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Abstract

In 1989 Kushilevitz [1] initiated the study of information-theoretic privacy within the context
of communication complexity. Unfortunately, it has been shown that most interesting functions
are not privately computable [1, 2]. The unattainability of perfect privacy for many functions
motivated the study of approximate privacy. In [3, 4], they define notions of worst-case as well
as average-case approximate privacy, and present several interesting upper bounds, and some
open problems for further study. In this paper, we obtain asymptotically tight bounds on the
tradeoffs between both the worst-case and average-case approximate privacy of protocols and
their communication cost for Vickrey-auctions.

Further, we relate the notion of average-case approximate privacy to other measures based
on information cost of protocols. This enables us to prove exponential lower bounds on the sub-
jective approximate privacy of protocols for computing the Intersection function, independent
of its communication cost. This proves a conjecture of Feigenbaum et al.

1 Introduction

Privacy in a distributed setting is an increasingly important problem. A key application is the set-
ting of combinatorial auctions where many agents have private information (e.g., their preferences)
but would like to compute a function of their inputs without revealing any of their private informa-
tion. There is a large body of research examining which functions can be computed securely, and
how. Many of these results rely on an assumption, such as a computational complexity assumption,
or the assumption that more than some fixed fraction m of the players are trustworthy, or the as-
sumption that the auctioneer (a 3rd party) is trustworthy. These assumptions limit the usefulness
of such research. As Brandt and Sandholm point out, privacy which is based on an assumption
of hardness can easily become outdated as computers become faster and more powerful; security
parameters (like key length) need to be continuously updated to cope with increasing computa-
tional power [2]. Auctions are a natural setting where we would doubt the trustworthiness of fellow
participants or an auctioneer. We nevertheless would like to compute on the internet. In this work,
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grant IAA100190902 of GA AV ČR, by the Center of Excellence CE-ITI under the grant P202/12/G061 of GA ČR
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we focus on situations where each player is deterministic and honest but curious. Honest, because
they obey the rules of the game. Curious, as they do not miss any opportunity to gain knowledge
about others’ input.

In 1989, Kushilevitz [1] initiated the study of information-theoretic privacy in communication
complexity, which is an appealing direction because it does not rely on computational assump-
tions discussed above. Informally, a multi-player communication protocol for computing a function
f(x1, x2, . . . , xk) is private if each player does not learn any additional information (in an infor-
mation theoretic sense) beyond what follows from knowing his/her private input, and the function
value f(~x). A complete characterization of the privately computable functions was given, but unfor-
tunately, early work ruled out private protocols for most interesting functions [1, 2]. For example,
private second-price auctions are not possible with more than two participants, and are extremely
inefficient even in the setting of two bidders [5, 2].

The unattainability of perfect privacy for many functions motivated the study of approximate
privacy. Most relevant to our work is the study of Klauck [6] and the more recent work of Feigen-
baum, Jaggard and Schapira [3]. The relaxation from perfect to approximate privacy is appealing
because it renders more functions computable privately, and more closely mirrors real-world sit-
uations in which some privacy loss may be acceptable. On the other hand, it is more subtle to
capture the notion of approximate privacy. While most reasonable definitions of perfect privacy
turn out to be equivalent, this is not quite the case with approximate privacy. In particular, the
measures of Klauck [6] and Feigenbaum et al. [3] are different and each has its own advantage and
characteristics. Our work here is primarily motivated by recent work of Feigenbaum et al. [3, 7].
A second motivation is to understand the connections between the two measures.

In the two player setting, let f(x, y) be a function, and let P be a two-player deterministic
communication protocol for f . The privacy loss (or privacy approximation ratio, PAR) on the
input (x, y) with respect to P is defined to be the size of the monochromatic region containing (x, y)

divided by the size of the protocol-induced rectangle containing (x, y): PAR(x, y) = |f−1(f(x,y))|
|P (x,y)| .

The worst-case privacy loss of protocol P is the maximum privacy loss over all inputs (x, y), and
the worst-case privacy loss of the function f is then the minimum privacy loss over all protocols
for f . Perfect privacy of a protocol (as defined in 1989) requires that the privacy approximation
ratio (PAR) is 1 for all inputs. (This definition is easily extended to the multi-player setting.)

Under this relaxed notion of privacy, things are much more interesting [3, 4, 7]. For example,
Feigenbaum et al. study the Vickrey auction problem, and reveal a possible inherent tradeoff be-
tween privacy and communication complexity: they describe a family of protocols such that the
privacy loss approaches 1 (perfect privacy) as the length of the protocol approaches exponential.
They also study several prominent boolean functions with respect to approximate privacy.

Feigenbaum et al. consider an average-case notion of approximate privacy as well. In this
setting, we are interested in the average privacy loss over a distribution on inputs. Here they
describe a protocol for Vickrey auction that achieves exponentially smaller average-case PAR than
its worst-case PAR. A similar protocol was described by Klauck [6].

Our Contributions
In this paper, we present several new lower bounds on the communication cost for achieving

privacy and establish relationships between approximate privacy and several other known measures.
First, we prove that there is an inherent tradeoff between privacy and communication complex-

ity, by proving a privacy/communication complexity tradeoff lower bound for the Vickrey auction
problem. This shows that the upper bounds presented in [3] are essentially tight. [3] provided a
lower bound only for the special case of bisection-type protocols.
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Theorem 1 For all n, for all p, 2 ≤ p ≤ n/4, any deterministic protocol for the two-player Vickrey
auction problem on inputs of length n obtaining privacy loss (worst-case PAR) less than 2p−2 has

length at least 2
n
4p .

This lower bound is technically interesting as it deals with super-polynomial communication
protocols. The usual communication complexity techniques aim at protocols that are at most linear
in their input size.

Our second contribution demonstrates a similar type of tradeoff for the case of average-case ap-
proximate privacy. We prove an asymptotically tight lower bound on the average-case approximate
privacy of the Vickrey auction problem, showing that the upper bounds from [3] are essentially
tight. This generalizes the result of [7] for Vickrey auctions. Again, [3] provided lower bounds only
for the special case of bisection-type protocols.

Theorem 2 For all n, r ≥ 1, any deterministic protocol of length at most r for the two-player 2n-
Vickrey auction problem has average-case PAR at least Ω( n

log(r/n)) (over the uniform distribution

of inputs).1

Our lower bounds show that the approximate privacy of any polynomial length protocol is
still as large as Ω(n/(log n)). Indeed, such superlinear protocols have been devised by Klauck [6],
who proved upper bounds for his measure of approximate-privacy. To the best of our knowledge,
Theorem 2 provides the first (tight) lower bounds on the communication cost of achieving good
approximate privacy for Vickrey auctions. The proof of the theorem relates the loss of privacy to
a certain Ball Partition Problem that may be of independent interest.

