i, b) runs in

spaces and accepts iffxi = b}
KSU (x) = min{|d|+ s : ∀b ∈ {0, 1, ∗}

∀i ≤ |x|+ 1 Ud(i, b) runs in

spaces and accepts iffxi = b}

Here, we say thatxi = ∗ if i > |x|.

Universal Turing machines provide time efficient simulations of other machines, so ifU is a universal Turing
machine andU ′ is any other Turing machine, then KtU (x) ≤ KtU ′(x) + c · log |x|, KSU (x) ≤ c · KSU ′(x),
KsU (x) ≤ KsU ′(x) + c · log |x|, and KTU (x) ≤ c · KTU ′(x) log |x|. Hence, none of these complexity measures
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changes much when one changes from one universal machineU to another. As usual in studies of Kolmogorov
complexity, we will choose a fixed universal Turing machineU and use the notation Kt, KS, Ks and KT to refer to
KtU , KSU , KsU and KTU .

In the traditional study of Kolmogorov complexity without resource bounds, the choice of universal machineU
affects the measures K(x) and C(x) only by additive constant terms [LV08]. In contrast, the choice ofU affects
the value of Kt(x) by an additive logarithmic term, and it affects KT(x) by a multiplicative logarithmic factor.
This comes from the slight slow-down that is incurred in the simulation ofU ′ by U . Some of the other measures
that we will study are affected to an even greater degree by the choice of the universal machineU . However, the
situation is much better for KT and Kt and other measures in this vein, than it is for measures such as Ct and Kt

[ABK +06].

It is worthwhile mentioning how the definition of Kt given here differs from the one given by Levin [Lev84]. In
Levin’s original definition, the machineU is required to produce the entire stringx as output, whereas here the
machineU gets indexi and has to determine thei-th bit of stringx. This change allows the running time to
be sublinear in the length ofx. As this would allow the machineU not to be aware of the actual length ofx,
we stipulate that fori = |x| + 1 the output should be “*”. Since our definition does not requireU to produce
any output, but merely to accept or reject, it is well-suited for generalization to nondeterministic and alternating
machines.

2.3 The measuresKB and KF

The definition of KT complexity is motivated in large part by the fact that KT(x) is a good estimate of the circuit
size required to compute the functionfx that hasx as its truth table [ABK+06]. More precisely, for any stringx
of length2m, let SizeA(x) denote the number of wires in the smallest oracle circuit with oracleA that computes
fx. The following theorem holds:

Theorem 4 [ABK+06] There is a constantc such that for any oracleA and any stringx of length2m,

1. SizeA(x) ≤ c(KTA(x))2 (KTA(x)2 + log |x|) and

2. KTA(x) ≤ c (SizeA(x))2 (log SizeA(x) + log log |x|).

But circuit size is only one of many possible interesting measures of the “complexity” off . There is also great
interest in knowing the size of the smallest branching program computingf , as well as the size of the smallest
Boolean formula representingf . Do these notions of complexity also give rise to a natural notion of Kolmogorov
complexity? In this subsection, we answer this question by presenting definitions having the same general flavor
as KT.

First, we need to present some background information about branching programs and Boolean formulae. For our
purposes, aBoolean formulais a circuit with AND and OR gates of fan-in two and fan-out one (except for the
output gate, which has fan-out zero), where the inputs to the circuit are literals from{xi, xi : 1 ≤ i ≤ n}. The
sizeof a formula is the number of gates; a formula represents a Boolean function onx1, . . . xn in the obvious way.

A branching programis a directed acyclic graph with a single source and two sinks labeled 1 and 0, respectively.
Each non-sink node in the graph is labeled with a variable in{x1, . . . , xn} and has two edges leading out of it:
one labeled 1 and one labeled 0. A branching program computes a functionf on inputx = x1 . . . xn by first
placing a pebble on the source node. At any time when the pebble is on a nodev labeledxi, the pebble is moved
to the (unique) vertexu that is reached by the edge labeled 1 ifxi = 1 (or by the edge labeled 0 ifxi = 0). If the
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pebble eventually reaches the sink labeledb, thenf(x) = b. Details and background on branching programs can
be found in a standard text, such as the one by Vollmer [Vol99]. Thesizeof a branching program is the number of
nodes in the graph.

Definition 5 LetU1 be a deterministic Turing machine, and letU2 be an alternating Turing machine.

KBU1(x) = min{|d|+ 2s : ∀b ∈ {0, 1, ∗}
∀i ≤ n + 1 Ud

1 (i, b) runs in

spaces and accepts iffxi = b}
KFU2(x) = min{|d|+ 2t : ∀b ∈ {0, 1, ∗}

∀i ≤ n + 1 Ud
2 (i, b) runs in

timet and accepts iffxi = b}

Here, we say thatxi = ∗ if i > |x|.

Similarly to Kt and KT, KBU1 and KFU2 are almost invariant under the choice ofU1 andU2. More precisely, if
U1 is a deterministic universal machine andU ′

1 is any other deterministic machine then for some constantc > 0,
for all x, KBU1(x) ≤ (KBU ′

1
(x))c. Furthermore, ifU2 is a fast universal alternating Turing machine andU ′

2 is
any other alternating machine then there exists a constantc > 0 such that for allx, KFU2(x) ≤ (KFU ′

2
(x))c. Thus

for the rest of the paper we will fix one universal machineU1 and one fast universal alternating machineU2 and
measure KB and KF with respect to them.

The following simple proposition shows the relationship between KB and branching program size, and between
KF and Boolean formula size.

Proposition 6 There exists a constantc ≥ 1 such that for any stringx of length2n representing the truth table
of a functionf , if BPSIZE(x) denotes the size of the smallest branching program computingf , andFSIZE(x)
denotes the size of the smallest Boolean formula representingf then

1. (KB(x))1/c ≤ BPSIZE(x) + log |x| ≤ (KB(x) + log |x|)c; and

2. (KF(x))1/c ≤ FSIZE(x) + log |x| ≤ (KF(x) + log |x|)c.

Proof. To prove the first inequality consider a deterministic machineU1 that takes as its finite oracled a string
1m0w, wherem is a positive integer andw is an encoding of a branching program in variablesx1, . . . , xm. U1

assumes some natural encoding of branching programs where a branching program of sizeS is represented by a
stringw of lengthS(2dlog Se+ dlogme). There are such encodings. On input(i, b), Ud

1 (i, b) first checks whether
i is a string of length at mostm+1 representing an integer between1 and2m. If not, it accepts iffb = ∗ otherwise
it evaluates the branching program represented byw on the stringz that is them-bit string representingi− 1, and
U1 accepts iff the output of the branching program equals tob. ClearlyU1 can be implemented to run in space
O(log |w| + log m). If x is a2m-bit binary string that represents a Boolean function computable by a branching
program of sizeS then KBU1(x) ≤ m + S(2dlog Se+ dlog me) + 2O(log |w|+log m) ≤ (mS)c′

for some constant
c′ depending only onU1. The first inequality follows because KB is measured with respect to some fixeduniversal
Turing machine.

We prove now the second inequality. LetU1 be the fixed universal reference Turing machine for KB. We can
construct another machineU ′

1 that on inputi ∈ {0, 1}∗ with oracled will simulate the computation ofUd
1 (i′, 1)
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wherei′ is the integer binary represented byi incremented by 1. If|i| = m thenU ′
1 will require onlyO(log m)

extra bits of memory for the simulation. For a stringx of length2m, letd ands be such that|d|+2s = KB(x) and
for all 1 ≤ i ≤ n, Ud

1 (i, 1) runs in spaces and accepts iffxi = 1. Clearly, iffx is the Boolean function represented
by x thenU ′

1
d(i) accepts ifffx(i) = 1. U ′

1 with oracled on anym-bit inputi runs in spaces + O(log m) so there
are at most2O(s+log m) distinct reachable configurations on inputs of sizem with oracled where the constant in
big-O depends only onU1. By the usual technique the graph of its configurations can be turned into a branching
program of size2O(s+log m) whered will be hardwired into the program. Thus, BPSIZE(x) ≤ (KB + log |x|)c

for some constantc depending only onU1.

Next we provide the main idea of how to prove the third inequality. Letx be a string of length2m representing
a Boolean functionfx computable by a Boolean formula of sizek. Using usual techniques the formula can be
turned into a balanced formula of size at mostk4. Furthermore, by replication of subformulas it can be turned into
a completely balanced formula with alternating AND and OR gates of size at mostk8. The depth of the formula is
` ≤ d8 log ke. Thus, the formula is completely uniform now and it is fully determined by the sequence of literals
(variables and negated variables) accessed at the leaves. This sequence suitably encoded into a stringw of length
2`(1 + dlog me) = O(k8 log m) will be part of the adviced to an alternating machineU2 that we construct. The
machineU2 with adviced = 0`1m0w on input(i, 1) (assumingi is of length at mostm + 1) will spendO(`)
time reading the first̀ bits of d, alternating between universal and existential states for` alternations (so that its
alternation tree mimics the depth` balanced formula), while keeping track of the pathp in the alternation tree
that the computation has followed. Then by querying1 + dlog me bits of w it will determine which literal the
formula should read in the leaf corresponding to the pathp from the root of the formula. It computes the bit of
the stringi − 1 corresponding to this literal, and accepts if the literal evaluates to 1. On input(i, 0) it computes
similarly but existential and universal states are interchanged and each computation accepts if the corresponding
literal evaluates to 0. On input(i, ∗) it accepts iffi = 2m + 1 which can be decided in alternating timeO(log |d|).
A few more details need to be explained.U2 checks in parallel thati has the right size, which takes alternating time
at mostO(log |d|); similarly, the binary representation ofm can be computed in this amount of time. Furthermore,
the input to the formula should be them-bit binary representation ofi−1. Any particular bit of that representation
can be determined fromi in alternating timeO(log m). Hence,U2 works in time that is linear in the depth of the
formula andlog m, i.e., in timeO(log FSIZE(x) + log log |x|). By the choice of the fixed fast universal reference
Turing machine for KF we conclude that KF(x) ≤ (FSIZE(x) + log |x|)c for some constantc.

The last inequality follows easily, by constructing a Boolean formula that simulates the computation of an alter-
nating Turing machine [Ruz81]. 2

2.3.1 KB Complexity and Switching Circuit Size

As a historical footnote, we mention that the measure KB has close connections to another topic listed by Trakht-
enbrot as a major concern of the Russian theoretical computer science community in the mid-twentieth century:
Switching Circuit Size. Aswitching circuitis an undirected graph with two distinguished verticess andt, with
edges labeled by Boolean literals{xi, xi : 1 ≤ i ≤ n}. Thesizeof the circuit is the number of edges in the graph.
The circuitacceptsan inputx if there is a path froms to t using only edges that evaluate to 1 on inputx. Thus a
circuit represents the Boolean functionf such thatf(x) = 1 if and only if the circuit acceptsx.

Trakhtenbrot’s survey [Tra84] discusses at length the central role that was played by switching circuit size in
the study ofperebor in Russia. LetL(f) denote the size of the smallest switching circuit that computesf .
Trakhtenbrot discusses Task 1, Task 2, and Task 3 [Tra84, p. 388], all of which deal with the problem of computing
L(f) (analogous to the Minimum Circuit Size Problem MCSP, but for switching circuits, instead of Boolean
circuits) and variations on this theme (such as finding ann-ary functionf with maximalL(f)).
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Here, we observe that branching program size is polynomially-related to switching circuit size, and henceL(x)
is polynomially related to KB(x) (wherex is a string of length2n representing a functionf , and henceL(x) =
L(f)).

Proposition 7 There exists a constantc ≥ 1 such that for any stringx of length2n representing the truth table of
a functionf ,

1. L(x)1/c ≤ BPSIZE(x) ≤ (L(x) + log |x|)c; and

2. (KB(x))1/c ≤ L(x) + log |x| ≤ (KB(x) + log |x|)c.

Proof. The first statement implies the second, by Proposition 6. Thus we present the proof only of the first
statement.

For the first inequality, assume that them-ary functionf with truth tablex has a branching program of sized.
We make use of the fact that the undirected reachability problem UGAP is hard for L under projection reductions.
(This follows from the reduction given by Lewis and Papadimitriou [LP82], in showing that UGAP is complete
for “symmetric logspace”, which is now known to coincide with L [Rei08].) That is, given a directed graphG
with outdegree 1 with sources and sinkt and havingd nodes, one can build an undirected graphG′ havingdO(1)

nodes, and where, for any two verticesu, v of G′, the presence or absence of an edge betweenu′ andv′ depends
on at most a single bit in the adjacency matrix ofG, and such that there is a path froms to t in G if and only if
there is a path betweens′ andt′ in G′. We want to label the edges ofG′ with literals in the variablesy1, . . . , ym,
so that, for any inputy, there is a path froms to t in G′ if and only if f(y) = 1. It is now clear how to do this: Let
G be the branching program forf of sized, and construct the undirected graphG′ as above. Consider any two
verticesu′ andv′ of G′. The presence or absence of an edge betweenu′ andv′ depends on (at most) a single bit
of the graphG. If the bit of graphG on which this depends is the bit of the adjacency matrix ofG that records if
there is an edge fromu to v in G, where this edge is labeled by a literalyi or yi, then this determines the literal
that should label this edge ofG′. Thus we have constructed a switching circuit forf having size at mostdO(1),
which establishes the first inequality.

For the second inequality, letf have a switching circuit of sized. We describe a branching program forf : On
input y, build the undirected graphG of size at mostd consisting of the edges in the switching circuit that are
labeled with literals that evaluate to 1. Accepty if and only if there is a path froms to t in G.

