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Abstract

We exhibit a deterministic concurrent reachability game
PURGATORYn with n non-terminal positions and a binary
choice for both players in every position so that any posi-
tional strategy for Player 1 achieving the value of the game
within given ε < 1/2 must use non-zero behavior proba-
bilities that are less than (ε2/(1 − ε))2

n−2
. Also, even to

achieve the value within say 1 − 2−n/2, doubly exponen-
tially small behavior probabilities in the number of posi-
tions must be used. This behavior is close to worst case:
We show that for any such game and 0 < ε < 1/2, there is
an ε-optimal strategy with all non-zero behavior probabili-
ties being at least ε2

O(n)
. As a corollary to our results, we

conclude that any (deterministic or nondeterministic) algo-
rithm that given a concurrent reachability game explicitly
manipulates ε-optimal strategies for Player 1 represented
in several standard ways (e.g., with binary representation
of probabilities or as the uniform distribution over a multi-
set) must use at least exponential space in the worst case.

1 Introduction

1.1 Dante in Purgatory - a riddle

There are seven terraces in Purgatory, indexed
1, 2, 3, 4, 5, 6, 7. Dante enters Purgatory at terrace 1. Each
day, if Dante finds himself at some terrace i ∈ {1, 2, . . . , 7},
he must play a game of matching pennies against Lucifer:
Lucifer hides a penny, and Dante must try to guess if it is
heads up or tails up. If Dante guesses correctly, he pro-
ceeds to terrace i + 1 the next morning - if i + 1 is 8, he
enters Paradise and the game ends. If, on the other hand,
Dante guesses incorrectly, there are two cases. If he incor-
rectly guesses “heads”, he goes back to terrace 1 the next
morning. If he incorrectly guesses “tails” the game ends
and Dante forever loses the opportunity of visiting Paradise.
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How can Dante ensure ending up in Paradise with proba-
bility at least 3/4? How long should he expect to stay in
Purgatory before the game ends in order to achieve this?

The somewhat striking answer to this riddle is that it is
possible for Dante to go to Paradise with probability at least
3/4, but any strategy achieving this guarantee has the down-
side that it allows Lucifer to confine Dante to Purgatory for
roughly 1025 years (In comparison, the current age of the
universe is less than 1011 years so even playing one move
per nanosecond would not help Dante much.) Other strate-
gies guarantee Dante to go to Paradise with probability at
least 99% or 99.9999%, but he would have to be even more
patient to play these. Details are given in Section 3.
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Figure 1. Dante’s Purgatory.



1.2 Problem statements and results

The central question we address in this paper is: How
patient must one be to play concurrent reachability games
games near-optimally? In the following, we formalize this
question, explain how it is motivated by literature on algo-
rithms for solving such games, and we outline our results
that partially answers the question.

We consider finite state, zero-sum, deterministic, concur-
rent reachability games. For brevity, we shall henceforth
refer to these as just reachability games. The class of reach-
ability games is a subclass of the class of games dubbed
recursive games by Everett [13] and was introduced to the
computer science community in a seminal paper by de Al-
faro, Henzinger and Kupferman [10].

A reachability game G is played between two players,
Player 1 and Player 2. The game has a finite set of posi-
tions, including a special position GOAL. At any point in
time during play, some position is the current position. The
objective for Player 1 is to eventually make the current posi-
tion GOAL. The objective for Player 2 is to forever prevent
this. GOAL is a terminal position, where the game ends. We
also allow additional terminal positions (“traps”). The rest
of the positions are non-terminal positions. To each non-
terminal position i is associated a set of actions A1

i , A
2
i for

each of the two players. At each point in time, if the current
position is i, Player 1 chooses an action in A1

i while Player
2 simultaneously chooses an action in A2

i . For each posi-
tion i and each action pair a ∈ A1

i , a
′ ∈ A2

i is associated
a position π(i, a, a′). When the current position at time t
is i and the players play the action pair (a, a′), the position
at time t + 1 is π(i, a, a′). The game of Dante in Purga-
tory (represented graphically in Figure 1) may be viewed as
a reachability game with nine positions: One non-terminal
position for each terrace, the GOAL position representing
Paradise (labeled P in the figure), and one additional non-
terminal position H where Dante has lost the game.

A strategy for a reachability game is a (possibly random-
ized) procedure for selecting which action to take, given the
history of the play so far. A strategy profile is a pair of
strategies, one for each player. A positional strategy is the
special case of a strategy where the choice only depends
on the current position. A positional strategy is a family
of probability distributions on actions, one distribution for
each position. The probability of an action is called a be-
havior probability. A pure, positional strategy is the even
more special case of this where the choice only depends on
the current position and is deterministic. That is, a pure,
positional strategy is simply a map from vertices to actions.

An interesting number one may assign to a strategy is its
patience. We define the patience of a positional strategy to
be 1/p where p is the smallest non-zero behavior probabil-

ity of any action in any position according to the strategy1

In particular, a pure positional strategy has patience 1 (the
smallest possible patience). The central question we ask
in this paper is: What is the patience required for playing
reachability games well?