Furthermore, we modify the average-case privacy approximation measure of Feigenbaum et
al. Our modification provides a rather natural measure that was disregarded in [3], but coincides
with that of Feigenbaum et al. in the case of uniform distribution on the inputs. Our modified mea-
sure has several advantages. It allows natural alternative characterizations, and it can be directly
related to the (information-theoretic) privacy measure of Klauck. We can quantitatively connect
Klauck’s privacy measure to well studied notions of (internal) information cost in communication
complexity. This allows us to prove a new lower bound on the average-case subjective privacy
approximation measure of Feigenbaum et al. [3], and answers affirmatively a conjecture from their
paper.

Theorem 3 For all n ≥ 1, and any protocol P computing the Set Intersection INTERSECn the
average-case subjective PAR is exponential in n under the uniform distribution:

avgU PARsub(P ) = 2Ω(n)

We contend that any of the mentioned measures could serve as a reasonable measure of privacy.
Indeed, each of the measures seems to exhibit advantages over the other ones in some scenario, so
each of the measures captures certain aspect of privacy. For example, the English auction protocol
for Vickrey auction achieves perfect privacy (under any measure) but at exponential communication
cost. On the other hand, the Bisection protocol achieves linear average-case PAR with merely linear
communication cost. However, the difference between these two protocols is not reflected well in
Klauck’s privacy measure, where both protocols lose constant number of bits on the average.

1Under the original definition [3] or our alternate Definition 13.
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Outline of Paper
In Section 2, we provide our basic notation and background on information theory. In Section

3, we review the notion of privacy approximation ratio, and in Section 3.1, we review the Vickrey
auction problem. In Section 3.2, we present our lower bound tradeoff for worst-case privacy of
Vickrey auctions. In Section 4, we present our lower bound on average-case PAR for Vickrey
auctions, and discuss the relationship between average-case PAR and information cost, deriving
several new results from this relationship.

2 Preliminaries

In this section, we review our basic notations and concepts. For a positive integer k, we let
[k] = {1, 2, . . . , k}. We assume that the reader is familiar with communication complexity (see [8]
for more background.) We will use the following notation. Given f : X ×Y → Z, each input (x, y)
is associated with the region Rx,y of all inputs in the preimage of f(x, y), i.e.,

Rx,y = {(x′, y′) ∈ X × Y |f(x, y) = f(x′, y′)}.

For any value z ∈ Z we let Rz = f−1(z) be the preimage of z. The set of all regions of function
f is R(f) = {Rx,y : (x, y) ∈ X × Y }. Let P be a communication protocol P for the function f .
For inputs (x, y) ∈ X × Y we let ΠP (x, y) denote the transcript of the protocol on input x given
to Alice and y given to Bob. We associate the input (x, y) with the protocol-induced rectangle
Px,y of all inputs which yield the same transcript:

Px,y = {(x′, y′) ∈ X × Y : ΠP (x, y) = ΠP (x
′, y′)}.

Note that Px,y ⊆ Rx,y as we assume that P correctly computes f .

2.1 Information theoretic notions

Information theory provides a highly intuitive and powerful calculus to reason about random vari-
ables. We need the following basic notions from this theory whose proofs can be found in any
standard textbook on the subject (see for example Cover and Thomas [9]).

For any random variable X, we denote its probability distribution over its range X by µX . The
entropy of X, denoted by H(X), is defined as follows:

H(X) = −
∑

x∈X
PrµX

[

X = x
]

log2

(

PrµX

[

X = x
]

)

= −EµX

[

log(µX(x))
]

Let Y be another random variable. For any y in the range of Y, H(X|Y = y) is defined as just
the entropy of X under the conditional distribution, i.e. H(X|Y = y) ≡def

−
∑

x∈X
Pr

[

X = x |Y = y
]

log

(

Pr
[

X = x |Y = y
]

)

.

Extending the above naturally, we define the notion of conditional entropy H(X|Y) as

H(X|Y) ≡def EµY

[

H(X|Y = y)
]

.

As intuition suggests, conditioning a random variable X on another random variable Y cannot
increase its uncertainty on the average. Formally,
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Fact 4 For any two random variables X and Y, H
(

X|Y
)

≤ H
(

X
)

.

The mutual information betweenX andY, denoted by I(X : Y), is defined asH(X)−H(X|Y).
It is straightforward to verify that mutual information is a symmetric quantity, i.e. I(X : Y) =
H(X)−H(X|Y) = H(Y)−H(Y|X) = I(Y : X). Fact 4 implies that mutual information between
two random variables is always non-negative. Just like entropy, one can define the conditional
mutual information between random variables: let Z be another random variable with range Z.

I(X : Y |Z) = H(X |Z) − H(X |Y,Z)

= EµZ

[

I(X : Y |Z = z
]

.

We will also need the following simple claim:

Claim 5 Let X,Y,Z,W be any random variables. Then,
∣

∣I(X : Y|W) − I(X : Y |W,Z)
∣

∣ ≤
H(Z).

Proof: First, notice that

I(X : Y |W)− I(X : Y |W,Z) =
(

H(X|W)−H(X|W,Z)
)

−
(

H(X|W,Y)−H(X|Y,W,Z)
)

.

The first quantity in brackets above is

(

H(X|W)−H(X|W,Z)
)

= I(X : Z |W)

= H(Z|W)−H(Z|W,X)

≤ H(Z|W)

≤ H(Z)

The first equality uses the symmetry of information.
The second bracketed quantity can be likewise re-written using the symmetry of information:

(

H(X|W,Y)−H(X|Y,W,Z)
)

= EµY

[

H(X|W,Y = y)−H(X|Z,W,Y = y)
]

= EµY

[

I(Z : X |W,Y = y)
]

≤ H(Z)

Combining the two, we are done.

3 Worst-case privacy approximation ratio

In this paper, we are concerned with privacy-preserving communication complexity. A perfectly
private communication protocol for f will reveal only the output of f and no additional information.
Every two inputs (x, y) and (x′, y′) such that f(x, y) = f(x′, y′) should be indistinguishable from
each other [1, 10]. Approximate privacy provides a measure of how much indistinguishability has
been lost. These notions are formalized as follows.

The following definition captures the privacy loss of a communication protocol with respect to
a third party observer (eavesdropper) who overhears the messages sent between the players. This
measure is referred to as objective.
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Definition 6 [3] A protocol P for a function f on X × Y has worst-case objective privacy
approximation ratio (PAR) defined by

PAR(P ) = max
(x,y)

|Rx,y|
|Px,y|

= max
(x,y)

PAR(P, x, y).

Each input (x, y) has its own privacy approximation ratio PAR(P, x, y) =
|Rx,y |
|Px,y | . Often we do not

specify the protocol P when it is clear from context.

The PAR measure of privacy can be extended to subjective PAR, which measures the privacy
that the players lose to each other.

Definition 7 [3] A protocol P for a function f on X × Y has worst-case subjective privacy
approximation ratio (PARsub) defined by:

PARsub(P ) = max

{

max
(x,y)

|Rx,y ∩X × {y}|
|Px,y ∩X × {y}| ,max

(x,y)

|Rx,y ∩ {x} × Y |
|Px,y ∩ {x} × Y |

}

.

