
On Randomized Online Labeling with Polynomially
Many Labels

Jan Bulánek?1,2, Michal Koucký??2, and Michael Saks? ? ?3

1 Department of Theoretical Computer Science and Mathematical Logic,
Charles University, Prague

2 Institute of Mathematics, Academy of Sciences CR, Prague
3 Department of Mathematics, Rutgers University

Abstract. We prove an optimal lower bound on the complexity of randomized
algorithms for the online labeling problem with polynomially many labels. All
previous work on this problem (both upper and lower bounds) only applied to
deterministic algorithms, so this is the first paper addressing the (im)possibility
of faster randomized algorithms. Our lower bound Ω(n log(n)) matches the com-
plexity of a known deterministic algorithm for this setting of parameters so it is
asymptotically optimal.
In the online labeling problem with parameters n and m we are presented with
a sequence of n items from a totally ordered universe U and must assign each
arriving item a label from the label set {1, 2, . . . ,m} so that the order of labels
(strictly) respects the ordering on U . As new items arrive it may be necessary
to change the labels of some items; such changes may be done at any time at
unit cost for each change. The goal is to minimize the total cost. An alternative
formulation of this problem is the file maintenance problem, in which the items,
instead of being labeled, are maintained in sorted order in an array of length m,
and we pay unit cost for moving an item.

1 Introduction

In the online labeling problem with parameters n,m, r, we are presented with a sequence
of n items from a totally ordered universe U of size r and must assign each arriving item
a label from the label set {1, 2, . . . ,m} so that the order of labels (strictly) respects
the ordering on U . As new items arrive it may be necessary to change the labels of
some items; such changes may be done at any time at unit cost for each change. The
goal is to minimize the total cost. An alternative formulation of this problem is the file
maintenance problem, in which the items, instead of being labeled, are maintained in
sorted order in an array of length m, and we pay unit cost for moving an item.

The problem, which was introduced by Itai, Konheim and Rodeh [13], is natural
and intuitively appealing, and has had applications to the design of data structures
(see for example the discussion in [10], and the more recent work on cache-oblivious
data structures [4, 8, 5]). A connection between this problem and distributed resource
allocation was recently shown by Emek and Korman [12].

? Partially supported by student project GAUK 344711 and RVO: 67985840.
?? Supported in part by grant IAA100190902 of GA AV ČR, Center of Excellence CE-ITI

(P202/12/G061 of GA ČR) and RVO: 67985840.
? ? ? The work of this author was done while on sabbatical at Princeton University and was also

supported in part by NSF under grant CCF-0832787 and CCF-1218711.

2

The parameter m, the size of the label space must be at least the number of items n
or else no valid labeling is possible. There are two natural ranges of parameters which
have received the most attention. In the case of linearly many labels we have m = cn
for some c > 1, and in the case of polynomially many labels we have m = θ(nC) for
some constant C > 1. The size r of the universe U is also a parameter which is not
discussed explicitly in most of the literature on the problem. If r ≤ m, the problem can
be solved with cost n, since then we can simply fix an order preserving bijection from U
to {1, . . . ,m} in advance. In this paper we assume U = {1, . . . , 2n}.

Itai et al. [13] gave an algorithm for the case of linearly many labels having worst case
total cost O(n log(n)2). Improvements and simplifications were given by Willard [15] and
Bender et al. [3]. In the special case that m = n, algorithms with cost O(log(n)3) per
item are known [16, 6]. It is also well known that the algorithm of Itai et al. can be
adapted to give total cost O(n log(n)) in the case of polynomially many labels. All of
these algorithms are deterministic.

In a previous paper [9], we proved a Ω(n log(n)2) lower bound in the case of linearly
many labels, and Ω(n log(n)3) lower bound for the case m = n. In subsequent work with
Babka and Čunát [2] we proved a lower bound Ω(n log(n)/(log log(m)−log log(n))) when
n1+ε ≤ m ≤ 2n

ε

, In particular, this gives a Ω(n log(n)) bound for the case of m being
polynomial in n. These lower bounds match the known upper bounds to within a constant
factor. Both of these papers built heavily on previous partial results of Dietz, Seiferas
and Zhang ([16, 11, 10]). These lower bounds apply only to deterministic algorithms,
leaving open the possibility of better randomized algorithms.

In this paper we use a model in which the cost of a randomized labeling algorithm
is the worst case over all input sequences of a given length n of the expected number
of moves made by the algorithm. This corresponds to running the algorithm against an
oblivious adversary (see [7]) who selects the input sequence having full knowledge of the
algorithm, but not of the random bits flipped in the execution of the algorithm.

There are many online problems where randomized algorithms perform provably
better than deterministic ones. For example, the best deterministic algorithm for the
paging problem with k pages has competitive ratio k but there are randomized algorithms
having competitive ratio Θ(log(k)) [7].

Our Results. In this paper we establish the first lower bound for randomized on-
line labeling algorithms by showing that in the case of polynomially many labels any
randomized online labeling algorithm will have expected cost Ω(n log(n)) (for the worst
case input). This matches the known deterministic upper bounds up to constant factors,
and thus randomization provides no more than a constant factor advantage over deter-
minism. Our bound also implies an Ω(n log(n)) lower bound on the message complexity
of randomized protocols for Distributed Controller Problem [12, 1].

Unlike many other lower bounds for non-uniform computation models, our proof does
not use Yao’s principle. Yao’s principle says (roughly) that to prove a lower bound on
the expected cost of an arbitrary randomized algorithm it suffices to fix a distribution
over inputs, and prove a lower bound on the expected cost of a deterministic algorithm
against the chosen distribution. Rather than use Yao’s principle, our proof takes an
arbitrary randomized algorithm and selects a (deterministic) sequence that is hard for
that algorithm.

The construction and analysis of the hard sequence follow the same overall strategy of
the previous lower bound for deterministic algorithms in the case of polynomially many
labels [10, 2] which involves relating online labeling to a family of one-player games
called bucketing games (introduced in [10]) which involve the sequential placement of

3

items into an ordered sequence of bins subject to certain rules and costs. We define
a map (an adversary) which associates to a labeling algorithm A a hard sequence of
items. We then show that the behavior of the algorithm on this hard sequence can be
associated to a strategy for playing a particular bucketing game, such that the cost
incurred by the algorithm on the hard sequence is bounded below by the cost of the
associated bucketing game strategy. Finally we prove a lower bound on the cost of any
strategy for the bucketing game, which therefore gives a lower bound on the cost of the
algorithm on the hard input sequence.

In extending this argument from the case of deterministic algorithms to the ran-
domized case, each part of the proof requires significant changes. The adversary which
associates an algorithm to a hard sequence requires various careful modifications. The
argument that relates the cost of A on the hard sequence to the cost of an associated
bucketing strategy does not work for the original version of the bucketing game, and we
can only establish the connection to a new variant of the bucketing game called tail-
bucketing. Finally the lower bound proof on the cost of any strategy for tail-bucketing
is quite different from the previous lower bound for the original version of bucketing.

Mapping a randomized algorithm to a hard input sequence. We now give an
overview of the adversary which maps an algorithm to a hard input sequence y1, . . . , yn.
The adversary is deterministic. Its behavior will be determined by the expected behav-
ior of the randomized algorithm. Even though we are choosing the sequence obliviously,
without seeing the actual responses of the algorithm, we view the selection of the se-
quence in an online manner. We design the sequence item by item. Having selected the
first t − 1 items, we use the known randomized algorithm to determine a probability
distribution over the sequence of labelings determined by the algorithm after each step.
We then use this probability distribution to determine the next item, which we select so
as to ensure that the expected cost incurred by the algorithm is large.

The adversary will maintain a hierarchy consisting of a nested sequence of subsets of
the set of items inserted so far. The hierarchy serves a dual purpose: the hierarchy after
step t is used by the adversary to select the item inserted at step t+ 1, and the sequence
of hierarchies over time provides a way to lower bound the total (expected) cost incured
by the algorithm. This hierarchy is denoted4

St(1) ⊃ Tt(2) ⊃ St(2) ⊃ Tt(3) ⊃ · · · ⊃ Tt(d) ⊃ St(d).

