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Preface

Seminar on Numerical Analysis 2013 (SNA’13) is the tenth meeting in a series of events which
started ten years ago in Ostrava 2003. The following meetings were held in Ostrava 2005,
Moninec 2006, Ostrava 2007, Liberec 2008, Ostrava 2009, Nové Hrady 2010, Rožnov 2011,
Liberec 2012. The tenth SNA 2013 is again held in Rožnov pod Radhoštěm at the hotel Relax.

Since 2005, a part of SNA is devoted to Winter School with tutorial lectures devoted to se-
lected important topics within the scope of numerical methods and modelling. This year, this
part includes invited lectures devoted to adaptivity for linear and nonlinear solvers (Vohraĺık),
stochastic finite elements (Soused́ık), algebraic multigrid, stochastic problems and homogeniza-
tion (Marek, Pultarová), fast solvers and parallelism in the boundary element method (Lukáš),
multigrid methods for problems of mathematical physics and multiphysics (Hron).

Like the first SNA 2003, the present SNA 2013 is also devoted to the jubilee of Prof. RNDr.
Ivo Marek, DrSc., our colleague, teacher, friend who strongly influenced the development of
numerical analysis in our country. In many respects, SNA conference series is a follower of series
Software and Algorithm of Numerical Analysis (SANM) with Ivo Marek as the main organizer.
The SANM conferences were held for thirty years, being organized each second year, starting in
1975.

Looking back at least over the ten years history of SNA, it is a pleasure to see that many
participants grown from students to recognized distinguished scientists, that there are new
young students and colleagues interested in the numerical analysis and that some ideas remain
valid for all times. To support the last statement, let us remember that in the announcement
of SNA 2003 we mentioned an anonymous general principle

the faster the computer, the more
important the speed of algorithms

which, we are convinced is valid and maybe even more important nowadays, when we start the
first supercomputing project IT4Innovations in the Czech Republic.

Besides IT4Innovations, it is also our pleasure to acknowledge the support from the project
SPOMECH ”Creation of Multidisciplinary Team for Reliable Solution of Nonlinear Problems of
Mechanics”, reg. no. CZ.1.07/2.3.00/20.0070.

Let us wish SNA 2013 to be, similarly to the previous SNA meetings, a fruitful event, pro-
viding interesting lectures, showing new ideas, beauty of numerical analysis and starting or
strengthening collaboration and friendship.

On behalf of the Programme and Organizing Committee of SNA 2013,

Radim Blaheta and Jǐŕı Starý



Laudatio on Prof. RNDr. Ivo Marek, DrSc.

Ivo Marek was born on the 24th January 1933 in Prague. After finishing classical gymnasium,
he decided to study mathematics at the Charles University in Prague and graduated here in
1956 with diploma thesis supervised by a famous Czech mathematician Vojtěch Jarńık. His
thesis was devoted to the number theory, especially to grid numbers. Both grids and numbers
can be found in his later work, although in a rather different context.

After graduating from university, Ivo Marek was by an administrative decision sent to work as
a computational mathematician in the Nuclear Research Institute at Řež near Prague, at that
time a new and rapidly developing institution. Such administrative decision was common at
that time and considering his case, it was very lucky. He came there in contact with problems of
reactor physics, which influenced his later scientific work and gave him a lively interest in deep
applications of mathematics in physics and engineering. Ivo started from analytical solution
but soon became interested in functional analysis, theory of operators and analysis of deep and
important problems.

The hard scientific work, which started in Řež, resulted in obtaining the scientific degrees CSc.
(1962 - Iteration of Nonlinear Bounded Operators and Iterative Processes in Nonselfadjoint
Eigenvalue Problems) and DrSc. (1968), habilitation (1965) and getting a new job at the
Mathematical Institute of the Charles University (from 1963). His scientific development was
admirably fast, e.g. his CSc. (PhD.) thesis was prepared and defended in one year! On the
other hand, he also managed to play tennis, and even more, with his wife they became winners
of the regional tennis league!

In 1967 Ivo Marek visited Novosibirsk and met here a number of distinguished scientists. Let us
mention primarily G.I. Marchuk and G.E. Forsythe, who later invited him to the USA. This led
to him getting a position of a visiting professor at Case Western Reserve University, Cleveland,
Ohio (1968 - 1970) and University of Wisconsin (1970). Here Ivo Marek met a lot of other
famous mathematicians; we can mention such names as Varga, Householder, Wilkinson, Fox,
Golub, Nickel, Aubin and Schneider. Many of them shared his enthusiasm for math and tennis.
At several conferences he played tennis matches also with G. Strang and I can imagine that
the topic of my first mathematical work supervised by Ivo Marek could have its origin just
there. This period was very fruitful for the numerical analysis in many respects. Ivo’s host, R.
Varga then wrote a beautiful book ”Matrix iterative analysis” and continued to work in iterative
methods. By a lucky chance, Ivo could inform R. Varga and Ph. Ciarlet about a new pioneering
paper by M. Zlámal ”On the finite element method”.

For us it was important that after returning home in 1970, Ivo Marek was appointed as the
head of the Department of Numerical Mathematics at the Faculty of Mathematics and Physics
of the Charles University. Here he exploited much from his experience. He and his colleagues
introduced a lot of new courses based on functional analysis, modern theory of partial differential
equations and new achievements in numerical methods. The courses referred to distinguished
textbooks and monographs by A. Ralston, A. Taylor, J. Ortega and W. Rheinboldt, R. Varga,
J. Fix and G. Strang etc. Ivo gave the courses on theory of matrices, which later resulted in
a two-volume monograph ”Theory of Matrices in Applied Sciences” written with K. Žitný. In
1977 Ivo Marek was appointed the full professor of mathematics at the Charles University.

Besides the basic knowledge, Prof. Marek transferred to students his enthusiasm for mathe-
matics, for finding hidden relations and seeking new points of view. He transferred to us also
the feeling of the worldwide dimension of the science, which was especially important in the
seventies, when our society felt somewhat isolated from a part of the world.



Ivo was also active as an organizer of many seminars and conferences. Let us mention here
the successful series of Summer Schools on Software and Algorithms of Numerical Mathemat-
ics, which started in 1975 at Zadov and proceeded each second year for thirty years. These
conferences were very important for development of the numerical analysis and application of
the numerical methods in our country. From the other conferences, we should not omit the
international conferences ISNA 1985, 1987, 1990, 1992, which were held alternatively in Prague
and Madrid. At that time Ivo was also appointed an Honorary Professor of the Universidad
Politecnica de Madrid, Spain. Later, Ivo participated in organization of the annual GAMM
Conference in Prague in 1995; he was also involved in organizing of two important conferences
on Computational Linear Algebra at Milovy 1997 and 2002. From 2003 he is a member of the
SNA Programme Committee.

From 1996, Ivo Marek also started to teach at the Czech Technical University in Prague and
found a new space for application of his broad knowledge here. He found new colleagues and
students and contributed to their research in the field of engineering. But especially, he made a
great progress and obtained new excellent results in application of iterative methods for solving
problems with stochastic matrices. Many new results on this topics can be found in papers
with several coworkers, Daniel Szyld from Temple University, Petr Mayer and Ivana Pultarová
from CTU Prague. We are glad, that we can be further acquainted with these results at the
Winter School lectures at this SNA. The list of his research interest is definitely much broader.
I personally, together with the whole group of mathematicians from Ostrava, would like to
appreciate very much his interest and encouragement, which helps us in many cases.

The worldwide scientific reputation of Ivo Marek resulted in his membership in editorial boards
of several scientific journals; the most prestigious of them are Numerical Linear Algebra with
Applications, Numerical Functional Analysis, and Numerical Methods for Partial Differential
Equations, Integral Transforms and Special Functions. His work was awarded e.g. by the
National Price and B. Bolzano Medal for Merits in the Mathematical Sciences (Czechoslovak
Academy of Sciences).

Ivo’s enthusiasm for numerical linear algebra, functional analysis and mathematics in general,
and unfailing friendliness have brought him many friends all over the world. It deeply impressed
me, when in nineties I got my first opportunities to accompany him to conferences abroad.
The discussions with other participants usually showed the width and depth of Ivo Marek’s
mathematical knowledge and interests and, usually, he was also a centre of the fun and an
excellent companion.

After finishing this brief and incomplete enlightenment of Ivo’s exceptional personality, I would
like personally and on behalf of the conference participants to wish Ivo good health, happi-
ness and many further successes in his activities. We wish him to always be an optimist with
unbounded energy and a source of enthusiasm surrounded by friends, colleagues and students.

Radim Blaheta



SPOMECH project

The main goal of the SPOMECH project (European Regional Development Fund, reg. no.
CZ.1.07/2.3.00/20.0070) is to create a multidisciplinary research team working in the field of
reliable modelling of nonlinear problems of mechanics and geomechanics and promote research
activities and international cooperation in these subjects.

The project also supports seminars, invitations of specialists, three international workshops and
a final conference, all in the period from July 2011 to June 2014. Besides SNA, the main
SPOMECH supported events include:

• 1st SPOMECH Workshop, Ostrava, November 22 - 24, 2011

Main speakers: Wolfgang Hackbusch (Leipzig), Sergey Repin (St. Petersburg), Johannes Kraus

(Linz)

• 2nd SPOMECH Workshop, Ostrava, November 19 - 20, 2012

Main speakers: Maya G. Neytcheva (Uppsala University), Talal Rahman (Bergen University),

Alexander Popp (Technical University Munich), François-Xavier Roux (ONERA), Frédéric Feyel

(ONERA)

We can also mention the planned future events:

• 3rd SPOMECH Workshop, Ostrava, November 2013

• Seminar on Numerical Analysis SNA 2014

• MODELLING 2014 conference, June 2014

The scope is computational modelling in engineering and science: multiscale modelling, multi-

physics modelling, progress in discretization methods, efficient solvers, nonlinear problems, chal-

lenging applications of mathematical modelling methods in engineering.

There are also events organized in strong collaboration with the SPOMECH team:

• Autumn School on Parallel Solution of Large Engineering Problems

Ostrava, November 19 - 23, 2012

Main speakers: Johannes Kraus (RICAM), Svetozar Margenov (BAS Sofia), Oliver Rheinbach

(University of Duisburg-Essen), Erhan Turan (ETH Zurich), Roman Wyrzykowski (Czestochova

University of Technology)

• High Performance Computing in Science and Engineering HPCSE 2013

Hotel Soláň, Beskydy Mountains, CR, May 27 - 30, 2013

• Preconditioning of Iterative Methods: Theory and Applications PIM 2013

Prague, July 1 - 5, 2013
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Composite polynomial convergence bounds, the CSI method
and finite precision CG computations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

V. Hapla, D. Horák, F. Staněk:
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Design of an object oriented framework for algebraic multigrid . . . . . . . . . . . . . 74



J. Kruis, T. Koudelka:
FETI method in civil engineering problems . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

V. Kučera:
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Stopping criteria in the parallel one–sided

block–Jacobi SVD algorithm

M. Bečka, G. Okša, M. Vajteršic

Institute of Mathematics SAS, Bratislava

The one-sided block-Jacobi SVD algorithm is suited for the SVD computation of a general
complex matrix A of order m× n, m ≥ n. However, we will restrict ourselves to real matrices
with obvious modifications for the complex case.

We start with the block-column partitioning of A in the form

A = [A1, A2, . . . , Aℓ],

where the width of Ai is ni, 1 ≤ i ≤ ℓ, so that n1 +n2 + · · ·+nℓ = n. Due to the computational
balance and communication complexity in the case of parallel implementation, it is preferable
to choose ni of comparable size for all i.

The serial algorithm can be written as an iterative process:

A(0) = A, V (0) = In,

A(r+1) = A(r)U (r), V (r+1) = V (r)U (r), r ≥ 0. (1)

Here the n× n orthogonal matrix U (r) is the so-called block rotation of the form

U (r) =




I

U
(r)
ii U

(r)
ij

I

U
(r)
ji U

(r)
jj

I



,

where the unidentified matrix blocks are zero. The purpose of matrix multiplication A(r)U (r)

in (1) is to mutually orthogonalize individual columns between block columns i and j of A(r).

The matrix blocks U
(r)
ii and U

(r)
jj are square of order ni and nj, respectively, while the first,

middle and last identity matrix is of order
∑i−1

s=1 ns,
∑j−1

s=i+1 ns and
∑r

s=j+1 ns, respectively.
The orthogonal matrix

Û (r) =

(
U

(r)
ii U

(r)
ij

U
(r)
ji U

(r)
jj

)

of order ni + nj is called the pivot submatrix of U (r) at step r. During the iterative process (1),
two index functions are defined: i = i(r), j = j(r) whereby 1 ≤ i < j ≤ ℓ. At each step r, the
pivot pair (i, j) is chosen according to a given pivot strategy that can be identified with a function
F : {0, 1, . . .} → Pℓ = {(c, d) : 1 ≤ c < d ≤ ℓ}. If O = {(c1, d1), (c2, d2), . . . , (cN(ℓ), dN(ℓ))} is
some ordering of Pℓ with N(ℓ) = ℓ (ℓ− 1)/2, then the cyclic strategy is defined by:

If c ≡ ℓ− 1 mod N(ℓ) then (i(r), j(r)) = (cs, ds) for 1 ≤ s ≤ N(ℓ).

The most common cyclic strategies are the row-cyclic one and the column-cyclic one, where the
orderings are given row-wise and column-wise, respectively, with regard to the upper triangle
of A. The first N(ℓ) iterations constitute the first sweep. When the first sweep is completed,
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the pivot pairs (i, j) are repeated during the second sweep, and so on, up to the convergence of
the entire algorithm.

Notice that in (1) only the matrix of right singular vectors V (r) is iteratively computed by
orthogonal updates. If the process ends at iteration t, say, then A(t) has mutually highly or-
thogonal columns. Their norms are the singular values of A, and the normalized columns (with
unit 2-norm) constitute the matrix of left singular vectors.