It was shown by Reingold that there this computation can be accomplished in spaceO(log d + log m), given the
switching circuit of sized and a stringy of lengthm. Thus there is a branching program of size(d + m)O(1) for
this task. This establishes the second inequality. 2

2.4 The Nondeterministic MeasuresKNT and KNt

In the preceding section, we saw that a variant of Kolmogorov complexity defined usingalternatinguniversal
machines captures certain aspects of Boolean formula size. In this subsection, we investigate similar measures
defined usingnondeterministicmachines. By doing so, we will find a natural complete set for NEXP/poly, and we
will see how to use the tools of Kolmogorov complexity to provide a new perspective on the techniques that have
been developed to derandomize nondeterministic classes such as AM [MV05, SU05].

Here are the nondeterministic variants of Kt and KT:
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Definition 8 LetU be a nondeterministic Turing machine, and letx ∈ {0, 1}∗. Define:

KNtU (x) = min{|d|+ log t : ∀b ∈ {0, 1, ∗}
∀i ≤ |x|+ 1 Ud(i, b) runs in

timet and accepts iffxi = b}
KNTU (x) = min{|d|+ t : ∀b ∈ {0, 1, ∗}

∀i ≤ |x|+ 1 Ud(i, b) runs in

timet and accepts iffxi = b}

As in the definition for Kt and KT, any fast universal machineU has the property that for allU ′ there is some
constantc > 0 such that for anyx, we have KNtU (x) ≤ KNtU ′(x) + c and KNTU (x) ≤ c · KNTU ′(x).

In precisely the same way that KT(x) is polynomially related to the size of (deterministic) circuits computing the
function whose truth table is given byx, KNT is polynomially related tostrong nondeterministiccircuit size. We
recall for the reader the definitions of nondeterministic and strong nondeterministic circuits:

Definition 9 A nondeterministic Boolean circuitC contains, in addition toAND, OR, and NOT gates, choice-
gates of fan-in0. The circuit evaluates to1 on an inputx, and we say thatC(x) = 1, if there is some assignment
of truth values to the choice-gates that makes the circuit evaluate to1. A co-nondeterministic circuitC is defined
similarly: the circuit evaluates to1 on an inputx, and we say thatC(x) = 1, if every assignment of truth values
to the choice-gates makes the circuit evaluate to1. OtherwiseC(x) = 0.

Similarly, astrong nondeterministic circuitC computing a functionf has, in addition to its usual output, an extra
output bit, called the flag. For any inputx, and any setting of the choice-gates, if the flag is on, the circuit should
output the correct value off(x). Furthermore, for anyx, there should be some setting of the choice-gates that
turns the flag on. It is easy to see that a Boolean functionf has a strong nondeterministic circuit of sizeO(s(n))
if and only iff has a nondeterministic circuit of sizeO(s(n)) and a co-nondeterministic circuit of sizeO(s(n)).

Proposition 10 Let StrongSIZE(x) denote the size of the smallest strong nondeterministic circuit computing the
function with truth tablex. Then for any stringx of length2m,

(1/c)KNT(x)1/3 ≤ StrongSIZE(x) + log |x| ≤ c(KNT(x) + log |x|)3.

Proof. To prove the first inequality we first design the following machineU1. MachineU1 takes as its oracle a
stringd = 1m0w, wherew is a description of a strong nondeterministic circuit with inputsx1, . . . , xm. Machine
U1 with oracled on input (i, b) first checks whetheri represents an integer between1 and2m. If not then it
accepts iffb = ∗, otherwise it simulatesw on the stringz that is them-bit binary representation ofi − 1 (with
the choice-gates set nondeterministically). If the output flag of the circuit is set and the output equalsb thenU1

accepts(i, b). Clearly, the machineU1 uses its oracled = 1m0w as a description of the function computed byw.
It is easy to see that one can choose an encoding of circuits such that a circuit of sizeS is encoded intow of size
O(S(log S + log m)) and such thatU1 works in timeO(|d| + |i|)2. Hence, for somec′ > 1 depending only on
U1, KNTU1(x) ≤ c′(StrongSIZE(x)+ log |x|)3. The first inequality follows by the properties of thefastuniversal
Turing machine in the definition of KNT.

Next we argue the correctness of the second inequality. LetU2 be the fast universal Turing machine from the
definition of KNT. By the Cook-Levin Theorem, for any integersm, t ≥ 1, there is a nondeterministic circuit
Cm,t of sizeO((t + m)3) such that on any inputd ∈ {0, 1}t, i ∈ {0, 1}m andb ∈ {0, 1}, Cm,t(d, i, b) evaluates
to 1 iff Ud

2 (i + 1, b) accepts in time at mostt. Here,i is interpreted as an integer between0 and2m − 1. Forx of
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length2m, let d ∈ {0, 1}∗ and integert ≥ 1 be such that|d|+ t = KNT(x) and for all integersi ≤ 2m, Ud
2 (i, b)

accepts in timet iff xi = b. The strongly nondeterministic circuit for the functionf represented byx consists of
two copies ofCm,t: Cm,t(d, i, 1) andCm,t(d, i, 0), the output is given by the output ofCm,t(d, i, 1) and the flag
by Cm,t(d, i, 1) ∨ Cm,t(d, i, 0). Here,d is hardwired andi is the input to the circuit. 2

There is a close connection between KNt complexity and circuit complexity, too. Namely, KNt(x) is polynomially
related to oracle circuit size, on circuits that have oracles for a set that is complete for NEXP. This follows from
Theorem 4, when combined with the following theorem.

Theorem 11 If A is a set complete forNE under many-one linear-time reductions then there is a constantc > 1
such that for anyx,

(1/c)KNt(x) ≤ KTA(x) ≤ c(KNt(x) + log |x|) log |x|.

Proof. Let us prove the first inequality. LetU1 be a universal Turing machine used to measure KTA, the KT
complexity where the universal machine has access to the oracle forA. SinceA is in NE, by Theorem 22,A
is in NE/lin. We can construct a machineU ′

1 that simulates machineU1 but instead of asking queries toA it
nondeterministically evaluates the queries by itself. Assuming thatU ′

1 is provided with the proper advice forA,
the machineU ′

1 will simulateU1 in nondeterministic exponential time. More precisely, letd ∈ {0, 1}∗, b ∈ {0, 1}
andt ∈ IN. There existsw ∈ {0, 1}t+1 such that for anyi ∈ {0, 1}∗ if U1 with oraclesA andd on input(i, b)
runs in timet, thenU ′

1 with oracle1|w|0wd on input(i, b) runs in timet · 2O(t) and accepts iffU1 accepts with
oracleA. The constant in the big-O of the running time depends only onU1 andA. Thus if KTA(x) = |d|+ t then
KNtU ′

1
(x) ≤ |d| + O(t). Since KNt is measured relative to afastuniversal Turing machine, the first inequality

follows.

For the second inequality, letU2 be the fixed universal machine relative to which we measure KNt. Consider the
languageL = {(d, 1t, i, b) : d, i ∈ {0, 1}∗; b ∈ {0, 1}; t ∈ IN; machineU2 with oracled accepts(i, b) in time
2t+|d|+|i|}. We construct a machineM that with oracleA and1t0d on input(i, b), whered, i ∈ {0, 1}∗, b ∈ {0, 1},
t ∈ IN, checks whether(d, 1t, i, b) is in L. SinceL is reducible toA in linear time,M with oracleA and1t0d on
input (i, b) works in time linear in|d| + t + |i|. Hence, for anyx of length2m, KTA

M (x) ≤ c(KNt(x) + log |x|)
for some constantc that depends only onU2 andA. The inequality follows by the choice of universal machine for
KT. 2

3 How Hard Is It to Compute These Measures?

3.1 Review of lower bounds forKt, KS, and KT

In this section, we briefly review some relevant facts about the complexity of the sets of strings with high resource-
bounded Kolmogorov complexity. First, let us present a definition that will make precise what we mean by “sets
of strings with high resource-bounded Kolmogorov complexity”.

Definition 12 For any Kolmogorov complexity measureKµ, defineRKµ to be the set{x : Kµ(x) ≥ |x|}.

We remark that our theorems are not very sensitive to this threshold of “randomness”. Every theorem that we state
regardingRKµ carries over to the set{x : Kµ(x) ≥ |x|ε}, for any fixedε > 0.
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The setsRKs, RKt andRKS are complete for EXPSPACE, EXP andPSPACE, respectively, under P/poly re-
ductions [ABK+06]. These hardness results both follow from a very general theorem (Theorem 15 below) that
shows how to reduceany“PSPACE-robust” setA to any set that contains many strings but has no strings of low
KTA-complexity.

Definition 13 A setA is PSPACE-robustif PA = PSPACEA.

Definition 14 A setA is said to havepolynomial densityif A contains at least2n/nk strings of every lengthn,
for some integerk.

Remark: The complete sets of most of the familiar “large” complexity classes (such asPSPACE, EXP and larger
time and space complexity classes) are easily seen to bePSPACE-robust.

Theorem 15 [ABK+06, Theorem 31] LetA be anyPSPACE-robust set. LetL have polynomial density, such that
for everyx ∈ L, KTA(x) > |x|γ for some constantγ > 0. ThenA is reducible toL via≤P/poly

tt reductions.

The general idea behind the proof of Theorem 15 is quite simple, once one has some basic tools of derandomization
at one’s disposal. In particular, Babai, Fortnow, Nisan, and Wigderson [BFNW93] developed a pseudorandom
generator that allows one to build, from anyPSPACE-robust setA, a pseudorandom generator that takes input of
lengthnε and produces output of lengthn, with the property that, ifT is any statistical test that can distinguish
the output of the pseudorandom generator from truly random inputs, it must be the case thatA≤P/poly

tt T . The
theorem follows, since the output of the pseudorandom generator has low KTA complexity, and thus any set that
contains many strings but has no strings of low KTA complexity is a good statistical test. We review some other
aspects of this reduction later in this paper, in the proof of Theorem 50.

The setRKT is in coNP and is not known to be complete for any interesting complexity class. However, no
one-way function is cryptographically secure relative toRKT [ABK +06]. Again, the general idea of the proof is
quite simple, once some important tools from cryptography are in hand: Any cryptographically-secure one-way
function can be used to construct pseudorandom function generators [HILL99, GGM86, RR97]. The functions
produced by pseudorandom function generators have low KT-complexity, and thus an oracle forRKT allows one
to crack any pseudorandom function generator, which in turn provides the power to invert any one-way function
on a significant fraction of the inputs.

Somewhat stronger results were shown for specific examples of problems from cryptography (such as factoring
and computing discrete logs). These problems were shown to be BPP-reducible toRKT [ABK +06].

Although these completeness and hardness results provide useful information about the complexity ofRKT, RKS,
andRKt, we have disappointingly fewunconditionallower bounds on their complexity. It is known that none
of these problems are in (nonuniform) AC0 [ABK +06], but we have absolutely no stronger lower bounds. Even
the most complex of these three sets,RKt, which is hard for EXP under P/poly reductions, might conceivably be
recognized by linear-size depth three Dlogtime-uniform circuits of AND, OR, and PARITY gates!

3.2 The Complexity ofRKF and RKB

For each of the two measures KF and KB, the sets of random stringsRKB andRKF lie in coNP. Can we prove
better upper bounds on their complexity? Can we prove any intractability results?
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As discussed in Section 3.1, related questions have been posed about the setRKT, and Kabanets and Cai posed
similar questions earlier for the related Minimum Circuit Size Problem (MCSP) [KC00]. Although we are not
able to reduce the factorization problem toRKB andRKF (as was accomplished forRKT in [ABK +06]), we can
come close.

In this section we prove that factoring Blum Integers can be done in ZPPRKF and ZPPRKB . (For an oracleA, a
functionf is in ZPPA if there exists a procedure computed by a probabilistic oracle machine with oracleA that
on inputx, on every halting path, producesf(x), and the expected running time is polynomial.) We use results of
[NR04] and [BBR99] in order to accomplish this. We define the following computational problem.

Blum Integer Factorization: Given a Blum IntegerN ∈ IN, find the primesP andQ such that1 < P ≤ Q and
N = PQ. (A 2n-bit integerN is called aBlum Integerif N = PQ, whereP andQ are two primes such that
P ≡ Q ≡ 3 mod4.)

Theorem 16 Blum Integer Factorization is inZPPRKF ∩ZPPRKB , i.e., there areZPPRKF andZPPRKB procedures
that on inputN that is a Blum Integer produce factorsP andQ of N .

Proof. Naor and Reingold construct a pseudo-random function ensemble{fN,r(x) : {0, 1}n → {0, 1}}N,r with
the following two properties (Construction 5.2 and Corollary 5.6 of [NR04]):

1. There is a TC0 circuit computingfN,r(x), given2n-bit integerN , 4n2 + 2n-bit stringr andn-bit stringx.

2. For every probabilistic oracle Turing machineM , that on its2n-bit input asks queries of length onlyn,
and any constantα > 0, there is a probabilistic Turing machineA, such that for any2n-bit Blum Integer
N = PQ, if

|Pr[MfN,r(N) = 1]− Pr[MRn(N) = 1]| > 1/nα

whereRn = {g : {0, 1}n → {0, 1}}n is a uniformly distributed random function ensemble and the proba-
bility is taken over the random stringr and the random bits ofM , thenPr[A(N) ∈ {P, Q}] > 1/n.

Their factoring construction relativizes, i.e., the properties of{fN,r(x)}N,r hold even ifM andA have an access
to the same auxiliary oracle.