Previous work by Kushilevitz gave a combinatorial characterization of the functions f which
are computable with perfect privacy PAR = 1 [1]. This set unfortunately excludes most auctions
[2], as well as many basic functions of interest in theoretical computer science, e.g., greater than
[11] and set intersection and disjointness [4].

As many functions are not computable with perfect privacy, it is natural to investigate the
following general question for a function f : is f privately computable, and how much communication
is necessary to achieve PAR less than some number c? In the next section, we focus on the case of
Vickrey auctions which is one of the most studied functions in this context.

3.1 Vickrey auctions

Vickrey auctions (also known known as 2nd-price auctions) arise in mechanism design, and are
a canonical example of a truthful mechanism: neither player has incentive to cheat, as long as
the auction is computed correctly. For a positive integer N , the N -Vickrey auction is defined as
f : X × Y → Z × {A,B} where X = Y = Z = {1, 2, . . . , N} and

f(x, y) =

{

(x,B), if x ≤ y
(y,A) if y < x

Two players, Alice and Bob, have private values x and y, respectively. These private values
indicate the amount of money that the item is worth to each of them. If x ≤ y, then Bob wins,
and the price that he pays is x. (Thus, f(x, y) = (x,B) means that Bob wins and pays x for the
item.) Similarly, if x > y, then Alice wins, and the price that she pays is y. This mechanism is
also called “2nd-price auction” because the winner’s price is the 2nd-highest bid. Vickrey auctions
remain truthful for more than two players, but are not computable with perfect privacy (PAR = 1)
[2] for more than two players.

The matrix Mf of the 2n-Vickrey auction is shown in Figure 1.
Perfect privacy for two-player Vickrey auctions is achieved by the successive English bidding

protocol, in which bids start at 1 and increase by 1 in each round, and the first player to drop
out of bidding reveals his entire private value. (Note that this incurs no loss of privacy, since that
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Figure 1: The matrix Mf for 2n-Vickrey auction.

Figure 2: The protocol tree for an English auction computing f .

value is part of the function output.) The protocol tree for this protocol is given in Figure 2. This
protocol takes 2n+1 rounds for the 2n-Vickrey auction, and is known to be the only protocol which
obtains perfect privacy PAR = 1 for Vickrey auctions [1].

Theorem 8 [1] Perfect privacy for 2-player Vickrey is only achievable by the 2n+1-length English
auction.

Notice that the range of f is of size 2n+1 and that f is surjective, so that there must be at
least 2n+1 distinct leaves in any protocol tree for f . Thus any protocol for f requires at least n+1
rounds. An example of such a protocol is the Bisection Protocol that proceeds by binary search
on an interval containing the smaller input [3]. Bisection Protocol obtains PAR = 2n, the worst
possible loss of privacy for this function.

These two extremes – on the one hand PAR = 1 at exponential communication cost, and on
the other, exponential PAR at linear communication cost – suggest that there is a tradeoff between
privacy and communication for Vickrey auctions. The structure of the function itself suggests this
tradeoff as well. Any move which differs from the English protocol must divide some monochromatic
region into two pieces. Thus inputs in the same monochromatic region are distinguishable by the
protocol, and some privacy is lost.

Different PAR is achievable depending on the nature of the protocol. Feigenbaum et al. examine
a family of Bisection-type protocols [3] and use average-case PAR to differentiate amongst them.
Such protocols obtain worst-case PAR varying from 1 to 2n, inversely related to their length. This
observation inspired the results below.
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3.2 Worst-case lower bound for Vickrey auction

The two algorithms discussed in the previous section suggest that any protocol computing Vickrey
auctions should have a tradeoff between length and privacy. Protocol steps which resemble those
of the ascending English bidding protocol partition the inputs in an unbalanced way, so that most
inputs follow one branch of the protocol tree, and few inputs follow the other branch. Such steps
preserve privacy but do not make much progress. (In an imbalanced partition, on the larger side
the protocol still has a lot of work to do in order to compute the function.) On the other hand,
protocol steps that resemble binary search partition the inputs in a nearly balanced way. Such
steps make good progress, but are bad for privacy. (Dividing the remaining inputs in half increases
the PAR by a factor of 2.) This is the intuition behind Theorem 1, stated again below.

Theorem 1 For every n and p, 2 ≤ p ≤ n/4, every deterministic protocol for 2-player Vickrey

auctions obtaining PAR < 2p−2 must be of length at least 2
n
4p .

Here the variable p serves as a parameter, explicitly linking the protocol length to the achievable
PAR. For instance, if we put p =

√
n, then we conclude by Theorem 1 that either the protocol

communicates 2Ω(
√
n) bits in the worst case, or the worst-case privacy loss is 2Ω(

√
n). This theorem

shows that for Vickrey auctions, there is an inherent tradeoff between communication complexity
and privacy.

Proof: We will assume without loss of generality that in the protocol, the players take turns and
send one bit per message. (Any protocol can be put into this form by at most doubling the length
of the protocol.) Moreover, our protocol is assumed to be deterministic and to have zero error.

The Vickrey auction function has a corresponding matrix M such that entry (x, y) of the
matrix is the value of the Vickrey auction on inputs (x, y) (Figure 1). A submatrix of M is called
a rectangle; a rectangle is “monochromatic” if the matrix is constant on inputs in that submatrix.
Every communication protocol can be visualized as a binary decision tree [12]. Each node v of
the tree is associated with a rectangle (submatrix) T (v) = TA(v) × TB(v) ⊆ X × Y . The root
node r is associated with the entire matrix TA(r) × TB(r) = X × Y = M . Each leaf node l is
associated with a monochromatic submatrix TA(l)× TB(l). Each internal node v has two children,
v0 and v1. If the protocol calls for Alice to speak at node v, then the bit sent by Alice at v induces
a partition of TA(v) into two pieces, TA(v0) and TA(v1). The submatrix associated with v0 is
TA(v0) × TB(v), and the submatrix associated with v1 is TA(v1) × TB(v). Similarly if Bob speaks
at node v, then the submatrix associated with v0 is TA(v)× TB(v0) and the submatrix associated
with v1 is TA(v)× TB(v1).

Traversing the tree from the root to a leaf l generates a transcript of the bits of communication
sent for some input (x, y) ∈ TA(l)× TB(l). The depth of the tree is the worst-case communication
cost of the protocol.

Any deterministic protocol consists of a series of partitions of the matrix M into rectangles.
The resulting protocol-induced tiling of the matrix M is a partition into monochromatic rectangles,
which are precisely the rectangles associated with the leaves of the protocol’s decision tree.

For every correct communication protocol, we describe an adversary strategy that follows a
path through the protocol tree and finds some input (x, y) such that either: (i) the privacy loss of
(x, y) is large i.e., PAR(x, y) ≥ 2p−2, or (ii) the communication protocol on (x, y) requires at least
(ln 2)(n2 − p)2n/4p bits to compute.