The parallel version of the one-sided block-Jacobi SVD algorithm implemented on p processors
with the blocking factor ℓ = 2p is given in the form of Algorithm 1.

Algorithm 1 Parallel one-sided block-Jacobi SVD algorithm

1: V = In, ℓ = 2 ∗ p
2: ⊲ each processor has 2 block columns of A : AL and AR

3: G =

(
GLL GLR

GT
LR GRR

)
=

(
AT

LAL AT
LAR

AT
RAL AT

RAR

)

4: ⊲ global convergence criterion with a constant ǫ, 0 < ǫ≪ 1
5: while (F (A, ℓ) ≥ ǫ) do

6: ⊲ local convergence criterion with a constant δ, 0 < δ ≪ 1
7: if (F (G, ℓ) ≥ δ) then

8: ⊲ diagonalization of G
9: EVD(G,X)

10: ⊲ update of block columns
11: (AL, AR) = (AL, AR) ∗X
12: (VL, VR) = (VL, VR) ∗X
13: end if

14: ⊲ parallel ordering–choice of p independent pairs (i, j) of block columns
15: ReOrderingComp(p)
16: Send-Receive(As, Vs,diag(Gss)), where s is either L or R
17: end while

18: svL : square roots of diagonal elements of GLL

19: svR : square roots of diagonal elements of GRR

20: ⊲ two block columns of left singular vectors
21: UL = AL ∗ diag(1/svL), UR = AR ∗ diag(1/svR)

end

Four variants of a new dynamic ordering were designed for the parallel one-sided block Jacobi
SVD algorithm in [1]. Similarly to the two-sided algorithm, the dynamic ordering takes into
account the actual status of a matrix—this time of its block columns with respect to their
mutual orthogonality. Variants differ in the computational and communication complexities
and in proposed global and local stopping criteria.

Variant 1 is based on a parallel implementation of the Lanczos processes applied to a set of the
symmetric Jordan-Wielandt matrices C,

C ≡
(

0 AT
i Aj

AT
j Ai 0

)
.

The aim is to estimate the absolute values of L largest eigenvalues that are the cosines of L
smallest principal angles between span(Ai) and span(Aj). Having p processors, p mutually most

12



inclined pairs (Ai, Aj) are chosen for orthogonalization at the beginning of each parallel iteration
step. The mutual inclination is estimated by the weight

w
(1)
ij ≡ ‖TL‖2

F =
L∑

s=1

α2
s + 2

L∑

s=2

β2
s ,

where the coefficients αs = (Czs, zs) and βs+1 = ‖Czs − αszs‖ are elements of the symmetric,
tri-diagonal matrix TL. The global stopping criterion of the iteration process is based on the

maximum value of currently computed weights w
(1)
ij . When using a computer with machine

precision ǫ, the convergence is reached when

max
i,j

w
(1)
ij < mLǫ,

where m is the number of matrix rows and L is the number of steps in Lanczos processes.
The local stopping criterion is similar: A given pair (i, j) of block columns is not mutually
orthogonalized if

w
(1)
ij < mLǫ.

In variant 2, the mutual position of span(Ai) and span(Aj) is described by using just one
representative vector per subspace,

ci ≡
Ai e

‖e‖ , 1 ≤ i ≤ ℓ,

where e ≡ (1, 1, . . . , 1)T ∈ R
k×1. The weight is defined as

w
(2)
ij ≡ |(ci, cj)|,

and p largest weights define p pairs of block columns for the orthogonalization. The global
stopping criterion takes into account that the computation of ci requires no scalar product (only

the sum of k columns of Ai), whereas to compute w
(2)
ij , one scalar product of length m is needed.

In what follows, we neglect parameters m and k and take into account only the number of scalar
products required for the computation of weights. However, for one scalar product we would
directly work with the machine precision ǫ. Therefore, in this case, we define the global stop
less strictly (and somewhat arbitrarily) as

max
i,j

w
(2)
ij < 10 ǫ.

With respect to local computation, two block columns are not mutually orthogonalized if

w
(2)
ij < 10 ǫ.

Variant 3 uses the weight

w
(3)
ij ≡ ‖AT

i cj‖ =
‖AT

i Aje‖
‖e‖ ,

where cj is the representative vector for span(Aj). It can be shown that w
(3)
ij is the locally

optimal version of w
(2)
ij ,

w
(3)
ij = max

‖y‖=1
|(Aiy, cj)|

13



for given Ai and cj . We have proposed the global stopping criterion for variant 3 as

max
i,j

w
(3)
ij < k ǫ.

Locally, two block columns are not mutually orthogonalized if

w
(3)
ij < k ǫ.

Finally, variant 4 computes the ‘exact’ weights

w
(4)
ij ≡ ‖AT

i Aj‖F;

a small value of w
(4)
ij means that span(Ai) is nearly orthogonal to span(Aj). Notice that this is

not true for variant 2 because there is no lower bound for the value of w
(2)
ij —it can be nearly

zero even if subspaces are significantly inclined to each other. The proposed global stopping
criterion is

max
i,j

w
(4)
ij < k2 ǫ,

and the corresponding local stopping criterion is of the form

w
(4)
ij < k2 ǫ.

The performance of four variants of dynamic ordering was tested on square random matrices of
order 4000 and 8000, with six different distributions of singular values and two condition numbers
(101 for the well conditioned case and 108 for the ill conditioned one), using 16 and 32 processors.
All variants of dynamic ordering were compared with two parallel cyclic orderings with respect
to the number of parallel iteration steps needed for the convergence, total parallel execution time
and relative error in the orthogonality of computed left singular vectors. It turns out that the
variant 3, for which a local optimality in some precisely defined sense can be proved, is the most
efficient one. Additional numerical experiments show that this recommended variant 3 is about
1.5 times faster than the parallel two-sided block–Jacobi algorithm with dynamic ordering, and
about 2–3 times slower than the ScaLAPACK procedure PDGESVD.

Acknowledgments: Authors were supported by the VEGA grant no. no. 2/0003/11 from the
Scientific Grant Agency of the Ministry of Education and Slovak Academy of Sciences, Slovakia.
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Tvarová optimalizace pro 2D kontaktńı problém

se zadaným třeńım s koeficientem třeńı závislým na řešeńı

P. Beremlijski, J. Haslinger, J. Outrata, R. Pathó

Centrum excelence IT4Innovations a Katedra aplikované matematiky

Vysoká škola báňská - Technická univerzita Ostrava

1 Úvod

V př́ıspěvku se zabýváme diskretizovanou úlohou tvarové optimalizace dvojrozměrného pružného
tělesa v jednostranném kontaktu s tuhou překážkou. Stavová úloha je v našem př́ıpadě dána
jako Signoriniho problém s Trescovým ťreńım s koeficientem ťreńı závislým na řešeńı. Při
splněńı jistých podmı́nek pro koeficient ťreńı má diskrétńı kontaktńı úloha jediné řešeńı. Nav́ıc
řešeńı této úlohy je závislé lokálně lipschitovsky na ř́ıd́ıćı proměnné popisuj́ıćı tvar pružného
tělesa. D́ıky jedinému řešeńı diskrétńı úlohy pro fixovanou ř́ıd́ıćı proměnnou, můžeme použ́ıt
tzv. př́ıstup implicitńıho programováńı. Ten je založen na minimalizaci nehladké funkce složené
z cenové funkce a jednoznačného zobrazeńı, které ř́ıd́ıćı proměnné přǐrazuje řešeńı diskrétńı
úlohy, tzn. stavové proměnné. Pro minimalizaci nehladké funkce lze efektivně použ́ıt bundle
trust metodu. K výpočtu subgradientńı informace, kterou metoda vyžaduje, je nutné použ́ıt
Morduchovič̊uv kalkul. Na závěr př́ıspěvku je ilustrováno použit́ı našeho př́ıstupu. Podrobně se
lze s uvedeným př́ıstupem seznámit v [3].

2 Stavová úloha

Necht’ Ω ⊂ R
2 je pružné těleso s lipschitzovskou hranićı ∂Ω. Hranice ∂Ω je složena ze ťŕı

nepřekrývaj́ıćıch se část́ı Γu, Γp a Γc. Viz obrázek 1.

�

�

Obrázek 1: 2D pružné těleso.

Γu je hranice s Dirichletovskou podmı́nkou. Povrchové śıly P = (P1, P2) p̊usob́ı na hranici Γp,
P ∈ L2(Γp). Těleso je zdola ”podepřeno” podél hranice Γc (jej́ı tvar je určen ř́ıd́ıćı proměnnou
α ∈ R

d) tuhou překážkou. Množinu př́ıpustných návrhových proměnných nazveme Uad. Na
této hranici je předepsáno Trescovo ťreńı s koeficientem ťreńı závislým na řešeńı F : R+ → R+.
Zavedeme si následuj́ıćı množinu

K(α) := {v ∈ R
n | v ν ≥ −α}, α ∈ Uad, (1)
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kde v ν odpov́ıdá normálovému posunut́ı. Algebraická formulace diskrétńıho Signoriniho pro-
blému s Trescovým ťreńım s koeficientem ťreńım závislým na řešeńım je následuj́ıćı

Najděte u ∈ K(α) takové, že pro každé v ∈ K(α) :

〈A(α)u , v − u〉n +

p∑

i=1

ωi(α)F(|(u τ )i|)
(
|(v τ )i| − |(u τ )i|

)
≥ 〈L(α), v − u〉n,





(2)

kde A ∈ R
n×n a L ∈ R

n jsou matice tuhosti a vektor sil závislé na ř́ıd́ıćı proměnné α.

Nyńı si zavedeme vektor Lagrangeových multiplikátor̊u λ ∈ R
p
+ (p je počet kontaktńıch uzl̊u)

pro omezeńı v ∈ K(α) a vektor (u ,λ) nazveme stavovou proměnnou. Nyńı zavedeme rozděleńı
vektoru posunut́ı u na (u t,uν), kde u t př́ısluš́ı tečnému posunut́ı a uν odpov́ıdá normálovému
posunut́ı. Dále zredukujeme naši úlohu a budeme se zabývat pouze kontaktńımi uzly. Stavová
úloha realizuje zobrazeńı S : α ∈ R

d → (u t,uν ,λ) ∈ R
3p (̌ŕıd́ıćımu vektoru α ∈ Uad je přǐrazeno

řešeńı kontaktńı úlohy (u t,uν ,λ)). Diskretizovanou stavovou úlohu lze ekvivalentně popsat
zobecněnou rovnost́ı (podrobně v [1] a [2]).

0 ∈ Aττ (α)u τ + Aτν(α)uν − Lτ (α) +Q1(α,u τ )

0 = Aντ (α)uτ + Aνν(α)uν − Lν(α) − λ
0 ∈ uν +α+N

R
p

+
(λ),





(3)

kde multifunkce Q1 : Uad × R
p

⇉ R
p je definována jako:

(
Q1(α,u τ )

)
i
:= ωi(α)F(|(u τ )i|)∂|(u τ )i| ∀i = 1, . . . , p, (4)

a N
R

p

+
(·) je standardńı normálový kužel.

3 Tvarová optimalizace pro kontaktńı ŕlohu se zadaným třeńım

s koeficientem třeńı závislým na řešeńı

Naš́ım úkolem je nalézt ř́ıd́ıćı proměnnou α určuj́ıćı Beziérovu funkci, kterou je modelována
kontaktńı hranice Γc, pro kterou nabývá cenový funkcionál J(α,S(α)) svého minima. Úlohu
diskrétńı tvarové optimalizace zavedeme jako řešeńı

min
α∈Uad

J (α) = J(α,S(α)), (5)

kde funkcionál J je spojitě diferencovatelný. K řešeńı této nehladké úlohy byla použita bundle
trust metoda, která vznikla kombinaćı svazkových metod a trust region metody (podrobně
viz [7]). Tato iteračńı metoda poťrebuje rutinu, která v každém kroce vypočte hodnotu ceno-
vého funkcionálu (k tomu poťrebujeme vyřešit stavovou úlohu) a jeden (libovolný) Clarke̊uv
subgradient z Clarkeova zobecněného gradientu ∂J (α). Pro jeho nalezeńı použijeme tvrzeńı

∂J (α) = ∇1J(α,S(α)) + conv {C T∇2J(α,S(α))|C ∈ ∂S(α)} (6)

(viz [4]). Protože plat́ı {C Ty∗|C ∈ ∂S(α)} = conv D∗S(α)(y ∗) pro všechna y∗, stač́ı nalézt
jeden prvek z množiny D∗S(α)(∇2J(α,S(α))). Prvky limitńı koderivace D∗S(α) najdeme
použit́ım nehladkého kalkulu B. Morduchoviče (viz [6]). Podrobně v [3].
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4 Numerický př́ıklad

Pro numerické řešeńı stavové úlohy byla použita metoda postupných aproximaćı, kde každá ite-
race představuje Signoriniho úlohu se zadaným ťreńım a daným koeficientem ťreńı vypočteným
z předchoźı iterace. Numerické řešeńı stavové úlohy bylo implementováno (stejně jako celé
řešeńı tvarově-optimalizačńı úlohy) v knihovně MatSol (viz [5]). Tato knihovna byla vyvinuta
v prosťred́ı Matlab.

Nyńı použijeme navržený postup pro řešeńı následuj́ıćı úlohy:

min ‖λ̄− λ‖2
2

s omezeńım α ∈ Uad,
(7)

Předpokládejme, že koeficient ťreńı F je popsán takto

F(t) = 0.25 · 1

t2 + 1
∀t ∈ R+, (8)

a mez skluzu je dána g = 150.

Naši oblast jsme nyńı diskretizovali śıt́ı s 1800 uzly, jej́ı velikost je 2x1. Povrchové tlaky na
hranici Γp jsou předepsány takto P1 =(0;−60 MPa) na (0, 1.8) ×{1} a P1 =(0; 0) na (1.8, 2) ×
{1}, zat́ımco P2 = (50 MPa; 30 MPa) na {2} × (0, 1). Fyzikálńı parametry oblasti maj́ı tyto
hodnoty – Young̊uv modul E = 1 GPa a Poissonova konstanta ν = 0.3. Dimenze návrhové
proměnné α ř́ıd́ıćı Beziérovu funkci, kterou je dána hranice Γc, je 20.