The set St(1) consists of all items inserted through step t. Each of the other sets is an
interval relative to the items inserted so far, i.e., it consists of all inserted items in a
given interval. The final subset St(d) has between 2 and 6 elements. (Note that this
differs from the previous work for deterministic algorithms where the hierarchy was a
nested sequence of intervals of label values rather than items; this modification seems
necessary to handle randomized algorithms). The next item to be inserted is selected to
be an item that is between two items in the final set St(d).

The hierarchy at step t is constructed as follows. The hierarchy for t = 0 has d0 = 1
and S0(1) = {0, 2n}. The hierarchy at step t ≥ 1 is constructed based on the hierarchy
at the previous step t− 1 and the expected behavior of the algorithm on y1, . . . , yt.

We build the sets for the hierarchy at step t in order of increasing level (i.e., decreasing
size). Intervals are either preserved (carried over from the previous hierarchy, with the

4 In this paper we work with various vectors and sequences that change over time. We use
subscript to denote time and we use (·) notation to denote a particular coordinate of such a
vector or sequence at that time.

4

addition of yt) or rebuilt. To specify which intervals are preserved, we specify a critical
level for step t, qt which is at most the depth dt−1 of the previous hierarchy. We’ll explain
the choice of qt below. At step t, the intervals Tt(i) and St(i) for i ≤ qt are preserved,
which means that it is obtained from the corresponding interval at step t− 1 by simply
adding yt. The intervals Tt(i) and St(i) for i ≥ qt are rebuilt. The rule for rebuilding the
hierarchy for i > qt is defined by induction on i as follows: Given St(i−1), Tt(i) is defined
to be either the first or second half of St(i−1), depending on which of these sets is more
likely to have a smaller range of labels (based on the distribution over labels determined
by the given algorithm). More precisely, we look at the median item of St(i − 1) and
check whether (based on the randomized labeling) it is more likely that its label is closer
to the label of the minimum or to the maximum element of St(i − 1). If the median is
more likely to have label close to the minimum we pick the first half as Tt(i) otherwise
the second half. Having chosen Tt(i), we take St(i) to be the middle third of items in
Tt(i). This process terminates when |St(i)| < 7 and the depth dt of the hierarchy is set
to this final i. The adversary selects the next requested item yt+1 to be between two
items in St(d).

This construction of the hierarchy is similar to that used in [2] in the deterministic
case. An important difference comes in the definition of the critical level qt. In the
deterministic case the critical level is the smallest index i such that neither endpoint
of Tt−1(i) was moved by the algorithm when inserting yt. In the randomized case we
need a probabilistic version of this: the critical level is the smallest index i such that the
probability that either endpoint of T (i) was moved since the last step it was rebuilt is
less than 1/4.

One of the crucial requirements in designing the adversary is that the hierarchy never
grows too deep. Note that when we rebuild Tt(i) it’s size is at most |St(i − 1)|/2 and
when we rebuild St(i) its size is at most |Tt(i)|/3. This suggests that as we proceed
through the hierarchy each set is at most 1/2 the size of the previous and so the depth
is at most log(n). This reasoning is invalid because during a sequence of steps in which
a set in the hierarchy is not rebuilt its size grows by 1 at each step and so the condition
that the set is at most half the size of its predecessor may not be preserved. Nevertheless
we can show that the depth never grows to more than 4 log(m+ 1) levels.

A lower bound on the expected cost of the algorithm on the hard sequence.
In [9] it is noted that we can assume without loss of generality that the algorithm is lazy,
in the sense that for each step the set of relabeled items is a sub-interval of the inserted
items that contains the most recently inserted item. (Intuitively, a non-lazy algorithm
can be modified so that any relabeling that violates laziness is deferred until later). This
observation extends to randomized algorithms.

In the deterministic case, this assumption and the definition of the critical level qt
can be used to show that when the algorithm responds to the item yt it moved at least
a constant fraction of the items belonging to St−1(qt + 1) and so the total cost of the
algorithm is at leastDLB = Ω(

∑
t |St−1(qt+1)|). In the randomized case we get a related

bound that the expected total number of moves is RLB = Ω(
∑
t |St−1(qt)\St−1(qt+1)|).

So the cost incured by the algorithm is related to the extent of changes in the hierarchy.

Bucketing games. The next step in the analysis is to define bucketing games, and to
show that the lower bound on the cost of the algorithm given in the previous paragraph
is an upper bound on the cost of an appropriate bucketing game.

The prefix bucketing game with n items and k buckets is a one player game. The
game starts with k empty buckets indexed 1, . . . , k. At each step the player places an
item in some bucket p. All the items from buckets 1, . . . , p−1 are then moved into bucket

5

p as well, and the cost is the number of items in buckets 1, . . . , p before the merge, which
is the number of items in bucket p after the merge. The goal is to select the sequence of
indices so as to minimize the total cost. The total cost is the sum of the costs of each
step. The goal is to select the sequence of indexes p so that we would minimize the total
cost. In [2] (following [10]) it is shown that any deterministic labeling algorithm could be
associated to a bucketing strategy such that the cost of the labeling algorithm against
our adversary is at least a constant times the cost of the bucketing strategy. This result
is deduced using the lower bound of Ω(

∑
t |St−1(qt + 1)|) for the cost of the algorithm

mentioned earlier. It was also shown in [10] (see also [2]) that the minimal cost of any
bucketing strategy (for more than 2 log(n) buckets) is Ω(n log(n)/(log(k)− log log(n)).
These results together gave the lower bound on deterministic labeling.

We use the same basic idea for the randomized case, but require several significant
changes to the game. The first difficulty is that the lower bound on the cost of the
randomized algorithm stated earlier, RLB, is not the same as the lower bound DLB
that was known for deterministic algorithms. While DLB was shown to be at least
the minimal cost of the prefix bucketing, this is not true for RLB. To relate RLB to
bucketing, we must replace the cost function in bucketing by a smaller cost function,
which is the number of items in the bucket p before the merge, not after. In general,
this cost function is less expensive (often much less expensive) than the original cost
function and we call it the cheap cost function. The argument relating the cost of a
randomized algorithm to a bucketing strategy requires that the number of buckets be at
least 4 log(m) buckets. If we could prove a lower bound on the cost of bucketing under
the cheap function similar to the bound mentioned above for the original function this
would be enough to deduce the desired lower bound on randomized labeling. However
with this cheap cost function this lower bound fails: if the number of buckets is at least
1 + log(n), there is a bucketing strategy that costs 0 with the cheap cost function! (For
example a strategy which always picks p to be the smallest index of an empty bucket
has cost zero; it emulates incrementing a binary counter.) So this will not give any lower
bound on the cost of a randomized labeling algorithm

We overcome this problem by observing that we may make a further modification of
the rules for bucketing and still preserve the connection between the cost of a randomized
algorithm against our adversary and the cheap cost of a bucketing. This modification is
called tail bucketing. In a tail bucketing, after merging all the items into the bucket p,
we redistribute these items back among buckets 1, . . . , p, so that bucket p keeps 1 − β
fraction of the items and passes the rest to the bucket p − 1, bucket p − 1 does the
same, and the process continues down until bucket 1 which keeps the remaining items.
It turns our that our adversary can be related to tail bucketing for β = 1/6. We can
prove that the minimal cheap cost of tail bucketing is Ω(n log(n)) when k = O(log(n)).
This lower bound is asymptotically optimal and yields a similar bound for randomized
online labeling.

The lower bound proof for the cheap cost of tail bucketing has some interesting
twists. The proof consists of several reductions between different versions of bucketing.
The reductions show that we can lower bound the cheap cost of tail bucketing with
C log(n) buckets (for any C) by the cheap cost of ordinary prefix bucketing with k =
1
4 log(n) buckets. Even though the cheap cost of ordinary bucketing dropped to 0 once
k = log(n) + 1, we are able to show that for k = 1

4 log(n) there is a θ(n log(n)) bound
for ordinary bucketing with the cheap cost.