To make this more precise, we should explain what is
meant by “well”. We let µi(x, y) denote the probability that
Player 1 eventually reaches GOAL if the players play using
the strategy profile (x, y) and the play starts in position i.
The supinf value of position i is defined as:

vi = sup
x∈S1

inf
y∈S2

µi(x, y)

where S1 (S2) is the set of strategies for Player 1 (Player 2)
Similarly, the infsup value of a position i is

vi = inf
y∈S2

sup
x∈S1

µi(x, y).

The following facts about reachability games are due to
Everett (1957), who proved them for the larger class of re-
cursive games:

Fact 1 For all positions i in a reachability game, the supinf
value vi equals the infsup value vi and and this number is
therefore called the value vi of that position. The vector v
is called the value vector of the game.

Fact 2 In a reachability game, for any ε > 0, there is a
positional strategy x∗ of Player 1 so that for all positions i

inf
y∈S2

µi(x∗, y) ≥ vi − ε.

Similarly, there is a positional strategy y∗ of Player 2 so
that for all positions i

sup
x∈S1

µi(x, y∗) ≤ vi + ε.

The strategies x∗, y∗ are called ε-optimal. Note that x∗, y∗

do not depend on i. They may however depend on ε > 0
and this dependence may be necessary for strategies for
Player 1, as shown by examples of Everett. In contrast, in
any reachability game (as opposed to the more general re-
cursive games considered by Everett), Player 2 always has
an optimal strategy that is guaranteed to achieve the value
of the game, without any additive error [11]. Still, such a
strategy may involve irrational probabilities, so in computa-
tional settings, one may have to settle for ε-optimal strate-
gies, even for Player 2. The question we address in this
paper is the following: For a worst case reachability game
with n positions, what is the minimum patience of ε-optimal
strategies? In other words, how small behavior probabilities
do ε-optimal strategies have to use?

1While this notion of patience is not completely standard, it in fact goes
back to Everett [13, page 77].



Our main results are the following. For any posi-
tive integer n, we exhibit a concurrent reachability game
PURGATORYn with n non-terminal positions (Dante’s
Purgatory described above is PURGATORY7) so that the
value of a particular position START is 1 and so that the
following holds:

Theorem 3 Let n ≥ 2 be an integer and 0 < δ < 1 be a
real number. Let x be a positional strategy of Player 1 in
PURGATORYn such that Player 1 using strategy x is guar-
anteed to reach GOAL with probability at least δ, against
any strategy of Player 2, when play starts in START.

1. If δ = 2−` for an integer 1 ≤ ` < n − 2, then the
patience of x is at least 22n−`−2

.

2. If ε = 1 − δ < 1/2 then the patience of x is at least(
1−ε
ε2

)2n−2

.

In short, doubly exponential patience in n is required for
playing PURGATORYn near-optimally. Theorem 3 is
shown in Section 2. In Section 3 we show that a similar
statement holds even for general (non-positional) strategies
and based on this we discuss the striking answer to the rid-
dle about Dante in Purgatory. In Section 4, we show that the
patience required for playing PURGATORYn is, in a sense,
close to the worst possible:

Theorem 4 For any reachability games with a total num-
ber of m ≥ 61 actions in the entire game (collecting ac-
tions in all positions belonging to both players), and any
0 < ε < 1

2 , Player 1 as well as Player 2 have ε-optimal po-
sitional strategies with all non-zero behavior probabilities
being at least ε2

42m

.

This latter theorem improves theorems by Chatterjee et al
[5, 6, 7] by providing a better dependence on ε. It is
proved in a similar generic way as these theorems, by ap-
pealing to general statements of Basu et al [1] concerning
the first order theory of the reals. While the lower bound
for the patience required to play PURGATORYn in some
sense is close to the upper bound valid for any reachability
game with binary choices and n non-terminal positions (for
ε < 1/2, the upper bound is (1/ε)2

O(n)
, while the lower

is (1/ε)2
Ω(n)

), they are also tremendously far apart as can
be verified by plugging in concrete values of ε, n. The up-
per bound can be improved somewhat without changing the
proof at the expense of making it uglier-looking but it will
still far from match the lower bound exactly. We leave as an
open problem if PURGATORYn is the reachability game
with n non-terminal positions and binary choices that re-
quires the very most patience, or if such games requiring
even more patience than PURGATORYn exist.

Our results are motivated by the recent growing literature
by the logic and verification community on solving reacha-

bility games and safety games, the latter games being sim-
ply concurrent reachability games with the roles of Player 1
and Player 2 switched2). By “solving” a reachability game
we may mean a number of different tasks:

1. Determining the set of nodes of value 1. This task has
been referred to as qualitatively solving the game in
the computer science literature.

2. Approximating3 the value of the game, from below
and/or from above. This task has been referred to as
quantitatively solving the game in the computer sci-
ence literature.

3. Exhibiting an ε-optimal strategy for Player 1 and/or
Player 2. This is a stronger notion of solving the game
that quantitatively solving it. Indeed, if an ε-optimal
strategy for Player 1 is given and fixed, we can effi-
ciently approximate the values of all positions of the
game from below within ε by solving the resulting
Markov Decision Process for Player 2. Similarly, if
an ε-optimal strategy for Player 2 is given, we can ef-
ficiently approximate the value of the positions of the
game from above. We shall refer to exhibiting an ε-
optimal strategy as strongly solving the game.