Počátečńı návrh, jeho deformace a rozložeńı von Misesova redukovaného napět́ı je na obrázku 2.

Obrázek 2: Počátečńı návrh.

Obrázek 3 ukazuje optimalizovaný návrh, jeho deformaci a rozložeńı von Misesova redukovaného
napět́ı.

Obrázek 3: Optimalizovaný návrh.
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Obrázek 4: Rozložeńı normálového napět́ı na kontaktńı hranici pro počátečńı návrh (vlevo)
a optimalizovaný návrh (vpravo).

Rozložeńı normálového napět́ı na kontaktńı hranici (plná čára) i předepsané normálové napět́ı
λ̄ (tečkovaná čára) pro počátečńı i optimalizovaný tvar tělesa jsou zobrazeny na obrázku 4.

Hodnota cenového funkcionálu pro počátečńı návrh je 5.910 · 104, zat́ımco hodnota cenového
funkcionálu pro výsledný návrh je 9.1457 · 102.

Acknowledgement: Tato práce byla podpořena Evropským fondem regionálńıho rozvoje
(ERDF) v rámci projektu Centra excelence IT4Innovations (CZ.1.05/1.1.00/02.0070) a pro-
jektem SPOMECH - Vytvořeńı multidisciplinárńıho vědeckovýzkumného týmu pro spolehlivé
řešeńı úloh mechaniky, reg. č. CZ.1.07/2.3.00/20.0070 v rámci Operačńıho programu Vzděláváńı
pro konkurenceschopnost a financovaného ze strukturálńıch fond̊u EU a státńıho rozpočtu ČR.
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Spiders on the vineyard

M. Biák, D. Janovská

Department of Mathematics, Institute of Chemical Technology, Prague

1 Introduction

The population model of the spiders hunting the insect on the vineyard can be described as the
set of ordinary differential equations, see [1]. This type of model is known as the predator–prey
model. We show how to integrate a human intervention into this model. We formulate Filippov
system that includes both cases - with and without the intervention. Then we analyze this
model using the theory described in [2].

All simulations are performed in modified version of the program developed by Petri T. Piiroinen
and Yuri A. Kuznetsov, see [3] and [4].

2 Model equations

The predator–prey model of spiders and insect on the vineyard is described as the set of ordinary
differential equations:

ḟ = rf(1 − f

W
) − csf, (1)

ṡ = s(−a+
kbv

H + v
+ kcf), (2)

v̇ = v(e− bs

H + v
), (3)

where v(t) is the population of the insect on the vineyard, f(t) is the population of the insect
outside the vineyard, s(t) is the population of the spiders. If man intervenes into the ecosystem
by spraying to prevent an overgrowth of insects, equations (1)–(3) pass to

ḟ = rf(1 − f

W
) − csf − h(1 − q)f, (4)

ṡ = s(−a+
kbv

H + v
+ kcf) − hKqs, (5)

v̇ = v(e− bs

H + v
) − hqv, (6)

where an extra term in each equation represents the mortality caused by spraying. All parame-
ters in (1)–(3) and (4)–(6) are positive real numbers.

The question is how to introduce the model, that includes both cases (with and without spraying)
and that keeps the population of the insect on the vineyard below a given limit. We will show
that such model is a type of Filippov system and it can be treated using the techniques stated
e.g. in [2].
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3 Population model as Filippov system

Because only the positive values of f(t), s(t), v(t) have a physical meaning, we start with a region
D = {(f, s, v) ∈ R

3
: f(t) > 0, s(t) > 0, v(t) > 0}. Let us have a scalar function ϕ : D → R. The

function ϕ divides the region D into:

S1 = {x ∈ D : ϕ(x) > 0},
S2 = {x ∈ D : ϕ(x) < 0},
Σ = {x ∈ D : ϕ(x) = 0},

where x = (f, s, v)T .

In our case, we want to keep the population v(t) of the insect on the vineyard below the given
value vm ∈ R, vm > 0. Therefore, our function ϕ(x) will be

ϕ(f, s, v) = vm − v. (7)

We define a Filippov system on D = S1 ∪ S2 ∪ Σ

F : ẋ =





g(1)(x) , x ∈ S1,

g(0)(x) , x ∈ Σ,

g(2)(x) , x ∈ S2,

(8)

where ẋ = (ḟ , ṡ, v̇)T , and where the vector fields g(i) : R
3 → R

3
, i = 1, 2, are

g(1) =




rf(1 − f

W
) − csf

s(−a+
kbv

H + v
+ kcf)

v(e− bs

H + v
)




, g(2) =




rf(1 − f

W
) − csf−h(1 − q)f

s(−a+
kbv

H + v
+ kcf)−hKqs

v(e− bs

H + v
)−hqv




.

If ϕ(f, s, v) > 0, no spraying occurs and the vector field g(1)(x) is in effect. If the population v(t)
of the insect on the vineyard rises above a given value vm, i.e. if ϕ(f, s, v) < 0, the spraying
begins and the vector field g(2)(x) takes place. The spraying goes on, until the value of v(t)
decreases below vm, when g(1)(x) applies again.

Before we define the vector field g(0)(x) that determines behavior of the system (8) on the
boundary Σ, we need to distinguish two types of sets on Σ. We define a scalar function σ : Σ → R,

σ(x) = 〈∇ϕ,g(1)〉〈∇ϕ,g(2)〉,

and we obtain two sets on Σ, the crossing set Σc ⊆ Σ = {x ∈ Σ : ϕ(x) = 0 ∧ σ(x) > 0}, and
the sliding set Σs ⊆ Σ = {x ∈ Σ : ϕ(x) = 0 ∧ σ(x) ≤ 0},
In our case, the scalar function σ(f, s, v) reads

σ(f, s, v) = 〈∇ϕ,g(1)〉〈∇ϕ,g(2)〉,

〈∇ϕ,g(1)〉 =

(
bs

H + vm
− e

)
,

〈∇ϕ,g(2)〉 =

(
bs

H + vm
− e+ hq

)
.
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If σ(f, s, v) ≤ 0, trajectory slides along the sliding set Σs. If σ(f, s, v) > 0, we are on the crossing
set Σc and trajectory leaves the boundary.

On Σc, we put

g(0) =
1

2

(
g(1) + g(2)

)
.

For x ∈ Σs, we define a smooth vector field g(0) : R
3 → R

3
,

g(0) = λg(1) + (1 − λ)g(2), λ =
〈∇ϕ,g2〉

〈∇ϕ,g2 − g1〉 , (9)

where λ ∈ R, 0 ≤ λ ≤ 1.

The points in which σ(f, s, v) = 0 are called tangent points. There are two sets of tangent points
T1 and T2 on the boundary Σ:

T1 = {(f, s, v) : f > 0, s =
1

b
e(H + vm), v = vm},

T2 = {(f, s, v) : f > 0, s =
1

b
(e− hq)(H + vm), v = vm}.

Let us assume that e < hq, i.e. sT2 < 0. The sets T1 and T2 delimit the sliding set Σs, and due to
the fact that sT2 < 0 < sT1 , the sliding set Σs ⊂ Σ = {(f, s, v) : f > 0 ∧ 0 < s ≤ sT1 ∧ v = vm}
is a semi-infinite stripe with the non-zero width equal to H+vm

b hq.

If in (9) g(0)(P ) = 0, the point P is a pseudo-equilibrium of the Filippov system.

We performed simulations with the parameters listed in Table 1. We found that a local slid-
ing bifurcation occurs for the value vm = 0.9. During the simulations we observed a global
bifurcation, too.

Parameter Value Meaning

a 0.2 specific mortality rate of predators

b 1.18 specific reproduction rate of predators per 1 prey eaten in the vineyards

c 0.2 specific reproduction rate of predators per 1 prey eaten in the woods

e 0.5 specific growth rate of the prey in the vineyards

r 1 specific growth rate of the prey in the woods

k 1 conversion factor of prey into new spiders, k ≤ 1

H 7 carrying capacity of the vineyard

W 1 carrying capacity of the woods

h 0.6 effectiveness of the insecticide against the parasites

K 0.01 smaller effect the insecticide should have on the spiders, 0 < K < 1

q 0.9 portion of insecticide sprayed directly on the vineyards

1 − q 0.1 portion which may accidentally be dispersed in the woods

vm 0.3–3.0 limit of the population of the insect on the vineyard

Table 1: The parameters used for the simulation of the system F .
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Figure 1: Solution diagram.

4 Conclusions

In the population model of the spiders on the vineyard, we discovered both local and global
sliding bifurcation. The local bifurcation is caused by a collision of the equilibrium with the
boundary Σ and is called boundary–equilibrium bifurcation. The global sliding bifurcation in
the simulations is caused by a collision of the periodic trajectory with the boundary Σ.

Acknowledgement: The work is a part of the research project MSM 6046137306 financed by
MSMT, Ministry of Education, Youth and Sports, Czech Republic.
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1 Introduction

This contribution concerns the iterative solution of singular systems which arise in many appli-
cations. Let us mention the following

• solution of PDE problems with pure Neumann boundary conditions (which is our main
aim), see [7], [8], [20]. Such problems have a specific role in numerical upscaling, see [6],

• solution of Neumann type subproblems in domain decomposition techniques as FETI,
Neumann-Neumann, BDDC methods, see [22], [16],

• analysis of Markov chain problems, computation of stochastic vector, see e.g. [18], [19],
• computer tomography [15], [14] and inverse problems [4], [21].

2 Iterative solution of singular symmetric semidefinite systems

Let us focus on iterative solution of linear systems of the form

Au = b, (1)

where A is a singular, symmetric, positive semidefinite n × n matrix, b ∈ Rn. For u, v ∈ Rn

denote 〈u, v〉 = uT v and ‖u‖ the Eucledian inner product and norm. Due to symmetry of A,
the range R(A) and the null space N(A) are mutually orthogonal with respect to the Eucledian
inner product and the vectors u ∈ Rn can be uniquely decomposed as

u = uN + uR, where uN ∈ N(A) and uR ∈ R(A).

Let b = bN + bR, then the system (1) has infinitely many generalized (least squares) solutions u,

‖Au− b‖ = min{‖Av − b‖, v ∈ Rn} (2)

among which there is a unique least squares solution u∗ with the minimal Eucledian norm. Note
that u∗ = A+b, where A+ is the Moore-Penrose pseudoinverse of A, see [10], [16]. If b ∈ R(A),
i.e. the system (1) is consistent, then the generalized solutions are standard solutions of (1).

Let us assume that (1) is solved iteratively with denoting the i-th iteration ui,

ui ∈ u0 +Ki(A, r
0) = u0 + span{r0, Ar0, . . . , Ai−1r0}, r0 = b−Au0, (3)

where Ki(A, r
0) = span{r0, Ar0, . . . , Ai−1r0} is a Krylov space. Then

ui = u0 + qi−1(A)r0, where qi−1 is a polynomial of order ≤ i− 1. (4)
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The convergence can be investigated through behaviour of ei = ui − u∗. If ei → 0 then the
iterations converge to the minimal least squares solution u∗. If ei → w, where w ∈ N(A), then
the iterations converge to a (generalized) solution of A.

From (4), it follows that

ei = u0 − u∗ + qi−1(A)(bN +Au∗ −Au0) = pi(A)e0 + qi−1(0)bN , (5)

where pi(λ) = 1 − λqi−1(λ).

If e0 = e0N + e0R then pi(A)e0N = u0
N and pi(A)e0R depends on values pi(λ) on λ ∈ σ(A) \ {0}.

The second term is zero for consistent problems, but otherwise can be convergent if qi−1(0) =
−p′i(0) 6= 0.

The simplest Richardson’s iteration ui+1 = ui + ωA(b− ui) fulfill (3), (4), (5) with

pi(λ) = (1 − ωλ)i, pi(0) = 1, qi−1(0) = −p′i(0) = (i+ 1)ω.

Thus, the method converges (e0 → u0
N ) for the consistent problems, but diverges (the second

terms gradually dominates) for the inconsistent case (bN 6= 0).

To get convergence even for inconsistent case, the method needs a modification. For example,
we can use extrapolation of Richardson’s iterations [17]. For

ūi+1 = ui+1 − (i+ 1)(ui+1 − ui),

we get

ūi+1 − u∗ = ui+1 − u∗ − (i+ 1)(ui+1 − ui) = pi+1(A)e0 + (i+ 1)ω(bN +A(u∗ − ui))

= pi+1(A)e0 + (i+ 1)ωAei = pi+1(A)e0 + (i+ 1)ωA(pi(A)e0 + iωbN ))

= pi+1(A)e0 + (i+ 1)ω(pi(A)Ae0)).

This extrapolated method converges since pi(λ) ≤ qi for all λ ∈ σ(A) \ {0}, where q < 1 for a
suitable ω.

It means that there are ways how to damp the divergence of the null space component of the
iterations. On the other hand, this divergence in the null space component may not cause a
problem in case that we are interested only in quantities, which do not depend on the null space
component, like gradients, fluxes, strains and stresses.

A similar analysis can be done for other iterative methods applied to singular systems, see e.g.
[10]. For the conjugate gradient (CG) method, the convergence can be proven in the consistent
case, see eg. [1]. But the inconsistence influence both N(A) and R(A) components of the
iterations, see [13], [7] and the next section.

3 Solution of Neumann problems

The solution of boundary value problems with pure Neumann boundary conditions arises in
different applications, see the other sections. If the solution of the continuous Neumann problem
exists, then global balance (consistency) conditions like (7) are satisfied. On the contrary, these
conditions guarantee the existence of the (not unique) solution. For example ([20], [7]), for the
Neumann problem,

−div(∇u) = f in Ω and ∇u · n = g in ∂Ω (6)
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the solution exits if and only if ∫

Ω
f dx+

∫

∂Ω
g dx = 0. (7)

In the case (6), (7), if u is a solution, then u+v is a solution for all v ∈ N = span{1}, where 1 is a
constant function in Ω. A finite element discretization then should provide a consistent singular
linear system (1) with the nullspace N(A) = Nh provided by discretization of N . However,
the computer arithmetic and numerical integration errors may cause that the FEM system is
inconsistent and/or N(A) 6= Nh.