Let M denote the matrix corresponding to the Vickrey auction problem, as drawn in Figure
1. Bob wins for inputs in the horizontal regions; Alice wins for inputs in the vertical regions. Fix
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a communication protocol, and corresponding protocol tree, P . For every node v in P that our
adversary strategy selects, we will maintain three sets: S(v), AL(v), BL(v) ⊆ [2n]. At node v, the
adversary will be interested in tracking the privacy loss on the set of inputs S(v) × S(v). The
privacy loss for these inputs will be measured with the help of the two auxiliary sets AL(v) and
BL(v), respectively.

Initially, at the root r of the protocol tree, S(r) = [2n−p]. This initial set of inputs S(r)× S(r)
are the “small” inputs that sit in the upper left submatrix of M . As we move down the protocol
tree, we will update S(v) so that it is always a subset of [2n−p] ∩ TA(v) ∩ TB(v). We are interested
in these small inputs since the regions that they are contained in are very large, and thus have the
potential to incur a large (exponential) privacy loss.

The set AL(v) is a subset of TA(v) , and similarly BL(v) is a subset of TB(v). The sets AL(r)
and BL(r) are initially [2n]\[2n−p], the “large” inputs. At vertex v, the set AL(v) describes the set
of large inputs of Alice that have survived so far; thus AL(v) = TA(v)∩[2n]\[2n−p]. Similarly, BL(v)
describes the set of large inputs of Bob that have survived so far; thus BL(v) = TB(v)∩ [2n]\[2n−p].
As we traverse the protocol tree, these sets track the loss of privacy for Alice and Bob (respectively)
on inputs in S(v)× S(v).

We can measure the loss of privacy so far in the protocol. For any (x, y) ∈ T (v),

PARv(x, y) =
|Rx,y|

|Rx,y ∩ T (v)| .

If v is a leaf, then for any (x, y) ∈ T (v), PARv(x, y) = PAR(x, y). The following simple claim
will be useful:

Claim 9 ∀(x, y) ∈ T (v), PAR(x, y) ≥ PARv(x, y).

In particular the following fact is crucial to our argument. For any (x, y) in S(r)×S(r)∩T (v),
if (x, y) is in a vertical region (y < x, a win for Alice), then

PAR(x, y) =
|Rx,y|
|Px,y|

≥ PARv(x, y) ≥
2n − 2n−p

|AL(v)|+ 2n−p
.

This holds because |Rx,y| ≥ 2n − 2n−p and |Rx,y ∩ T (v)| ≤ |AL(v)| + 2n−p. Similarly, if (x, y) ∈
S(r)× S(r) is in a horizontal region (x ≤ y, a win for Bob), then

PAR(x, y) ≥ PARv(x, y) ≥
2n − 2n−p

|BL(v)|+ 2n−p
.

The above inequality shows how AL(v) and BL(v) track the privacy loss of inputs S(v)×S(v):
for those inputs (x, y) ∈ S(v) × S(v) where Alice wins, the privacy loss for (x, y) increases as
AL(v) decreases, and similarly for those inputs where Bob wins, the privacy loss increases as BL(v)
decreases.

Adversary Strategy: We are now ready to describe the adversary strategy. There are two cases,
depending on whether it is Alice’s or Bob’s turn to send a message. We will first describe the case
where at node v, it is Alice’s turn to speak. Alice sends Bob some bit b which partitions her inputs
TA(v) into two pieces. Since S(v) and AL(v) are always subsets of TA(v), this induces a partition
of S(v) into S0(v) and S1(v) and AL(v) into AL

0 (v) and AL
1 (v).

Let α = 1− 2
−n
4p . We determine if a step made progress or was useless in the following way:
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• If (1−α)|S(v)| ≤ |S0(v)| ≤ α|S(v)| (hence (1−α)|S(v)| ≤ |S1(v)| ≤ α|S(v)|), then we say this
step made progress on S(v). In this case, the set S(v) is partitioned into roughly balanced
pieces. Select i such that |AL

i (v)| ≤ 1
2 |AL(v)|.

• Otherwise, pick i such that |Si(v)| ≥ α|S(v)|. In this case, we call it a useless step.

We update sets in the obvious way: if w is the new node in the protocol tree that we traverse to,
then S(w) = Si(v) and AL(w) = AL

i (v).
The second case is when it is Bob’s turn to speak. Our adversary strategy is entirely symmetric.

Now TB(v) is partitioned into two pieces, inducing a partition of S(v) into S0(v) and S1(v), and a
partition of BL(v) into BL

0 (v) and BL
1 (v). We pick i as above, but with AL

i replaced with BL
i .

The strategy continues as described above, traversing the protocol tree until one of the two
events happens for the first time:

• Alice (or Bob) has made p progress steps, so AL(v) (or BL(v)) has been halved at least p
times.

• The strategy reaches a leaf node, and can go no further.

This completes the description of the strategy.
The following are the two main ideas in analyzing our strategy.

Lemma 10 Let our strategy reach node v and find Alice (or Bob) took p progress steps on the way.
Then, for each (x, y) ∈ S(v)× S(v) such that x > y (or x ≤ y) PARv(x, y) ≥ 2p−2.

We can exit our strategy at this point and invoke Claim 9 to finish the argument. In the other
case, we make the following claim:

Lemma 11 If our strategy reaches a leaf node v without Alice or Bob taking p progress steps, then
for every (x, y) ∈ T (v), the protocol communicates at least 2n/4p bits.

Thus, we would conclude that in this case the cost of the protocol is larger than n2n/4p. Hence,
all that remains to finish our argument is to prove Lemma 10 and Lemma 11.

Proof: [Proof of Lemma 10] Let r be the root node of our protocol tree. For each input (x, y) ∈
S(r)×S(r), note that Rx,y ≥ 2n−2n−p and |AL(r)| = 2n−2n−p. Let ϕ be the path in the protocol
tree from r to v that our strategy chooses such that Alice takes p progress steps along ϕ. Consider
any pair of adjacent nodes u,w in path ϕ such that Alice makes progress in going from u to w.
Then, by definition of our strategy, |AL(w)| ≤ 1

2 |AL(u)|. Hence, |AL(v)| ≤ 1
2p |AL(r)|. Thus, for

inputs (x, y) in AL(v)×AL(v) ⊆ S(v)× S(v) on which Alice would win, claim 9 yields:

PARv(x, y) ≥
2n − 2n−p

2n−2n−p

2p + 2n−p
≥ 2p−2

The analysis when Bob makes p progress steps proceeds very similarly.
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Proof: [Proof of Lemma 11] The strategy reaches a leaf node v traversing a path ϕ, and |S(v)| = 1.
(If |S(v)| > 1, then there is more than one possible answer, and so the computation is not yet
finished.) In this case, Alice and Bob each took fewer than p progress steps. Let q be the total
number of useless steps followed to get to v. (The protocol is at most 2p + q long.) On each
progress step (u,w) in path ϕ, by definition, |S(w)| ≥ (1 − α)|S(u)|. On each useless step (u,w),
the updated size of |S(w)| ≥ α|S(u)|. This gives a lower bound on the size of set S(v). Hence
|S(v)| ≥ 2n−p(1− α)2pαq.