Using the terminology above, de Alfaro, Henzinger and
Kupferman [10] show that a concurrent reachability game
can be qualitatively solved in polynomial time. Etessami
and Yannakakis [12] show that it can be quantitatively
solved in PSPACE. Chatterjee and co-authors present in a
series of papers [8, 4, 5, 6, 7] a series of algorithms that all
strongly solve reachability games, by explicitly finding and
exhibiting ε-optimal strategies (for Player 1 or for Player
2). The strategies obtained use probabilities distributions
that are uniform distributions on multisets of actions. As in
those works, we use the terminology “k-uniform distribu-
tion” to refer to the uniform distribution on a multiset of size
k. Note that to satisfy the bound of Theorem 3, a k-uniform
distribution that is an ε-optimal strategy for PURGATORYn

must have k doubly exponential in n, even for ε very close
to 1. The default representation of a uniform distribution on
a multiset of actions is simply to list the number of times
that each possible action appears in the multiset, using bi-
nary representation (and no alternative representation has
been suggested in the series of papers above). In particu-
lar, at least log2 k bits is used to represent any k-uniform
distribution. This default representation is polynomial time
equivalent to representing the behavior probability of each
action as a fraction, with the numerator and denominator be-
ing integers represented in binary. This latter representation

2We shall therefore absorb the discussion on safety games in our dis-
cussion on reachability games. Still, the distinction is far from immaterial
because of the asymmetry between Players 1 and 2 in a reachability game.

3We consider approximations, rather than exact computations, as the
value of a reachability game may be an irrational number.



also subsumes fixed point representation, i.e., representing
behavior probabilities as finite decimal or binary numbers.
Let us refer to all these representations of behavior proba-
bilities as explicit representations. With this discussion in
mind, an immediate corollary of Theorem 3 is:

Corollary 5 Any algorithm that takes a reachability game
with binary choices as input and manipulates explicitly rep-
resented ε-optimal strategies for Player 1, even for ε =
1− 2−n/2, where n is the number of positions of the game,
uses in the worst case space which is at least exponential in
n.

In particular, any algorithm that strongly solves reachability
games and gives an explicitly represented strategy as output
uses at least exponential time in the worst case, merely to
produce the output. Interestingly, the algorithm of Chatter-
jee, Majumdar and Jurdziński [8] was originally claimed to
be an NP ∩ coNP algorithm. The proof of this claim was
later found to be incorrect due to subtle issues involving
Lipschitz continuity [3], but it was not immediately clear
if the correctness and efficiency of the algorithm could be
reestablished without significant modifying it. Corollary 5
shows that an entirely different approach would be needed.

While reachability games can be solved qualitatively
time-efficiently and quantitatively space-efficiently, we
think that solving them in the third strong sense is interest-
ing and important in its own right: For many applications,
it is not enough to know that something can be achieved,
one also wants to know how to achieve it! Corollary 5
rules out any worst case efficient way of doing this, un-
less we redefine the problem and consider “non-standard”
representations of probability distributions. It is interest-
ing to observe that the algorithm of de Alfaro, Henzinger
and Kupferman [10] may be used to correctly determine the
value of all states in PURGATORYn as all states except one
have value 1 (the last state having trivially value 0). Inspect-
ing its correctness proof, one finds that it is easy to modify
the AHK algorithm so that it not only establishes the val-
ues, but also “constructs” an ε-optimal strategy for Player 1
represented symbolically, by assigning to each action either
a symbol εj , j ∈ {1, . . . , `} or as a formal sum of the form
1 −∑

i εji . The parameterized strategy thus constructed is
an ε-optimal strategy when the εj are assigned any sequence
of concrete values so that 0 < ε` · · · ¿ ε3 ¿ ε2 ¿ ε1 ¿ ε,
where ¿ means “is sufficiently smaller than”. This does
not contradict Corollary 5, as such sufficiently small val-
ues would have exponentially many digits if represented as
fractions or decimal numbers. It would be most interesting
to prove or disprove that such formal sums containing both
actual numbers (for general reachability games, one would
need rational numbers other than 1) and symbols represent-
ing a sequence of sufficiently small numbers of decreasing
magnitude, are sufficient to compactly represent ε-optimal

strategies for any reachability game. Here, by “compactly”
we mean in polynomial space in the number of states of the
game.

Not only the lower bound on patience of Theorem 3
but also the upper bound of Theorem 4 has relevance for
algorithmically solving concurrent reachability games and
safety games. In particular, the algorithms of [5, 6, 7] out-
put k-uniform distributions, where k is a parameter supplied
by the user. It is not a priori clear for a given game which
k has to be supplied in order to make it possible to achieve
an ε-optimal strategy for a desired ε. We show in Section
5 that Theorem 4 implies that a certain doubly exponential
upper bound on k is sufficient. The upper bound improves
similar upper bounds of [5, 6, 7]. Those bounds are also
doubly exponential, but our bound has a better dependence
on ε. Unfortunately (and inevitably, given the Purgatory
examples), the bound is still astronomical, even for small
games.