Problems with inconsistency and singularity can be treated by using a priori knowledge about N
and Nh. For example, we are able to regularize the problem by fixing some degrees of freedom and
solving the problem RdofAR

T
dofu = Rdof b instead of (1). Here, Rdof is the restriction opperator

omitting the fixed DOF’s. Such a technique is frequently used in engineering community, but
without a special care [9] the modified system matrix RdofAR

T
dof can be very ill-conditioned

which is a serious drawback for the iterative solution.

Using the knowledge of N , other techniques use the projection P : Rn → Rh, where Rh is the
orthogonal complement of Nh. The projector can be constructed as P = I − V (V TV )−1V T ,
where V is a matrix, whose columns create a basis of Nh. Such projector can be applied within
any iterative method. In PCGstab1 algorithm, the projection P is used to project the right hand
side vectors or all residuals during the PCG iterative process. In PCGstab2, the projection P is
applied twice per iteration to project both residuals and computed iterations. Figure shows these
stabilizations of the PCG method. PCGstab2 is equivalent to the replacement of A by PAP
which also makes the system matrix singular. The fully stabilized PCGstab2 was introduced e.g.
in [11]. Note that g = G(r) denotes the action of preconditioner, which can be also nonlinear
(variable, flexible).

given u0

compute r0 = Pa(b−Au0), g0 = PbG(r0), v0 = g0

for i = 0, 1, . . . until convergence do

wi = PcAPdv
i

αi = 〈ri, gi〉/〈wi, vi〉
ui+1 = ui + αiv

i

ri+1 = Pa(r
i − αiw

i)
gi+1 = PbG(ri+1)
βi+1 = 〈gi+1, ri+1〉/〈gi, ri〉
vi+1 = gi+1 + βi+1v

i

end

a) Standard PCG:
Pa = Pb = Pc = Pd = I

b) PCGstab1:
Pa = P
Pb = Pc = Pd = I

c) PCGstab2:
Pa = Pb = P
Pd = Pc = I

or equivalently
Pa = Pb = I
Pc = Pd = P

Figure: PCG algorithms.

Note that an application of PCG to inconsistent system is problematic from two reasons. The
inconsistent part of the right hand side enters the N(A)-part of the iterations and can make
them divergent, but the inconsistent part also enters the formulas for α and β and spoils the
R(A)-part of the iterations, see [13], [5].

4 Application in upscaling

The elastic response of a representative volume Ω is characterized by homogenized elasticity C
or compliance S tensors (S = C−1). The compliance tensor can be determined from the relation

S〈σ〉 = Sσ0 = 〈ε〉, (8)
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where 〈σ〉 and 〈ε〉 are volume averaged stresses and strains computed from the Neumann problem

−div(σ) = 0, σ = Cmε, ε = (∇u+ (∇u)T )/2 in Ω, (9)

σn = σ0n on ∂Ω. (10)

Above, σ and ε denote stress and strain in the microstructure, Cm is the variable local elasticity
tensor, u and n denote the displacement and the unit normal, respectively. The use of Neumann
boundary conditions allows us to get a lower bound for the upscaled elasticity tensor [6].

In analysis of geocomposites (see [6]), the domain Ω is a cube with a relatively complicated
microstructure. The FEM mesh is constructed on the basis of CT scans. Consequently using
the GEM software [3], the domain is discretized by linear tetrahedral finite elements. The arising
singular system is then solved by stabilized PCGstab1 method implemented in different software
and using various preconditioners:

GEM-DD is a solver fully implemented in GEM software. It uses one-level additive Schwarz
domain decomposition preconditioner with subproblems replaced by displacement decom-
position incomplete factorization described in [2]. The resulting preconditioner is symmet-
ric positive definite.

GEM-DD-CG solver differs in preconditioning, which is a two-level Schwarz domain decom-
position arising from the previous GEM-DD by additive involvement of a coarse problem
correction. The coarse problem is created by a regular aggregation of 6× 6× 3 nodes with
3 DOF’s per aggregation. In this case, the coarse problem is singular with a smaller null
space containing only the rigid shifts. The coarse problem is solved only approximately
by inner (not stabilized) CG method with a lower solution accuracy - relative residual
accuracy ε0 ≤ 0.01.

Trilinos ILU is solver running in Trilinos, where the system from GEM is imported. The
preconditioner is similar to GEM-DD, i.e. one-level Schwarz with the minimal overlap and
working on the same subdomains as in GEM-DD are used. The subproblems are replaced
by ILU without displacement decomposition, using a drop tolerance and a fill limit.

Trilinos ML-DD is again running in TRILINOS and uses multilevel-level V-cycle precondi-
tioner exploiting smoothed aggregations with aggressive coarsening, see [12]. Six DOF’s
translational plus rotational are used per aggregation. ILU is applied as smoother at
the finest level, other smoothing is realised by symmetrized Gauss-Seidel. The coarsest
problem is solved by a direct solver.

GEM Trilinos

DD DD+CG ILU ML-DD
#Sd # It Tprep Titer #It Tprep Titer #It Tprep Titer #It Tprep Titer

1 345 224.5 2672.4 ×
2 293 0.3 541.4 137 20.1 256.4 472 135.9 1628.3 43 813.6 804.5
4 302 0.2 302.2 124 20.0 125.9 463 112.5 1022.6 46 445.6 404.9
8 300 0.1 175.3 115 19.9 75.7 441 85.9 517.6 53 302.9 203.8

16 350 0.1 148.5 116 19.9 73.6 387 75.4 443.9 57 335.4 146.9

Table: Solution of the Neumann problem in elasticity, slightly more than 6 million mil DOF’s, stopping

criterion ‖r‖/‖rhs‖ ≤ ε = 10−5. Numbers of iterations (#It), wall-clock time in seconds for solver

preparation (Tprep) and time for performing the iterations (Titer) are provided for various numbers of

subdomains (#Sd; always corresponding to the number of employed processing units). GEM solvers

have not the single processor mode, the ML-DD solver ended on single processor with the message ”Not

enough space for domain decomposition”(×).
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The parallel computing was performed on 32 core NUMA machine at the Institute of Geonics
with eight quad-core AMD Opteron 8830/2.5 GHz processors and 128 GB of DDR2 RAM. Be-
cause of using stabilized PCG and also because we were interested only on strains and stresses,
we concentrate on R(A)-part of the solution and watch in Table only the convergence in the
residual norm.

We can see that the stabilized CG works well. On the other hand the unstabilized version
converge up to a smaller residual tolerance ε = 0.01 − 0.001 and then started to blow up, see
[5]. It indicates that numerical consistency and numerical singularity are not enough, which
was a bit unexpected in our case as we used lowest order linear finite elements and problem
with piecewise constant boundary condition, so that the adopted numerical integration should
be exact. On the other hand, the systems were assembled in single precision.

5 Conclusions

The aim of this contribution was to show techniques for efficient solution of singular symmetric
positive semidefinite problems. We can see that the stabilized PCG is a good choice for systems
arising from the numerical solution of Neumann problems, or more generally problems with a
known small dimensional null space. There are also other possibilities of stabilization as e.g.
the use of additive regularization.

The second aim was a comparison of specialized solvers from the in-house finite element software
GEM and more general solvers from the Trilinos library. We provided some comparison while
this work is still continuing.
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[14] H. Köstler, C. Popa, S. Bergler, U. Rüde: Algebraic multigrid for general inconsistent linear
systems: The correction step. Rep. 06-4, Lehrstuhl fur Informatik 10 (Systemsimulation),
FAU Erlangen-Nurnberg, 2006.
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1 Introduction

The voiding is a very complex process. It consists of the transfer of information about the state
of the bladder filling in to the spinal cord. Next part is the sending of the action potentials
to the smooth muscle cells of the bladder. Even this process is not simple and includes the
spreading of the action potential along the nerve axon and the transmission of the mediator
(Ach – acetylcholine) in the synapse. The action potential starts the process of the smooth
muscle contraction. The sliding between actin and myosin causing the change of the form
(length) of the muscle cell and its stiffness can be observed as a kind of growth and remodeling.
This approach described e.g. in [6] is used in this model. To be able to describe the very complex
processes in the SMC in the efficient form it is necessary to use the irreversible thermodynamics.
This approach was described in [7].

2 Bladder contraction

The whole model of the bladder contraction consists of the following parts:

• Model of the time evolution of the Ca2+ concentration. The Ca2+ intracellular concen-
tration is the main control parameter for the next processes and finally for the smooth
muscle contraction. Its increase depends on the flux Jagonist of the mediator (in this case
acetylcholine) via the nerve synapse.

dc

dt
= JIP3 − JV OCC + JNa/Ca − JSRuptake + JCICR − Jextrusion + Jleak + Jstretch

ds

dt
= JSRuptake − JCICR − Jleak

dv

dt
= γ(−JNa/K − JCl − 2JV OCC − JNa/Ca − JK − Jstretch) (1)

dw

dt
= λKactivate

dI

dt
= Jagonist − Jdegrad,

where the unknown functions represents: c = c(t) calcium concentration in cytoplasm, s =
s(t) calcium concentration in ER/SR, v = v(t) membrane tension, w = w(t) probability of
opening channels activated by Ca2+ and I = I(t) IP3 sensitive reservoirs concentration in
cytoplasm. For details and complete description of the functions and parameters see [4].

• Model of the time evolution of the phosphorylation of the light myosin chain. The muscle
cell contraction is caused by the relative movement of the myosin and actin filaments. For
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this it is necessary that the phosphorylation of the mentioned light myosin chain on the
heads of the myosin occurs.

dAM

dt
= k5AMp − (k7 + k6)AM ,

dAMp

dt
= k3Mp + k6AM − (k4 + k5)AMp , (2)

dMp

dt
= k1(1 −AM ) + (k4 − k1)AMp − (k1 + k2 + k3)Mp,

where the unknown functions represent the following: AM = AM (t) connected cross-
bridges, AMp = AMp(t) connected phosphorylated cross-bridges and Mp = Mp(t) uncon-
nected phosphorylated cross-bridges. k6 = k6(c), the other terms ki are constant. For
details and complete description of the functions and parameters see [3]. Knowing this
process also the time evolution of the ATP consumption (Jcycl) can be determined. The
ATP (adenosintriphosphate) is the main energy source for the muscle contraction.

dY

dt
= −QQY + LJcycl, (3)

where Y = Y (t) represents the ATP concentration, QQ is the damping parameter and L is
the constant.

• Model of the own contraction based on the GRT and the irreversible thermodynamics. The
growth and remodelling theory [2] together with the laws of irreversible thermodynamics
with internal variables was applied in [7] to describe the mechano-chemical coupling of the
smooth muscle cell contraction. The product of the chemical reaction affinity (the ATP
hydrolysis) with its rate plays an important role in the discussed model. Further it can
be assumed that the rate of the ATP hydrolysis depends on the ATP consumption. The
corresponding equations in the non-dimensional form are following:

ẋ = k1 [τ − z(x− 1)] , ẏ =
y

k2

[
xτ − 1

2
z(x− 1)2 + C ′

]
, ż = sgn(m)·

[
r − 1

2
z(x− 1)2

]
,

(4)
where x = l

lr
, y = lr

l0
, l0 is the initial length of the muscle fibre, lr its length after stimulation

when the fibre is unloaded (s. c. resting length), l the actual length ( when the contraction
is isometric this is the input value), τ the stress and k is the fibre stiffness, m and r are
constants. The non-dimensional values are labeled with the single quote mark. The others
symbols are the parameters.

3 Bladder and voiding model

To model the contraction of the bladder during the voiding process we will use the very simple
model according [5]. The bladder is modelled as a hollow sphere with the output corresponding
to the input into urethra. For the pressure in the bladder the following formula is introduced
in [5]

p =
Vsh

3V
· τ, τ =

F

S
, (5)

where Vsh is the volume of the wall, V the inner volume, S the inner surface, F the force in the
muscle cell and τ stress in the muscle fibre, which can be derived as

τ =

−q
3κ(x·y)2

+
[
k1zy(x− 1) + zyx

2k2
(x− 1)2 − xy

k2
C ′
]

k1y + x2y
k2

. (6)

This will be putted into the equations for the isotonic contraction.
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4 Urethra flow

We now briefly introduce a problem describing fluid flow through the elastic tube. In the case
of the male urethra, the system has the following form

at + qx = 0,

qt +
(

q2

a + a2

2ρβ

)

x
= a

ρ

(
a0
β

)

x
+ a2

2ρβ2βx − q2

4a2

√
π
aλ(Re),

(7)

where a = a(x, t) is the unknown cross-section area, q = q(x, t) is the unknown flow rate, ρ is
the fluid density, a0 = a0(x) is the cross-section of the tube under no pressure, β = β(x, t)
is the coefficient describing tube compliance and λ(Re) is the Mooney-Darcy friction factor
(λ(Re) = 64/Re for laminar flow). Re is the Reynolds number. This model contains constitutive
relation between the pressure and the cross section of the tube

p =
a− a0

β
+ pe, (8)

where pe is surrounding pressure. Presented system (7) can be written in the matrix form

ut + [f(u, x)]x = ψ(u, x), (9)

with u(x, t) being the vector of conserved quantities, f(u, x) the flux function and ψ(u, x) the
source term. This relation represents the balance laws. For the following consideration, we
reformulate this problem to the nonconservative form.

4.1 Decompositions based on augmented system

The numerical scheme for solving problems (9) can be written in fluctuation form

∂Uj

∂t
= − 1

∆x
[A−(U−

j+1/2,U
+
j+1/2) + A(U−

j+1/2,U
+
j−1/2) + A+(U−

j−1/2,U
+
j−1/2)], (10)

where A±(U−
j+1/2,U

+
j+1/2) are so called fluctuations. They can be defined by the sum of waves

moving to the right or to the left. We use the notation U+
j+1/2 and U−

j+1/2 for the approximations
of limit values of reconstructions from the discrete cell averages at the points xj+1/2. The most
common choices are based on the minmod function or ENO and WENO techniques.