6

2 The Online Labeling Problem

We first define the deterministic version of online labeling. We have parameters n ≤ m <
r, and are given a sequence of n numbers from the set U = [1, r] and must assign to each
of them a label in the range [1,m]. (Here, and throughout the paper, interval notation is
used for consecutive sets of integers). A deterministic online labeling algorithm A with
parameters (n,m, r) is an algorithm that on input sequence (y1, y2, . . . , yt) with t ≤ n
of distinct elements from U outputs a labeling fA : {y1, y2, . . . , yt} → [m] that respects
the natural ordering of y1, . . . , yt, that is for any x, y ∈ {y1, y2, . . . , yt}, fA(x) < fA(y)
if and only if x < y. We refer to y1, y2, . . . , yt as items.

Fix an algorithmA. Any item sequence y1, . . . , yn determines a sequence fA,0, fA,1, . . . , fA,n
of labelings where fA,t is the labeling of (y1, . . . , yt) determined by A immediately after
yt was presented. When the algorithm A is fixed we omit the subscript A. We say that
A relabels y ∈ {y1, y2, . . . , yt} at step t if ft−1(y) 6= ft(y). In particular, yt is relabeled
at step t. Relt = RelA,t denotes the set of items relabeled at step t. The cost of A on
y1, y2, . . . , yn is χA(y1, . . . , yn) =

∑n
t=1 |Relt|.

A randomized online labeling algorithm A is a probability distribution on deter-
ministic online labeling algorithms. Given an item sequence y1, . . . , yn, the algorithm A
determines a probability distribution over sequences of labelings f0, . . . , fn. The set
Relt is a random variable whose value is a subset of y1, . . . , yt. The cost of A on
y1, y2, . . . , yn ∈ U is the expected cost χA(y1, . . . , yn) = E [χA(y1, . . . , yn)]. The maxi-
mum cost χA(y1, . . . , yn) over all sequences y1, . . . , yn is denoted χA(n). We write χm(n)
for the smallest cost χA(n) that can be achieved by any algorithm A with range m.

We state our main theorem.

Theorem 1. For any constant C0, there are positive constants C1 and C2 so that the
following holds. Let A be a randomized algorithm with parameters (n,m, r), where n ≥
C1, r ≥ 2n and m ≤ nC0 . Then χA(n) ≥ C2n log(n).

To prove the theorem we will need some additional definitions. Let S ⊆ Y ⊆
U . We write min(S) and max(S) for the least and greatest elements, respectively.
We say that S is a Y -interval if S = Y ∩ [min(S),max(S)]. We write med(S) for
the median of S which we take to be the d|S|/2e-th largest element of S. We define
left-half(S) = {y ∈ S|y ≤ med(S)} and right-half(S) = {y ∈ S|y ≥ med(S)} (note
that med(S) is contained in both). Also define left-third(S) to be the smallest b|S|/3c
elements, right-third(S) to be the largest b|S|/3c elements and middle-third(S) =
S − left-third(S)− right-third(S).

Given a labeling f of Y and a Y -interval S, we say that the Y -interval S is left-
leaning with respect to f if med(S) has a label that is closer to the label of min(S) than
it is to the label of max(S), i.e. f(med(S)) − f(min(S)) ≤ f(max(S)) − f(med(S)). It
is right-leaning otherwise.

A deterministic labeling algorithm is lazy if at each step t, the set of relabeled items
is a Yt-interval (which necessarily contains yt), and a randomized algorithm is lazy if it
is a distribution over lazy deterministic algorithms. In [9], it was shown that there is
an optimal deterministic algorithm that is lazy, and the same proof works to show that
there is an optimal lazy randomized algorithm. (Intuitively this is the case because if
the relabeled items at step t do not form a Yt-interval and W is the largest Yt-interval
of relabeled items containing yt then we can defer relabeling the items in Yt \W until
later.)

7

2.1 The adversary

We now specify an adversary Adversary(A, n,m) which given an online labeling algo-
rithm A, a length n, and label space size m, constructs a item sequence y1, y2, . . . , yn
from the universe U = {1, . . . , 2n − 1}. Our adversary and notation borrow from past
work in the deterministic case [10, 9].

We think of the adversary as selecting y1, . . . , yn online, but after each step the
adversary only knows a probability distribution over the configurations of the algorithm.
It is important to keep in mind that the adversary knows the randomized algorithm A
but does not know the random coins of the algorithm.

During the construction of the adversary sequence y1, . . . , yn, the adversary will
maintain a nested sequence of subsets of {y1, . . . , yt}:

St(1) ⊃ Tt(2) ⊃ St(2) ⊃ Tt(3) ⊃ · · · ⊃ Tt(dt) ⊃ St(dt)

called the hierarchy at step t. Each of the sets will be of size at least 2 and it will form
{y1, . . . , yt}-interval. The depth dt of the hierarchy may vary with t. The sets St(i) and
Tt(i) are said to be at level i in the hierarchy. This hierarchy serves a dual purpose: it
allows us to select the next item yt+1 and it also allows us to estimate the cost of the
algorithm.

To avoid having to deal with special cases in the description of the adversary, it is
convenient to imagine that the set of items is augmented by items 0 and 2n which are
given (permanent) labels 0 and m+ 1 respectively. We write Yt for the set {y1, . . . , yt}∪
{0, 2n} of labeled items after step t. At the beginning of step t, having chosen items
Yt−1 and having constructed the hierarchy St−1(1) ⊃ · · · ⊃ St−1(dt−1), the adversary
will select yt to be min(St−1(dt−1)) + 2n−t. It is easy to see by induction on t that the
items belonging to Yt are multiples of 2n−t, and it follows that yt is strictly between the
smallest and second smallest elements of St−1(dt−1). Therefore all of the chosen items
are distinct.

We need to specify how we determine the hierarchy at step t. The pseudo-code for
the adversary is given in Figure 2.1.

The hierarchy for t = 0 has d0 = 1 and S0(1) = {0, 2n}. The hierarchy at step t ≥ 1 is
constructed based on the hierarchy at the previous step t− 1 and the expected behavior
of the algorithm on y1, . . . , yt as reflected by the joint probability distribution over the
sequence of functions fA,1, . . . , fA,t.

We build the sets for the hierarchy at step t in order of increasing level (i.e., decreasing
size). Intervals are either preserved (carried over from the previous hierarchy, with the
addition of yt) or rebuilt. To specify which intervals are preserved, we specify a critical
level qt for step t, which is at least 1 and at most the depth dt−1 of the previous hierarchy.
We’ll explain the choice of qt below. At step t, the intervals St(i) for i ≤ qt are preserved,
which means that St(i) is obtained simply by adding yt to St−1(i), and the rest are
rebuilt. In particular, for t ≥ 7, St(1) is always preserved, and is equal to Yt. The rule for
rebuilding the hierarchy for i > qt is defined by induction on i as follows: If |St(i−1)| < 7
then the hierarchy is terminated with dt = i − 1. Otherwise, consider the labeling of
St(i− 1) by ft (which is randomly distributed depending on A). If the probability that
St(i−1) is left-leaning with respect to ft is at least 1/2, then set Tt(i) = left-half(St(i−
1)) otherwise Tt(i) = right-half(St(i − 1)). Set St(i) = middle-third(Tt(i)). Observe
that since |St(i− 1)| ≥ 7, we have |Tt(i)| ≥ 4 and |St(i)| ≥ 2.

It remains to explain how the critical level qt is selected. When constructing each
set St(i) of the hierarchy for i ≥ 2, the adversary defines a parameter birtht(i) which

8

is set equal to t if St(i) is rebuilt, and is otherwise set to birtht−1(i). It is easy to see
(by induction on t), that birtht(i) is equal to the largest step u ≤ t such that Su(i)
was rebuilt. It follows that for each u ∈ [birtht(i), t], min(Tu(i)) = min(Tt(i)) and
max(Tu(i)) = max(Tt(i)).

Say that item y has stable label during interval [a, b] if the label fu(y) is the same for
all u in [a, b], and has unstable label on [a, b] otherwise. We define the event stablet(i) to
be the event (depending on A) that both min(Tt(i)) and max(Tt(i)) have stable labels
during interval [birtht−1(i), t].