1.3 Useful preliminary

The following lemma is well-known:

Lemma 6 Let x be any fixed strategy of Player 1. let
vi

x = infy∈S2 µi(x, y). That is, vi
x is the value of the game

at position i if Player 1’s strategy were fixed to x. Then,
vi

x = miny∈S′2 µi(x, y) where S′2 is the set of positional,
pure strategies of Player 2.

Proof. When Player 1’s strategy fixed, the game becomes
one of perfect information for Player 2. Then, the state-
ment follows from more general statements, e.g., Liggett
and Lippman [15]. 2

2 Purgatory

PURGATORYn is the deterministic reachability game
with two terminal positions H and P and n non-terminal
positions {1, 2, . . . , n} where the sets of actions associated
with position i ∈ {1, . . . , n} are A1

i = A2
i = {t, h} and the

transitions from position i associated with actions a1 ∈ A1
i

of Player 1 and a2 ∈ A2
i of Player 2 are given in the follow-

ing table:

HHHHHa1

a2 t h

t i + 1 H
h 1 i + 1

where we identify the position n + 1 with position P .
The GOAL of Player 1 is to reach position P . For a po-
sitional strategy x of Player 1 we will denote by pi(x)
the probability of playing t by Player 1 in the position
i ∈ {1, . . . , n}. When x is clear from the context we will



omit it. PURGATORY7 (Dante’s Purgatory) is depicted in
Figure 1. Note that PURGATORYn essentially consists of
a “stack” of n “linked” copies of the game de Alfaro et al
[10] call HIDE-AND-RUN, a game that appears also as Ex-
ample 1 in Everett [13]. Also note that the global structure
of PURGATORYn is reminiscent of examples of random
walks on directed graphs with exponential escape time, as
applied for instance by Condon [9, Figure 1] to analyze al-
gorithms for simple stochastic games - the latter being turn-
based rather than concurrent reachability games.

One can verify by induction on n that the value of all
positions in PURGATORYn is 1, except for the value of H ,
which is 0. In particular, the following strategy for Player 1
ensures that Player 1 wins PURGATORYn with probability
≥ 1− ε. Let the probabilities of playing t by Player 1 be as
follows.

p1 = ε2
n−1

pi =
ε2

n−i − ε2
n−i+1

1− ε2n−i+1 for i > 1

We will prove by induction that the subgame consisting
of positions 1, . . . , i, where position i + 1 is identified with
GOAL is won with probability at least 1 − ε2

n−i

. This is
clearly true for i = 1.

For the induction step, assume that the subgame consist-
ing of positions 1, . . . , i is won with probability 1 − ε2

n−i

,
and consider the subgame consisting of positions 1, . . . , (i+
1) and any pure strategy of Player 2. If Player 2 plays h at
position i + 1 Player 1 will win the game with probability
at least

1− ε2
n−i − (1− ε2

n−i

)pi+1

=1− ε2
n−i − (ε2

n−(i+1) − ε2
n−(i+1)+1

) = 1− ε2
n−(i+1)

.

On the other hand, if Player 2 plays t at position i + 1,
then using Proposition 7 Player 1 will win the game with
probability at least

1− ε2
n−i

ε2n−i + (1− ε2n−i)pi+1

=1− ε2
n−i

ε2n−(i+1) = 1− ε2
n−(i+1)

.

Proposition 7 Let 0 < p, q < 1 be real numbers. Consider
the Markov chain given in Fig. 2. If we start in state s of
the chain then with probability q

q+p−pq we reach the state
H and with the remaining probability we reach the state P .

Proof. Clearly, Pr[ reaching H] = q
∑∞

i=0(1 − q)i(1 −
p)i = q

1−(1−q)(1−p) = q
q+p−pq 2

Alternatively, the following simple strategy of Player
1 achieves winning probability in PURGATORYn at least

H

s

t

P

q

1 − q 1 − p

p

Figure 2. Two-level Purgatory.

1− ε: in position i play t with probability ε2
n−i+1

. We now
turn to Theorem 3, which is a consequence of the following
statement.

Theorem 8 Let n ≥ 2 be an integer and 0 < δ < 1 be
a real number. Let x be a positional strategy of Player 1
in PURGATORYn such that the probability that Player 1
reaches P using strategy x starting from position 1 is at least
δ, against any counter-strategy of Player 2.

1. If an integer 1 ≤ `(n) < n − 2 satisfies δ = 2−`(n)

then for all i ∈ {1, . . . , n − `(n) − 1}, 0 < pi(x) ≤
2−2n−`(n)−1−i

.

2. If ε = 1 − δ < 1/2 then for all i ∈ {1, . . . , n − 1},

0 < pi(x) ≤
(

ε2

1−ε

)2n−i−1

.

H

s

P

q

p
1 − p − q

Figure 3. Loop.

Proposition 9 Let 0 < p, q, δ < 1 be real numbers. Con-
sider the Markov chain given in Fig. 3. The probability of
reaching state P from state s is at least δ iff p ≥ δ

1−δ q.

Proof. Clearly, starting from S we reach P or H with
probability 1. The probability of reaching P is precisely



p
p+q . Thus

p

p + q
≥ δ

iff

p ≥ δ(p + q)

p ≥ δ

1− δ
q.