The our approach is based on the extension of the system (7) by other equations appropriately
chosen degenerate conservation laws. The advantage of this step is in the conversion of the
nonhomogeneous system to the homogeneous quasilinear one wt + B(w)wx = 0 and possibility
of preserving general steady states (see [1]). It is very important to choose such approximation
which conserves steady states, if these states occur exactly. The steady state for the augmented
system means B(w)wx = 0, therefore wx is a linear combination of the eigenvectors correspond-
ing to the zero eigenvalues.

5 Complex model of the bladder and the urethra

The whole voiding model consists of the detrusor smooth muscle cell model and the model of
the urethra flow. It is described by the system of 12 equations describing the bladder model and
the detrusor contraction during voiding (1), (2) and (4) and 2J equations of urethra flow, where
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J is the number of finite volumes of the urethra region. The connection between the detrusor
model and urethra flow is implemented by the relation (6) and the constitutive relation (8). The
outflow of the bladder is the same as the inflow to the urethra region. So the pressure of the
bladder is dependent on the flow rate in the tube (6). The cross-section in the first finite volume
of the urethra region is then given by the constitutive relation (8). From the view of urethra
flow, the inflow boundary condition consists of the given cross-section and extrapolation of the
flow rate from the urethra region.

6 Conclusion

We presented the complex model of the lower part of the urinary tract. A simple bladder
model and the detrusor contraction model were developed during voiding together with the
detailed model of urethra flow. The urethra flow was described by the high-resolution positive
semidefiniteness method, which preserves general steady states.
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1 Introduction

The behaviour of the solution of Stokes and Navier-Stokes equations in domains with corners
or with discontinuities in boundary conditions is still not quite well understood. We use the
analytical solution to characterize the singular part of the solution. The asymptotics apply also
to Navier-Stokes equations. The results are applied to two examples: the flow in a channel with
forward and backward steps, and the problem of lid driven cavity.

2 Analytical solution of the Stokes flow near corners

We consider the Stokes problem in vorticity - stream function formulation, cf [1], and transform
the problem to polar coordinates x = r cos ϑ , y = r sinϑ , with the pole in the corner P , cf.
Fig. 1.

P Q

Figure 1: The solution domain Ω.

So we have to find stream function ψ(r, ϑ) and vorticity ω(r, ϑ), satisfying the equations

∂2ψ

∂r2
+

1

r

∂ψ

∂r
+

1

r2
∂2ψ

∂ϑ2
= −ω ,

∂2ω

∂r2
+

1

r

∂ω

∂r
+

1

r2
∂2ω

∂ϑ2
= 0 . (1)

To solve the equations (1) we use separation of variables,

ψ(r, ϑ) = P (r) · F (ϑ) , ω(r, ϑ) = R(r) ·G(ϑ) . (2)

Analyzing arizing differential equations we come to the asymptotic formula for stream function

ψ(r, ϑ) = r−
√

κ+2 · F (ϑ) (+h.o.t.), (3)

where κ is a positive parameter depending only on the angle of the corner.

Example 1. We consider flow in 2D region with boundary corner of internal angle ϕ, as e.g.
on Fig. 1. We assume nonslip boundary conditions, so the boundary conditions for the stream
function are

ψ(r, 0) = 0, ψ(r, ϕ) = 0,
∂ψ

∂ϑ
(r, 0) = 0,

∂ψ

∂ϑ
(r, ϕ) = 0. (4)
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As an example we take the domain shown in Fig. 1, where the angle ϕ = 3
2π. Then we get√

κ = 0.45552. Now, by (3) we get e.g. the asymptotics for stream function, near the corner P

ψ(r, ϑ) = r1.54448 · F (ϑ) (+h.o.t.), (5)

with F independent of r. So we get the asymptotics for velocity components and pressure

ur = r0.54448 F1(ϑ), uϑ = r0.54448 F2(ϑ), p = r−0.45552 F3(ϑ), (6)

where F1(ϑ), F2(ϑ), F3(ϑ) are independent of r. The same formulas apply to point Q.

Example 2.

Let us consider 2D flow in lid driven cavity, see Fig. 2, with boundary conditions

ψ(r,
3

2
π) = 0, ψ(r, 2π) = 0, (7)

1

r

∂ψ

∂ϑ
(r,

3

2
π) = 0,

1

r

∂ψ

∂ϑ
(r, 2π) = 1, (8)

for left upper corner.

Figure 2: The lid driven cavity.

We solve the equations (1) similarly as above, by means of separation (2). One can then derive
the asymptotics in upper corners of the cavity

ψ(r, ϑ) = r · F (ϑ), ur = F ′(ϑ), uϑ = F (ϑ), p(r, ϑ) =
1

r
Φ(ϑ), (9)

which are much worse than in case of the corner in Example 1.

3 Application to finite element calculations

The application of the asymptotics may be at least twofold. First, the analytical solution near
corners may be used to direct checking of numerical solution. Second, combining the asymptotics
of Navier-Stokes equations with a priori estimates we get an algorithm for generating the finite
element mesh at such corners cf. [2, 3]. As an application we show on Fig. 3 the locally refined
mesh near upper corners of lid driven cavity, and pressure calculated by this algorithm.

4 Conclusion

We solve analytically the Stokes problem in 2D domains, using polar coordinates and separation
of variables. This is then used to find the asymptotics of the solution near corners, also for
Navier-Stokes equations. We show application to very precise finite element solution.

Acknowledgement. This work has been supported by the grant No. 106/08/0403 - GACR
and by the project IT4Innovations.
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Figure 3: Lid driven cavity, Re = 10,000 Left: mesh 128×128 refined locally Right: pressure.
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Numerical solution of perfect plastic problems with contact:

part II – implementation

M. Čermák, S. Sysala, J. Haslinger
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Charles University, Prague

1 Introduction

Our contribution is divided into two parts. In Part I, see [6], we focus on theory of discretized
problems and suitable numerical methods. In Part II, we describe implementation of the problem
and illustrate it on a model example.

In Part I [6], we have proposed the modified semismooth Newton method for the primal formula-
tion of the problem and mentioned the Uzawa method for the augmented Lagrangian formulation
of the problem. In each step of both methods, we mainly solve a problem that is similar to the
contact problem with elastic bodies. This inner problem can be classified as a quadratic problem
with simple constraints.

In Part II, we rewrite the inner problem on its dual form in terms of Lagrange multipliers
enforcing the non-penetration condition on the contact zones. The dual problem is solved by
the SMALSE method [3]. For a parallel implementation, we combine the method with the
TFETI domain decomposition method [2], see Section 2. The whole contact problems of elastic-
perfectly plastic bodies is implemented in MatLab within the MatSol library [5]. We illustrate
the investigated numerical methods introduced in Part I [6] and Part II in Section 3.

2 Solution of the inner problem

Since we apply the TFETI domain decomposition method [2], we tear the bodies from the
parts of the boundaries with the Dirichlet boundary condition, decompose it into subdomains,
assign each subdomain by a unique number, and introduce new “gluing” conditions on the
artificial intersubdomain boundaries and on the boundaries with imposed Dirichlet condition. In
particular, the domain Ωi

h ≡ Ωi is decomposed into a system of si disjoint polynomial subdomains
Ωi,p ⊂ Ωi, p = 1, 2, . . . , si, i = 1, 2, see Fig. 1. The partition corresponds to the finite element
partition described in Part I [6].

We introduce an algebraic scheme of the inner problem related to the domain decomposition.
It means that a displacement vector v ∈ R

n has the following structure:

v =
(
vT

1,1,v
T
1,2, . . . ,v

T
1,s1

,vT
2,1, . . . ,v

T
2,s2

)T
,

where vi,p denotes the displacement vector on Ωi,p, i = 1, 2. Then the algebraic representations
of the space V and the set K introduced in Part I [6] are defined as follows:

V := {v ∈ R
n | BEv = o} , (1)

K := {v ∈ R
n | BEv = o, BIv ≤ cI} . (2)
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Here the equality constraint matrix BE ∈ R
mE×n represents the gluing conditions among neigh-

bouring subdomains and the Dirichlet boundary conditions. The inequality constraint matrix
BI ∈ R

mI×n represents the non-penetration condition on the contact zones.

Let Ke ∈ R
n×n be a block diagonal matrix consisting of the elastic stiffness matrices K

i,p
e defined

on each subdomain Ωi,p, i = 1, 2, p = 1, . . . , si. Due to the presence of the Dirichlet boundary
conditions on both subdomains and the Korn inequality, we can define the energy norm on V:

‖v‖e :=
√

vTKev =

√√√√
2∑

i=1

si∑

p=1

vT
i,pK

i,p
e vi,p, v =

(
vT

1,1, . . . ,v
T
1,s1

,vT
2,1, . . . ,v

T
2,s2

)T ∈ V.

The scheme of the inner problem is the following:

find u ∈ Kk : Jk(u) ≤ Jk (v) ∀v ∈ Kk, (3)

where

Jk(v) :=
1

2
vTKkv − fT

k v, v ∈ Kk. (4)

Here k denotes the k-step of both methods. In case of the Uzawa method Kk = K, Kk = Ke

and u represent the displacement at the next step k + 1. In case of the Newton method,

Kk := K − uk = {v ∈ R
n ; BEv = o, BIv ≤ cI,k} , cI,k = cI − BIu

k,

Kk represents the function T o,ν introduced in Part I [6], i.e.

ν‖w‖2
e ≤ wTKkw ≤ ‖w‖2

e ∀v,w ∈ V, (5)

and u, uk represent δuk, uk from Part I [6], respectively. For both methods fk denotes the
load vector in dependence on the k-th step. The problem (3) is practically the same as contact
problems of elastic bodies. Therefore we can use the same techniques as in [4], [3] or [1] based
on the SMALSE method.

To use the method, we replace all the constraints by the Lagrange multipliers, see the Figure 1.
In particular, we use two types of Lagrange multipliers, namely λI ∈ R

mI , λI ≥ o related to
the non-penetration condition, λE ∈ RmE related to the “gluing” and Dirichlet conditions. To
simplify the notation, we denote

λ =

[
λE

λI

]
, B =

[
BE

BI

]
, ck =

[
o

cI,k

]
,

and
Λ = {λ = (λT

E ,λ
T
I )T ∈ R

mE+mI : λI ≥ o}.
Then the Lagrangian associated with problem (3) reads as

Lk(v,λ) =
1

2
vT Kkv − fT

k v + λT (Bv − ck), v ∈ R
n, λ ∈ Λ. (6)

Using the convexity of the cost function and constraints, we can use the classical duality theory
to reformulate problem (3) to get

Jk(u) = min
v∈Kk

Jk(v) = min
v∈Rn

sup
λ∈Λ

Lk(v,λ) = max
λ∈Λ

inf
v∈Rn

Lk(v,λ) = max
λ∈Λ

{−Θk(λ)}, (7)

with

Θk(λ) =

{
1
2λ

TBK
†
kB

Tλ− λT (BK
†
kfk − ck), RT

k (fk − BTλ) = o,
+∞, otherwise,
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Figure 1: Scheme of the geometry and domain decomposition.

where K
†
k is a pseudoinverse matrix to Kk and Rk ∈ R

n×l represents the null space of Kk. Thus
the corresponding dual problem has the form:

find λk ∈ Λ : Θk(λ
k) ≤ Θk(λ) ∀λ ∈ Λ. (8)

We solve the dual problem by algorithm SMALSE-M [3]. The algorithm is based on active set
strategy and it combines three steps: CG with preconditioning based on orthogonal projectors,
expansion, and proportioning.

Once the solution λk of (8) is known, the solution of (3) can be evaluated in this way:

u = K
†
k(f − BTλk) + Rkαk, αk = (RT

k B
T
BRk)

−1RT
k B

T
(ck − BK

†
k(fk − BTλk)),

where the matrix B and the vector ck are formed by the rows of B and ck corresponding to all
equality constraints and all active inequality constraints.

Notice that we use in fact the inexact Newton method with respect to computing of u.

3 Numerical experiment

In this section we compare numerical methods introduced in Part I [6] on a numerical example.
The geometry of the problem is depicted in Figure 1. The dimensions of Ω1, Ω2 are
3000×1000×1000. The indicated traction forces are prescribed by the constant function g = 150.
The mesh is generated in MatSol and has 53 802 nodes and 288 000 tetrahedrons. Finally, we
decompose Ω1, Ω2 into 48 subdomains. After decomposition we have 191 664 primal variables,
33 933 dual variables, and from these are 1 029 contact pairs. The bodies Ω1, Ω2 are made of
homogenous isotropic materials with the parameters E1 = E2 = 206 900, ν1 = ν2 = 0.29, and
σ1

y = σ2
y = 450. The influence of the loading parameter λ has not been investigated yet in this

example, i.e. we set λ = 1. The proposed algorithms are parallelized using Matlab Distributed
Computing Server and Matlab Parallel Toolbox. For all computations we use 24 cores with 2GB
memory per core of the HP Blade system, model BLc7000. Since we expect that the choisen
load is far from the limit load, we use the stopping criterion which compare relative displacement
increments.

In Table 1, we see the iteration process of the Newton method for ν = 0. In this table we show,
how the program behaves in each Newton iteration. The column ”Val. of Jλ” means the value
of the nonlinear functional Jλ defined in Part I.
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Numb. of SMALSE Hessian Numb. of Conv. Time Val. of Jλ

Newt. its. its. multipl. plas. els. disp. times 106

1 21 272 0 1 82.2 -1 011.622
2 10 656 22 246 4.5328e-1 147.3 -1 102.614
3 9 829 32 624 1.2649e-1 200.9 -1 130.835
4 8 1 317 38 918 6.2349e-2 323.3 -1 136.048
5 8 1 399 39 994 2.8553e-2 274.1 -1 139.456
6 8 1 406 41 055 2.1786e-2 301.3 -1 139.540
7 8 1 564 41 236 2.8527e-3 343.3 -1 139.540
8 8 1 618 41 236 1.5401e-6 383.2 -1 139.540

Table 1: The Newton method for ν = 0.