We are finally ready to define qt. If there is at least one level i ≥ 2 for which
Pr[stablet(i)] ≤ 3/4, let imin be the least such level, and choose qt = imin−1. Otherwise
set qt = dt−1.

Adversary(A, n,m)

t = 0: S0(1)←− {0, 2n} and d0 = 1.

For t = 1, . . . , n do

– yt ←− min(St−1(dt−1)) + 2n−t.
– (Choose critical level) Consider the sequence of (dependent) random functions f1, . . . , ft

produced by A in response to y1, . . . , yt. If there is an index i ≥ 2 for which Pr[stablet(i)] ≤
3/4, let imin be the least such index and let qt = imin − 1. Otherwise set qt = dt−1.

– St(1)←− St−1(1) ∪ {yt}.
– i←− 1.
– (Preserve intervals up to the critical level) While i < qt do:
• i←− i+ 1.
• Tt(i)←− Tt−1(i) ∪ {yt}.
• St(i)←− St−1(i) ∪ {yt}.
• birtht(i)←− birtht−1(i).

– (Build intervals after the critical level) While |St(i)| ≥ 7 do:
• i←− i+ 1.
• If St(i−1) is left-leaning with respect to ft with probability at least 1/2 then Tt(i)←−

left-half(St(i− 1)) otherwise Tt(i)←− right-half(St(i− 1)).
• St(i)←−middle-third(Tt(i)).
• birtht(i)←− t. [Record that St(i) and Tt(i) were rebuilt]

– dt ←− i.

Output: y1, y2, . . . , yn.

Fig. 1. Pseudocode for the adversary

We will prove the following lemma about the adversary, which immediately implies
Theorem 1.

Lemma 1. Let c ≥ 1 be an arbitrary constant and n,m be large enough integers such
that m < (n+ 1)c. Let A be a lazy randomized online labeling algorithm with the range
m. Let y1, y2, . . . , yn be the output of Adversary(A, n,m). Then the cost satisfies:

χA(y1, y2, . . . , yn) ≥ 1

96

(
1

6

)512c2

(n+ 1) log(n+ 1)− n

4
.

9

The proof of this lemma has two main steps. The first step is to bound the cost
χA(y1, . . . , yn) from below by the minimum cost of a variant of the prefix-bucketing
game. The prefix-bucketing game was introduced and studied before to get lower bounds
for deterministic online labeling. The variant we consider is called tail-bucketing. The
second step is to give a lower bound on the cost of tail-bucketing.

To prove the first step we will need two properties of Adversary(A, n,m). Adversary(A, n,m)
determines y1, . . . , yn and the critical levels q1, . . . , qn.

Lemma 2. For any t ∈ [1, n], dt ≤ 4 log(m+ 1).

Lemma 3. The cost of A on y1, . . . , yn satisfies:

χA(y1, y2, . . . , yn) ≥ 1

40

∑
t

|St−1(qt) \ St−1(1 + qt)|,

where the sum ranges over steps t ∈ [1, n] for which qt < dt−1.

For the proofs of these two lemmas we need certain random variables associated with
the execution of A on y1, . . . , yn. Since all of the randomness comes from the distribution
over A, the value of each random variable is determined by the random selection of
A, and we sometimes subscript random variables by A to emphasize this dependence.
Furthermore, we replace A by a deterministic algorithm A in the subscript to indicate
the value of the random variable when A = A. We make the following definitions.

– For any subset S of Yt, lengthA,t(S) = fA,t(max(S))− fA,t(min(S)).
– For a (i, t) such that i < dt, shrinkA,t(i) is the 0-1 indicator of the event that

lengthA,t(St(i+ 1)) ≤ lengthA,t(St(i))/2.

– Define shrinkA,t =
∑dt−1
i=1 shrinkA,t(i).

Proof of Lemma 2. For t = 1 the claim is trivial so assume t > 1. For any algo-
rithm A, lengthA,t(St(1)) = m+ 1 and lengthA,t(St(dt)) ≥ 2, and lengthA,t(St(i)) >
lengthA,t(St(i + 1)) for i ∈ [1, dt − 1]. Therefore shrinkA,t(i) can be 1 for at most
log(m+ 1)− 1 values of i. Thus shrinkA,t ≤ log(m+ 1)− 1.

Next we claim and prove below that for i ∈ [1, dt − 1], Pr[shrinkA,t(i) = 1] ≥ 1/4.
This claim implies E [shrinkA,t] ≥ (dt − 1)/4 which then gives dt ≤ 4 log(m + 1) to
complete the proof of the lemma.

So it remains to prove the claim. Consider first the case that i + 1 > qt. Sets
Tt(i + 1) and St(i + 1) are rebuilt at step t. By definition of the adversary Tt(i + 1)
is either left-half(St(i)) or right-half(St(i)). Furthermore this choice is made so that
lengtht(Tt(i+1)) ≤ lengtht(St(i))/2 with probability at least 1/2 and since St(i+1) ⊆
Tt(i+ 1), Pr[shrinkt(i) = 1] ≥ 1/2.

Next consider the case that i+ 1 ≤ qt so that Tt(i+ 1) and St(i+ 1) are preserved at
step t. These intervals were most recently rebuilt at step s = birtht(i+1) = birtht−1(i+
1) and the endpoints of Tu(i + 1) are the same for all u ∈ [s, t]. Since i + 1 > 1, s > 1.
Since i+ 1 > qs, Pr[shrinks(i) = 1] ≥ 1/2. We now claim and prove below that if both
shrinks(i) and stablet(i+1) happen then shrinkt(i) happens. From this claim, and the
assumption that i+1 ≤ qt we deduce: Pr[shrinkt(i)] ≥ Pr[shrinks(i)∩stablet(i+1)] ≥
Pr[shrinks(i)] + Pr[stablet(i+ 1)]− 1 ≥ 1/2 + 3/4− 1 = 1/4, as required.

To see the final claim, assume that the event stablet(i + 1) occurred. For each
endpoint of Tt(i+ 1), its label remained the same under each of the functions fs, . . . , ft,

10

and by the laziness of the algorithm, it also happened that for each endpoint of St(i),
its label remained the same under each of the functions fs, . . . , ft. Thus if, in addition,
shrinks(i) happens then so does shrinkt(i). ut

Proof of Lemma 3. An item-step pair (y, u) is a pair where y ∈ Yu. For each step t such
that qt < dt−1 we will define a set Wt of item-step pairs. The sets Wt will be disjoint
for different steps t and will consist of some set of item-step pairs (y, u) with u ≤ t. Say
that the item-step pair (y, u) is a relabel event if fu(y) 6= fu−1(y). Define relabst be the
(random) number of relabel events in Wt. It follows that the cost of the algorithm is
at least

∑
t:qt<dt−1

E [relabst]. We will show that E [relabst] ≥ 1
40 |St(qt) \ St(1 + qt)|,

which will suffice to prove the lemma.
We now define Wt for each t such that qt < dt−1. Let bt = birtht−1(1 + qt). For

all steps u ∈ [bt + 1, t) the sets Tu(1 + qt) are preserved and also the sets Su(1 + qt)
are preserved and so from step u − 1 to u they each change only by the addition of
yu. Defining for all steps s and levels i, ∆s(i) = Ts(i) \ Ss(i), we have that the sets
∆u(1 + qt) are all the same for each u ∈ [bt, t). We define Wt to be the set of pairs (y, u)
with y ∈ ∆u−1(1 + qt) and u ∈ (bt, t], i.e., Wt = ∆t−1(1 + qt)× [bt + 1, t].

We now show that the setsWt andWt′ are disjoint for all pairs of steps t < t′. Suppose
for contradiction that Wt∩Wt′ 6= ∅. Then (bt, t]∩ (bt′ , t

′] 6= ∅ and so birtht′−1(1+qt′) =
bt′ < t. This means that level 1 + qt′ is not rebuilt at step t but level 1 + qt is rebuilt
at step t, so qt > qt′ . But then this contradicts ∆t−1(1 + qt) ∩∆t′−1(1 + qt′) 6= ∅ since
∆t−1(1 + qt) ⊂ Tt−1(1 + qt) ⊂ St−1(1 + qt′) ⊂ St′−1(1 + qt′) while ∆t′−1(1 + qt′) ∩
St′−1(1 + qt′) = ∅.