2

Proof of Theorem 8. Part 1. If for some i ∈
{1, . . . , n}, pi(x) were either 0 or 1 then clearly the value
of PURGATORYn for Player 1 using x would be zero. So
all pi’s are non-zero. Assume the claim is false, though.
Let i ∈ {1, . . . , n − `(n) − 1} be the largest i such that
pi(x) > 2−2n−`(n)−1−i

. Consider the following strategy
of Player 2: in positions 1, . . . , i play h always, in posi-
tions i + 1, . . . , n− `(n)− 1 play t always and in positions
n − `, . . . , n play t and h independently with probability
1/2 each. We claim that the probability of reaching P from
position 1 using these strategies is smaller than δ. Let p
be the probability of reaching P and q be the probability
of reaching H starting from position 1 without returning to
position 1. We claim that p < qδ/(1 − δ) which gives the
contradiction by Proposition 9.

To reach P the game has to pass through position n −
`(n). Clearly, the probability of reaching P starting from
position n−`(n) without returning to position 1 is precisely
2−`(n)−1. Furthermore, as pj ≤ 2−2n−`(n)−1−j

for j =
i + 1, . . . , n− `(n)− 1, the probability of reaching P from
position i + 1 is:

2−`(n)−1

n−`(n)−1∏

j=i+1

pj(x)

≤ 2−`(n)−1

n−`(n)−1∏

j=i+1

2−2n−`(n)−1−j

≤ 2−`(n)−1 · 2−
∑n−`(n)−1

j=i+1 2n−`(n)−1−j

= 2−`(n) · 2−2n−`(n)−1−i

.

Hence, p ≤ 2−`(n) · 2−2n−`(n)−1−i

. However, with proba-
bility q ≥ pi(x) > 2−2n−`(n)−1−i

we reach H as Player 2
plays h in position i. That implies the contradiction.
Part 2. For the second part, the strategy of Player 2 will be
similar. Since Player 2 could play always h in position n,
pn(x) ≤ ε. We pick the largest i ∈ {1, . . . , n−1} such that

pi(x) >
(

ε2

1−ε

)2n−i−1

. Player 2 will play h in positions
1, . . . , i and t otherwise. The probability p of reaching P
from position i + 1 is given by:

n∏

j=i+1

pj(x)

≤ ε ·
n−1∏

j=i+1

(
ε2

1− ε

)2n−j−1

≤ ε ·
(

ε2

1− ε

)∑n−1
j=i+1 2n−j−1

=
1− ε

ε
·
(

ε2

1− ε

)2n−i−1

.

Since Player 2 plays h in position i, the probability of reach-
ing H starting from position 1 without returning to 1 is

q ≥ pi(x) >
(

ε2

1−ε

)2n−i−1

. Thus 1−ε
ε q > p and we ob-

tain the desired contradiction. 2

3 Adaptive strategies and the answer to the
riddle

The previous section dealt with non-adaptive strategies
for PURGATORYn. This is a natural restriction, as Everett
proved that non-adaptive strategies are sufficient for ap-
proximately achieving the value of recursive games (Fact 2).
It is rather easy to solve the riddle of the introduction based
on the material of the last section, if one assumes that Dante
plays by a non-adaptive strategy. Still, one could specu-
late that by observing Lucifer’s moves, Dante could adapt
his strategy to escape sooner while maintaining a particular
winning probability. So, to give an answer to the riddle, we
should consider adaptive strategies. It is worth pointing out
that in more general classes of stochastic games, one might
be able to approximate the value of the game by adaptive
strategies only. A celebrated example of this phenomenon
is the Big Match [2], where the near-optimal strategies in-
volve observing the behavior of the opponent and adjusting
behavior probabilities accordingly. Thus, adaptive strate-
gies have shown their power in other contexts and are worth
investigating. However, the flavor of the results of this sec-
tion is that adaptive strategies will not allow Dante to escape
much faster.

We say that an adaptive strategy for a reachability game
involves an action with behavior probability at most µ if
there is a sequence of actions of both players that will lead
the game to a position in which one of the actions given by
the strategy has behavior probability at most µ.

Theorem 10 Let 0 < δ < 1 be a real number and 1 ≤
`(n) < n − 2 be integers. Let x be an adaptive strategy of
Player 1 for PURGATORYn game such that the value of the
game for Player 1 using strategy x starting from position 1
is at least δ.

1. If δ = 2−`(n) then the strategy x must involve
some action with non-zero behavior probability ≤
2−2n−`(n)−2

.



2. If ε = 1 − δ < 1/2 then the strategy x must in-
volve some action with non-zero behavior probability

≤
(

ε2

1−ε

)2n−2

.

Proof. Part 1. Assume that no action under strategy x has
behavior probability in the range (0, 2−2n−`(n)−2

]. We will
design a strategy y for Player 2 which will achieve against
x probability of reaching P smaller than δ. Player 2 will
define his strategy y in phases as the game proceeds. A new
phase will start whenever the game is at position 1. Player 2
defines his strategy so that in a given phase, the probability
q of reaching H and the probability p of reaching P satisfy
δq ≥ p. Given that the strategy of Player 2 has this property
it is clear that the game ends in P with probability less than
δ.