Assume that q < 2
n
4p . The calculation below shows that |S(v)| > 1, thus deriving a contradiction

to the fact that v is a leaf node where the protocol ends.

|S(v)| ≥ 2n−p(1− α)2pαq

> 2n−p(2−n/4p)2p(1− 2−n/4p)2
n/4p

= 2n/2−p(1− 2
−n
4p )2

n
4p

≥ 1

Thus the strategy proves Theorem 1, either by finding some large loss of privacy or by finding
an input on which the protocol takes exponentially many steps.

Note. The tradeoff of Theorem 1 holds for both the objective PAR and subjective PAR. For
Vickrey auctions they coincide (Lemma 12), because all regions are rectangles with width or depth
one.

Lemma 12 For N ≥ 1, let P be any protocol for 2-player N -Vickrey auction. Then PAR(P ) =
PARsub(P ).

Proof: PAR(P ) ≤ PARsub(P ). Let (x, y) be the input which maximizes
|Rx,y |
|Px,y | . If x ≤ y, then

PAR(P ) =
|Rx,y |
|Px,y | ≤ maxy′(

|Rx,y′∩{x}×Y |
|Px,y′∩{x}×Y | ) ≤ PARsub(P ). The case for y < x is similar.

PARsub(P ) ≤ PAR(P ). Let (x, y) be the input which maximizes PARsub(P ). If x ≤ y, then

PARsub(P ) = (
|Rx,y′∩{x}×Y |
|Px,y′∩{x}×Y | ) ≤ maxx,y

|Rx,y |
|Px,y | = PAR(P ). The case for y < x is similar.

4 Average-case PAR

In this section we consider the average-case privacy approximation ratio. For a probability distri-
bution D on X × Y and a protocol P for a function f : X × Y → Z, Feigenbaum et al. [3] define
the average-case PAR as follows:

avg PAR(P ) = ED

[ |Rx,y|
|Px,y|

]

.

In this paper we will also consider the following alternative definition.

Definition 13 For a probability distribution D on X × Y and a protocol P for a function f :
X × Y → Z, let the average-case objective privacy approximation ratio of protocol P for
function f be:

avgD PAR(P ) = E(x,y)∈D

[ |Rx,y|D
|Px,y|D

]

,

11



where for S ⊆ X×Y , |S|D =
∑

(x,y)∈S D(x, y). Furthermore, we let the average-case subjective
privacy approximation ratio of protocol P for function f be:

avgD PARsub(P )=max

{

E(x,y)∈D

[ |Rx,y ∩X × {y}|D
|Px,y ∩X × {y}|D

]

, E(x,y)∈D

[ |Rx,y ∩ {x} × Y |D
|Px,y ∩ {x} × Y |D

]}

.

As opposed to Feigenbaum et al. we measure the size of subsets of X×Y relative to the measure
D. This definition coincides with the definition of Feigenbaum et al. for the uniform distribution
[3]. Their paper does not give any results for distributions other than uniform, so our definition
is consistent with their results. Similarly, most of our results for concrete functions are for the
uniform distribution, so they hold under both definitions.

Definition 13 is motivated by an attempt to prove Theorem 2, and will be convenient and useful
in that proof (see Proposition 14). Both measures have advantages and disadvantages; in various
scenarios, one may be preferred to the other. However, our definition has interesting mathematical
properties and (as we will see in a moment) it is related to other known measures. For further
discussion of alternative definitions of average-case PAR, see section 8.1 of [3].

One benefit of Definition 13 is that one can relate average-case PAR to another natural measure
on protocols. Consider a protocol P for a function f . For a region R ∈ R(f) let cutP (R) =
|{Px,y | (x, y) ∈ R}| be the number of protocol-induced rectangles contained within R. The following
statement is implicit in Feigenbaum et al. [3] for the case of uniform distribution and objective PAR.

Proposition 14 For any function f : X×Y → Z, protocol P for f and any probability distribution
D on X × Y , let

avgD PAR(P ) =
∑

R∈R(f)

|R|D · cutP (R)

avgD PARsub(P ) = max

{

∑

y∈Y,R∈R(f)

|R ∩X × {y}|D · cutP (R ∩X × {y}),

∑

x∈X,R∈R(f)

|R ∩ {x} × Y |D · cutP (R ∩ {x} × Y )

}

.

Proof: For any protocol-induced rectangle A,
∑

(x,y)∈AD(x, y) · 1
|A|D = 1. Hence,

avgD PAR(P ) = ED

[ |Rx,y|D
|Px,y|D

]

=
∑

(x,y)∈X×Y

D(x, y) · |Rx,y|D
|Px,y|D

=
∑

R∈R(f)

∑

(x,y)∈R

D(x, y) · |R|D
|Px,y|D

=
∑

R∈R(f)

|R|D
(

∑

(x,y)∈R

D(x, y) · 1
|Px,y|D

)

=
∑

R∈R(f)

|R|D · cutP (R).

The case of subjective PAR is analogous.
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In the setting of our definition, this characterization of average-case PAR provides a simple
answer to the conjecture [3] that for any probability distribution D on inputs, there is a protocol
that has average-case PAR at most n for the 2n-Vickrey auction. Recall that the Bisection Protocol
for the Vickrey auction proceeds by binary search on the input domain [3].

Proposition 15 For any probability distribution D on [2n] × [2n], the Bisection Protocol for the
2n-Vickrey auction satisfies:

avgD PAR(Bisection Protocol) ≤ n+ 1.

Proof: Each region R of the 2n-Vickrey auction is covered by at most n + 1 rectangles induced
by the Bisection Protocol, i.e., cutBisection Protocol(R) ≤ n + 1. The claim follows by the previous
proposition.

The relation between objective and subjective privacy approximation ratios (Lemma 12) for
Vickrey auctions extends to the average-case setting.

Lemma 16 For N ≥ 1, let P be any protocol for 2-player N -Vickrey auction. If U is the uniform
probability distribution on [N ]× [N ] then

avgU PARsub(P ) ≤ avgU PAR(P ) ≤ 2 avgU PARsub(P ).

Proof: To prove the relationship for the average-case PAR, consider input (x, y) ∈ [N ]× [N ]. If
x ≤ y thenRx,y∩{x}×Y = Rx,y andRx,y∩X×{y} = {(x, y)}. If x > y thenRx,y∩{x}×Y = {(x, y)}
and Rx,y ∩X × {y} = Rx,y. Identically for Px,y instead of Rx,y. Hence,

|Rx,y ∩X × {y}|
|Px,y ∩X × {y}| =

|Rx,y|
|Px,y|

if x ≤ y, and
|Rx,y ∩X × {y}|
|Px,y ∩X × {y}| = 1 ≤ |Rx,y|

|Px,y|
otherwise. On the other hand

|Rx,y ∩ {x} × Y |
|Px,y ∩ {x} × Y | = 1 ≤ |Rx,y|

|Px,y|

if x ≤ y and if x > y then
|Rx,y ∩ {x} × Y |
|Px,y ∩ {x} × Y | =

|Rx,y|
|Px,y|

.