Let fN,r(x) be computable by a TC0 circuit of sizenc′
, and hence, by an NC1 circuit of sizenc′′

, for some
constantsc′, c′′ > 1. Let x1, x2, . . . , x2n denote strings in{0, 1}n under lexicographical ordering. Clearly, there
is a constantc > 1, such that for all large enoughn, all 2n-bit integersN and all4n2 + 2n-bit stringsr, the string
obtained by concatenatingfN,r(x1), fN,r(x2), . . . , fN,r(xnc) has KF-complexity less thannc/2. Fix such ac and
consider the following oracle Turing machineM with oraclesRKF and a functiong:

• On2n-bit inputN , M asks oracleg queriesx1, x2, . . . , xnc to get answersy1, y2, . . . , ync . Then,M accepts
if y1y2 · · · ync ∈ RKF and rejects otherwise.

It is easy to see that ifg ∈ {fN,r(x)}N,r thenM always rejects, forn large enough. On the other hand, ifg is
taken uniformly at random fromRn, theny1y2 · · · ync is a random string and the probability thatM accepts is
at least1 − 2−n/2. Hence,|Pr[MfN,r(x)(N) = 1] − Pr[MRn(N) = 1]| > 1/2, for n large enough. By the
properties offN,r(x) we can conclude that there is a probabilistic Turing machineA with oracleRKF that factors
N with non-negligible probability. We can reduce the error to zero by verifying the output ofA.

Since any function that is computable by NC1 circuits is computable by branching programs of polynomial size,
by considering branching programs instead of NC1 circuits we get that Blum Integer Factorization is in ZPPRKB .

2

We close off this section with the only unconditional lower bound that we have onRKF andRKB.
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Proposition 17 None of the setsRKt, RKT, RKS, RKB andRKF are in AC0.

This proposition follows from the proof of [ABK+06, Corollary 22], and also carries over to the other Kolmogorov
measuresKµ discussed elsewhere in the paper.

3.3 Hardness of Approximation

Many computational problems that complexity theory studies are decision problems for which an answer is always
either “yes” or “no”. Other problems that are of interest in computational complexity are optimization problems.
Examples of optimization problems are the Maximum Clique — what is the size of the largest clique in a graphG
— and the Minimum Circuit Size Problem — what is the size of the smallest circuit computing a Boolean function
f given by its truth table?

For some optimization problems efficient (polynomial time) algorithms are known. For others, no efficient algo-
rithm is known. Moreover, it is known that some optimization problems are hard for NP. Given that the exact
solution of such an optimization problem may be hard to find one can try to find at least an approximation to
the solution. Many optimization problems are known for which even finding an approximation cannot be done
efficiently, unless something unlikely is true, such asP = NP. For example, [H˚as99] shows that the Maximum
Clique cannot be approximated up to factorn1−ε in polynomial time, unlessP = NP.

In this section we study the following optimization problems — given a truth table of a functionf , what is the
smallest size of a circuit, a branching program or a formula, respectively, that computesf . We show that under
certain plausible complexity assumptions these optimization problems are hard to approximate.

Related questions about approximating the size of the smallest AC0 circuits for a given truth table were investigated
in [AHM +08]. For the seemingly even more restrictive problem of approximating the size of the smallest DNF
formula that represents a given truth table, approximating the size is known to be hard for NP [Fel09, AHM+08,
KS08].

For a minimization problemf : Σ∗ → IN we say thatg : Σ∗ → IN approximatesf up to factorr : IN → IN if for
all x ∈ Σ∗, 1 ≤ g(x)/f(x) ≤ r(|x|). For a complexity classC we say thatf cannot be approximated up to factor
r in C if no g ∈ C approximatesf up to factorr.

We recall definitions of two more problems that are believed to be computationally difficult.

Integer Factorization: Given a composite integerN ∈ IN, find two integersP andQ such that1 < P ≤ Q and
N = PQ.

Discrete Logarithm: Given three integersx, z, N , 1 ≤ x, z < N , find ani such thatx = zi mod N if suchi exists.

The following result is implicit in [ABK+06]:

Theorem 18 Let 0 < γ < 1 be a constant andB be a set of at least polynomial density such that for anyx ∈ B,
SIZE(x) > |x|γ . Then Integer Factorization and Discrete Logarithm are inBPPB.

This theorem implies the non-approximability of circuit size.

Theorem 19 For any0 < ε < 1, SIZE(x) cannot be approximated up to factor|x|1−ε in BPP, unless Integer
Factorization and Discrete Logarithm are inBPP.
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Proof. Assume that for some0 < ε < 1, there is a functiong ∈ BPP that approximates SIZE(x) up to factor
|x|1−ε. We will show that this implies that Integer Factorization and Discrete Logarithm are in BPP.

Consider the setB = {x ∈ {0, 1}∗; g(x) > |x|1−ε/2}. Clearly,B ∈ BPP. Since for allx ∈ {0, 1}∗, 1 ≤
g(x)/SIZE(x) ≤ |x|1−ε, we have that for allx ∈ B, SIZE(x) > |x|ε/2 and also for allx ∈ {0, 1}∗, if SIZE(x) ≥
|x|1−ε/2 thenx ∈ B. By [Lup59], almost all truth tablesx ∈ {0, 1}∗ require circuits of size at leastO(n/ log n).
Hence,B is of at least polynomial density. By Theorem 18, Integer Factorization and Discrete Logarithm are in

BPPBPP⊆ BPP. (In the case of Integer Factorization we can actually verify correctness of the result to get ZPP
computation instead of BPP.) 2

Similar non-approximability results can be obtained for formula and branching program sizes. A proof similar to
the proof of Theorem 16 yields the following claim.

Theorem 20 Let 0 < γ < 1 be a constant andB be a set of at least polynomial density such that for anyx ∈ B,
BPSIZE(x) > |x|γ or for anyx ∈ B, FSIZE(x) > |x|γ . Then there is aZPPB procedure that on inputN that is
a Blum Integer produces factorsP andQ of N .

As a corollary to this theorem we obtain:

Theorem 21 For any0 < ε < 1, BPSIZE(x) andFSIZE(x) cannot be approximated up to factor|x|1−ε in BPP,
unless Blum Integer Factorization is inZPP.

In Theorems 19 and 21, a functionf is computable in BPP if there is a polynomial time probabilistic machine
M such that for anyx, Pr[M(x) = f(x)] ≥ 2/3. However, the results hold for an even stronger notion of
non-approximability: For any0 < ε < 1, if there is a polynomial time probabilistic machineM such that for all
x, Pr[1 ≤ M(x)/BPSIZE(x) ≤ |x|1−ε] ≥ 2/3 or Pr[1 ≤ M(x)/FSIZE(x) ≤ n1−ε] ≥ 2/3 then Blum Integer
Factorization is in ZPP. Similarly, if there is a polynomial time probabilistic machineM such that for allx, Pr[1 ≤
M(x)/SIZE(x) ≤ |x|1−ε] ≥ 2/3 then Integer Factorization and Discrete Logarithm are in BPP. These results
follow by essentially the same proofs as Theorems 19 and 20; one has only to observe that the derandomization
results that we use hold not only relative tooraclesthat distinguish between random and pseudorandom strings
but also relative toprobabilistic proceduresthat distinguish between random and pseudorandom strings with non-
negligible probability.

3.4 The Complexity ofRKNt

In this subsection, we prove our main results regarding KNt complexity. We prove an upper bound, showing that

RKNt is in PNEXP (and observe that this class is contained in NEXP/poly) and we show thatRKNt is complete
for NEXP/poly under P/poly reductions. Furthermore, we present an unconditional lower bound, showing that
RKNt is not in NP∩ co-NP. (This result presents a stark contrast to what we are able to prove aboutRKt, which
is still not known to lie outside of P, or even outside of Dlogtime-uniform AC0[2].)

3.4.1 Properties ofNE, NEXP, and PNEXP

Before we can present our results aboutRKNt, it is necessary to present some fundamental facts about the com-
plexity classes that are most closely related toRKNt.
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In this paper, we will need to refer both to NE= NTime(2O(n)) and NEXP= NTime(2nO(1)
), as well as their

deterministic counterparts E= DTime(2O(n)) and EXP= DTime(2nO(1)
). We will also have occasion to refer

to the class FewEXP, which is defined as the class of languages accepted by NEXP machines that have no more
than2nO(1)

accepting computations on inputs of lengthn. FewE is defined similarly in terms of NE machines that
have no more than2O(n) accepting computations on inputs of lengthn.

The following theorem is a well-known “folklore” theorem, although the only citation we know to give is to
Fortnow’s Computational Complexity weblog [For04, vM03].

Theorem 22 (Folklore)NE/lin = coNE/lin.

Proof. It suffices to show that coNE⊆ NE/lin. Let A ∈ coNE, whereM is an NE machine accepting the
complement ofA. Definean to be the advice string for lengthn, wherean is the binary encoding of the number
of strings of lengthn in A; note thatan has a linear number of bits. Here is an NE/lin algorithm forA: On inputx
of lengthn, nondeterministically pick2n − an strings of lengthn, and attempt to find an accepting path ofM for
each of these strings. (If this attempt is unsuccessful, then abort.) At this point, we have a list ofall of the strings
of lengthn that arenot in A. Accept if and only ifx is not on the list. 2

Corollary 23 NEXP/poly= coNEXP/poly.

Similar techniques allow us to show that any NEXP-complete set isPSPACE-robust; recall from Section 3.1 that
a setA is PSPACE-robust if PA = PSPACEA. This extends a result of Hemachandra [Hem89], where it is shown

that PNE = NPNE = . . . = Σp,NE
k . (Note also that PNE = PNEXP, since there are sets that are polynomial-time

many-one complete for NEXP in NE.)

Theorem 24 PNE = PSPACENE. In fact, PNE is also equal to the classNEXPNE if we restrict theNEXP
oracle machine to pose queries of length polynomial in the length of the input.

Proof. Let A be accepted by a nondeterministic oracle machineM that runs for time2nk

and asks queries of
length at mostnc, and has as oracle a setB ∈ NE. Let C be the set{(1n, m) : there are at leastm strings of
length≤ n in B}. Clearly,C ∈ NE. Using binary search, a polynomial time machine with access toC (or to an
NE-complete oracle) can determine exactly how many strings of length at mostnc are inB.

Now consider the setD, defined as the set of pairs(x, m) for which there is a setS ⊆ B with exactlym strings
of length at most|x|c, such thatMS(x) accepts.D is easily seen to lie in NEXP (simply guess them strings,
guess an accepting computation for each of the strings to verify that it is inB, and then simulate the computation
of M(x) using them strings as an oracle). ThusD is reducible in polynomial time to a set in NE.

Thus in PNE one can compute the precise valuem such thatB hasm strings of length at mostnc, and then find
out if (x, m) ∈ D, which is equivalent tox ∈ A. 2

Corollary 25 PNE = PSPACENE = EXPNP
tt (whereEXPNP

tt denotes the class of problems accepted by deter-

ministic oracle machines running in time2nO(1)
with an oracle inNP, with the property that the complete list of

oracle queries to be posed is composed before the first query is made). This mode of oracle access is known as
“nonadaptive” or “truth-table” reducibility; the queries may be of exponential length.
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Proof. The first equality is from Theorem 24. The second equality is from [Hem89, Theorem 4.10.2]. 2

Combining the techniques of Theorems 24 and 22, we obtain the following equality.

Theorem 26 PSPACENEXP/poly = PNEXP/poly = NEXP/poly.

Proof. Fortnow credits Buhrman with the observation (stated without proof) that EXPNP
tt is contained in

NEXP/poly [For04]. By Corollary 25, this implies the theorem. For completeness, we give a simple direct proof.

By Theorem 24, it suffices to show that PNEXP/poly is contained in NEXP/poly. LetA ∈ PNEXP be recognized
by an oracle machineM running in timenc with oracleB ∈ NEXP. Our NEXP/poly algorithm forA will use an
advice sequence, listing for eachm ≤ nc the numberam of strings of lengthm in B. Our NEXP/poly algorithm
will guessam strings of lengthm and guess accepting computations verifying that each of the strings is inB.
Then it will simulateM(x) using this list of strings as the oracle, accepting if and only ifx ∈ A. 2

In order to prove our lower bound forRKNt in Section 3.4.4, we need to establish some conditional collapse
results. In particular, we need to show that if NEXP is in(NP∩ co-NP)/poly, then NEXP= PSPACE. (We
prove a stronger result below in Theorem 29.) Vinodchandran proves a related result, showing that if EXP⊆
(NP∩ co-NP)/poly, then EXP= AM [Vin04, Theorem 8]. We make use of a stronger hypothesis than this
result of Vinodchandran (assuming an upper bound on NEXP instead of EXP), but in order to conclude that
NEXP = AM we would first need to argue that, under this assumption, EXP= NEXP. Instead of presenting the
argument in that form, we first present the following theorem, which improves Vinodchandran’s result (obtaining
the conclusion EXP= AM from a weaker hypothesis).

Theorem 27 EXP⊆ (AM ∩ coAM)/poly if and only ifEXP = AM .

Proof. The backward implication is trivial (since EXP is closed under complement, and thus if EXP= AM we
have EXP= AM ∩ co-AM ⊆ (AM ∩ coAM)/poly).

For the forward implication, we follow the example of the proof that if EXP⊆ P/poly, then EXP= MA
[BFNW93]. That argument proceeds by observing that every problem in EXP has a two-prover interactive proof
[BFL91] where, moreover, the strategy of the provers is computable in EXP. Thus if EXP⊆ P/poly, each problem
in EXP can be solved by an MA protocol where Merlin first sends Arthur the circuits computing the provers’
strategies, and then Arthur uses the circuits to simulate the rest of the multi-prover interactive proof.