At the beginning of a given phase Player 2 looks at the
strategy of Player 1 that will be used within the next up-
to n moves of the game. For each i ∈ {1, . . . , n} and
w ∈ {t, h}i−1, Player 2 calculates the probabilities pi(w)
of Player 1 playing t in position i conditioned on the event
that Player 2 plays the first i−1 moves in this phase accord-
ing to the sequence w of actions and the phase did not end
yet. (Conditioned on the event that Player 2 plays the first
i− 1 moves in this phase according to w and the phase did
not end yet there is a unique sequence of actions of Player
1 that must have been taken during the first i − 1 moves.
Hence pi(w) is well defined.)

Player 2 decides his actions for positions i = n, n −
1, . . . , 1 (i.e. in backward order). For positions i = n, n −
1, . . . , n − `(n), Player 2 will play both t and h with prob-
ability 1/2 each. Clearly, if the game reaches position
n−`(n) then this strategy of Player 2 ensures that the prob-
ability of reaching P in this phase is precisely 2−`(n)−1.
Next we define the strategy of Player 2 for positions i =
n − `(n) − 1, n − `(n) − 2, . . . , 1. Assume that Player
2 already decided for each sequence of actions w ∈ {t, h}i

what would be his next moves after playing such a sequence
of actions in this phase and let vi+1(w) be the probability
that the game would reach P if Player 2 plays like that.
Player 2 will define his strategy so to maintain the invariant
vi+1(w) ≤ δ2−2n−`(n)−1−i

. Player 2 is going to decide his
actions in position i and possibly the overall strategy.

If for some w ∈ {t, h}i−1, pi(w) ≥ 2−2n−`(n)−1−i

then
Player 2 starting from position 1 will play according to wh
and then continue as decided earlier so that the probabil-
ity of reaching P after passing through position i + 1 will
be vi+1(wh) ≤ δ2−2n−`(n)−1−i

. This will guarantee the re-
quired relationship between probabilities of reaching H and
P in this phase since the only way to reach P in this phase
is to pass through position i+1 and with probability at least
2−2n−`(n)−1−i

the game will end by entering H from posi-
tion i.

If for all w ∈ {t, h}i−1, pi(w) < 2−2n−`(n)−1−i

then
Player 2 will play t in position i regardless of his previous
actions in this phase. Since he plays t, the probability of
reaching P from position i in this phase will be vi(w) =
pi(w) · vi+1(wt) < 2−2n−`(n)−1−i · δ2−2n−`(n)−1−i ≤
δ2−2n−`(n)−1−(i−1)

for all w ∈ {t, h}i−1. Next Player 2
continues to define his actions for positions i−1, . . . , 1. As
the strategy x of Player 1 does not involve actions with be-
havior probability in the range (0, 2−2n−`(n)−2

] the process
must stop at some point and we obtain a good strategy for
Player 2.

Part 2. The proof is similar to the proof of Part 1. Player
2 maintains that a given phase ends in H with probability
q and in P with probability p where q > ε

1−εp. To do so

he keeps vi+1(w) ≤ 1−ε
ε

(
ε2

1−ε

)2n−i−1

for all i = n −
1, n − 2, . . . , 1 and w ∈ {t, h}i−1, and he looks for w with

pi(w) >
(

ε2

1−ε

)2n−i−1

. He starts to build his strategy as

follows. If pn(w) > ε for some w ∈ {t, h}n−1 then his
strategy will be given by wh. Otherwise pn(w) ≤ ε for all
w ∈ {t, h}n−1, and his strategy will be to play t in position

n for all w. Thus vn(w) ≤ ε = 1−ε
ε

(
ε2

1−ε

)20

. He continues
to build inductively his strategy as in the previous part but
keeping the stated invariants. 2

The previous theorem is interesting in connection with
the following general theorem.

Theorem 11 (No quick exit strategy) Let 0 < δ, µ < 1
and 0 < τ . Let a reachability game G have the property
that any strategy of Player 1 with value at least δ involves an
action with non-zero behavior probability smaller or equal
to µ. Then no strategy of Player 1 guarantees winning the
game with probability at least (1+ τ)δ by plays of length at
most τδ/µ.

Proof. By contradiction. Let G be a game with the required
property and x be a strategy of Player 1 which for an arbi-
trary strategy y of Player 2 reaches GOAL with probability
at least (1+τ)δ by plays of length at most τδ/µ. For a fixed
strategy y of Player 2 consider the winning plays of length
at most τδ/µ. Among these plays some of them invoke ac-
tions with behavior probability smaller or equal to µ. As the
length of these plays is at most τδ/µ the total contribution
towards the winning probability of these plays involving the
small probability actions is at most µ · τδ/µ = τδ. Hence
the probability of plays of length at most τδ/µ that reach
GOAL and do not involve any of the small probability ac-
tions is at least δ. We claim that this contradicts the assumed
properties of the game.