Thus, avgU PARsub(P ) ≤ avgU PAR(P ). For the upper bound

∑

x,y

1

N2
· |Rx,y|
|Px,y|

=
∑

x≤y

1

N2
· |Rx,y ∩X × {y}|
|Px,y ∩X × {y}|

+
∑

x>y

1

N2
· |Rx,y ∩ {x} × Y |
|Px,y ∩ {x} × Y | .

Hence, avgU PAR(P ) ≤ 2 avgU PARsub(P ).
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For the uniform distribution we can prove the following tradeoff between the length and average-
case PAR of any protocol. This is one of our main results.

Theorem 2 For all n, r ≥ 1, any deterministic protocol of length at most r for the two-player 2n-
Vickrey auction problem has average-case PAR at least Ω( n

log(r/n)) (over the uniform distribution

of inputs).

This bound is asymptotically tight for uniform distribution (the n/r-Bisection Protocol achieves
asymptotically the same upper-bound). Our lower bound holds only for the uniform distribution
on inputs. This is not surprising; if the distribution is concentrated say on a single input one
should not expect large loss of privacy. Using Lemma 16 one obtains a similar tradeoff also for the
average-case subjective PAR.

The rest of this section (up to subsection 4.1) is devoted to the proof of Theorem 2. Proposition
14 characterizes the average-case PAR as the weighted sum of cutP (R) over all regions R of the
function. We will use this characterization but simplify the calculation a little bit.

• We will sum only over regions Rx,y for x, y ≤ 2n−1. Call this collection of regions L. These
are the largest regions in X × Y , and together cover 3

4 the area of X × Y . Hence the loss of
privacy on these regions will be significant. Each of the regions is of size between 2n−1 and
2n, so they all have the same weight up to a factor of at most 2.

• To estimate cutP (R) for various regions R we will track only the set of “diagonal” inputs
Diag = {(x, x) | x ∈ [2n−1]} as they progress in the protocol tree, and count protocol-induced
rectangles that intersect regions Rx,x and Rx,x+1.

Combining these two simplifications gives a lower bound on the average-case PAR for the uniform
distribution:

2n−1

4n

∑

R∈L
cutP (R). (1)

Note that each input pair (x, x) ∈ Diag must finish the protocol in a separate induced rectangle.
The problem of counting the cuts of interest (in order to get a lower bound) can be abstracted

away into the Ball Partition Problem. By Lemma 19, a lower bound on the Ball Partition Problem
will yield a lower bound on the average-case PAR for the uniform distribution on Vickrey auctions.

Definition 17 (Ball Partition Problem) For integers N and r ≥ 1, there are N balls and r
rounds. All of the balls begin in one big set. In each round, the balls in each current set are
partitioned into (at most) two new sets. The cost of partitioning the balls in any set S into sets
S1 and S2 is min(|S1|, |S2|). After r rounds, each of the N balls shall be in a singleton set. The
total cost of the game is the sum of the cost, over all r rounds, of every partition made during each
round. We denote the minimal possible cost by B(N, r).

The interesting values of r lie in a particular range. For r < log2N , the game cannot be finished
at any cost. For r > N , the game can easily be finished with minimal cost B(N, r) = N − 1: cut
away 1 ball from the largest set at every round. However, for intermediate values logN ≤ r ≤ N ,
one might ask: what is the smallest possible cost c achievable in r rounds?
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Theorem 18 For the Ball Partition Problem, B(N, r) ≥ N logN

4 log( 4r
logN

)
.

The above lower bound is asymptotically optimal. (A matching upper bound is obtained by
splitting Θ(n/r)-fraction of balls from each set at every round.)

Lemma 19 relates a lower bound for the Ball Partition Problem (N balls in r rounds) to a lower
bound for the average-case Vickrey auction on the uniform distribution (N possible inputs for each
player and r bits of communication).

Lemma 19 Let N, r ≥ 1 be integers where N is even. Let B(N, r) be the minimal cost of the Ball
Partition Problem on N balls in r rounds. Then for any deterministic r-bit protocol P for 2-player
N -Vickrey auction, the average-case PAR is avg PAR(P ) ≥ B(N,r)

2N under the uniform distribution.

Proof: [Proof of Lemma 19] Our goal is to establish that
∑

R∈L cutP (R) ≥ B(N, r). The lemma
easily follows from this since each region R in L contains probability mass at least 1/2N under the
uniform distribution.

The Ball Partition Problem is an abstraction of the calculation of average-case PAR for Vickrey
auctions. Recall the following notation used in the proof of Theorem 1. Protocol P is associated
with a protocol tree where each node v corresponds to a combinatorial rectangle T (v) = TA(v) ×
TB(v) ⊆ X×Y . For t = 0, . . . , r, letR(P, t) be the set of rectangles associated with nodes at level t of
the tree, level 0 consisting of the root. For R ⊆ X×Y , let cutP (R, t) = |{S ∈ R(P, t);S∩R 6= ∅}| be
the number of rectangles intersecting R after round t of the protocol. Clearly, cutP (R, r) = cutP (R).
We want to estimate from below

∑

cutP (R) over R ∈ L.
We associate every node v of the protocol tree with sets Dv = [N/2] ∩ TA(v) ∩ TB(v) and

Lv = {Rx,y;x ≤ y, x, y ∈ Dv}. For each leaf node v, |Dv| ≤ 1 as no two distinct inputs (x, x) and
(x′, x′) can finish in the same protocol-induced rectangle of the leaf. Notice, Lv ⊆ L. It is easy
to see by induction on the level of the tree that sets Dv associated with nodes at the same level
partition [N/2] and hence, sets Lv associated with nodes at the same level are disjoint. Let v be a
node at level t, 0 ≤ t < r, with Dv 6= ∅. Let v1 and v2 be its two children. If Dv1 6= ∅ 6= Dv2 then
we claim that

∑

R∈Lv

cutP (R, t+ 1) ≥
∑

R∈Lv

cutP (R, t)

+min(|Dv1 |, |Dv2 |)− 1.

We prove the claim. Assume that v is a node where Alice speaks. Hence, TA(v) = TA(v1) ˙
⋃

TA(v2)
and TB(v) = TB(v1) = TB(v2). Clearly, Dv = Dv1

˙⋃Dv2 . Let x1 = max(Dv1) and x2 = max(Dv2).
WLOG, x1 < x2. For every y ∈ Dv1 , y 6= x1, (x1, y) ∈ Ry+1,y ∩ T (v1) and also (x2, y) ∈ Ry+1,y ∩
T (v2), so both are non-empty. Hence, cutP (Ry+1,y, t + 1) ≥ cutP (Ry+1,y, t) + 1. As there are
|Dv1 | − 1 such y′s, the claim follows in this case.

If v is a node where Bob speaks, the argument is similar. Let y1 = max(Dv1) and y2 =
max(Dv2), and assume WLOG y1 < y2. Then for every x ∈ Dv1 , (x, y1) ∈ Rx,x ∩ T (v1) and also
(x, y2) ∈ Rx,x ∩ T (v2). Thus in this case one does not even lose the −1 additive term.