We use the weaker assumption that EXP⊆ (AM ∩ coAM)/poly. Thus each problem in EXP has an MAAM ∩ co-AM

protocol, where Merlin sends Arthur the advice sequence used for the (AM∩ coAM)/poly algorithms for the
provers, and then Arthur uses the AM∩ co-AM oracle to simulate the multi-prover protocol. The result follows

since MAAM ∩ co-AM ⊆ AMAM ∩ co-AM = AM [Sch89]. 2

Corollary 28 P#P⊆ (AM ∩ coAM)/poly if and only ifP#P = AM .
PSPACE ⊆ (AM ∩ coAM)/poly if and only ifPSPACE = AM .

Proof. #P andPSPACE have interactive proofs where the strategy of the prover is computable in #P and
PSPACE respectively [LFKN92, Sha92]. The rest of the argument is the same as in Theorem 27. 2

The same strategy fails in proving a similar result for NEXP, since the strategies of the provers for the two-prover
interactive proofs for NEXP are not known to be computable in NEXP. However, a different strategy succeeds.
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Theorem 29 NEXP⊆ (AM ∩ coAM)/poly if and only ifNEXP = AM .

Proof. As in the proof of Theorem 27, the backward implication is trivial (since AM⊆ EXP⊆ NEXP).

For the forward implication, assume that NEXP⊆ (AM ∩ coAM)/poly. This clearly implies that NEXP⊆
Σp

2/poly.

Assume, for the sake of contradiction, that NEXP6= EXP. It is known that this implies that AM⊆ io-NTime(2n)/n
[IKW02] (where this means that, by Theorem 27, we can conclude that for every problemA ∈ EXP = AM, there
is a problem in NTime(2n)/n that agrees withA for infinitely many input lengthsn). There is a problemB ∈ NE
that is hard for NTime(2n) underlinear-time reductions. It follows from the preceding paragraph that there is
a constantc > 0 and aΣp

2 algorithm running in timenc with nc bits of advice, acceptingB, and thus EXP⊆
io-Σ2time(nd)/nd for somed > 0. However, a straightforward diagonalization argument in the style of Kannan
[Kan82] shows that this inclusion does not hold. (That is, an exponential-time algorithm can simulate the firstn

Σ2time(nd) algorithms on each of the2nd

advice sequences of lengthnd and on each of the lexicographically first
n2d strings of lengthn. There must be some function on thesen2d strings that differs from each of thesen2nd

functions. Select one such function. This defines a function in EXP that is not in io-Σ2time(nd)/nd.)

Thus we can conclude that EXP= NEXP under this assumption. The theorem now follows from Theorem 27.2

For completeness, we mention two more equivalences in the same vein.

Corollary 30 EXPNP⊆ (AM ∩ coAM)/poly if and only ifEXPNP = AM .
FewEXP⊆ (AM ∩ coAM)/poly if and only ifFewEXP= AM .

Proof. Again, the backward implications are trivial.

If EXPNP⊆ (AM ∩ coAM)/poly, then clearly EXPNP⊆ EXP/poly, which implies that EXPNP = EXP [BH92].

Thus we have EXPNP = EXP⊆ (AM ∩ coAM)/poly, which implies EXPNP = AM by Theorem 27.

If FewEXP ⊆ (AM ∩ coAM)/poly, then clearly FewEXP⊆ EXP/poly, which implies that FewEXP= EXP
[AKS95]. Thus we have FewEXP= EXP ⊆ (AM ∩ coAM)/poly, which implies FewEXP= AM by Theorem
27. 2

3.4.2 An Upper Bound forRKNt

Theorem 31 RKNt ∈ PNE.

Proof. By Theorem 24, it suffices to show thatRKNt is in PSPACENE. From the definition, it is clear that
a stringx is not in RKNt if and only if there is a stringd of length less than|x| and a timet < 2|x| such that
∀i ∈ {1, . . . , |x|+1}∀b ∈ {0, 1, ∗}Ud(i, b) runs in timet and accepts if and only ifxi = b, where|d|+log t < |x|.
A PSPACE machine can cycle through each choice ofd andt and use an oracle in NE to answer questions about
whether the nondeterministic universal machineU accepts the given input in the allotted time. 2

It is natural to wonder if there is a better upper bound on the complexity ofRKNt. In the next subsection,
we show thatRKNt is complete for NEXP/poly under P/poly reductions, which is some evidence thatRKNt
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cannot be too much easier than PNE – but it is actually rather weak evidence, since it is still not proven that
NEXP/poly 6= P/poly. Although it might seem that any algorithm determining membership inRKNt would have
to solve problems that are hard for both NE and coNE, we know of no unlikely consequences that follow ifRKNt

were to lie in NE. In particular, the following proposition shows that it is unlikely that there is a polynomial-time
many-one reduction (or even a truth-table reduction) from NE (or coNE) toRKNt.

Proposition 32 If there is a unary language inNEXP−PNP
tt , thenRKNt is not hard forNEXPunder polynomial-

time truth-table reductions.

Proof. Let A be a unary language in NEXP− PNP
tt , and assume that there is a polynomial-time truth-table

reduction computed by a machineM , reducingA to RKNt. Each queryq that is posed byM on input0n has
Kt(q) = O(log n). Thus, all queries that do not have lengthO(log n) lie outside ofRKNt, and hence in order to
compute the value of the reduction, it suffices to determine ifq ∈ RKNt for those queriesq of lengthO(log n).
SinceRKNt ∈ PNE via an algorithm that asks queries of length linear in the input size, each such query ofM can

be answered by making unary queries to an oracle in NP. This shows thatA ∈ PNP
tt , contrary to assumption. 2

The hypothesis to this proposition seems quite plausible. It is known that there are problems that lie in NEXP−
PNP

tt [Moc96, FLZ94], but it does not appear to be known if there are anyunarylanguages in this difference.

3.4.3 A Completeness Result forRKNt

Theorem 33 RKNt is complete forNEXP/polyunderP/polyreductions.

Proof. It was established in the preceding section thatRKNt ∈ NEXP/poly. Hardness follows immediately from
Theorem 24 (which tells us that any setA that is complete for NE isPSPACE-robust), Theorem 11 (which tells us
that the strings inRKNt have high KTA complexity), and Theorem 15 (which tells us that these conditions imply
thatA≤P/poly

tt RKNt). 2

We do not know ifRKNt is hard for NEXP under NP reductions. However, we are able to show hardness for some
important subclasses of NEXP.

Theorem 34 UEXP⊆ NPRKNt .

Proof. When Babaiet al. showed that EXP∈ P/poly implies EXP= MA [BFNW93], a crucial step involved
observing that the strategies of the provers in the MIP protocols for EXP [BFL91] are computable in exponential
time. Analysis of the MIP protocols for NEXP [BFL91] reveals that the strategies of the provers for some language
A ∈ NEXP can be computed in NEXP if there is a language in NEXP that encodes the bits of an accepting
computation path for every stringx ∈ A.

Although this condition is not known to hold for everyA ∈ NEXP, it does hold for everyA ∈ UEXP. LetA be
accepted by a UEXP machineM , and consider the setB : {(x, i, b) : the unique accepting path ofM on input
x hasb as itsith bit}. Clearly,B ∈ UEXP⊆ NEXP. Thus the strategy of the provers is in NEXP and hence by
Theorem 33 can be computed by an oracle circuit of polynomial size with an oracle forRKNt.

Thus we obtain a MARKNt protocol forA: Merlin sends Arthur the oracle circuitsC1, C2 that compute the provers’
strategies, and then Arthur uses his probabilistic bits to simulate the MIP protocol, using the circuitsC1 andC2

along with the oracleRKNt, to compute the answers provided by the provers in the MIP protocol.
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We now appeal to the following lemma:

Lemma 35 [ABK+06] LetC be any oracle andL be a set such thatL ∈ P/polyC and for everyx ∈ L, KTC(x) >
|x|γ for some constantγ > 0. thenMAL = NPL.

Letting C be any set complete for NE, and lettingL be RKNt, and appealing to Theorem 11, we see that the
hypothesis of the lemma is satisfied. ThusA ∈ NPRKNt . 2

Building on this proof, we can prove a stronger result.

Theorem 36 FewEXP⊆ NPRKNt .

Proof. Let A ∈ FewEXP be accepted by a NEXP machineM that has no more than2nk

accepting computation
paths on any inputx. We appeal to the following well-known hashing theorem:

Theorem 37 ([FKS84][Lemma 2], [Meh82][Theorem B]) LetS be a set of2O(nk)) numbers, each of whose
binary representation has at most2nk

bits. Then there is some prime numberp with O(nk) bits such that for any
x 6= y in S, x 6≡ y(mod p).

Now letB = {(x, i, b, p, q) : p is a prime number withO(|x|k) bits,0 ≤ q < p, and there is an accepting pathy
of M on inputx, such thaty hasb as itsith bit andy ≡ q(mod p)}. Clearly,B ∈ NEXP.

Assume for the moment thatx, p andq are such that there is exactly one accepting computation ofM on inputx
(and recall from Theorem 37 that there must always be such a pair(p, q) for anyx ∈ A). Then an exponential-
time machineM ′ with an oracle forB can query the strings(x, i, b, p, q) for all b ∈ {0, 1} and all1 ≤ i ≤ 2nk

and construct an accepting computation path ofM on inputx, and given this informationM ′ can then compute
the strategies of the MIP provers to show thatx ∈ A, given a good pair(p, q). (We are not concerned with the
behavior ofM ′ when given a bad pair(p, q).) Since the queries made byM ′ are all of length polynomial in|x|,
it follows from Theorem 24 that the language computed byM ′ lies in PNE, and hence by Theorems 33 and 26 it
lies in PRKNt /poly.

Thus we obtain an MA protocol forA, where in the first step Merlin sends Arthur a good pair(p, q) along with
the oracle circuits that simulateM ′ when providedRKNt as an oracle. The rest of the proof proceeds exactly as
in the proof of Theorem 34. 2

Our observations about the complexity of the MIP protocols for UEXP and FewEXP also provide us with the
following corollary, which is analogous to the theorem that NEXP⊆ P/poly if and only if NEXP= MA [IKW02].

Corollary 38 UEXP⊆ P/poly if and only ifUEXP = MA
FewEXP⊆ P/poly if and only ifFewEXP= MA

Proof. In each case, the forward implication follows from our observation that the provers’ strategies for MIP
protocols for these classes also lie in the same classes. (Namely, Merlin guesses the circuits for the provers’
strategies and sends them to Arthur.)

The other implications follow from exactly the same argument given by Impagliazzo, Kabanets, and Wigderson,
in proving the analogous implication [IKW02]. 2
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3.4.4 An Unconditional Lower Bound for RKNt

Theorem 39 RKNt 6∈ NP∩ co-NP.

Proof. If RKNt ∈ NP∩ co-NP, then NEXP⊆ PRKNt /poly⊆ (NP∩ co-NP)/poly by Theorem 33. By Theorem
29, this implies NEXP= AM and hence NEXP= PSPACE.

However, it is known that any polynomially-dense set that has no strings of KS-complexitynε is hard forPSPACE
under ZPP reductions [ABK+06]. SinceRKNt is dense and has no strings of low KS complexity, it follows that

NEXP = PSPACE ⊆ ZPPRKNt ⊆ ZPPNP∩ co-NP = NP∩ co-NP, in contradiction to the nondeterministic
time hierarchy theorem. 2

This lower bound was recently strengthened, to handle a small amount of nonuniform advice. See [All10].

4 Nondeterministic Kolmogorov Complexity

Earlier work has shown that many of the techniques that have been developed to derandomize BPP can be re-cast in
terms of arguments in resource-boundedKolmogorov complexity [All01, ABK+06]. In this section, we investigate
the extent to which a similar program can be carried out to study the techniques that have been developed to
derandomize AM. In order to state our results, we first recall some standard definitions.

Definition 40 [Lon82] A StrongNP-procedurecomputing a functionf is a polynomial time nondeterministic pro-
cedure, so that every computation path on inputx either producesf(x) or rejects. Furthermore, at least one
computation path must producef(x).

We will also refer to functions computable in SNP/log. For this, we assume that, for each input lengthn, there
is an advice stringan of lengthO(log n), and a nondeterministic machine as above that producesf(x) on every
non-rejecting computation path on input(x, a|x|). We place no restrictions on the behavior of the nondeterministic
machine on inputs(x, z) wherez 6= a|x|.

Definition 41 [ACR98] Ahitting set generatorfor a class of circuitsC and thresholdα is a procedureG that maps
0n to a setHn of polynomial size with the property that, for every circuit inC on n inputs that accepts at least
α2n strings inΣn, the circuit accepts an element ofHn.

Definition 42 [All89] Let A be a language and letKµ be a Kolmogorov complexity measure. We define the
Kolmogorov complexity ofA for lengthn as

KµA(n) = min{Kµ(x) : |x| = n andx ∈ A}

If A ∩ Σn = ∅ thenKµA(n) is undefined.

A typical question that will concern us is the question of how rapidlyKµA(n) can grow, forA residing in various
complexity classes. For example, consider the following theorem:

Theorem 43 [All01, For01, ISW99, KRC00, ACR98] The following are equivalent:
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1. Kt andKT are exponentially far apart. (That is, there is someε > 0 such that for all largen there is a
stringx ∈ Σn such thatKT(x) > 2ε(Kt(x)+log |x|).)