Finally, let us bound E [relabst] from below. By the definition of the adversary
∆t−1(1 + qt) is the union of the two equal-sized sets left-third(Tbt(1+qt))∪right-third(Tbt(1+
qt)). By the definition of qt, the probability that both min(Tbt(1 + qt)) and max(Tbt(1 +
qt)) have stable label during [bt, t] is at most 3/4. By the laziness of the algorithm, on
any run in which the left (resp. right) endpoint of Tt−1(1 + qt) has unstable label during
[bt, t] all items in left-third(Tbt(1 + qt)) (resp. right-third(Tbt(1 + qt))) have unstable
label during [bt, t] and so at least half the items of ∆t−1(1 + qt) have unstable label
during [bt, t]. Since this occurs with probability at least 1/4, thus the expected number
of relabel events is at least |∆t−1(1 + qt)|/8.

To complete the proof of the lemma, we show that |∆t−1(1 + qt)| ≥ 1
5 |St−1(qt) \

St−1(1 + qt)|. The sets Su(qt) \Su(1 + qt) are the same for all u ∈ [bt, t) and the same is
true for the sets ∆u(1 + qt). We compare these two sets for u = bt. Letting c = |Sbt(qt)|
we have c ≥ 7 since qt is not the last level at step bt. Since Tbt(1 + qt) and Sbt(1 + qt)
are rebuilt, |Tbt(1+qt)| ≥ dc/2e and |∆bt(1 + qt)| ≥ 2 b(dc/2e)/3c ≥ c/5 (where the final
inequality uses c ≥ 7, and is tight for c = 10). ut

3 Prefix bucketing and Tail bucketing

We will need several variants of the prefix bucketing game introduced by Dietz, Seiferas
and Zhang [10]. We have k buckets numbered 1, . . . , k in which items are placed. A
bucket configuration is an arrangement of items in the buckets; formally it is a mapping
C : {1, . . . , k} to the nonnegative integers, where C(i) is the number of items in bucket i.
It will sometimes be convenient to allow the range of the function C to be the nonnegative
real numbers, which corresponds to allowing a bucket to contain a fraction of an item.

A bucketing game is a one player game in which the player is given a sequence of
groups of items of sizes n1, . . . , n` and must sequentially place each group of items into a

11

bucket. The case that n1 = · · · = n` = 1 is called simple bucketing. The placement is done
in ` steps, and the player selects a sequence p1, . . . , p` ∈ [1, k]`, called an (`, k)-placement
sequence which specifies the bucket into which each group is placed.

Bucketing games vary depending on two ingredients, the rearrangement rule and the
cost functions.

When a group of m items is placed into bucket p, the items in the configuration are
rearranged according to a specified rearrangement rule, which is not under the control
of the player. Formally, a rearrangement rule is a function R that takes as input the
current configuration C, the number m of new items being placed and the bucket p into
which they are placed, and determines a new configuration R(C,m, p) with the same
total number of items.

The prefix rearrangement rule is as follows: all items currently in buckets below p
are moved to bucket p. We say that items are merged into bucket p. Formally, the new
configuration C ′ = R(C,m, p) satisfies C ′(i) = 0 for i < p, C ′(p) = C(1)+ · · ·+C(p)+m
and C ′(i) = C(i) for i > p. Most of the bucketing games we’ll discuss use the prefix
rearrangement function, but in Section 3.1 we’ll need another rearrangement rule.

The cost function specifies a cost each time a placement is made. For the cost func-
tions we consider the cost of placing a group depends on the current configuration C
and the selected bucket p but not on the number m of items being placed. We consider
four cost functions

– In cheap bucketing, the cost is the number of items in bucket p before the placement:

costcheap(C, p) = C(p).

– In expensive bucketing, the cost is the number of items in buckets p or higher before
the placement:

costexp(C, p) =

k∑
i=p

C(i).

– For γ ∈ [0, 1], in the γ-discounted bucketing, the cost is:

costγ−disc(C, p) =

k∑
i=p

C(i)γi.

(Note that cost1−disc = costexp.)
– For b ∈ N, in the b-block bucketing, the cost of step t is

costb−block(C, p) =

s(p)∑
i=p

C(i),

where s(p) is the least multiple of b larger or equal to p. (Note that cost1−block =
costcheap and costk−block = costexp.)

For completeness we remark that the cost function used in previous work [10, 2] is
the number of items in buckets 1, . . . , p before the placement:

cost(C, p) =

p∑
i=1

C(i).

12

Fix a rearrangement rule R and a cost function c. A placement sequence p1, . . . , p`
and a load sequence n1, . . . , n` together determine a sequence of configurations B =
(B0, B1, . . . , B`), called a bucketing where B0 is the empty configuration and for i ∈ [1, `],
Bi = R(Bi−1, ni, pi). Each of these ` placements is charged a cost according to the cost

rule c. We write c[R](p1, . . . , p`|n1, . . . , n`) for the sum
∑`
i=1 c(Bi−1, pi), which is the

sum of the costs of each of the ` rearrangements that are done during the bucketing.
If R is the prefix rule, we call B a prefix bucketing and denote the cost simply by
c(p1, . . . , p`|n1, . . . , n`). In the case of simple bucketing, n1 = . . . = n` = 1, we write
simply c[R](p1, . . . , p`) or c(p1, . . . , p`) in the case of simple prefix bucketing.

3.1 Tail bucketing and the online labeling

We will also need an alternative rearrangement function, called the tail rearrangement
rule. The bucketing game with this rule is called tail bucketing. The tail rearrangement
rule Tailβ with parameter β acts on configuration C, bucket p and group size m by first
moving all items below bucket p to bucket p so that w = C(1) + · · · + C(p) + m items
are in bucket p (as with the prefix rule), but then for j from p down to 1, β fraction of
the items in bucket j are passed to bucket j− 1, until we reach bucket 1. (Here we allow
the number of items in a bucket to be non-integral.) So the number of items in bucket
j for j ∈ [2, p] is (1− β)βp−jw and the number of items in bucket 1 is βp−1w.

A bucketing B produced with the tail bucketing rearrangement rule is called a tail
bucketing.

We will consider tail bucketing with the cheap cost function. We will now relate the
expected cost of randomized online labeling algorithm A on the sequence y1, y2, . . . , yn
which was produced by our adversary Adversary(A, n,m) to the cost of a specific tail
bucketing instance.

For a lazy online labeling algorithm A and t = 1, . . . , n, let fA,t, St(i), qt, yt be as
defined by the Adversary(A, n,m) and the algorithm A. Denote Y = {y1, y2, . . . , yn}.
Set k = b4 log(m+ 1)c. Let q1, . . . , qn be the sequence of critical levels produced by
the algorithm. For integer i ∈ [k] define ī to be ī = (k + 1) − i. Define the placement
sequence p1 = q̄1, . . . , pn = q̄n, and consider the tail bucketing B0, . . . , Bn determined
by this placement sequence with parameter β = 1/6, and all group sizes 1 (so it is a
simple bucketing). The following lemma is used to relate the cost of online labeling to
the tail bucketing.

Lemma 4. Let {St(i) : 1 ≤ t ≤ n, 1 ≤ i ≤ dt} be the interval hierarchy computed by
Adversary(A, n,m) and BA = (B0, . . . , Bn) be the corresponding tail-bucketing. Then
for any t ∈ [0, n] and any j ∈ [1, dt]:

|St(j) \ St(j + 1)| ≥ Bt(j̄)− 3.

Here, for the case j = dt, we take St(j + 1) to be ∅.

Proof. We will actually prove:
∑
i≤j̄

Bt(i)

+ 2 ≥ |St(j)| ≥


∑
i≤j̄

Bt(i)

 . (1)

Given this we get:

13

|St(j) \ St(j + 1)| ≥


∑
i≤j̄

Bt(i)

−


∑
i≤j̄−1

Bt(i)

+ 2

 ≥ Bt(j̄)− 3,

as required.
We prove (1) by induction on t. For t = 0 we have d0 = 1, so we only need to check

the case j = 1. We have |S0(1)| = 2, and j̄ = k and
∑
i≤k B0(i) = 0.