Hence, each node v, for which Dv is split into two non-empty sets Dv1 and Dv2 , contributes by
at least min(|Dv1 |, |Dv2 |) − 1 to the increase of

∑

R∈L cutP (R) overall. There are exactly N − 1
nodes like that as |Droot| = N . These sets Dv constitute a solution to the Ball Partition Problem
in r rounds, and given the cost function for the Ball Partition Problem it is immediate that the
overall increase of

∑

R∈L cutP (R) is thus at least B(N, r) − (N − 1) as the −1 terms add up to
N − 1. Since

∑

R∈L cutP (R, 0) = N − 1 we get
∑

R∈L cutP (R) ≥ B(N, r).
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All that remains to prove the lower bound on average-case PAR for Vickrey auctions (Theorem
2) is to prove the lower bound on the Ball Partition Problem (Theorem 18).

Proof: [Proof of Theorem 18] We will examine the entropy of the partitions at each round. This
permits an abstraction away from a particular ball-partitioning instance, in order to obtain general
properties. This will lead to a lower bound on the objective function B(N, r), the cost of the Ball
Partition Problem.

It will be useful to associate with the Ball Partition Problem in r rounds a full binary tree of
depth r where each set obtained at round t is associated to a distinct node at level t, and remaining
nodes are associated with the empty set. The association should be so that a node associated with
a set S has its children associated with sets S1 and S2 obtained from S during the partitioning. We
label each node i, by the size of the associated set Ni, and we label edges by the fraction of balls
that travel “over” that edge from the parent to the child node. (See Figure 3: a node labelled Ni

with children labelled ciNi and (1 − ci)Ni will have edges to those children labelled ci and 1 − ci,
respectively.)

Ni

ciNi

ci

(1− ci)Ni

1− ci

Figure 3: An arbitrary node in the ball-partitioning tree.

The tree’s root node is labelled N ; each leaf is labelled 1 or 0. (The 0 leaves are a result of
assuming the binary tree is full; if some ball is partitioned into a singleton set in round i < r, then
in each subsequent round it is “partitioned” into two sets: the singleton set and the empty set.)

Remark 20 At each level of the tree, the sum of the node labels = N . Thus the sum of labels of
all the non-leaf nodes in the tree is rN .

Consider the path followed by any ball b from the root to a leaf. It traverses edges labelled
db1, d

b
2, . . . , d

b
r, where

∏r
i=1 d

b
i =

1
N .

Multiplying this number for all balls gives a nice symmetrization which is true for all trees
representing solutions to the Ball Partition Problem.

(

1

N

)N

=
∏

b a ball

r
∏

i=1

dbi (2)

Consider some non-leaf node i of the tree, with edges to its children labelled ci and 1−ci (Figure
3). Together, these edges contribute (ci)

ciNi(1 − ci)
(1−ci)Ni to the right-hand side of equation (2).

(If ci = 0 this term equals 1 by definition.) WLOG assume each ci ≤ 1/2. Equation (2) can be
rewritten as:

(

1

N

)N

=
∏

non-leaf node i

(ci)
ciNi(1− ci)

(1−ci)Ni

−N logN =
∑

i

Ni(−H(ci)) (3)
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Where H(x) = x log 1
x + (1− x) log 1

1−x is the binary entropy of x.
Since the leaf nodes are not included in the sum,

∑

non-leaf node iNi = rN (by Remark 20). Let
c =

∑

i
ciNi
rN be the average cost of a cut in the Ball Partition Problem. Then the cost of the entire

tree is B(N, r) = crN . Since H is concave,
∑

i
Ni
rNH(ci) ≤ H(

∑

i
ciNi
rN ) = H(c).

N logN = rN
∑

i

Ni

rN
H(ci) ≤ rNH(c) (4)

For the sake of contradiction, suppose that the cost of the tree B(N, r) = crN < N logN
4 log( 4r

logN
)
.

Then the average cost of a cut is c < logN

4r log( 4r
logN

)
. This c can be rewritten as c = x

− log x for x = logN
4r .

Combining equation (4) and Lemma 21 (below),

logN

r
≤ H(c) = H

( x

− log x

)

< 4x = 4
logN

4r
=

logN

r

The inequality makes this a contradiction. Therefore every tree of depth ≤ r must incur cost
≥ N logN

4 log( 4r
logN

)
.

Lemma 21 For 0 < x ≤ 1
2 , the binary entropy H

(

x
− log x

)

< 4x.

Proof: For 0 < x ≤ 1
2 , log

1
x ≥ 1 so clearly 0 <

(

x
− log x

)

≤ 1
2 . Let y = x

− log x .
Expanding,

H(y) = y log
1

y
+ (1− y) log

1

1− y

For 0 < y ≤ 1
2 , it is not difficult to see that − log(1− y) ≤ 2y and 1− y < 1.

H(y) ≤ y log
1

y
+ (1− y)2y < y log

1

y
+ 2y

Substituting for y and expanding,

H

(

x

log 1
x

)

< x

(

log log 1
x

log 1
x

)

+ x

(

log 1
x

log 1
x

)

+ 2x

(

1

log 1
x

)

Examination reveals that for 0 < x ≤ 1
2 , the parenthesized coefficients are each ≤ 1. Hence

H( x
log 1

x

) < 4x.

4.1 Mutual information

The definition of average-case PAR is closely related to previously studied concepts in communica-
tion complexity such as information content [13] and (information-theoretic) privacy [6]. The main
distinction is that these concepts measure in terms of bits, and PAR does not. Next we recapitulate
some of these measures, show their relationship to the average-case PAR, and use this connection
to prove new lower bounds for the average-case PAR.

Among these notions, Klauck’s privacy measure [6] is most closely related to average-case PAR.
Let D be a probability distribution on X × Y . Let (X,Y) ∼ D be the random variable obtained
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by sampling according to D. Recall, for a function f on X × Y , its protocol P , and inputs
(x, y) ∈ X × Y , we let ΠP (x, y) be the transcript of the protocol on input (x, y). Then ΠP (X,Y)
is the random variable obtained by sampling a random input according to D. Klauck [6] gives the
following definition of privacy of a protocol.

PRIVD(P ) = max{I(X : ΠP (X,Y)|Y, f(X,Y)), I(Y : ΠP (X,Y)|X, f(X,Y))}.

The relationship between this measure and our average-case PAR is given by the following theorem.

Theorem 22 For a probability distribution D on X × Y and a protocol P for a function f :
X × Y → Z, the following holds:

PRIVD(P ) ≤ log(avgD PARsub(P )).

Proof: By symmetry, it suffices to show that I(X : ΠP (X,Y)|Y, f(X,Y)) ≤ log(avgD PARsub(P )).

I(X : ΠP (X,Y)|Y, f(X,Y)) ≤ H(ΠP (X,Y)|Y, f(X,Y))

≤
∑

y∈Y,z∈Z
|Rz ∩X × {y}|D · log(cutP (Rz ∩X × {y}))

≤ log(avgD PARsub(P )),

The first inequality holds by simple algebra. The second inequality holds because, for any y ∈ Y
and z ∈ Z, Pr[Y = y, f(X,Y) = z] = |Rz ∩X × {y}|D and H(ΠP (X,Y)|Y = y, f(X,Y) = z) ≤
log(cutP (Rz ∩X × {y})). The final inequality follows from concavity of logarithm.