2. For all polynomially-denseA ∈ P/poly, KtA(n) = O(log n).

3. There is a languageA ∈ E and a constantε > 0 such that, for all largen, there is no circuit of size2εn

acceptingA=n.

4. There are pseudorandom generatorsG computable in timenO(1), such thatG : Σk log n → Σn.

5. There are hitting set generators forP/polyand threshold1
2 computable in polynomial time.

One of the most important theorems in the literature on derandomization is that each of these conditions implies
P = BPP [IW97]. Not all work in derandomization has been aimed at BPP; there has also been a significant amount
of work aimed at discovering conditions that imply AM= NP. In particular, Klivans and van Melkebeek proved
that if there is a set in NE∩ coNE that does not have oracle circuits of subexponential size that make nonadaptive
queries to SAT, then AM= NP [KvM02]. This was improved by Miltersen and Vinodchandran [MV05], who
proved that the same conclusion follows from the formally weaker assumption that there is a set in NE∩ coNE
that does not have strong nondeterministic circuits of subexponential size, by showing that this assumption implies
that there is a hitting-set generator computable in NP for co-nondeterministic circuits. Shaltiel and Umans [SU05]
subsequently presented a better construction of a hitting-set generator that hits co-nondeterministic as well as
nondeterministic circuits. In an earlier version of this paper, we considered several conditions that had been studied
in relation to derandomizing AM, and showed that they are all equivalent [AKRR03]. Subsequently, Shaltiel and
Umans improved this, to show that even the condition studied by Klivans and van Melkebeek is equivalent to the
others [SU06].

In contrast to Theorem 43, we are not able to show that the hypotheses that have been used to derandomize AM
have equivalent restatements in terms of resource-bounded Kolmogorov complexity. However, we are able to use
these derandomization techniques to prove a partial analog of Theorem 43:

Theorem 44 The following are equivalent:

1. ∃ε > 0, ∀n, ∃x ∈ Σn KNT(x) > 2ε(KNt(x)+log |x|). (That is,KNT andKNt are nearly as far apart as
possible.)

2. For all polynomially-denseA in coNP/poly, KNtA(n) = O(log n).

3. For all polynomially-denseA in NP/poly, KNtA(n) = O(log n).

4. For all polynomially-denseA in NP/poly∩ coNP/poly, KNtA(n) = O(log n).

5. ∃A ∈NE/lin, ∃a such thatA requires strong nondeterministic circuits of size2an.

6. ∃A ∈NE/lin, ∃a such thatA requires nondeterministic circuits of size2an.

7. There existSNP/logcomputable hitting set generators for nondeterministic polynomial-size circuits and
threshold 1

nc (and similar conditions for co-nondeterministic and strong circuits).

Remark: We wish to call attention to the equivalence of conditions 2 and 3. For some notions of complexity such
as KT, there are polynomially-dense sets in coNP with essentially maximal KT complexity (such asRKT), whereas
there are good reasons to believe that every polynomially-dense language in NP/poly has low KT-complexity.
(Rudich gives evidence for this conjecture in [Rud97].) In contrast, we see here that the KNT complexity of dense
sets in NP and coNP are similar.
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Proof. (1⇔ 5) This equivalence is proved similarly to related statements in [All01]. Given any sequence of strings
x1, x2, . . . with |xm| = n = 2m, where KNT(xm) is large and KNt(xm) is logarithmic in KNT(xm) (and hence
is logarithmic in|xm|), define the languageA to be the set such that the truth table ofA=n is given byxm. Since
KNt(xm) = O(log 2m) = O(m), it is immediate thatA ∈ NE/lin. (The description ofxm showing that KNt(xm)
is small gives the advice sequence for the NE/lin upper bound.) We need to show thatA requires large strong
nondeterministic circuits. But this is immediate from Proposition 10, since by hypothesis KNT(xm) ≥ |xm|ε for
someε > 0.

Conversely, given any languageA ∈ NE/lin that requires exponential-size strong nondeterministic circuits, the
length-n prefices of the characteristic sequenceχA have logarithmic KNt complexity and KNT complexitynε for
someε > 0.

(5⇒ 6) We prove the contrapositive,¬6 ⇒ ¬5. Thus assume that everyA ∈ NE has “small” nondeterministic
circuits (that is, of size less than2an for anya > 0). By Theorem 22,A ∈ NE/lin, and hence also has “small”
nondeterministic circuits. This yields co-nondeterministic circuits forA; we can combine the two circuits to get
strong nondeterministic circuits forA. This proves¬5. (Similar observations are made by Shaltiel and Umans
[SU05].)

(6⇒ 5) This is trivial; a strong nondeterministic circuit yields a nondeterministic circuit of roughly the same size.

(5 ⇒ 2, 3, 4, and 7) Shaltiel and Umans show that for any constantc there is a functionGx(0n) computable
in deterministic polynomial time with the property that ifx is a string of lengthnO(1) that is the truth table
of a function requiring exponential size strong nondeterministic circuits, thenGx(0n) produces a setHx,n that
is a hitting set for both nondeterministic and co-nondeterministic circuits of sizenc with threshold 1

nc [SU05,
Corollaries 6.6 and 6.9].

It is now straightforward to obtain a hitting set generator in SNP/log. By assumption there is a setA ∈ NE/lin
that requires large strong nondeterministic circuits. Leth(m) be the advice sequence for lengthm (having length
O(m)). Let n = 2m. On input0n with adviceh(m) having lengthO(log n) we can, in nondeterministic polyno-
mial time, guess and verify the stringx that is the truth table forA=m, and then run the generatorGx(0n).

It is easy to see that any string in the hitting set output by a SNP/log computable hitting set generator has logarith-
mic KNt complexity; this completes the proof of this implication.

The implications (7⇒ 4) (2⇒ 4), and (3⇒ 4) are either trivial or follow via the argument above. Thus it suffices
to prove (4⇒ 5).

(4 ⇒ 5). DefineA = {x : |x| = 5m and KNt(x) > m}. We claim thatA is in NE/lin. To see this, recall
that for a stringx of length5m, KNt(x) ≤ m implies∃d, |d| ≤ m, ∀i Ud(i, b) has an accepting path iffxi = b,
whereU is a universal nondeterministic Turing machine running for2m steps. In order to enumerate allx’s of
length5m that have KNt(x) ≤ m, we will define a nondeterministic procedure that will allow us to exclude from
consideration thosed’s that are not valid descriptions of strings. Defineα to be the number of stringsd of length
≤ m that are indeed valid descriptions of strings of length5m, (i.e., there exists anx for which ∀i Ud(i, b) has
an accepting path iffxi = b), and we defineβ to be the number of “recognizably bad” descriptions, that is, those
stringsd of length≤ m for which ∀i ≤ 5m + 1, ∃b ∈ {0, 1, ∗}, Ud accepts(i, b) and for somei and some
b′ 6= b ∈ {0, 1, ∗}, Ud accepts both(i, b) and(i, b′). Our NE/lin machine, on inputx of length5m, takesα and
β as advice (each of lengthO(m)). First it guessesβ “recognizably bad” descriptions and verifies that they are
indeed bad by guessing accepting paths for both(i, b) and(i, b′). Then it guessesα other strings (corresponding
to candidate “good”d’s), and guesses accepting paths for all of them and prints out the corresponding strings. All
of this takes time exponential inm. Now we can acceptx if and only if it is not in the list that has been generated.
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Now we need to show thatA requires large strong nondeterministic circuits. Assume otherwise, so that for
everyc there is somen such that there is a strong nondeterministic circuit of size2n/c decidingA for inputs
of length n. Then we can construct a polynomially-dense languageB ∈ NP/poly∩ coNP/poly of the form
B = {y : |y| = n and the prefix ofy of lengthcn · log n is in A} wherecn is chosen (nonuniformly, as part of
the advice sequence) to be as large as possible, so that the membership test forA can be implemented in sizen
via a strong nondeterministic circuit. By assumption, the sequence of numbers(cn) is unbounded. It follows that
KNtB(n) 6= O(log n), contrary to our assumption. 2

Although none of the conditions of the preceding theorem are known to imply AM= NP, it is trivial to observe
that they imply AM⊆ NP/log. It is worth mentioning that these conditions do imply a nontrivial inclusion for
AM:

Theorem 45 If there existsA ∈NE/lin, such thatA requires strong nondeterministic circuits of size2an, for some

a > 0, thenAM ∈ PNP[log n].

Proof. As in [MV05], to determine ifx is in a setB ∈ AM, we model the Arthur-Merlin game using a
nondeterministic circuit with inputx and some probabilistic inputsy. Let Cx be the result of hardwiring the bits
of x into this circuit; thenx ∈ B ⇒ Cx accepts everyy, andx 6∈ B ⇒ Cx rejects at least half of the stringsy.
Thus it suffices to use our NP oracle to determine if there is a stringy that is rejected byCx. By parts 7 and 2 of
the preceding theorem, if such a stringy exists, then there is such a string with KNt(y) = O(log n).

Thus it suffices to design a PNP[log n] procedure to determine if there is a stringy with KNt(y) ≤ c log n such that
the nondeterministic circuitCx rejectsy.

As in the proof of (4⇒ 5) of the previous theorem, letα be the number of good descriptions of length at most
c log n and letβ be the number of “recognizably bad” descriptionsd of length at mostc log n. The numbersα and
β can be computed inO(log n) queries to an NP oracle of the form “do there exist≥ j strings(d1, d2, · · · , dj) of
length at mostc log n such that for allm and alli ≤ |y| + 1 there is ab ∈ {0, 1, ∗} such thatUdm(i, b) has an
accepting path?” and “do there exist≥ j strings(d1, d2, · · · , dj) of length at mostc log n such that for allm, i
there is ab such thatUdm(i, b) accepts and there is somei ≤ |y|+ 1 for which there areb 6= b′ ∈ {0, 1, ∗} such
that Udm(i, b) andUdm(i, b′) each have an accepting path?” Having computedα andβ we can ask one more
query to an NP oracle to determine if there areβ bad descriptions andα good descriptions such thatCx accepts
all of the stringsy described by theα good descriptions. 2

One might wonder how reasonable it is to expect that a condition such as∃ε > 0, ∀n, ∃x ∈ Σn, KNT(x) >

2ε(KNt(x)+log |x|) should hold (saying that KNT and KNt are nearly as far apart as possible). The following
proposition shows that, for at least some of the measures that we consider, there are unconditional results of this
form that one can prove.

Proposition 46 ∀n, ∃x, ∈ Σn, KS(x) > n1/2 andKs(n) ≤ 2 logn + O(1).

Proof. A straightforward diagonalization shows that there is a setA in DSpace(2n) that is not in io-DSpace(22n/3/22n/3).
Let xn be the lengthn prefix of the characteristic sequenceχA. It is immediate that Ks(xn) ≤ 2 logn + O(1)
(since it is described by the numbern and a program forA, which can be simulated in spaceO(2n)). Assume
for the sake of contradiction that KS(xn) ≤ n1/2, and letm be the largest number such thatxn contains the
membership information for all strings of lengthm. Clearlyn ≥ 2m ≥ n/2. Thus there is a descriptiond of
lengthn1/2 ≤ 2(m+1)/2 such that for allx of length at mostm, Ud(x, b) runs in space≤ 2(m+1)/2 and accepts if
and only ifx ∈ A. This is counter to our choice ofA. 2
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5 KF Complexity and theNEXP⊆ NC1 Question

Derandomization techniques were used in[IKW02] to show that NEXP⊆ P/poly if and only if NEXP= MA;
it was observed in [All01] that this is also equivalent to conditions concerning the Kt-complexity of sets in P. In
this section we conduct a similar investigation of the question of whether or not NEXP is contained in nonuniform
NC1.

In order to formulate the appropriate generalization of the equivalence NEXP⊆ P/poly if and only if NEXP=
MA, it will be helpful to present a technical definition. We begin by recalling the definition ofIP[P/poly].

Definition 47 [AKS95] IP[P/poly] is the class of languages having an interactive proof system where the strategy
of the honest prover can be computed by aP/polycircuit family (also see [AK02], where the multiple prover class
MIP[P/poly] is observed to be the same asIP[P/poly]).

ClearlyIP[P/poly] ⊆ MA ∩P/poly (because Merlin can guess the circuit that implements the Prover’s strategy and
send it to Arthur); it appears to be a proper subclass of MA (since otherwise NP⊆ P/poly). If NEXP⊆ P/poly,
the proof of [IKW02] actually shows that NEXP= IP[P/poly]. We now define an analogous subclass of MA∩
nonuniform NC1.

Definition 48 MIPNC1 refers to the class of languages for which there is a 2-prover one-round interactive proof
protocol where the strategy of each honest prover can be implemented by a (nonuniform)NC1 circuit family
and the computation of the verifier is computable by a uniform (probabilistic)NC1 circuit family. (Although it
is important that the verifier’s circuits be uniform, our results do not depend crucially on the exact notion of
uniformity. They hold forP-uniformity and forDLOGTIME-uniformity.)

We could likewise defineIPNC1 as the class of languages similar to the above for a single-prover constant-round
interactive proof protocol, but we can easily see thatMIPNC1 andIPNC1 coincide.

Definition 49 EveryNEXP search problem is solvable inC if for everyk andevery NEXPmachineM running
in time2nk

on inputs of lengthn, there is a functionf in C with the following property. Ifx is accepted byM ,

then there is a witnessw ∈ {0, 1}2|x|O(k)

encoding an accepting computation path ofM on inputx, such that for

all i ≤ 2|x|
O(k)

f(x, i, b) = 1 if and only ifwi = b. (That is, the unique stringw = b1b2 . . . b
2|x|O(k) such that

f(x, i, bi) = 1 encodes an accepting computation path ofM on inputx.)