If the strategy of Player 1 were modified as to set to zero
behavior probabilities of all actions with behavior probabil-



ity at most µ and the remaining probabilities were renor-
malized evenly as to sum to one at each game position then
the total probability of plays winning against strategy y of
length at most τδ/µ would still be at least δ, as the probabil-
ity of the plays not involving the small probability actions
may only increase. Since this is true for any strategy y of
Player 2 and the modification is always the same we con-
clude that Player 1 has a strategy that does not involve any
action with behavior probability at most µ which guarantees
reaching GOAL with probability at least δ. This contradicts
the original assumption about G. 2

We may now answer the riddle. In order to have 3/4
probability of success, Dante has to use a strategy involving

behavior probabilities smaller than
(

0.252

0.75

)32

≈ 3.4 ·10−34

(by Part 2 of Theorem 10). In case Lucifer uses the strategy
suggested in the above proofs, Dante would spend 3 · 1033

days, i.e., 8 · 1030 years, in Purgatory with overwhelming
probability, as the number of steps of play would be geomet-
rically distributed. From the preceding theorem, we can de-
rive a somewhat weaker bound on the expected time needed
to win the game: for 0.73 winning probability Dante has to

use probabilities smaller than
(

0.272

0.73

)32

≈ 9.6 ·10−33. Set-
ting δ = 0.73 and τ = 0.01 in the previous theorem we get
that with probability at least 0.01, the time to win the game
is at least 7.6 · 1029 days which is 2 · 1027 years. Hence the
expected time to win the game is at least 2 ·1025 years. This
would constitute a real Purgatory for Dante! Clearly, we
have demonstrated that although one can win the game al-
most surely, from a practical standpoint it is not winable. A
good practical strategy for Dante could be to flip a fair coin
and escape the purgatory with probability 1/128 within a
week.

4 Upper bound on patience of both players in
all reachability games

In this section we prove Theorem 4, stated in the intro-
duction. We use a theorem of Filar et al. [14] applicable
to stochastic games [16] with limiting average payoffs [15].
Everett’s recursive games (and hence, concurrent reachabil-
ity games) can be seen as a special case of these. We first
state the theorem almost verbatim. Afterwards, we explain
the notation and how to apply the theorem to the special
case of concurrent reachability games.

Theorem 12 (Filar et al., Theorem 4.1) Let a two-player,
zero-sum, stochastic game be given with set of states S,
set of actions Ai

s for player i ∈ {1, 2} in state s, tran-
sition function q and reward function r. Let f̂ be a be-
havior strategy profile for the two players. If there exist a
feasible setting v̂, t̂ of the remaining variables of the fol-

lowing non-linear progam N so that the objective func-
tion has value of ε or less, then the strategies in f̂ are ε-
optimal. Conversely, if the strategies in f̂ are ε-optimal,
then there exist v̂ and t̂ such that (v̂, f̂ , t̂) are feasible in
N with objective value 2|S|ε or less. The program N
has variables {vk

s }k∈{1,2},s∈S , {fk
s (a)}k∈{1,2},s∈S,a∈Ak

a
,

{tka}k∈{1,2},s∈S , objective function
∑

s∈S(v1
s + v2

s) (to be
minimized) and constraints:

1. ∀s ∈ S, a ∈ A1
s :

v1
s ≥

∑
s′∈S v1

s′q(s
′|s, f 〈1,s,a〉),

2. ∀s ∈ S, a ∈ A1
s :

v1
s + t1s ≥ r1

s(f 〈1,s,a〉) +
∑

s′∈S t1s′q(s
′|s, f 〈1,s,a〉),

3. ∀s ∈ S, a ∈ A2
s :

v2
s ≥

∑
s′∈S v2

s′q(s
′|s, f 〈2,s,a〉),

4. ∀s ∈ S, a ∈ A2
s :

v2
s + t2s ≥ r2

s(f 〈2,s,a〉) +
∑

s′∈S t2s′q(s
′|s, f 〈2,s,a〉),

5. ∀k ∈ {1, 2}, s ∈ S :
∑

a∈Ak
s
fk

s (a) = 1,

6. ∀k ∈ {1, 2}, s ∈ S, a ∈ Ak
s : fk

s (a) ≥ 0.

In the above theorem, fk
s (a) is the probability that Player

k puts on action a in state s according to the profile f while
f 〈k,s,a〉 is the strategy profile obtained from f by altering
Player k’s behavior in state s so that he puts his entire prob-
ability mass on action a.

Expressions of the form q(s′|s, f ′) is the probability that
the state at time t + 1 is s′ given that the state at time t is s
when the players play according to profile f ′. Note that for
the case of reachability games and all settings of f ′ occuring
in the program N , the expression q(s′|s, f ′) is simply a sum
of products of two variables from {fk

s (a)}.
In stochastic games, players receive rewards during play.

Expression of the form rk
s (f ′) is the expected reward Player

k receives in state s when Player plays using profile f ′. A
concurrent reachability game can be modeled as a stochastic
game by simply letting r1

s(f ′) be 0 when s is not the GOAL
state and 1 when s is the GOAL state, no matter what f ′ is
and letting r2

s(f ′) = −r1
s(f ′).