ν Numb. of SMALSE-M Hessian Numb. of Time for total
Newt. its. its. multi. plas. els. 1 New. it. time

0 8 8 1 618 41 236 383.2 2 067.5
0.05 24 13 743 41 236 177.1 3 757.7
0.10 33 15 572 41 216 140.9 4 551.7
0.15 45 16 507 41 220 136.4 5 644.8
0.20 54 17 472 41 209 126.2 6 383.4
0.25 62 17 428 41 200 114.5 6 803.1
0.30 69 18 332 41 181 107.5 7 042.0
1.00 139 22 275 40 886 98.1 14 099.7

Table 2: The Newton method with approx hessian by parametr ν.

r Numb. of SMALSE-M Hessian Numb. of Time for total
iters. iters. multi. plas. els. 1 iter. time

0.05 86 20 395 41 192 102.0 8 178.4
0.10 58 22 279 41 200 74.8 4 618.8
0.15 47 22 273 41 216 72.1 3 992.1
0.20 45 22 276 41 223 75.8 3 790.6
0.25 54 22 276 41 218 73.6 4 446.9
0.30 63 22 275 41 212 72.3 5 297.8
0.35 71 22 277 41 209 75.4 5 923.3
0.40 78 22 276 41 206 73.4 6 423.9

Table 3: The Uzawa algorithm with parametr r.

In Table 2, we compare the number of Newton iteration, the average number of SMALSE-M
iteration for one Newton iteration, the average number of Hessian multiplication, the worst
time for one Newton iteration and the total time for the Newton method in dependence on the
regularization parameter ν. In this case, we observe the best convergence for ν = 0. Therefore
we suppose that the prescribed load is far from the limit load based on the theoretical results
from Part I.

In Table 3, we compare similar quantities as in Table 2 for the Uzawa algorithm in dependence
on the penalty parameter r > 0 from the augmented Lagrangian formulation of the problem.
We see that the best convergence results are observed for r = 0.2. However it seems to be
problematic to estimate an optimal value of r a priori.

In Figures 2 and 3, there are depicted the von Mises stress distribution and total displacement
which are the same for both methods.
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Figure 2: Distribution of von Mises stress. Figure 3: Total displacement.

4 Conclusion

In this contribution, we have described some implementation details of the contact problems of
elastic-perfectly plastic bodies. We have also illustrated the Newton and Uzawa methods on the
numerical example. We plan to study stability and robustness of the methods in dependence on
increasing λ up to the limit load. We also plan to use different numerical methods for solving
the inner problem like the semi-smooth Newton method for its primal-dual formulation.

Acknowledgement: This work was supported by the European Regional Development Fund
in the IT4Innovations Centre of Excellence project (CZ.1.05/1.1.00/02.0070) and by the project
SPOMECH - Creating a multidisciplinary R&D team for reliable solution of mechanical prob-
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On using unitary matrices for the investigation

of GMRES convergence behavior

J. Duintjer Tebbens

Institute of Computer Science AS CR, Prague

1 Introduction

In this extended abstract, we consider the convergence behavior of the GMRES method [9] for
solving linear systems

Ax = b, A ∈ Cn×n, b ∈ Cn.

With zero initial guess x0 = 0, the kth GMRES iterate is the vector xk in the kth Krylov
subspace minimizing the residual norm, i.e.

xk = arg min
x∈Kk(A,b)

‖b−Ax‖, Kk(A, b) ≡ span{b, Ab, . . . , Ak−1b}. (1)

Hence the kth residual vector rk = b − Axk is the difference between b and its orthogonal
projection onto the Krylov residual subspace AKk(A, b).

It has been known for some time that eigenvalues alone cannot explain GMRES convergence
behavior for general non-normal matrices. This was shown in the 1994 paper [5], in which the
authors studied so-called GMRES(A, b)-equivalent matrices. A GMRES(A, b)-equivalent matrix
B generates the same Krylov residual space as the one given by the pair (A, b), that is

BKk(B, b) = AKk(A, b), k = 1, 2, . . . , n

(we assume throughout, that GMRES applied to A, b does not terminate until the step n, i.e.,
dim(Kn(A, b)) = n). Then GMRES applied to (B, b) yields the same convergence history (with
respect to residual norms) as GMRES applied to (A, b). It was proved in [5] that the spectrum
of B can consist of arbitrary nonzero values. In [6] this was complemented with the fact that
any nonincreasing sequence of residual norms can be generated by GMRES and [1] closed this
series of papers with a description of the class of matrices and right-hand sides giving prescribed
convergence history while the system matrix has prescribed nonzero spectrum; for a survey
see [7, Section 5.7]. In [2] one finds a parametrization of the class of matrices and right-hand
sides generating, in addition to prescribed residual norms and eigenvalues, prescribed Ritz values
in all iterations.

All these results show that spectral information can be very misleading when explaining GMRES
convergence behavior with general, non-normal matrices. On the other hand, for normal matrices
the behavior of the GMRES method is well-understood in terms of the eigenvalues of the matrix
and the components of the right-hand side in the eigenvector basis. It was shown in [5] that
for every pair (A, b) there always exist GMRES(A, b)-equivalent matrices B which are normal
and even unitary. Therefore we can try to analyze the behavior of the GMRES method applied
to (A, b) with the spectral properties of any normal GMRES(A, b)-equivalent matrix. The goal
of this extended abstract is to explain how the eigenvalues of a unitary GMRES(A, b)-equivalent
matrix are related to properties of the pair (A, b) and to briefly discuss what these eigenvalues
can tell about the convergence of GMRES applied to (A, b). For proofs and more details on the
presented material, see the forthcoming publication [4]. This is joint work with Gérard Meurant
and Zdeněk Strakoš.
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2 Eigenvalues of unitary GMRES(A, b)-equivalent matrices

Unitary GMRES(A, b)-equivalent matrices can be characterized as follows [4].

Theorem 2.1. Let A ∈ Cn×n be nonsingular and let b ∈ Cn. The following assertions are
equivalent:

1- B is unitary and GMRES (A, b)-equivalent,

2- B = WV ∗, where V is a unitary matrix whose first k columns give a basis of Kk(A, b) for
1 ≤ k ≤ n and W is a unitary matrix whose first k columns give a basis of AKk(A, b) for
1 ≤ k ≤ n.

It follows that the eigenvalues of unitary GMRES (A, b)-equivalent matrices are the eigenvalues
of generalized eigenvalue problems of the form

V ∗x = µW ∗x,

where V and W are as defined in the previous theorem. The same holds for the eigenvalues of
unitary matrices C such that the pair (C, c), with c not necessarily equal to b, generates the same
GMRES convergence curve as (A, b) [4]. Note that V and W depend strongly on the interplay
between A and b, hence the eigenvalues µ will in general also depend on this interplay and not
on properties of A alone.

It is clear from Theorem 2.1 that there may exist unitary GMRES(A, b)-equivalent matrices
with different spectra: If V is a unitary matrix whose first k columns give a basis of Kk(A, b) for
1 ≤ k ≤ n, then so is V D∗ for any diagonal unitary matrix D. Hence all matrices of the form

WDV ∗, D is diagonal and unitary,

are unitary GMRES(A, b)-equivalent. But the spectra of WV ∗ and WDV ∗ can differ signifi-
cantly; they need not be rotations the one of the other and they do not interlace in general.

Let us give a small example. We can construct an unreduced upper Hessenberg matrix H of size
seven such that GMRES applied to (H, e1), e1 being the first column of the identity, generates
the residual norms

‖r1‖ = 0.5, ‖r2‖ = 0.1,

‖r3‖ = 0.05, ‖r4‖ = 0.01, (2)

‖r5‖ = 0.005, ‖r6‖ = 0.001.

To achieve this, we can use the parametrization of [3, Theorem 2] and define H as

H = U−1CU, U =

[
gT

0 T

]
,

with

g1 = 1, gk =

√
‖rk−2‖2 − ‖rk−1‖2

‖rk−2‖‖rk−1‖
, k = 2, . . . , 7

and where C is the companion matrix of a polynomial having as its roots the eigenvalues of H.
Here we choose T = I6 and we choose the spectrum of H to consist of the value 1. A unitary
matrix V whose first k columns give a basis of Kk(H, e1) for 1 ≤ k ≤ n is given by V = I7
and a unitary matrix W whose first k columns give a basis of HKk(H, e1) for 1 ≤ k ≤ n is
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Figure 1: Spectrum of Q (left) and of QD1 (right).
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Figure 2: Spectrum of QD2 (left) and of QD3 (right).

any Q factor Q of a QR factorization of H. Hence with Theorem 2.1, B = WV ∗ = Q is
GMRES(H, e1)-equivalent and so is QD for any diagonal unitary D. We computed a Q factor Q
of a QR factorization of H and the spectrum of this (real) Q is displayed on the left part
of Figure 1. The spectra of QD1, QD2 and QD3 where Di, i = 1, 2, 3 are random (complex)
diagonal unitary matrices, are displayed on the right part of Figure 1 and in Figure 2. The four
spectra do not seem to be related by any special properties, but GMRES applied to (QDi, e1)
and to (Q, e1) generates the residual norm history (2) for all i = 1, 2, 3.

Thus, in general there will be more than one unitary spectrum corresponding to a certain
GMRES convergence curve and one may ask wether the eigenvalues of unitary GMRES(A, b)-
equivalent matrices need tell us anything at all about GMRES-convergence for (A, b). In fact, all
we now is that if the spectrum of a unitary equivalent matrix has a large maximum gap, then we
have fast GMRES convergence. This was shown in [8]. On the other hand, fast convergence can
be forced with any unitary spectrum by appropriate choice of the right-hand side [4]. A special
case is when GMRES stagnates. Then the corresponding unitary spectra will all be rotations
of the roots of unity [10]. This result is slightly modified in case of partial stagnation [4]. But
as follows from what we mentioned, if a unitary equivalent matrix has a spectrum representing
a rotation of the roots of unity, it may also generate fast convergence if we choose the right-hand
side appropriately.

Summarizing, in special situations the eigenvalues of unitary GMRES(A, b)-equivalent matrices
can tell us something on the convergence of GMRES for (A, b) and vice-versa, some special cases
of convergence behavior for (A, b) determine the eigenvalues of unitary GMRES(A, b)-equivalent
matrices. In general, however, looking only at the eigenvalues of unitary matrices is not enough
to explain GMRES convergence. Components of the right-hand side in the eigenvector basis
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must also be taken into account. If time allows it, the last part of the talk will address a novel
formula for the kth GMRES residual norm generated with normal matrices, which contains only
eigenvalues and components of the right-hand side in the eigenvector basis.

Acknowledgement: The work of J. Duintjer Tebbens is a part of the Institutional Research
Plan AV0Z10300504 and it was supported by the project M100301201 of the institutional support
of the AS CR.
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Composite polynomial convergence bounds, the CSI method

and finite precision CG computations

T. Gergelits, Z. Strakoš

Faculty of Mathematics and Physics, Charles University in Prague

1 Introduction

The conjugate gradient method (CG) [6] is used for solving linear algebraic system

Ax = b (1)

with Hermitian and positive definite (HPD) matrix A ∈ C
N×N which is large and sparse. The

CG method is nonlinear (see, e.g., a thorough discussion in [12]) and it exhibits the so-called
superlinear convergence, i.e., it tends to accelerate during computations. The bound most com-
monly associated with the convergence rate of CG is, however, linear and thus unable to describe
this phenomenon. In case of isolated large eigenvalues, Axelsson [1] and Jennings [8] describe the
CG superlinear convergence behaviour via the so-called composite polynomial bounds. Assuming
exact arithmetic, they work quite well. Since the finite precision CG behaviour is quantitatively
and qualitatively different from the CG behaviour in exact arithmetic, the composite polynomial
bounds must fail in practical applications. Despite experimental warnings (see, e.g., [8, 17])
and clear theoretical arguments ([5]), misleading conclusions and inaccurate statements keep
reappearing in literature; see [13, Remark 2.1], [16, Theorem 2.5], [7, Section 9], [9, p. 18 and
Exercise 2.8.5] and [10, p. 261].

2 The CSI convergence bound based on scaled and shifted Che-

byshev polynomial

The importance of Chebyshev polynomials in numerical computations was pointed out in the
works of Flanders and Shortley [3], Lanczos [11] and Young [19]. This gave rise to the Chebyshev
semi-iterative method (CSI) thoroughly described, e.g., in [18, Chapter 5], [20, Chapter 11] which
was understood as an acceleration of the stationary Richardson iterations [14]. The k-th error
of the CSI method can be written as

x− xk =
χk(A)

χk(0)
(x− x0) (2)

where χk(λ) is the k-th shifted Chebyshev polynomial

χk(λ) =





cos

(
k arccos

(
2λ− λN − λ1

λN − λ1

))
for λ ∈ [λ1, λN ],

cosh

(
k arccosh

(
2λ− λN − λ1

λN − λ1

))
for λ /∈ [λ1, λN ]

(3)

and the method is optimal in a sense that χk(λ)/χk(0) represents the unique solution of the
minimization problem

min
φ(0)=1

deg(φ)≤k

max
λ∈[λ1,λN ]

|φ(λ)| . (4)
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Using the spectral decomposition of the HPD matrix A = Udiag(λ1, . . . , λN )U∗, U∗U=UU∗=I,
where 0 < λ1 < . . . < λN , U = [u1, . . . , un], and using |χk(λ)| ≤ 1 for λ ∈ [λ1, λN ], the relative
A-norm of the error is in the CSI method bounded as

‖x− xk‖A

‖x− x0‖A
≤
∥∥∥∥
χk(A)

χk(0)

∥∥∥∥ = |χk(0)|−1 max
j=1,...,N

|χk(λj)| (5)

≤ |χk(0)|−1 max
λ∈[λ1,λN ]

|χk(λ)| = |χk(0)|−1 (6)

≤ 2

(√
κ(A) − 1√
κ(A) + 1

)k

, κ(A) =
λN

λ1
, k = 1, 2, . . . , (7)

where the last inequality is an easy consequence of the alternative definition of the Chebyshev
polynomials (see, e.g., [15, Section 1.1]). The bound (7) for the CSI method was published
explicitly in this form by Rutishauser [2, II.23] in 1959 and we see that it is based only on
information about the extreme eigenvalues λ1 and λN . It should be emphasized that Rutishauser
then trivially concluded that since the CG method minimizes the A-norm of the error, the
bound (7) is valid also for the CG method.