Let t ≥ 1 and assume the claim is true for t−1. Let j ∈ [1, k]. Suppose first j ≤ qt. By
the definition of the critical level, qt ≤ dt−1. Therefore j ≤ dt−1 and we may apply the
induction hypothesis with t−1 and j. Since j ≤ qt |St(j)| = |St−1(j)|+1. The conclusion
then follows by induction if we can show that

∑
i≤j̄ Bt(i)−

∑
i≤j̄ Bt−1(i) = 1. This holds

because pt = q̄t and so j̄ ≥ pt and therefore Bt is obtained from Bt−1 by adding a single
item at position pt and redistributing items among the first pt buckets, so that the
difference in the two sums is indeed 1.

Now assume j > qt. We hold t fixed and prove the equality by induction on j, where
we use the already proved case j = qt as the basis. Suppose that dt ≥ j > qt and that
the desired equality holds for (t, j − 1).

Define w(j) =
∑
i≤j̄ Bt(i). For dt ≥ j > qt we have j̄ < pt and the tail-bucketing rule

implies w(j) = w(j − 1)/6. Also, the rebuilding rule for St(j) implies |St(j)| is between
dSt(j − 1)/6e and dSt(j − 1)/6e + 1 (which is verified by case analysis depending on
|St(j − 1)| mod 6).

Thus:

|St(j)| ≤
⌈

1

6
|St(j − 1)|

⌉
+ 1

≤
⌈

1

6
(dw(j − 1)e+ 2)

⌉
+ 1

≤
⌈

1

6
w(j − 1)

⌉
+ 2

= dw(j)e+ 2,

where the second inequality uses the induction hypothesis and the third is a simple
arithmetic fact. This proves the first inequality of (1). Similarly for the second inequality:

|St(j)| ≥
⌈

1

6
|St(j − 1)|

⌉
≥
⌈

1

6
(dw(j − 1)e)

⌉
≥
⌈

1

6
w(j − 1)

⌉
= dw(j)e .

ut

Corollary 1. The cost of randomized labeling algorithm A with label space [1,m] on
y1, . . . , yn satisfies:

χA(y1, y2, . . . , yn) ≥ 1

40
(min costcheap[Tail1/6](p1, . . . , pn)− 10n),

14

where the minimum is over all placement sequences (p1, . . . , pn) into b4 log(m+ 1)c buck-
ets.

Proof. Consider the placement sequence p derived from the sequence of critical levels as
in Lemma 4. The total cost is

∑
tBt−1(pt) =

∑
tBt−1(q̄t), which by Lemma 4 is bounded

above by
∑
t |St−1(qt) \ St−1(1 + qt)|+ 3n. Split this latter sum according to qt < dt−1

or qt = dt−1. The terms for which qt = dt−1 are each at most 7 (since |St−1(dt−1)| ≤ 7)
and so: ∑

t

Bt−1(q̄t)− 10n ≤
∑

t:qt<dt−1

|St−1(qt) \ St−1(1 + qt)|.

Now apply Lemma 3. ut

4 Lower bounds on tail bucketing

Armed with Corollary 1, it now suffices to prove a lower bound on the cheap cost of
simple tail bucketing when the number of items is n and the number of buckets is
b4 log(m+ 1)c.5

The first step is to bound the cost of (simple) tail bucketing by the cost of (simple)
prefix bucketing under the cost function costγ−disc.

Lemma 5. Let k ≥ 1 be an integer and p1, . . . , p` be the placement sequence into k
buckets. Then:

costcheap[Tailβ](p1, . . . , p`) ≥ (1− β) · costβ−disc(p1, . . . , p`)..

Proof. Refer to the item loaded in step j as item j. We can partition the cost of step
s as the sum of the contributions due to each of the items 1, . . . , s − 1. We now show
that for each item j and each step s > j, the contribution of item j to the cost at step s
using costcheap with the tail rearrangement rule is at least 1−β times the contribution
of item j to the cost at step s using costβ−disc.

Let h be an index in {j, j + 1, . . . , s− 1} such that ph is maximum. After step s− 1,
under the prefix rearrangement rule, j is located in bucket ph. If ps ≤ ph then the
contribution to costβ−disc by item j is βph−ps , otherwise the contribution is 0.

Under tail rearrangement j is split among buckets 1, . . . , ph with (1 − β)βph−i of
j in bucket i for 2 ≤ i ≤ ph and βph−1 located in bucket 1. If ps > ph then under
costcheap the contribution of item j to step s is 0. If 1 < ps ≤ ph then under costcheap
the contribution is (1 − β)βph−ps and for ps = 1 the contribution is βph−ps . This is at
least 1− β times the contribution to costβ−disc under prefix bucketing. ut

The next step is an easy reduction from costγ−disc to costb−block.

Lemma 6. Let γ ∈ (0, 1] and 1 ≤ b. Let p1, . . . , p` be a placement sequence. Then:

costγ−disc(p1, . . . , p`) ≥ γbcostb−block(p1, . . . , p`).

5 Fun fact: Before deriving the lower bound we expended several CPU-days (on AMD Phenom
II X4 955 3.2GHz with 16GB of RAM) to calculate the optimal cost of tail-bucketing for upto
30 buckets and 500 items. This provided us with confidence that the cost grows in non-linear
fashion.

15

Proof. Since in both games we are using the prefix rearrangement rule, the configuration
after each step in the two games is the same. Consider the contribution of the tth step of
the bucketing to each side. Items are loaded into bucket pt. Let s be the least multiple
of b with s ≥ pt and let r = s − pt. In b-block bucketing we pay only for items that at
step t−1 were in buckets of the form pt+ i where 0 ≤ i ≤ r. Since r ≤ b, in γ-discounted
bucketing we pay at least γb for each of these items. ut

Applying this lemma with b = 1 gives costγ−disc(p1, . . . , pn) ≥ costcheap(p1, . . . , pn).
This lower bound does not help us directly because it can be shown that for k = log(n+1)
buckets there is an (n, k)-placement sequence with costcheap(p1, . . . , pn) = 0. This fol-
lows from the following lemma, which we state in greater generality so that we can use
it later:

Lemma 7. For any `, k and for any load sequence n1, . . . , n` there is an (`, k)-placement
sequence r1, . . . , r` into k buckets satisfying:

costcheap(r1, . . . , r`|n1, . . . , n`) =

`−2k+1∑
j=1

nj(m+ 1− j),

where m = max(`− 2k + 1, 0).
In particular, if k ≥ log(`+ 1) then costcheap(r1, . . . , r`|n1, . . . , n`) = 0.

Proof. The sequence consists of loading all items into bucket 1 for the first m steps. For
all steps m+ j for j ≤ 2k − 1 load new items in step j in bucket α(j) + 1 where α(j) is
the largest power of 2 dividing j.

It is easy to prove by induction on j that after step m+ j the set of occupied buckets
are exactly those whose positions correspond to the 1’s in the binary expansion of j.
Furthermore, for all j ≥ 2, α(j) + 1 is empty at the end of step j − 1. It follows that
during the last 2k − 2 steps there is no cost incurred.

It remains to bound the total cost during the first m+ 1 steps. Each item loaded at
step j ≤ m is charged m+ 1− j steps (at each step in j + 1, . . . ,m+ 1). Thus the total

charge is
∑m+1
j=1 nj(m+ 1− j). ut

As mentioned, this gives an upper bound of 0 if the number of buckets is at least
log(` + 1). We now show that a small reduction in the number of buckets is enough to
give a good lower bound on costcheap.

Lemma 8. For any (`, k)-placement sequence p1, . . . , p`,

costcheap(p1, . . . , p`) ≥ (`+ 1)(log(`+ 1)− 2k).