Applying Theorem 12 to a concurrent reachability game
in this way, we see that Fact 2 (the existence of ε-optimal
strategies) implies that the program N has feasible solutions
with arbitrarily small strictly positive value of the objective
function. Given a concrete ε, we let M = d1/εe and add
to N the constraint that M times the value of the objective
function is at most 1. We know that the resulting program
has a feasible solution (v̂, f̂ , t̂), and that the f̂ in any such
solution is a pair of ε-optimal strategies. Now, freeze all
variables in f̂ that have value 0 to constants in N and for
all remaining variables fk

s (a) add a variable gk
s (a) and a

constraint gk
s (a)fk

s (a) = 1. Let N ′ be the resulting pro-
gram. By construction, we already have a feasible solution



(v̂, f̂ , ĝ, t̂) to N ′, where f̂ is the zero-reduced vector. Also,
a pair of ε-optimal strategies to the game can be obtained
from any feasible solution by extending f̂ by zeros. The
largest ĝ value is the patience of the most patient of these
strategies. Thus, we want to show that N ′ has a feasible so-
lution where non-zero values ĝk

s (a) are not extremely large.
We observe that if m is the total number of actions of

both players in the game, then N ′ has at most 4n + 2m
variables and 3m+4n+1 constraints, all constraints being
inequalities involving polynomials of degree at most three
and all coefficients being in {−1, 0, 1,M}. We now appeal
to a version of Proposition 1.3.5 of Basu et al [1]. Unfor-
tunately, the published version of this Proposition contains
“big-O”s and we want to obtain the “big-O”-less bound of
Theorem 4. From personal communication with Basu, we
have obtained a non-asymptotic version of the proposition.
This non-asymptotic version will appear in a forthcoming
publication by Basu and Roy (if the reader prefers to rely
on published information only, the original Propostion 1.3.5
of [1] still yields a bound of ε2

O(n)
on the patience). The

non-asymptotic version of the proposition is as follows. Let
bit(·) denote bitsize, i.e., bit(j) = blog2(|j|) + 1c.
Proposition 13 (Basu et al., Basu and Roy) Given a set
of s polynomials of degree at most d in k variables with
integer coefficients of bitsize at most τ , the ball centered in
origin with radius 2τ ′2k(d+4)(d+5)(2d+6)2(2d+5)2(k−1)

where
τ ′ = 33+2max(τ, kbit(s))+(k+11)bit(d+5)+11bit(k+
1) + 3bit(5(2d + 6)(2d + 5)k−1) intersects the realization
of every realizable sign condition on the set of polynomials.

The statement “N ′ is feasible” is equivalent to a sign condi-
tion on the set of cubic polynomials defining the constraints
of N ′. To apply Proposition 13, we merely have to plug in
the upper bound on the number of variables and polynomi-
als of N ′ and let d = 3. Doing so, we obtain the desired
bound of Theorem 4 and are done.

5 Consequences for k-uniform strategies

By k-uniform strategies we understand strategies in
which behavior probabilities are given by k-uniform distri-
butions.

Lemma 14 Let P and P ′ be matrices of absorbing Markov
chains on the same set of n states with the property that all
non-zero transition probabilities (of both chains) are big-
ger than or equal to α. Let δ = ε(ln(4/ε))−1n−1αn and
suppose that the entries pij , p

′
ij of P, P ′ satisify

|pij − p′ij | ≤ δ.

Let bij , b
′
ij be the absorption probabilities of the two chains.

Then,
|bij − b′ij | ≤ ε

Proof. For any time t, conditioned on being in any particu-
lar state, the conditional probability that each chain will be
absorbed within the next n steps is at least αn. The proba-
bility that each chain is not absorbed after k(1/α)n steps is
therefore at most (1− αn)k(1/α)n ≤ e−k. So we only have
to run each chain for M = ln(4/ε)(1/α)n steps to approxi-
mate an absorption probability from below within ε/4. This
goes for both chains. Let the absorption probabilities thus
approximated be denoted b̄ij , b̄

′
ij . That is, we have for each

i, j that |bij − b̄ij | ≤ ε/4 and |b′ij − b̄′ij | ≤ ε/4.
For a fixed state i, the total variation distance between

the distributions pi∗ and p′i∗ are at most δn/2. From this
it follows that total variation distance between the distribu-
tions b̄i∗ and b̄′i∗ is at most Mδn/2 ≤ ε/2. In particular, for
any i, j, |b̄ij − b̄′ij | ≤ ε/2.

The conclusion of the lemma follows. 2

Theorem 15 For any concurrent reachability game or con-
current safety game with a total number of m ≥ 61 actions,
and for any given 0 < ε ≤ 1

2 , there is a k-uniform, ε-
optimal positional strategy for each player, where

k ≤ (1/ε)2
43m

Proof. Let l = log(2/ε)242m. By Theorem 4, there is an
ε/2-optimal strategy of patience at most 2l. Round all be-
havior probabilities of this strategy to 4lm binary digits, by
rounding all probabilities except the largest one in each dis-
tribution upwards, and rounding the largest probability in
each distribution down by the total amount that the rest were
rounded up. As the largest probability in each distribution is
at least 1/m, the rounded value is non-negative, and hence
the rounded distributions are still probability distributions,
and the family of rounded distributions is a positional strat-
egy. This is a k-uniform strategy for the stated magnitude
of k. We claim that it is ε-optimal. Indeed, when the strat-
egy of Player 1 is fixed, we can fix a bet reply of Player 2
which is pure, by Lemma 6. With both strategies thus fixed,
the dynamics of play is a Markov chain. We can assume
without loss of generality that this is an absorbing Markov
chain, as states from which it is impossible to reach GOAL
can be replaced by absorbing states. Now apply Lemma 14,
with ε/2 substituted for ε. 2
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