Theorem 50 The following are equivalent:

1. For all A ∈ NP, KFA(n) = logO(1) n.

2. For all A ∈ DLOGTIME-uniformAC0,
KFA(n) = logO(1) n.

3. All NEXPsearch problems are solvable in nonuniformNC1.

4. NEXP⊆ nonuniformNC1.

5. NEXP = MIPNC1.
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Proof. Items (1) and (2) are easily seen to be equivalent, as in the remark before Proposition 62.

The proof that (2⇒ 3) is immediate, once the following two assertions are established:

• (2)⇒ EXP⊆ NC1.

• (2)⇒ NEXP search problems are solvable in EXP.

Assume both of these assertions hold. Then for a given NEXP search problem solved in exponential time by
machineM , the language{(x, i, b) : the ith bit output byM on inputx is b} is in NC1. The existence of such
circuit families for NEXP search problems is precisely what is meant by condition (3). Let us examine each
assertion in turn.

Let A ∈ EXP. LetB = {w : w is a prefix ofχA}. B is clearly in P and (since we have already observed that (2⇒
1)) our assumption tells us that KFB(n) = logO(1)(n). Now Proposition 6 allows us to conclude thatA ∈ NC1.

For the second assertion, letM be any NEXP machine, and consider the languageC = {y10x : wherey ∈
{0, 1}2|x|k

is a witness thatM acceptsx}. C is in DLOGTIME-uniform AC0 (assuming an appropriate encoding
of witnesses) and by (2) if there is any string inC=n then there is a string inC=n with small KF complexity. The
exponential-time algorithm solving this search problem involves taking inputx and searching through all short
descriptions and seeing if any of the strings thus described encodes an accepting computation path ofM on input
x.

(3 ⇒ 4) This implication requires some explanation. In most cases, assuming that a search problem is easy
trivially implies that the decision problem is easy. However, when we assume that every NEXP search problem
is solvable in NC1, it means only that there is an NC1 circuit C such thatC(x) describes an exponentially long
witness for membership when such a witness forx exists. It is notobviousthat there is any easy way to detect
whenC(x) is describing such a witness. Thus this implication does require proof.

Certainly (3) implies that NP search problems are solvable in NC1. Let A ∈ NP be accepted by NP-machineM ,
and letC be a circuit solving the search problem defined byM . Thusx ∈ A if and only ifC(x, 1)C(x, 2) · · ·C(x, nk)
encodes an accepting computation ofM . This latter condition can also be checked in NC1, which implies NP⊆
(nonuniform) NC1. NP being contained in NC1 easily implies thatΣp

2 is contained in NC1. On the other hand, by
[IKW02], if NEXP search problems are solvable in P/poly, then NEXP is inΣp

2.

(4 ⇒ 5) To prove this implication, observe that by [IKW02] if NEXP⊆ P/poly then NEXP= MA = PSPACE.
By [CCL94], we know thatPSPACE has2-prover,1-round interactive proof systems, where the honest provers
are inPSPACE. Also we note that the verifier’s protocol is very easy to compute; it sends random sequences
to each prover and receives from the provers sequences of polynomials on which it performs (in parallel) some
consistency checks. The consistency checks involve field operations, which are computable by DLOGTIME-
uniform TC0 circuits [HAB02]. All the queries to the provers are made in one round (and hence are non-adaptive).
Since by assumption,PSPACE ⊆ NC1, we have that every language in NEXP is also inMIPNC1.

(5 ⇒ 2) Now we prove this implication. We largely follow [IKW02], where it is shown that if NEXP⊂ P/poly,
then NEXP search can be performed by P/poly circuits. More precisely, we will show that if there is a set in P
with large KF-complexity, then for everyε > 0, MIPNC1 ⊂ io − [NTime(2nε

)/nε]. As in [IKW02] this latter
condition implies either thatMIPNC1 is a proper subset of NEXP (which is to say that condition (5) is false) or
else EXP6= NEXP (which also easily implies that condition (5) is false).

Let A ∈ MIPNC1, where the verifier’s strategy is computable by a P-uniform family of probabilistic NC1 circuits
{Cn}. Letp be a polynomial, such thatCn uses at mostp(n) probabilistic bits. Our strategy to determine ifx ∈ A
is

1. Construct the circuitC = C|x|.
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2. Nondeterministically guess NC1 circuits D, D′ that might implement the strategies of the provers in the
MIPNC1 protocol forA.

3. Construct a circuitB that, given an inputy of lengthp(n)
(a) UsesC to compute the query that gets posed to each prover in theMIPNC1 protocol forA on inputx

and probabilistic sequencey.

(b) UsesD andD′ to answer the queries.

(c) UsesC to compute the actions of the verifier.

4. Estimate the probability thatB accepts a randomly-chosen stringy.

By the definition ofMIPNC1, if x ∈ A then there are fan-in two circuitsD andD′ implementing the strategy
of the provers (where the depth ofD andD′ is bounded byd log n for some constantd depending only onA)
such that the circuitB acceptsall of the inputsy, whereas ifx 6∈ A, thenno provers (and hence also no provers
computed by small circuitsD andD′) can causeB to accept more than one-third of the inputsy.

All of the steps in this algorithm are easily computable in NP except for the final step 4. In order to complete
the argument thatMIPNC1 ⊂ io − [NTime(2nε

)/nε], it suffices to show that for infinitely many input lengths
n, there is an advice string of lengthnε such that a nondeterministic machine running in time2nε

can estimate
the probability that a circuit with fan-in two and depthb log p(n) accepts a randomly-chosen input of lengthp(n)
(where the constantb and the polynomialp depend only on our languageA, and do not depend onε).

As in [ABK+06], we will make use of the hardness-versus-randomness techniques of [NW94, BFNW93]. In
particular, some of the results of [NW94, BFNW93, KvM02] are summarized in [ABK+06] in the following
form.

Definition 51 For all large n, anyε > 0 and any Boolean functionf : {0, 1}nε/3 → {0, 1} there is a pseudo-
random generatorGBFNW

f,ε : {0, 1}nε 7→ {0, 1}p(n) with the property that the functionGBFNW
f,ε is computable in

spaceO(nε) given access to the Boolean functionf , and such that the following theorem holds.

Theorem 52 ([BFNW93, KvM02]) There is a constantk′ depending onε such that ifT is a set such that
|Prr∈Up(n) [r ∈ T ] − Prx∈Unε [GBFNW

f,ε (x) ∈ T ]| ≥ 1/3, then there exists an oracle circuitC of sizenk′
with

oracleT that computesf and queriesT non-adaptively.

Closer examination of the proof techniques that are used in [BFNW93, KvM02] shows that the circuitC computing
the reduction can actually be implemented as aconstant depthcircuit of MAJORITY gates and oracle gates. Thus
it can be implemented as a circuit of depthk log n for some constantk, consisting of oracle gates (where there is
no path in the circuit from one oracle gate to another) and AND and OR gates of fan-in two.

Now we can state ourio− [NTime(2nε

)/nε] algorithm to estimate the probability that an NC1 circuit accepts. Let
L be a language in DTime(nk) such that for everỳ there exist infinitely manym such that KFL(m) > log` m.
By our assumption that condition (2) fails, such a setL exists.

On inputx of lengthn, our advice string will be a numberm with approximatelynδ bits with δ = ε/3, such that
L contains strings of lengthm, and all strings of lengthm in L have high KF complexity. Our nondeterministic
algorithm will guess a stringz of lengthm and verify thatz ∈ L. This takes time2O(nε). Let f be the Boolean
function on inputs of lengthdlog me (roughlynε) whose truth table hasz as a prefix (and is zero elsewhere). By
our assumption onL (combined with Proposition 6), there exist infinitely manym such that functionf requires
Boolean formulae of size greater thanp(n)k+b. For any input lengthn for which a correspondingm = 2O(nε)

exists, the probability that circuitB accepts can be estimated by counting the fraction of stringsy of lengthnε
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such thatB acceptsGBFNW
f,ε (y). This fraction must be within one-third of the true probability (since otherwisef

is computed by a formula of sizep(n)k+b, by Theorem 52).

SinceGBFNW
f,ε (y) is computable in spacenε, the entire computation to estimate the acceptance probability of the

NC1 circuit B (and to recognize languageA) takes time2O(nε).

This completes the proof. 2

The following definition ofMIPL combined with an analogous proof yields Theorem 54

Definition 53 MIPL corresponds to the class of languages for which there is a2-prover one-round interactive
proof protocol where the strategy of each prover can be implemented inL/poly and the verifier is inL.

Theorem 54 The following are equivalent :

1. NEXP⊆ L/poly

2. All NEXPsearch problems are solvable inL/poly

3. For all A ∈ P, KBA(n) = logO(1) n.

4. NEXP = MIPL

For completeness, we summarize what is known aboutKµA for A ∈ P for the other measuresKµ that we have
considered.

Theorem 55 The following equivalences hold:

• ([All01]) All NEXPsearch problems are solvable inP/poly if and only if∀A ∈ P, KTA(n) = logO(1) n.

• All NEXPsearch problems are solvable inNP/poly if and only if∀A ∈ P, KNTA(n) = logO(1) n.

• All NEXPsearch problems are solvable inPSPACE if and only if∀A ∈ P, KSA(n) = logO(1) n.

• ([All89]) All NEXPsearch problems are solvable inEXP if and only if∀A ∈ P, KtA(n) = logO(1) n.

• For all A ∈ P, KsA(n) = O(log n).

Note that in all cases the upper bounds on solvability of search problems for NEXP are given bynonuniform
classes, except for the cases concerningPSPACE and EXP. However, it is easy to see that a NEXP search problem
is solvable inPSPACE (or EXP) if and only if it is solvable in PSPACE/poly (or EXP/poly, respectively). This is
becausePSPACE provides enough resources to cycle through all advice sequences of polynomial length; similar
observations were made by [BH92]. Note also that we do not have a crisp statement that is equivalent to every
setA ∈ P having KNtA(n) bounded bylogO(1) n. See also the remark after Proposition 62, regarding the KDt
complexity of sets in P.

Proof. In order to see that KsA(n) = O(log n) for all A ∈ P, it suffices to observe that there is a trivial algorithm
that runs in space2O(|n|) that takes the stringn as input and searches for the lexicographically leastx ∈ A=n, and
produces this stringx as output.
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All of the rest of the implications are proved similarly to each other. For the backward direction, in each case, the
first step is to show that the given assumption implies that every NEXP search problem is solvable in EXP. It will
suffice to consider the weakest of these assumptions; namely:

∀A ∈ P, KtA(n) = logO(1) n.

Let M be any NEXP machine, and consider the languageC = {y10x : wherey ∈ {0, 1}2|x|k
is a witness that

M acceptsx}. C is in P and by assumption, if there is any string inC=n then there is a string inC=n with small
Kt complexity. The exponential-time algorithm solving this search problem involves taking inputx and searching
through all short descriptions and seeing if any of the strings thus described encodes an accepting computation
path ofM on inputx.

Thus for any NEXP search problem there is a deterministic exponential-time machineM ′ solving it. Hence the
language{(x, i, b) : theith bit output byM ′ on inputx is b} ∈ EXP, and hence it is AC0-reducible to a setA ∈ E.
In order to complete the proof of the backward direction, it suffices to show that this setA is contained in the
appropriate class. The set{w : w is a prefix of the characteristic sequence ofA} is in P (and contains exactly one
string of each lengthn). Results such as Proposition 10 and Theorem 4 now suffice to give the appropriate upper
bound forA.

For the forward direction, letA be any set in P, and consider the search problem defined by the NE machineM
that takes inputn and guesses a stringx of lengthn, accepting if and only ifx ∈ A. By hypothesis, there is a
function in a given class that takes as input(n, i) and returns theith bit of some string of lengthn in A. In each
case, this is precisely what is needed in order to provide the desired upper bound onKµA(n). 2

6 Distinguishing Complexity

Recall from Section 1.3 that there are three main kinds of resource-bounded Kolmogorov complexity that have
been studied:

• Definitions in the spirit of Levin’s Kt measure.

• Definitions similar to Ct and Kt for various time boundst.

• Distinguishing complexity.

Thus far in this paper, we have introduced a number of other measures in the spirit of Levin’s Kt measure, where
these new measures bear close relationships to different complexity classes (much in the same way as varying the
time boundt causes the measures Ct and Kt to be related to different complexity classes). But the measures that
we have introduced have more in common with Ct and Kt (in which a description allows a machine toproducea
string) than with distinguishing complexity (in which a description allows a machine torecognizea stringx when
it sees it). In this section, we investigate the topic of distinguishing complexity, in the spirit of Levin’s Kt measure.

Distinguishing complexity dates back to the work of Sipser [Sip83], and it has been studied in more depth by
Fortnow and Kummer [FK96] and by Buhrman, Fortnow, and Laplante [BFL02]. In all cases, the focus has been
on the polynomial-time bounded versions of distinguishing complexity. Here are the formal definitions of the
Distinguishing Complexity measures:

Definition 56 Letp be a polynomial, and letU1 (U2) be a universal (nondeterministic) Turing machine.
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• CDp(x) is defined to be the minimum|d| such thatUd
1 (y) accepts in timep(|x|) if and only ify = x.

• CNDp(x) is defined to be the minimum|d| such thatUd
2 (y) accepts in timep(|x|) if and only ify = x.

The following definitions are the most natural way to formulate notions of Distinguishing Complexity more in line
with Kt and KNt complexity:

Definition 57 Let U1 be a fixed deterministic Turing machine, and letU2 be a fixed nondeterministic Turing
machine.