Proof. We lower bound costcheap(p1, . . . , p`) by induction on `, where the base case
` = 0 is trivial. Let m1 < m2 < < mr be the indices such that pmi = k. Also define
m0 = 0 and mr+1 = ` + 1. For i ∈ [1, r + 1], the interval [mi−1 + 1,mi − 1] is called
phase i. Each phase consists only of placements to buckets k − 1 or lower and (except
possibly the last phase) is followed immediately by a placement to bucket k. We define
`i = mi − mi−1 − 1 to be the length of the phase. Let γi = (`i + 1)/(` + 1) so that∑r+1
i=1 γi = 1.
Let us now analyze the cost of the sequence phase by phase. At the beginning of

phase i there are no items in any bucket below k. The phase itself is an (`i, k − 1)
bucketing so by induction has cost at least (`i+ 1)(log(`i+ 1)−2(k−1)) = (`+ 1)γi(2 +
log(γi) + log(`+ 1)− 2k). Except for i = r+ 1, the placement pmi

immediately following

16

the phase costs mi−1 = (`+ 1)(
∑i−1
j=1 γj) since that is the number of items in bucket k

prior to that placement. Summing over phases and rearranging gives:

costcheap(p1, . . . , p`) ≥ (`+ 1)

 r∑
j=1

(r − j)γj + 2 +

r+1∑
i=1

γi log(γi)


+(`+ 1)(log(`+ 1)− 2k)

Note that the final term is the lower bound we are aiming for so it suffices to show:

r∑
j=1

(r − j)γj + 2 ≥
r+1∑
i=1

γi log(1/γi).

Since
∑r+1
i=1 γi = 1 the lefthand side is at least

∑r+1
j=1(r − j + 2)γj . Observing that∑r+1

i=1 2−(r−j+2) ≤ 1, the desired inequality follows from:

Proposition 1. Let α1, . . . , αs be nonnegative reals summing to 1. Then for all choices
of x1, . . . , xs of nonnegative reals with sum at most 1, the function

∑
i αi log(1/xi) is

minimized when (x1, . . . , xs) = (α1, . . . , αs).

This is essentially equivalent to the well known fact that the KL-divergence of two
distributions is always nonnegative and is easily proved by first noting that we may
assume

∑
i xi = 1, and then using Lagrange multipliers, or induction on s. ut

4.1 From costb−block to costcheap

So far we have shown that the cost of online labeling can be bounded below by the
cheap cost of tail-bucketing, which can be bounded below by the costb−block for simple
bucketing.

Below we will prove Lemma 11 which shows that costb−block can be bounded below
by costcheap with fewer buckets. In preparation, we begin by bounding costexp from
below by costcheap with fewer buckets.

Lemma 9. Let k ≥ 1 and b = 2k − 1. Let n1, . . . , n` be an arbitrary load sequence.
Then for any placement sequence p1, . . . , p` into b buckets there is a placement sequence
r1, . . . , r` into k buckets such that

costcheap(r1, . . . , r`|n1, . . . , n`) ≤ costexp(p1, . . . , p`|n1, . . . , n`).

Proof. If ` ≤ b then k ≥ log(` + 1) so by Lemma 7 there is a placement sequence
r1, . . . , r` with zero cheap cost and the lemma follows. Hence, assume ` > b. We begin
with a lower bound on costexp(p1, . . . , p`|n1, . . . , n`). At step j, any item inserted before
j that is in bucket pj or higher incurs a charge of 1. Any previously loaded item that
is in a bucket less than pj incurs no charge, but is moved to bucket pj . Thus, once an
item is loaded, in every step it incurs a charge of 1 or increases its bucket number. An
item loaded at step j incurs no cost at step j and incurs a cost of 1 in every step that

17

it does not move, which means that it incurs a cost of one in at least (` − j) − (b − 1)
steps. Summing over the first `− b items we get.

costexp(p1, . . . , p`|n1, . . . , n`) ≥
`−b∑
j=1

nj(`− j − b+ 1).

Now, setting b = 2k − 1, Lemma 7 completes the proof of the lemma. ut
For a step i let ci(p1, . . . , p`|n1, . . . , n`) be the cost of the placement into pi at step

i. For I ⊆ [1, `], let

cI(p1, . . . , p`|n1, . . . , n`) =
∑
i∈I

ci(p1, . . . , p`|n1, . . . , n`). (2)

Lemma 10. Let p1, . . . , p` be a placement sequence with b buckets. Let θ ∈ [1, b] and
let I = {i1 < · · · < ih} be the indices in [1, `] such that pij > θ. Let s1, . . . , sh be the
placement sequence into b−θ buckets given by sj = pij −θ and let n1, . . . , nh be given by
n1 = i1 and for j > 1, nj = ij − ij−1. Then for cost function c ∈ {costcheap, costexp},

cI(p1, . . . , p`) = c(s1, . . . , sh|n1, . . . , nh).

Proof. It suffices to show that for each j ∈ [1, h], cij (p1, . . . , p`) = cj(s1, . . . , sh|n1, . . . , nh).
Let B1, . . . , B` be the bucketing sequence associated to (p1, . . . , p`), and let B̃1, . . . , B̃h
be the bucketing sequence associated to (s1, . . . , sh|n1, . . . , nh).

We claim that for each j ∈ [1, h] the configuration Bij restricted to [θ + 1, b] is

identical to the configuration B̃j restricted to [1, b−θ]. This is easily shown by induction
on j. The base case j = 0 is trivial. Assume j > 0. The result holds for j − 1 so Bij−1

restricted to [θ + 1, b] is identical to Bj−1 restricted to [1, b− θ].
For the sequence s1, . . . , sh, at step j, all buckets above sj are unchanged, all buckets

below sj are emptied, and sj increases by the number of items that were in buckets below
sj , together with the load of nj .

Now consider the change in the configuration B from Bij−1
to Bij . For each s ∈

ij−1 + 1 to ij − 1, ps ≤ θ, which implies that B restricted to [θ + 1, b] is unchanged.
Next consider the placement pji at step ji. All buckets above pji = sj +θ are unchanged
and all buckets below pj are emptied, and bucket pj gets all of the items that were in
buckets [θ+ 1, pij − 1] after step ij−1 together with all of the nj new items that arrived
since ij−1 of the buckets in B. This exactly matches the change in bucket sj at step j
in the other bucketing, as required to establish the claim.

By the claim, the cost of step ij for p1, . . . , p` is the same as the cost of step j for
s1, . . . , sh|n1, . . . , nh as required to prove the lemma. ut

Next we come to a crucial reduction which lower bounds costb−block in terms of
costcheap with a fewer number of buckets.

Lemma 11. Let k ≥ 1, m ≥ 1 and b = 2k − 1. Let p1, . . . , p` be a placement sequence
into bm buckets. There exists a placement sequence s1, . . . , s` for km buckets such that

costcheap(s1, . . . , s`) ≤ costb−block(p1, . . . , p`).

Proof. Fix p1, . . . , p`. We first describe the construction of the sequence s1, . . . , s` and
then prove the properties.

18

To specify the sequence s1, . . . , s` we will define a partition of [1, `] into (generally

non-consecutive) subsequences, and for each set ĥ in the partition separately specify si
for i ∈ ĥ.

The definition of the partition takes a few steps. Define the level of a bucket w for
block size b to be the largest λ such that λb < w, and the remainder of w to be w − λb.
For i ∈ [1, n], define λi to be the level of pi and ri to be the remainder of pi. By the
hypotheses of the lemma each λi ∈ [0,m−1] and each remainder is in [1, . . . , b]. We also
define λ0 = λ`+1 =∞.

A chain of level j and order v is a sequence h of indices h0 < h1 < · · · < hv < hv+1

(with possibly h0 = 0 or hv+1 = `+ 1) satisfying the following properties:

– λh0 > j and λhv+1 > j,
– λh1

= · · · = λhv
= j,

– For any index i belonging to [h0,hv+1] \ {h0,h1, . . . ,hv+1}, λi < j.

The indices h0,hv+1 are the endpoints of h, and the other indices are the interior

indices. We write ĥ = {h1,h2, . . . ,hv} for the interior of h. Thus the order of h equals

to |ĥ|. A chain of order 0 is trivial, others are non-trivial. Every chain of level j can be
obtained in the following way: consider the sequence 0 = g0 < g1 < · · · < gw−1 < gw =
`+ 1 consisting of all indices at level higher than j. Then between each consecutive pair
gi and gi+1 from the sequence there is a unique chain of level j. The interiors of these
chains partition the set of indices at level j. The collection of all nontrivial chains is
denoted H, and the set of interiors of these chains partitions [1, `].