Using the spectral decomposition of A, we can for the CG approximations write

‖x− xk‖A = min
ϕ(0)=1

deg(ϕ)≤k

‖ϕ(A)(x − x0)‖A = min
ϕ(0)=1

deg(ϕ)≤k





N∑

j=1

|ξj|2 λjϕ
2(λj)





1/2

(8)

≤ ‖x− x0‖A min
ϕ(0)=1

deg(ϕ)≤k

max
j=1,...,N

|ϕ(λj)| , (9)

where |ξj| represents the size of the component of the initial error x− x0 in the direction of the

eigenvector uj corresponding to λj , i.e., x − x0 =
∑N

j=1 ξjuj. The formula (8) shows that the
error of CG computations is based on information about all eigenvalues of A and all projections
of the initial error on the corresponding invariant subspaces. Naturally

min
ϕ(0)=1

deg(ϕ)≤k

max
j=1,...,N

|ϕ(λj)| ≤ min
φ(0)=1

deg(φ)≤k

max
λ∈[λ1,λN ]

|φ(λ)| = |χk(0)|−1, (10)

where the right part depends only on the extreme eigenvalues of A.

3 Composite polynomial bounds and their relevance in finite

precision computations

In order to describe the superlinear convergence, Axelsson [1] and Jennings [8] consider in the
presence of m outlying large eigenvalues the following polynomial

qm(λ) =

N∏

j=N−m+1

(
1 − λ

λj

)
. (11)

Using |qm(λj)| ≤ 1 for j = 1, . . . , N −m and the composite polynomial

qm(λ)χk−m(λ)/χk−m(0), (12)
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Figure 1: The sequence of the composite polynomial bounds (13) (dashed lines) for increasing
number of large outlying eigenvalues (m = 0, 3, 6, . . .) is compared with the results of finite
precision CG computations (bold solid line) and exact CG behaviour (dash-dotted line).

where χk−m(λ) denotes the Chebyshev polynomial of degree k − m shifted to the interval
[λ1, λN−m] results in the bound

‖x− xk‖A

‖x− x0‖A

≤ 2

(√
κm(A) − 1√
κm(A) + 1

)k−m

, k = m,m+ 1, . . . , (13)

where κm(A) ≡ λN−m/λ1 is the so-called effective condition number. This quantity is typi-
cally substantially smaller than the condition number κ(A) which indicates a possibly faster
convergence after m initial iterations (cf. [12, Theorem 5.6.9]).

This is true, however, only in exact arithmetic. In finite precision computations this bound
must, in general, fail. Motivating example is presented in Figure 1. While the bounds with the
increasing number of the largest eigenvalues considered as outliers form close envelope of the
exact CG behaviour (dash-dotted line), none of the straight lines describes the finite precision
behaviour (bold line). The failure of the composite polynomial bound (13) in finite precision
CG computations can occur even for a small size and/or conditioning of the problem. The
explanation of the point is based on the backward-like analysis done by Greenbaum [5]. For
more details we refer to [4] and [12, Chapter 5].
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FLLOP: a massively parallel QP solver

V. Hapla, D. Horák, F. Staněk

IT4Innovations & DAM, VŠB-Technical University of Ostrava

1 Quadratic programming

Discretization of most engineering problems, describable as partial differential equations (PDE),
leads to large sparse linear systems of equations (perhaps using some linearization technique).
However, problems that can be expressed as elliptic variational inequalities, such as those de-
scribing the equilibrium of elastic bodies in mutual contact, are more naturally discretized to
quadratic programming problems (quadratic programs, QP). They take this canonical form:

min
x

1

2
xT Ax− bTx (1)

subject to BEx = cE , (2)

BIx ≤ cI . (3)

We will consider problems with a symmetric positive definite Hessian A. The vector b is called
righ-hand side. QP can be thought of as a generalization of a linear system of equations with
prescribed equality (2) and inequality (3) constraints. Very common special case of inequality
constraints are box constraints

l ≤ x ≤ u (4)

where elements of l have values from R∪ {−∞} and elements of u have values from R∪ {+∞}.
Note that unconstrained QP (BE , cE ,BI , cI are zero objects) has the same solution as a linear
system Ax = b.

2 FLLOP design

We present here our novel software package for solution of QP called FLLOP (FETI Light Layer
On top of PETSc). It is an extension of PETSc framework. PETSc (Portable, Extensible Toolkit
for Scientific Computation) [8] is a suite of data structures and routines for the parallel solution
of scientific applications modelled by PDE.

FLLOP is carefully designed to be user-friendly while remaining efficient and targeted to HPC.
The typical workflow looks like this:

1. natural specification of the QP by the user,

2. a user-specified series of QP transformations,

3. automatic or manual choice of a sensible solver,

4. solution of the most derived QPs by the chosen solver,

5. a series of backward transformations to get a solution of the original QP (triggered by the
solver).
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Specification of the QP. A class used to specify a QP problem is called simply QP. It is
a data structure containing at least the Hessian matrix A, right hand side b and the solution
vector x (these objects are called Operator, Rhs, SolutionVector in FLLOP). Additionaly,
any combination of these constraints can be specified:

1. equality constraints (Beq, ceq),

2. inequality constraints (Bineq, cineq),

3. box constraints (lb, ub).

Objects that are not specified (i.e. set to PETSC NULL) are handled as zero objects.

QP transformations and backward transformations. A QP transformation derives a new
QP from the given QP. They allow use of efficient solvers but are themselves solver-neutral.
Currently, we have these in FLLOP:

1. dualization (Dualize),

2. homogenization of the equality constraints (HomogenizeEq),

3. enforce BEx = o using penalty or projector onto the kernel (EnforceEq).

For instance, homogenization of the equality constraints transforms a QP with general equality
constraints BEx = cE to a new one with homogeneous equality constraints BEx = o. It
consinsts in finding a particular solution x̃ that satisfies BEx̃ = cE . The right hand side b0 and
the box constraints (l0,u0) of the original problem are then transformed to b1 = b − Ax̃ and
(l1,u1) = (l0 − x̃,u0 − x̃), respectively.

In FLLOP, every QP transformation creates a new instance QP1 of the QP class based on the
original QP0. The data are either (1) shared between QP0 and QP1, (2) copied from QP0, modified
and stored to QP1. Furthermore, links between QP0 and QP1 are created: QP0 has a child link
to QP1, QP1 has a parent link to QP0. Thus, sort of doubly linked list is generated where every
node is a QP.

Of course, the solution x1 of the new QP is not equal to a solution x0 of the original one –
we have to carry out a properbackward transformation of the solution. In the above-mentioned
case, it holds that x0 = x1 + x̃. In FLLOP, we use a notion of post-solve function for this
purpose. It is a pointer to function that computes the solution of the parent QP based on
solution of the children QP; it is injected to the child QP by the transformation function. The
post-solve functions connected to a given series of QP transformations are called by the solver
in the reversed order of those to get the solution of the very original problem.

We also need to store somewhere the auxiliary data created by the transformation and needed
by the backward transformation (x̃ in our case). For this purpose so called post-solve context
is used; it is a void pointer, also injected to a child QP. Note that the child QP does not
use nor know anything about the post-solve function and context; they are only set by the
transformation function and accessed by the solver.
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Figure 1: Hierarchy of PETSc and FLLOP and their relations to external software.

3 FETI in FLLOP

FLLOP was originally developed as an implementation of the FETI domain decomposition
method. However, most recent advances in the design of FLLOP allow more general use. There
are essentially two levels of generalization:

1. It allows to apply FETI to variational inequalities (e.g. contact problems).

2. The algebraic part of FETI computation is generalized to a specific combination of data
structures, QP transformations, direct and iterative solvers. However, these ingredients
can make sense also out of the original FETI method. For instance, dualization can be
useful also for undecomposed problems; on the other hand, decomposed problems can be
solved without dualization.
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On a pathfollowing method for solving the contact problem

with Coulomb friction

J. Haslinger, V. Janovský, R. Kučera

1,2 Faculty of Mathematics and Physics, Charles University, Prague
3 Department of Mathematics and Descriptive Geometry, VŠB-TU, Ostrava

1 Discrete static contact problems with Coulomb friction

Consider deformable bodies in mutual contact. The relevant mathematical description consists
in modelling both non-penetration conditions and a friction law. The widely accepted Coulomb
friction law represents a serious mathematical and numerical problem.

In particular, we consider the static contact problem with Coulomb friction on a planar domain.
The problem is uniquely solvable, provided that the friction coefficient F > 0 is sufficiently small,
see e.g. [2]. Note that no essential contribution was made concerning solvability of this problem
for general data. Nevertheless, engineers had always solved this important problem numerically,
regardless unresolved theoretical issues. In the natural finite element (FEM) approximation, the
discrete problem has always a solution, disregarding the size of F , see [6, 4, 9].

Figure 1: Contact of two elastic bodies Ω1 (the upper body) and Ω2, along the contact bound-
ary Γc. The loading is due to the surface traction. On the right: Resulting displacements.

We consider a particular geometry, see Figure 1. The FEM approximation (linear elements)
yields the following primal-dual discrete state problem:

Ku+N⊤λν + T⊤λt = f , (1)

Nu ≤ 0, λν ≥ 0, λ⊤
ν Nu = 0, (2)

|λt,i| ≤ Fλn,i,

|λt,i| < Fλn,i ⇒ (Tu)i = 0,

|λt,i| = Fλn,i ⇒ ∃ ct,i ≥ 0 : (Tu)i = ct,iλt,i,





i = 1, . . . ,m, (3)

where (u,λν ,λt) ∈ R
n × R

m × R
m. Here u approximates displacement field, n is dofs. λν and

λt approximate normal and tangential stress components along the contact boundary Γc, m is
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the number of contact nodes. Data of the model: K ∈ R
n×n is positive definite stiffness matrix,

N ,T ∈ R
m×n are full rank matrices (the actions of distributed contact forces along normal and

tangential directions), f ∈ R
n are nodal forces.

The inequalities (2) and (3) can be equivalently written as

λν − PRm
+

(λν + ρNu) = 0 and λt − P[−Fλν ,Fλν ](λt + ρTu) = 0,

respectively, where PRm
+

and P[−Fλν ,Fλν ] are suitable projectors, see [3]. Parameter ρ > 0
is arbitrary, but fixed (e.g., ρ = 1). Therefore, solving (1)–(3) is equivalent to finding roots
y = (u,λν ,λt) ∈ R

n × R
m × R

m of the equation

G(y) ≡



Ku+N⊤λν + T⊤λt

λν − PRm
+

(λν + ρNu)

λt − P[−Fλν ,Fλν ](λt + ρTu)


 =



f

0

0


 , (4)

where y = (u,λν ,λt) ∈ R
n × R

m × R
m. The mapping G : R

n+2m 7→ R
n+2m is continuous and

piecewise smooth. In particular, it is piecewise affine, see e.g. [10] for the notion.

2 The semi-smooth Newton method

For solving (4), we apply the Newton iterations. Due to nature of the operator G, semi-smooth
methods are applicable, see e.g. [7]. Let M = {1, 2, . . . ,m} be the set of all indices of contact
points: Given y = (u,λν ,λt) ∈ R

n × R
m × R

m, we define the inactive sets Iν = Iν(y),
I+

t = I+
t (y), I−

t = I−
t (y) by

Iν = {i ∈ M : λν,i + ρ(Nu)i < 0},
I+

t = {i ∈ M : λt,i + ρ(Tu)i −Fλν,i > 0},
I−

t = {i ∈ M : λt,i + ρ(Tu)i + Fλν,i > 0},

and the active sets Aν = Aν(y), At = At(y) as their complements:

Aν = M\ Iν , At = M\ (I+
t ∪ I−

t ).

Let us introduce the indicator matrix DS ∈ R
m×m of S ⊂ M as follows:

DS = diag(s1, . . . , sm), si =

{
1, i ∈ S,
0, i ∈ M \ S.

We observe that

G(y) =



Ku+N⊤λν + T⊤λt

λν −DAν (λν + ρNu)

λt −DAt(λt + ρTu) −DI+
t
Fλν +DI−

t
Fλν


 = J(y)y ,

where

J(y) ≡




K N⊤ T⊤

−ρDAνN DIν 0

−ρDAtT F(DI−

t
−DI+

t
) DI+

t ∪I−

t


 . (5)

Algorithm SSNM : Denote F ∈ R
n+2m, F ≡ (f , 0, 0) ∈ R

n × R
m × R

m, the right-hand side
of (4). Set the tolerance Frepsilon > 0. Let y(0) ∈ R

n+2m, ρ > 0, k := 1.
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Figure 2: Solution path. For a fixed α, we may encounter up to five intersection points on the
path. They are related to five different solutions of equation (4) for the same right-hand side.

(i) Define the inactive/active sets related to y(k−1). Assembly the relevant J(y(k−1)).

(ii) Compute y(k) by solving the linear system J(y(k−1))y(k) = F .

(iii) If ||y(k) − y(k−1)||/||y(k)|| ≤ Frepsilon, return y := y(k).

(iv) Set k := k + 1 and go to step (i).

In the case of convergence, let y = SSNM(y(0),f) as a numerical solution of problem (4).