KDtU1(x) = min{|d|+ log t : ∀y ∈ Σ|x| Ud
1 (y)

runs in timet and accepts iffx = y}
KNDtU2(x) = min{|d|+ log t : ∀y ∈ Σ|x| Ud

2 (y)
runs in timet and accepts iffx = y}

As usual, we select fixed universal deterministic Turing machinesU1 and nondeterministicU2, and define KDt
to be KDtU1 , and KNDt to be KNDtU2 . Via standard arguments it follows that for allU ′, we have KDt(x) ≤
KDtU ′(x) + c log |x| for some constantc, and for allU ′′, we have KNDt(x) ≤ KNDtU ′′(x) + c. It is clear that
KNDt(x)−O(1) ≤ KDt(x) ≤ Kt(x) + O(log |x|).
We see no useful way to define a measure bearing the same relationship to KDt as KT bears to Kt, because with
Distinguishing Complexity, the machineU has access to theentirestringx, and this would seem to entail run-times
that are at least linear.

When discussing strings having logarithmic distinguishing complexity, it makes little difference if one uses CDp

or KDt complexity (and similarly CNDp and KNDt agree closely with each other for strings of logarithmic com-
plexity). As we shall see, for a number of the situations where CDp and CNDp complexity have been studied
previously, KDt and KNt are just as useful.

We observe next that KNDt is essentially the same thing as KNt, up to logarithmic terms.

Theorem 58 KNDt(x) = KNt(x) + Θ(log |x|)

Proof. Showing that KNDt(x) ≤ KNt(x) + O(log |x|) is an easy exercise. Conversely, if KNDt(x) is small
(using descriptiond), then a nondeterministic machine with oracled′ = (d, n), given input(i, b) can guess
x ∈ Σn and if Ud(x) accepts, then accept iff theith bit of x is b. Analysis of the run times easily yields that
KNDt(x) ≤ KNt(x) + O(log |x|). 2

Since KNDt is indistinguishable from KNt from our standpoint, we will not refer to KNDt any further.

Since KNDt is so closely related to KNt, one is quickly led to ask if KDt is similarly related to Kt. At first glance,
the following proposition would seem to indicate that theyareclosely related:

Proposition 59 RKt andRKDt are both complete forEXP underP/poly truth-table reductions andNP-Turing
reductions.

Proof. ForRKt this is proved in [ABK+06], and in fact hardness holds for any polynomially dense set containing
no strings of low Kt-complexity. Since Kt(x) > KDt(x) − O(log |x|) it follows thatRKDt is also hard for EXP.
Membership in EXP is easy to show. 2
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Nonetheless, it seems unlikely that Kt and KDt are polynomially related; we show below that this would imply
the collapse of some exponential-time complexity classes. Fortnow and Kummer made related observations about
CDp and Cp [FK96]; for a given polynomialp, they showed that if there was a polynomialp′ such that Cp

′
(x) ≤

CDp(x), then every sparse set in FewP is in P, which in turn is equivalent to FewE= E [RRW94]. Here, we
show that if KDt and Kt are polynomially related, it not onlyimpliesa collapse of related classes, but is in fact
equivalentto a certain collapse. In order to state this precisely, we need some additional definitions.

Definition 60 We say thatFewEXP search instances are EXP-solvableif, for every NEXPmachineN and every
k there is anEXP machineM with the property that ifN has fewer than2|x|

k

accepting paths on inputx, then
M(x) produces one of these accepting paths as output if there is one. We say thatFewEXP decision instances are
EXP-solvableif, for every NEXPmachineN and everyk there is anEXPmachineM with the property that ifN
has fewer than2|x|

k

accepting paths on inputx, thenM(x) accepts if and only ifN(x) accepts.

Remark: Note that we do not require thatN is a FewEXP machine, i.e., we do not require thatN have a small
number of accepting paths oneveryinput.

Theorem 61 The following statements are equivalent.

1. ∀x, Kt(x) ≤ KDt(x)O(1)

2. FewEXPsearch instances areEXP-solvable (orEXP/poly-solvable).

3. FewEXPdecision instances areEXP-solvable (orEXP/poly-solvable).

4. ∀ L ∈ P, KtL(n) ≤ (log |L=n|+ log n)O(1)

5. ∀ L ∈ Dlogtime-uniformAC0, KtL(n) ≤ (log |L=n|+ log n)O(1)

6. ∀x, ∀y, KDt(x) ≤ (KDt(xy) + log |xy|)O(1)

Proof. It is immediate that 2⇒ 3, 4⇒ 5, and 1⇒ 6. We will now prove 3⇒ 1, 1⇒ 4, 5⇒ 2, and 6⇒ 1.

(3⇒ 1) Consider a NEXP machineM that with oracled on input(1t, i, b, n) guesses a stringy ∈ {0, 1}n, runs
Ud(y) for 2t steps and then accepts iffyi = b andUd(y) accepts. If KDt(x) ≤ |d|+ t, whered is a distinguishing
description for a stringx ∈ {0, 1}n andt is sufficiently large, then there is exactly one accepting path ofMd on
input(1t, i, xi, |x|); there is no accepting path ofMd on (1t, i, xi, |x|), for all 1 ≤ i ≤ |x|. Note that the run-time
2t must be at least|x|, sinceU must read every bit ofx in order to distinguishx from all other strings of the same
length. By our assumption, there is a deterministic machineN running in exponential time, that with oracled on
input (1t, i, b, |x|), given some polynomial adviceh, can decide whetherMd accepts(1t, i, b, |x|) or not.1 Thus,
givend, t, |x| and the adviceh, we can generatex bit by bit in time exponential in(|d| + t + log |x| + |h|)O(1).
Thus Kt(x) ≤ (|d + t + log |x|+ |h|)O(1) = (|d|+ t)O(1) ≤ KDt(x)O(1).

(1 ⇒ 4) Buhrman, Fortnow, and Laplante use hashing to show that for any setL there is a polynomial time
algorithm with oracle access toL, such that for everyx ∈ L there is a descriptiondx of length2 log

∣∣L=|x|∣∣ +
O(log |x|), such that the algorithm accepts(z, dx) if and only if z = x [BFL02]. If L ∈ P, then oracle access toL
is not necessary, and for everyx ∈ L we conclude that KDt(x) ≤ 2 log

∣
∣L=|x|∣∣ + O(log |x|). Assuming that KDt

and Kt are polynomially related we obtain Kt(x) ≤ (log
∣
∣L=|x|∣∣ + log |x|)O(1).

1Note that it would have been sufficient to use a formally weaker assumption, dealing only with the case where there is a single accepting
path. Similarly, in condition 4, it would be sufficient to consider only thosen for which |L=n| = 1.
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(5 ⇒ 2) Let L be decidable by a nondeterministic machineN running in time2nk

, for k ≥ 1. Define the

set C = {w10x : wherew ∈ {0, 1}22|x|k
is a witness thatN(x) accepts}. (Here, we identifyx with the

integer having binary representation1x.) Clearly, we can choose an encoding of NEXP computations so thatC ∈
Dlogtime-uniform AC0. Let x be a string, such thatN(x) has few accepting paths, i.e.,|C=nx | ≤ 2|x|

O(1)
, where

nx = 22|x|k + x + 1. By assumption, there is a witnessw with Kt(w10x) ≤ |x|O(1). So in order to find a witness
for x ∈ L we just need to search through all stringsy with Kt(y) ≤ |x|O(1), which can be done in exponential
time.

(6 ⇒ 1) Assume that there is a constantc ≥ 1, such that for every stringz and every prefixx of z, KDt(x) ≤
(KDt(z) + log |z|)c. Let z be a string of lengthn. If KDt (z) ≥ n1/c, then clearly Kt(x) will be bounded by
KDt(z)c′

for some constantc′, which establishes the claim in this case. Thus assume that KDt(z) < n1/c. Let
a = max{KDt(x) : x is a prefix ofz}. By assumption,a ≤ (KDt(z) + log |z|)c < n. We construct a sequence
Sa, . . . , Sn of sets with|Si| ≤ 2a, whereSi contains (at least) all of the stringsx of lengthi such thatx and every
prefix ofx has KDt complexity≤ a. We initially start withSa = {0, 1}a and then proceed iteratively as follows.

Si+1 :=
{
s ∈ Si ◦ {0, 1} : ∃ds ∈ {0, 1}a

Uds(s) accepts , and ifs′ ∈ Si ◦ {0, 1}
ands 6= s′ thenUds(s′) rejects

}

It is fairly straightforward to verify that these sets have the property mentioned above, namely that they are not
too big and that they contain all the simple strings having simple prefices. Thusz ∈ Sn. Let x be any prefix of
z = xy, having lengthi. Observe that there is an algorithm running in timen2O(a) that takes input(n, a, i, j), and
computes each setSa, . . . , Si and then produces as output thej-th string inSi. Hence, Kt(x) ≤ |(n, a, i, j)| +
log(n2O(a)) + O(log n) = O(a + log n) = (KDt(xy) + log |xy|)O(1). 2

Remark: The final condition of Theorem 61 deserves some comment. For all of the other resource-bounded
Kolmogorov complexity measuresKµ studied in this paper (other than KDt) it is easy to see that the following
three conditions are equivalent:

• For allA ∈ NP,KµA(n) ≤ logO(1) n.

• For allA ∈ P,KµA(n) ≤ logO(1) n.

• For allA ∈ DLOGTIME-uniform AC0,
KµA(n) ≤ logO(1) n.

(For a proof, see Theorem 3 in [All01].) The simple observation that forms the main part of the proof of this
equivalence is the fact that for allx andy, Kµ(x) can be bounded byKµ(xy) + log |xy|. (That is, the complexity
of a string does notdecreaseby much if more information is appended to it, according toKµ.) Distinguishing
complexity does not seem to work this way; appending some information tox may make the KDt complexity
plummet. The next proposition shows that the last two of these three conditions are equivalent, but it remains
unknown if they are equivalent to the first condition.

Proposition 62 The following are equivalent:

• For all A ∈ P, KDtA(n) ≤ logO(1) n.

• For all A ∈ DLOGTIME-uniformAC0, KDtA(n) ≤ logO(1) n.
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Proof. It suffices to prove that the second condition implies the first. Thus assume that the second condition holds,
and letA ∈ DTime(nk) be recognized by some deterministic machineM running in timeknk. Let B be the set
{(x, C0, C1, . . . , Cm) : |(x, C0, C1, . . . , Cm)| = `|x|`, C0 encodes an initial configuration ofM on inputx, Cm

encodes an accepting configuration ofM , Ci ` Ci+1 for all i < m}, where` is chosen so that there is a string
in A of lengthn iff there is a string inB of length`n`. For a stringx in A we denote the corresponding string in
B by yx (if there is any). It is easy to see thatB ∈ Dlogtime-uniform AC0. Let U be the universal machine used
to define KDt. In order to show that KDtA(n) ≤ logO(1) n, assume that there is some stringx of lengthn in A
and if there are several pick one such that there is a corresponding stringyx in B, and a descriptiond showing that
KDt(yx) ≤ logO(1) n, i.e.,Ud(yx) accepts in timenlogO(1) n, and there is no other stringz of length|yx| for which
Ud(z) accepts. A new deterministic machineU ′ can use oracled to perform the following computation on input
w: Compute the candidate stringyw by simulatingM on w, and simulateUd(yw). If Ud(yw) accepts, thenU ′

acceptsw. By choice ofd, the only string of length|x| thatU ′d accepts isx itself. The proposition now follows,
by the properties of the universal machine defining KDt, and by analyzing the run time of the machineU ′. 2

Remark: The proof of the preceding proposition shows one could define a somewhat artificial (and messy) notion
of what it means for all NEXP search problems to be “solvable in UEXP/poly,” which would be equivalent to
KDtA(n) ≤ logO(1) n for all A ∈ P.

The preceding discussion indicates that it is unlikely that KDt is polynomially-related to Kt. Since KDt is interme-
diate between KDt and KNt, one might ask if KDt instead is polynomially-related to KNt. The following theorem
shows both that this is unlikely, and that KDt and Kt again share several similarities.

Theorem 63 The following are equivalent:

1. KDt(x) ≤ KNt(x)O(1)

2. Kt(x) ≤ KNt(x)O(1)

3. NEXP⊆ EXP/poly.

Proof. (2⇒ 1) This is trivial.

(1 ⇒ 2) If KDt(x) is always polynomially bounded by KNt(x), then it follows that for everyx andy we have
KDt(x) ≤ KDt(xy) + log(|xy|)O(1). Hence Theorem 61 yields Kt(x) ≤ KDt(x)O(1), and we obtain the desired
conclusion.

(1⇔ 3) This is established in Corollary 64. 2

Remark: This theorem is similar in spirit to [BFL02, Theorem 7.6], in which it is shown that P= NP if and only
if either Cp′

(x|y) or CDp′′
(x|y) is polynomially-related to CNDp(x|y) for appropriate polynomialsp, p′, andp′′.

7 Which Kolmogorov Measures are Polynomially Related?

In the preceding section, we saw that KNDt and KNt are polynomially related, but that it is unlikely that KDt
and Kt are. In this section, we examine what would happen if some of the other resource-bounded Kolmogorov
complexity measures that we have introduced should happen to be polynomially related. We state the following
theorem, and in the appendix we provide a table summarizing the relationships.

Theorem 64 The following equivalences hold:
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1. KF vs. the rest:

• KF(x) ≤ (KB(x) + log |x|)O(1) if and only ifL ⊆ nonuniformNC1.

• KF(x) ≤ (KT(x) + log |x|)O(1) if and only ifP⊆ nonuniformNC1.