We write λ(h) for the level of h and v(h) for the order of h.
For a chain h as above, we define its difference sequence to be the sequence∆h

1 , . . . ,∆
h
v(h)

given by ∆h
i = hi − hi−1. (We could also define ∆h

v(h)+1 but we won’t need it.) The
sum of the difference sequence is just hv(h) − h0. Finally we define the remainder se-
quence of h to be the subsequence rh1

, . . . , rhv(h)
of the remainder sequence r1, . . . , rv(h)

corresponding to the interior indices of h.
At last we are ready to define si. Fix h ∈ H; we define si for i ∈ ĥ. Now view the

remainder sequence rh1 , . . . , rhv of h as a placement for the load sequence ∆h
1 , . . . ,∆

h
v(h).

All of these placements are in the range [1, 2k − 1] so by Lemma 9, there is a placement
u1, . . . , uv(h) into buckets in the range [1, k] such that:

costcheap(u1, . . . , uv(h)|∆h
1 , . . . ,∆

h
v(h)) ≤ costexp(r1, . . . , rv(h)|∆h

1 , . . . ,∆
h
v(h)).

Now for each i ∈ [1, v(h)] let shi
= λ(h)k + ui. This defines the values si for i ∈ ĥ,

and by doing this for all h ∈ H we get the sequence s1, . . . , sn.
Since λ(h) ∈ [0,m − 1] and ui ∈ [1, k] we have that all s values are in [1, km].

When we refer to the level of an si we mean its level with respect to block size k.
Observe that the sequence λi of levels (with respect to block size b) corresponding to
the placement sequence p is the same as the sequence of levels (with respect to block
size k) corresponding to placements in s.

To prove the inequality of the lemma, we need a bit more notation. Write ph for the
consecutive subsequence of p of length hv − h0 starting with ph0+1. Thus phi = ph0+i.

Define sh analogously. Also let ĥRel = {h1 − h0,h2 − h0, . . . ,hv(h) − h0}. Thus ĥRel is

the set of indices of ph corresponding to ĥ.
The inequality of the lemma is obtained from the following chain (where we use the

notation from (2)) of relations:

19

costb−block(p1, . . . , p`)
(A1)
=

∑
h∈H

costĥb−block(p1, . . . , p`)

(A2)
=

∑
h∈H

costĥRel
exp (ph1 , . . . , p

h
hv(h)−h0

)

(A3)
=

∑
h∈H

costexp(rh1
, . . . , rhv(h)

|∆h
1 , . . . ,∆

h
v(h))

(A4)

≥
∑
h∈H

costcheap(uh1
, . . . , uhv(h)

|∆h
1 , . . . ,∆

h
v(h))

(A5)
=

∑
h∈H

costĥRel

cheap(sh1 , . . . , s
h
hv(h)−h0

)

(A6)
=

∑
h∈H

costĥcheap(s1, . . . , s`)

(A7)
= costcheap(s1, . . . , s`).

We now justify each of these steps. We work from both ends to the middle. Equalities
(A1) and (A7) follow from the fact that H is a partition of [1, `]. For all of the other
relations, we fix an h ∈ H and show it holds term by term. For (A2) observe first that
after step h0, items stored during steps [1,h0] are in buckets higher than level j and so
contribute nothing to the costb−block during steps [h0 +1,hv(h)] so in accounting for the

cost of steps of ĥ we can omit all placements prior to h0. During [h0 +1,hv(h)] there are
no placements above block j so costexp coincides with costb−block. This proves (A2)
and a similar argument gives (A6). For (A3), we apply Lemma 10 with θ = jb, and for
(A5) we apply the same lemma with θ = jk. Finally Lemma 9 implies (A4). ut

Lemma 12. Let c ≥ 1 be an arbitrary constant. For any large enough integers n,m
satisfying m < (n+1)c and any placement sequence p1, . . . , pn into b4 log(m+ 1)c buckets
the following is true:

costcheap[Tail1/6](p1, . . . , pn) ≥ 5

12

(
1

6

)512c2

(n+ 1) log(n+ 1).

Now Lemma 1 follows from this lemma and Corollary 1.

Proof of Lemma 12. Choose b ∈ [256c2, 512c2] such that b = 2k − 1 for some integer k.
By Lemmas 5 and 6 we have:

costcheap[Tail1/6](p1, . . . , pn) ≥ (5/6) · cost1/6−disc(p1, . . . , pn)

≥ (5/6)(1/6)b · costb−block(p1, . . . , pn).

Set k1 = b4 log(m+ 1)c and k2 = k · dk1/be. By Lemma 11, for any (n, k1)-placement
sequence p1, . . . , pn there is a (n, k2)-placement sequence s1, . . . sn such that:

(5/6)(1/6)b · costb−block(p1, . . . , pn) ≥ (5/6)(1/6)b · costcheap(s1, . . . , sn).

20

We want to apply Lemma 8 to this final expression. Notice,

k2 = log(b+ 1) ·
⌈
b4 log(m+ 1)c

b

⌉
≤ log(b+ 1) +

log(b+ 1)

b
· 4c · log(n+ 1)

≤ log(n+ 1)

4

provided that n is large enough and log(b+ 1)/b < 1/16c. Indeed, since log(x+ 1)/x is
a decreasing function, log(b + 1)/b ≤ log(256c2 + 1)/256c2 ≤ (11/16)(1/16c) as can be
easily verified. Lemma 8 applied on s1, . . . sn implies the lower bound. ut

References

1. Afek, Y., Awerbuch, B., Plotkin, S., Saks, M.: Local management of a global resource in a
communication network. J. ACM, 43(1), 1–19 (1996)

2. Babka, M., Bulánek, J., Čunát, V., Koucký, M., Saks, M.: On Online Labeling with Poly-
nomially Many Labels. In ESA, 121–132 (2012)

3. Bender, M., Cole, R., Demaine, E., Farach-Colton, M., Zito, J.: Two simplified algorithms
for maintaining order in a list. In ESA, 152–164 (2002)

4. Bender, M., Demaine, E., Farach-Colton, M.: Cache-oblivious B-trees. SIAM J. Comput.,
35(2), 341–358 (2005)

5. Bender, M., Duan, Z., Iacono, J., Wu, J.: A locality-preserving cache-oblivious dynamic
dictionary. J. Algorithms, 53(2), 115–136 (2004)

6. Bird, R., Sadnicki, S.: Minimal on-line labelling. Inf. Process. Lett., 101(1), 41–45 (2007)
7. Borodin, A., El-Yaniv, R.: Online computation and competitive analysis. Cambridge Univer-

sity Press, (1998)
8. Brodal, G., Fagerberg, R., Jacob, R.: Cache oblivious search trees via binary trees of small

height. In SODA, 39–48, (2002)
9. Bulánek, J., Koucký, M., Saks, M.: Tight lower bounds for online labeling problem. In STOC,

1185–1198 (2012)
10. Dietz, P., Seiferas, J., Zhang, J.: A tight lower bound for online monotonic list labeling.

SIAM J. Discrete Math., 18(3), 626–637 (2004)
11. Dietz, P., Zhang, J.: Lower bounds for monotonic list labeling. In SWAT, 173–180 (1990)
12. Emek, Y., Korman, A.: New bounds for the controller problem. Distributed Computing,

24(3-4), 177–186 (2011)
13. Itai, A., Konheim, A., Rodeh, M.: A sparse table implementation of priority queues. In

ICALP, 417–431 (1981)
14. Korman, A., Kutten, S.: Controller and estimator for dynamic networks. In PODC, 175–184

(2007)
15. Willard, D.: A density control algorithm for doing insertions and deletions in a sequentially

ordered file in good worst-case time. Inf. Comput., 97(2), 150–204 (1992)
16. Zhang, J.: Density Control and On-Line Labeling Problems. PhD thesis, University of

Rochester (1993).