Hence, one can use lower bounds on PRIV to derive lower bounds for average-case PAR. For
example, consider the function DISJn : {0, 1}n × {0, 1}n → {0, 1} on inputs x, y ∈ {0, 1}n, which
is defined to be one if {i ∈ [n];xi = yi = 1} is empty and zero otherwise. Klauck [6] shows
that for any protocol P for the disjointness problem, PRIVD(P ) ∈ Ω(

√
n/ log n), where D is

uniform on strings of hamming weight
√
n. Using the above lower bound, we immediately obtain

avgD PARsub(P ) ∈ 2Ω(
√
n/ logn) for any protocol P for DISJn.

There are two other well studied measures that are closely related to our average-case PAR:
the external and internal information cost (ICext and IC, resp.). The external information cost
was defined in [14] where the internal cost was also used implicitly. Later, using this measure,
Bar-Yossef et al. [15] obtained Ω(n) lower bounds on the randomized communication complexity
of DISJn. The internal information cost was formalized in [13]. For a protocol P for function
f : X × Y → Z and a distribution D on X × Y , they are defined respectively as follows:

ICext
D (P ) = I(X,Y : ΠP (X,Y))

ICD(P ) = I(X : ΠP (X,Y)|Y) + I(Y : ΠP (X,Y)|X).

As one can see the internal information cost is closely related to the privacy measure PRIV of
Klauck. The only substantial difference is that PRIV is conditioned on the value of the function
whereas IC is not. When f is a Boolean function, they are asymptotically identical.

Proposition 23 For any probability distribution D on X × Y and any protocol P for a function
f : X × Y → Z:

PRIVD(P )− log |Z|≤ ICD(P )≤2 · (PRIVD(P ) + log |Z|).
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The proposition follows from Claim 5. This relationship together with the known lower bounds
on internal information cost of DISJn allow us to prove one of the conjectures of Feigenbaum et
al. [3] for the intersection function INTERSECn. Function INTERSECn : {0, 1}n×{0, 1}n → P([n])
on inputs x, y ∈ {0, 1}n gives the set {i ∈ [n];xi = yi = 1}.

Feigenbaum et al. conjecture that the average-case subjective PAR for the intersection function
under the uniform distribution is exponential in n. This can be proven using the above tools and
the following result, which strengthens an earlier work by Bar-Yossef et al. [15]. Let ν be the
uniform distribution supported on {(0, 1), (1, 0), (0, 0)}. Let τ be the distribution generated by
taking the n-fold product of ν. In other words, τ is the uniform distribution supported on pairs of
strings that are disjoint.

Theorem 24 [16] Let P be any randomized protocol that computes disjointness DISJn with error
probability < 1/3. Then, ICτ

(

P
)

= Ω(n).

Using the above theorem, we show the following bound for Intersection.

Theorem 25 Let P be any deterministic protocol that computes set intersection INTERSECn.
Then, for U the uniform distribution, PRIVU

(

P
)

= Ω(n).

Proof: [Proof of Theorem 25] We prove this by a contradiction. Assume that we have a protocol
P to solve INTERSECm on m-bit inputs with little privacy loss under the uniform distribution.
The main idea of the argument is to come up with an appropriate reduction from set disjointness
DISJn on n bits to set intersection INTERSECm. This reduction will need to satisfy the following
features: solving intersection on the reduced instance should solve set-disjointness on the original
input instance. The reduced instance should not blow up too much in size, i.e. m = Θ(n). Finally,
and most importantly, distribution τ on input instances to set-disjointness should generate (by
our reduction) the uniform distribution on Intersection. This last step seems difficult to do via a
deterministic reduction. So we aim to get a workaround as follows.

Let Π be the random variable denoting the transcript generated by P . Then, our assump-
tion on P gives the following for some constant β which we fix at the end: β m > IU

(

X :
Π |Y, INTERSEC(X,Y)

)

+ IU
(

Y : Π |X, INTERSEC(X,Y)
)

.
The uniformly distributed pairs of m-bit random strings (X,Y) can be alternatively generated

by first selecting a random subset A of [m] where each element is in the set independently with
probability 1/4. For each i ∈ A, we set (Xi,Yi) = (1, 1). Then, for each coordinate i ∈ Ac =
[m] − A, (Xi,Yi) is picked independently according to ν. Let (XA,YA) denote pair of random
variables that are distributed according to X,Y conditioned on A as above and the underlying
distribution on this pair be denoted by τA. Thus, our assumption becomes equivalently:

EµA

[

IτA
(

XA : Π |YA
)

+ IτA
(

YA : Π |XA
)

]

< βm,

where µA is the distribution on A. Applying the Chernoff bound on the deviation of |A| from its
expectation, one concludes: (βm)/

(

1− exp(−Ω(m))
)

>

EµA

[

IτA
(

XA : Π |YA
)

+ IτA
(

YA : Π |XA
)

∣

∣

∣

∣

|A| ≤ m/2

]
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Thus, there exists some fixed set a of size at most m/2 such that

Iτa
(

Xa : Π |Y a
)

+ Iτa
(

Y a : Π |Xa
)

< β′m. (5)

This set a is going to provide us with the workaround needed for the deterministic reduction.
We define our reduction now w.r.t a. Set n = m− |a| ≥ m/2. Let P ′ be a protocol that solves set-
disjointness as follows: Given two n-bit strings (u, v), protocol P ′ first embeds u and v naturally
into ac = [m] − a. Let the embedded strings be called X(u) and Y (v) which each player can
generate privately on its own. Then, the players run the protocol P on

(

X(u), Y (v)
)

. Let J be the
intersection set that P returns. Clearly, DISJn(u, v) = 1 iff |J | = |a|. Finally, note if (U,V) are
generated according to τ , then the mapped strings

(

X(U),Y(V)
)

∼ (Xa,Ya). Hence, (5) implies
that ICτ (P ) ≤ β′m ≤ 2β′n. By setting β′ to be a small enough constant, we derive a contradiction
to Theorem 24. This completes the argument.

By using Theorem 22, this immediately yields the following theorem, conjectured by Feigenbaum
et al. [4].

Theorem 3 (Conjectured by Feigenbaum et al.) 3 For all n ≥ 1, and any protocol P com-
puting the Set Intersection INTERSECn the average-case subjective PAR is exponential in n under
the uniform distribution: avgU PARsub(P ) = 2Ω(n).

5 Conclusion

These techniques hold the promise of similar length-privacy tradeoffs for other functions. Further,
it seems that one can readily extend this work to include randomized and ǫ-error settings. With
the restriction of perfect privacy for two-player functions, [1] shows that the set of functions with
deterministic protocols and the set of functions with randomized protocols are the same. Perhaps
there is a similar result for any fixed constant PAR, or perhaps as the PAR requirement is relaxed,
the two sets gradually differ.
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