• KF(x) ≤ (KNT(x) + log |x|)O(1) if and only ifNP/poly∩ coNP/poly= nonuniformNC1.

• KF(x) ≤ (KS(x) + log |x|)O(1) if and only ifPSPACE ⊆ nonuniformNC1.

• KF(x) ≤ (Kt(x) + log |x|)O(1) if and only ifEXP⊆ nonuniformNC1.

• KF(x) ≤ (KNt(x) + log |x|)O(1) if and only ifNEXP⊆ nonuniformNC1.

2. KB vs. the rest:

• KB(x) ≤ (KT(x) + log |x|)O(1) if and only ifP⊆ L/poly.

• KB(x) ≤ (KNT(x) + log |x|)O(1) if and only ifNP/poly∩ coNP/poly⊆ L/poly.

• KB(x) ≤ (KS(x) + log |x|)O(1) if and only ifPSPACE ⊆ L/poly.

• KB(x) ≤ (Kt(x) + log |x|)O(1) if and only ifEXP⊆ L/poly.

• KB(x) ≤ (KNt(x) + log |x|)O(1) if and only ifNEXP⊆ L/poly.

3. KT vs. the rest:

• KB(x) ≤ (KNT(x) + log |x|)O(1) if and only ifNP/poly∩ coNP/poly= P/poly.

• KT(x) ≤ (KS(x) + log |x|)O(1) if and only ifPSPACE ⊆ P/poly.

• KT(x) ≤ (Kt(x) + log |x|)O(1) if and only ifEXP⊆ P/poly.

• KT(x) ≤ (KNt(x) + log |x|)O(1) if and only ifNEXP⊆ P/poly.

4. KNT vs. the rest:

• KS(x) = (KNT(x) + log |x|)O(1) if and only ifPSPACE ⊆ NP/poly.

• Kt(x) = (KNT(x) + log |x|)O(1) if and only ifEXP⊆ NP/poly.

• KNt(x) = (KNT(x) + log |x|)O(1) if and only ifNEXP⊆ NP/poly.

5. KS vs. the rest:

• KS(x) ≤ (Kt(x) + log |x|)O(1) if and only ifEXP⊆ PSPACE.

• KS(x) ≤ (KNt(x) + log |x|)O(1) if and only ifNEXP⊆ PSPACE/poly.

6. Kt vs. the rest:

• Kt(x) ≤ (KNt(x) + log |x|)O(1) if and only ifNEXP⊆ EXP/poly.

• Kt(x) ≤ (Ks(x) + log |x|)O(1) if and only ifEXPSPACE⊆ EXP/poly.

Proof. All the proofs of the equivalences follow essentially the same pattern and spelling all of them out would
serve little purpose. Thus we provide a sample proof of one of the equivalences and point out the remaining
subtleties. We prove: KB(x) ≤ (KNt(x) + log |x|)O(1) if and only if NEXP⊆ L/poly.

(⇒) Assume that there is a constantc > 0 such that for allx, KB(x) ≤ (KNt(x) + log |x|)c. Let A be a language
in NEXP. Denote bytn the truth table ofA restricted to strings of sizen. By Corollary 23,B = {(1n, i, (tn)i) :
n ∈ IN, 1 ≤ i ≤ n} is in NEXP/poly. Hence, there isk > 1 such that for alln, KNt(tn) ≤ knk. Thus, by our
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assumption, KB(tn) ≤ (2kn)ck. Furthermore, BPSIZE(tn) ≤ k′nk′
for some constantk′ > 1. The implication

follows by noting that L/poly consists precisely of functions computable by branching programs of polynomial
size.

(⇐) Assume that NEXP⊆ L/poly. Let A be the set{(d, i, b, 1j) : j ∈ IN, d ∈ {0, 1}≤j, 1 ≤ i ≤ 2j , b ∈
{0, 1}, Ud(i, b) accepts in time2j} whereU is the universal machine that is used to define KNt.A ∈ NEXP and
thus lies in L/poly. Thus for anym there is an advice stringam of lengthm` such that queries of lengthO(m) to
A can be answered in spaceO(log m) using access to the advice stringam.

Pick an arbitrary stringx. Let KNt(x) = m. Thus there is a descriptiond of length at mostm such that for all
i ≤ |x|, Ud(i, b) runs in time at most2m and accepts if and only ifxi = b. Consider the oracle machineM
that uses oracle(d, am, m), and on input(i, b) determines if(d, i, b, 1m) is in A. This machineM with oracle
(d, am, m) runs in spaceO(log m), and accepts if and only ifUd(i, b) accepts (which happens if and only if
xi = b). The length of the description(d, a, m) is O(m`), and thus KBM (x) ≤ (m + log |x|)c for some constant
c. The theorem now follows, by the properties of the universal machineU used to measure KB.

There are also some minor subtleties that arise in the implications involving KNT. We illustrate with a sample
equivalence. We prove: KNt(x) = (KNT(x) + log |x|)O(1) if and only if NEXP⊆ NP/poly.

(⇐) Assume that KNt(x) = (KNT(x) + log |x|)O(1), and letA ∈ NEXP. Since coNEXP⊆ NEXP/poly it is easy
to see that the2n+1-bit prefix of the characteristic sequence ofA has KNtA complexitynO(1) and by assumption
also has KNT complexitynO(1). Thus there is a descriptiondn of lengthO(nk) for somek such that for all
x ≤ 2n+1, the nondeterministic universal Turing machineUdn(x, b) runs in at mostnk time and accepts if and
only if x ∈ A. The descriptiondn can be used as an advice sequence to show thatA ∈ NP/poly.

(⇒) Conversely, if NEXP⊆ NP/poly, it follows that NEXP/poly= coNEXP/poly= NP/poly = coNP/poly. If
KNt(x) = m, then there is a descriptiond such that the nondeterministic machineUd(i, b) runs in time2m and
accepts if and only ifxi = b. The language{(d, i, b, 1m) : Ud accepts(i, b) accepts in time2m} is in NEXP,
and by assumption lies in NP/poly∩ coNP/poly. It follows that(d, h1, h2) is a suitable description of the string
described byd, whereh1 andh2 are the advice strings for the NP/poly and coNP/poly algorithms, respectively, to
show that KNT(x) is polynomially related to KNt(x). This completes the proof of this implication.

The following subtlety is involved in establishing equivalences with EXP⊆ PSPACE. Instead of proving equiv-
alence with EXP⊆ PSPACE one proves equivalence with EXP⊆ PSPACE/poly using a proof similar to above
proof and then invokes the following lemma. 2

Lemma 65 EXP⊆ PSPACE/polyif and only ifEXP⊆ PSPACE.

Proof. We only show that if EXP⊆ PSPACE/poly then EXP= PSPACE.

This follows since EXP has a complete setA that is self-reducible [Bal90]. That is, there is a polynomial time
oracle machineM that decides membership inA usingA as an oracle, with the property that on inputx, M
asks queries only to words that lexicographically precedex. If A is in PSPACE/poly, then letM ′ be aPSPACE
machine that acceptsA using advice sequencean. Now aPSPACE machine can determine if a stringx is in
A by searching through all possible advice sequencesb of length polynomial in|x| until it finds a sequenceb
with the property that, for all stringsy that lexicographically precedex, runningM ′(y) with adviceb agrees with
the result of runningM(y), where any oracle queryz asked byM is answered by runningM ′(z) with adviceb.
By assumption, at least one such sequence exists, and thus one will be found. RunningM ′(x) with this advice
sequence correctly determines ifx is in A.

The other implication is trivial. 2
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We close this section with a brief discussion of how to define relativized measures of the form KBA and KFA,
since we have found measures of the form KTA to be quite useful. Unfortunately, there are substantial difficulties
that arise when attempting to provide oracle access to an alternating machine [Bus88], and thus we do not know
of a useful way to define KFA. The situation is somewhat better for KBA, but it does require us to alter the
conventions that we have adopted thus far.

Up until this point in the paper, we have followed the convention that space-bounded oracle Turing machines must
respect the space bound on their oracle tapes. Indeed, this is the customary convention when considering classes
of the formPSPACEA. However, there is an equally venerable tradition of allowing a logspace-Turing reduction
to ask queries of polynomial length [LL76]. In order to prove the following theorem (which allows us to relate
KTA and KBB) we found that it was more appropriate to define KBB in terms of oracle Turing machines that have
a write-only oracle tape that isnotsubject to the space bound.

Theorem 66 LetA andB be oracles. ThenKBB(x) ≤ (KTA(x) + log |x|)O(1) if and only ifPA ⊆ LB/poly.

Proof. Assume that, for allx, KBB(x) ≤ (KTA(x) + log |x|)k. Let C be any language in PA. By Theorem
4, the2n+1-bit prefix of the characteristic sequenceχC has KTA complexitynO(1), and by assumption has KBB

complexityO(nc) for somec. Thus there is a descriptiondn of length O(nc) such that for allx ≤ 2n+1,
UB,dn(x, b) uses space at mostO(log n) (not counting the space that is used on the oracle tape, which must be at
mostnO(1)) and accepts if and only ifx ∈ C. The conclusion thatC ∈ LB/poly now follows.

Conversely, assume that PA ⊆ LB/poly. Let KTA(x) = m. Thus there is a descriptiond of length at most
m such that for alli ≤ |x|, UA,d(i, b) runs in time at mostm and accepts if and only ifxi = b. Let C be
the set{(d, i, b, 1j) : UA,d(i, b)accepts in timej}. C ∈ PA and thus lies in LB/poly. Thus there is an advice
string a of length (m + log |x|)l such that queries of lengthO(m + log |x|) to C can be answered in space
O(log(m + log |x|)) using queries toB and access to the advice stringa. Consider the oracle machineM that
uses oraclesB and(d, a, m), and on input(i, b) determines if(d, i, b, 1m) is in C. This machineM runs in space
O(log(m + log |x|)) using queries toB, and accepts if and only ifUA,d(i, b) accepts (which happens if and only
if xi = b). The length of the description(d, a, m) is O(ml), and thus KBM (x) ≤ ml + (m + log |x|)c for some
constantc. The theorem now follows, by the properties of the universal machineU . 2

8 Concluding Comments

We began this paper with a brief historical review, pointing out that parallel investigations of computational
complexity theory and resource-bounded Kolmogorov complexity date back to the dawn of the theory of NP-
completeness. We cited the historical survey by Trakhtenbrot [Tra84], and recalled how the various computational
tasks discussed by Trakhtenbrot (that is, his Tasks 1 through 5) relate to the themes that are the focus of the present
paper.

This paper introduced a wide range of Kolmogorov-complexity measures in the spirit of Levin’s Kt measure,
ranging from KNt (which is polynomially related to circuit size on oracle circuits with an NE-complete oracle) to
KB and KF (polynomially related to branching program size and formula size, respectively).

It is natural to wonder if it is possible (and useful) to define even more restrictive notions of Kolmogorov complex-
ity, in order to capture even more limited models of computation. One could consider placing more restrictions
on the universal alternating machine in the definition for KF complexity, for instance by restricting the number of
alternations, or by making it deterministic. At first glance, it seems that one might obtain a measure that is related
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to depthk AC0 circuit size for fixedk – but it seems that such machines cannot do much interesting computa-
tion on input(i, b) with oracled without looking at all ofi, which means that their running time is so high that
the framework developed here does not yield a very interesting measure. Is there a useful definition that can be
developed to capture this notion?

For the more “limited” notions of Kolmogorov complexity KB and KF, we are not able to prove as strong in-
tractability results as were proved for KT in [ABK+06]. However, it is not clear that this needs to be the case.
For instance, although it is not known if the minimum circuit size problem is NP-complete, itis complete when
restricted to DNF circuits [Czo99, Mas79, Fel09, AHM+08]. Is there a natural, restricted notion of Kolmogorov
complexity, for which the “random” strings do indeed provide a complete set for coNP? Vazirani and Vazirani
present a related problem that is complete under randomized reductions [VV83], but the computational problem
that they present does not capture a very satisfactory notion of Kolmogorov complexity.
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Appendix

KB KT KNT KS
KF L ⊆ nonuniform NC1 P ⊆ nonuniform NC1 NP/poly ∩ coNP/poly = nonuniform NC1 PSPACE ⊆ nonuniform NC1

KB P ⊆ L/poly NP/poly ∩ coNP/poly = L/poly PSPACE ⊆ L/poly
KT NP/poly ∩ coNP/poly = P/poly PSPACE ⊆ P/poly

KNT PSPACE ⊆ NP/poly

Kt KDt KNt Ks
KF EXP ⊆ nonuniform NC1 FewEXP instances are solvable in nonuniform NC1 NEXP ⊆ nonuniform NC1 FALSE
KB EXP ⊆ L/poly FewEXP instances are solvable in L/poly NEXP ⊆ L/poly FALSE
KT EXP ⊆ P/poly FewEXP instances are solvable in P/poly NEXP ⊆ P/poly FALSE

KNT EXP ⊆ NP/poly FewEXP instances are solvable in NP/poly NEXP ⊆ NP/poly FALSE
KS EXP ⊆ PSPACE FewEXP instances are solvable in PSPACE NEXP ⊆ PSPACE/poly FALSE
Kt FewEXP instances are solvable in EXP NEXP ⊆ EXP/poly EXPSPACE ⊆ EXP/poly

KDt NEXP ⊆ EXP/poly EXPSPACE ⊆ EXP/poly
KNt EXPSPACE ⊆ NEXP/poly

If the measure in column i is polynomially bounded by the measure in row j, then the condition in entry (j, i) holds.
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