3 Continuation

Consider the Coulomb friction model (1)-(3), i.e. (4), assuming that f = f(α) depends on
a scalar parameter α. We impose a continuous loading regime and seek for a continuous response
of the model. In particular, we consider a linear loading path

f(α) = (1 − α)f1 + αf2, α ∈ R,

where f1 ∈ R
n and f2 ∈ R

n are given. The resulting solution path is a curve in R × R
n+2m, see

a qualitative sketch in Figure 2. It consists of oriented linear branches, connected by transition
points.

• In order to follow the oriented linear branches, we implemented tangent continuation,
see [1], Algorithm 4.25, with SSNM as a corrector. We implemented an adaptive step-size
control.

• In order to detect transition points, we introduced branching and orientation indicators.
The idea is to modify inactive sets I properly.

Details will be given in [5]. The actual computations are illustrated in Figure 3.

Acknowledgement: This work was supported by the Grant Agency of the Czech Republic
(grant No. P201/12/0671).
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Figure 3: Discretization: n = 1320, m = 30. Plots: Parameter α vs. the solution component λt,1,
for selected friction coefficients F .
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[9] T. Ligurský : Theoretical analysis of discrete contact problems with Coulomb friction. Appl.
Math. 57, 2012, pp. 263–295.

[10] Scholtes, S.: Introduction to piecewise differentiable equations. SpringerBriefs in Optimal-
ization, Springer, Berlin, 2012.

56



Shape sensitivity analysis in discretized 2D contact problems
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of friction
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1 Introduction

The contribution deals with shape optimization of an elastic body that is unilaterally supported
by a rigid foundation. We aim at extending existing results [1, 2] to the more general case when
the coefficient of friction F may depend on solution, namely on the magnitude of the unknown
tangential displacement: F = F(|uτ |). As state problem we consider the two-dimensional,
discretized Signorini problem with Coulomb friction, but in contrast to [1], the coefficient of
friction is a function of the unknown solution. In particular, we concentrate on deriving first order
sensitivities of the displacement field and normal contact stresses along the contact boundary.
This will be done in the fashion of [2] and [4], namely, using the generalized differential calculus
of Mordukhovich ([5]).

2 The state problem

Let a, b > 0 be given and let an elastic body be represented by the domain Ω(α) := {(x1, x2)∈
R

2 | 0 < x1 < a, α(x1) < x2 < b}, where

α ∈ Uad := {α ∈ C0,1([0, a]) | 0 ≤ α ≤ C0, ||α′||L∞(0,a) ≤ C1, C2 ≤ meas Ω(α) ≤ C3}. (1)

It is implicitly assumed in (1) that Uad 6= ∅. Let ∂Ω(α) be split into three non-empty, disjoint
parts Γu, ΓP and Γc(α) with different boundary conditions: on Γu the body is fixed, while
surface tractions of density P = (P1, P2) act along ΓP . On Γc(α) = Grα, representing the
contact part of ∂Ω(α), the body is unilaterally supported by the perfectly rigid foundation
Ξ := {(x1, x2) | x2 ≤ 0}. In addition to the non-penetration conditions, we shall consider effects
of friction between Ω(α) and Ξ. We use the local Coulomb friction law, but with a coefficient of
friction F which depends on the solution:

u1 = 0 =⇒ |T1(u)| ≤ F(0)T2(u)
u1 6= 0 =⇒ T1(u) = −sgn(u1)F(|u1|)T2(u)

}
on Γc(α),

where T (u) = (T1(u), T2(u)) : ∂Ω(α) → R
2 stands for the stress vector associated with the

displacement field u = (u1, u2) : Ω(α) → R
2. The equilibrium state of Ω(α) is characterized by

a displacement u that satisfies the system of linear equilibrium equations in Ω(α), the classical
boundary conditions on Γu, ΓP and the unilateral and friction conditions on Γc(α).
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Following the approximation procedure described in [1, 2, 4] one arrives at the following dis-
cretized Signorini problem with Coulomb friction and a solution-dependent coefficient of friction:

For given α ∈ Uad find (u,λ) ∈ R
n × R

p

+ such that:

〈A(α)u,v − u〉n +

p∑

i=1

F(|(uτ )i|)λi

(
|(vτ )i| − |(uτ )i|

)

≥ 〈L(α),v − u〉n + 〈λ,vν − uν〉p ∀v ∈ R
n,

〈µ− λ,uν +α〉p ≥ 0 ∀µ ∈ R
p

+,





(M(α))

where Uad ⊂ R
p
+ is the convex, compact set of admissible design variables corresponding to the

discretization of (1) (p denotes to the number of contact nodes) and λ is the Lagrange multiplier
releasing the non-penetration constraint. It is related to the discretization of the normal contact
stress T2(u). Further, vτ ,vν ∈ R

p stand for the subvectors of v ∈ R
n consisting of the first and

second components, respectively, of the displacement vector v at all contact nodes. As usual,
A and L denote the stiffness matrix and load vector, respectively. Note, that A ∈ C1(Uad; R

n×n)
and L ∈ C1(Uad; R

n).

In the rest of the paper we shall be dealing with the reduced form of (M(α)) (cf. [1, 2]),
which consists in eliminating all components of the displacement field u corresponding to the
noncontact nodes of the finite element partition of the domain Ω(α). Thus one obtains a system
of variational inequalities in terms of uτ , uν , λ only:

0 ∈ Aττ (α)uτ + Aτν(α)uν −Lτ (α) +Q1(uτ ,λ)

0 = Aντ (α)uτ + Aνν(α)uν − λ−Lν(α)

0 ∈ uν +α+NR
p
+
(λ)





(2)

Introducing the state variable y = (uτ ,uν ,λ) ∈ Rp × R
p

+ × R
p

+, (2) can be written in the more
compact form of one generalized equation (GE):

0 ∈ F (α,y) +Q(y), (3)

where F is continuously differentiable, Q(y) :=
(
Q1(y1,y3),0,NR

p

+
(y3)

)T
and the multifunc-

tion Q1 in (2) is defined as:

(
Q1(uτ ,λ)

)
i
:= F(|(uτ )i|)λi∂|(uτ )i| ∀i = 1, . . . , p.

Here ”∂” stands for the convex subdifferential and N
R

p

+
(·) is the standard normal cone mapping

in the sense of convex analysis.

Theorem 1. Let S : α 7→ {y | 0 ∈ F (α,y) + Q(y)} denote the control-to-state mapping and
let F : R+ → R+ be bounded and Lipschitz continuous with sufficiently small upper bound and
Lipschitz constant. Then S is single-valued and strongly regular in Uad. Consequently, S is
(locally) Lipschitz continuous.

Proof. By modifying the proofs of Theorem 3.8, Proposition 3.11 and Theorem 3.13 in [2].
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3 Shape optimization and sensitivity analysis

Let J : Uad × R
p)3 → R be a continuously differentiable cost functional. Then the shape

optimization problem reads as:

minimize J(α,y)
subj. to 0 ∈ F (α,y) +Q(y)

α ∈ Uad.



 (P)

In the sequel we shall assume that the assumptions of Theorem 1 are satisfied. Then (P) is
equivalent to the following nonlinear program:

minimize J (α) := J(α, S(α))
subj. to α ∈ Uad,

}
(P̃)

which may be solved by algorithms of nonsmooth optimization (note, that J is locally Lip-
schitz continuous due to Theorem 1). Such algorithms, however, require knowledge of some
subgradient information, usually in the form of one (arbitrary) subgradient from the Clarke
subdifferential ∂J at each iteration step. Following [2] and [4], we are not going to use Clarke’s
calculus (cf. [3]) to obtain the desired subgradient, but the substantially richer calculus devel-
oped by B. Mordukhovich. A straightforward application of this theory is the next result. For
the rest of this section let ᾱ ∈ Uad be arbitrary and put ȳ := S(ᾱ).

Lemma 1. ∂J (ᾱ) ⊂ ∇αJ(ᾱ, ȳ) +D∗S(ᾱ)(∇yJ(ᾱ, ȳ)).

Therefore, it is sufficient to determine one element of the (limiting) coderivative D∗S(ᾱ)
(∇yJ(ᾱ, ȳ)) = {v∗ ∈ R

p | (v∗,−∇yJ(ᾱ, ȳ)) ∈ NGr S(ᾱ)}, where NGr S stands for the (limiting)
normal cone to the graph of S (cf. [5, 6]). To facilitate the computation of this quantity, we
have the following result at hand:

Theorem 2. For every v∗ ∈ D∗S(ᾱ)(∇yJ(ᾱ, ȳ)) there exists a vector p∗ ∈ R
p)3 such that

v∗ = ∇αF (ᾱ, ȳ)Tp∗ and p∗ is a solution of the (limiting) adjoint GE:

0 ∈ ∇yJ(ᾱ, ȳ) + ∇yF (ᾱ, ȳ)Tp∗ +D∗Q(ȳ,−F (ᾱ, ȳ))(p∗). (AGE)

Proof. See Theorem 4.1 in [2].

In the rest of this section we show how one may express the coderivative D∗Q in terms of
the data of the problem. First, we group the equations in (3) corresponding to each contact
node, so that the multivalued part Q becomes: Q(y) = (Φ(y1),Φ(y2), . . . ,Φ(yp))

T , where

yi =
(
(uτ )i, (uν)i,λi

)T ∈ R × R+ × R+ for every i = 1, . . . , p and

Φ(a) :=
(
F(|a1|)a3∂|a1|, 0, NR+(a3)

)T ∀a ∈ R × R+ × R+.

Thus, for arbitrary (ȳ, q̄) ∈ GrQ and d∗ ∈ (R3)p:

D∗Q(ȳ, q̄)(d∗) =




D∗Φ(ȳ1, q̄1)(d
∗
1)

D∗Φ(ȳ2, q̄2)(d
∗
2)

...
D∗Φ(ȳp, q̄p)(d

∗
p)


 .

It means, that in order to obtain D∗Q, it is sufficient to evaluate the coderivative D∗Φ for every
contact node. The computation of these quantities is facilitated by the natural decomposition
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of Gr Φ according to the corresponding contact and sliding modes (see Table 1; impossible
combinations are crossed out):

Gr Φ = L ∪M1 ∪M2 ∪M+
3 ∪M−

3 ∪M4.

Due to the relatively simple structure of Φ it is already manageable for each one of these sets
Σ ∈ {L,M1,M2,M

+
3 ,M

−
3 ,M4} above to express NGrΦ(ā, b̄) for (ā, b̄) ∈ Σ exactly, in terms of

the data of our problem. More importantly, no additional smoothness of F is required to carry
out the analysis, except the one ensuring validity of Theorem 1. In addition, when F happens
to be constant, one recovers the formulas in [2] for the two-dimensional case.

no contact: weak contact: strong contact:
a3 = 0, b3 < 0 a3 = 0, b3 = 0 a3 > 0, b3 = 0

sliding:

L

M2 M1a1 6= 0,
b1 = sgn(a1)F(|a1|)a3

weak sticking:
M4 M−

3a1 = 0,
|b1| = F(0)a3
strong sticking:

××× ××× M+
3a1 = 0,

|b1| < F(0)a3

Table 1: Contact and sliding mode of (a, b) ∈ Gr Φ.
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1 Introduction

We study the Stokes system with a friction-type condition, which switches between a slip and
no-slip stage depending on the magnitude of the shear stress. Our main goal is to study under
which conditions concerning smoothness of the domain Ω, solutions to this problem depend
continuously on variations of Ω. This is the basic property enabling us to prove the existence
of optimal shapes for a large class of optimal shape design problems. In order to release the
impermeability condition, whose numerical treatment could be troublesome, we use a penalty
approach. We introduce a family of shape optimization problems with the penalized states
and establish mutual relation between solutions to the original and the modified optimization
problems when the penalty parameter tends to zero. Finally, we study a discretization of the
penalized problem and its convergence properties.

2 Formulation of the problem

In this work we shall consider a specific family of domains, namely O = {Ω(α)| α ∈ Uad}, where

Ω(α) = {(x1, x2)| x1 ∈ (0, 1), x2 ∈ (α(x1), γ)}, (1)

Uad = {α ∈ C1,1([0, 1])| αmin ≤ α ≤ αmax in [0, 1], |α(j)| ≤ Cj , j = 1, 2 a.e. in (0, 1)}, (2)

see Figure 1. Here γ, αmin, αmax, C1, C2 are given positive constants chosen in such a way that
Uad 6= ∅. The boundary ∂Ω(α) is split into S(α) and Γ(α) = ∂Ω(α) \ S(α), where

S(α) = {(x1, x2)| x1 ∈ (0, 1), x2 = α(x1)}, α ∈ Uad,

i.e. S(α) is the graph of α.

For any α ∈ Uad we consider the Stokes problem

−∆u+ ∇p = f , div u = 0 in Ω(α) (3a)

with the following boundary conditions:

u = 0 on Γ(α), (3b)

uν = 0 on S(α), (3c)

‖στ‖ ≤ g on S(α), (3d)

uτ 6= 0 ⇒ ‖στ‖ = g & ∃λ ≥ 0 : uτ = −λστ on S(α). (3e)

Here u = (u1, u2) is the velocity field, p is the pressure and f is the external force. Further,
ν, τ denote the unit outward normal, and tangential vector to ∂Ω, respectively. If a ∈ R

2 is
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Ω(α)

S(α)

x1

x2

Figure 1: Geometry of the domain Ω(α).

a vector then aν := a · ν, aτ := a − aνν is its normal component, and the tangential part on
∂Ω, respectively. The Euclidean norm of a is denoted by ‖a‖. Finally, στ :=

(
∂u

∂ν

)
τ

stands for
the shear stress and g > 0 a.e. on S is a given slip bound.

In what follows we shall suppose that f ∈ (L2
loc(R

2))2 and for simplicity of our analysis that
g is a positive constant. It is known [1] that (3) has a unique weak solution (u(α), p(α)). The
weak formulation of (3) will be denoted by (P(α)) in the sequel. For the definition of the weak
formulation and further details we refer to [3].

Finally, let J : (α,y, q) 7→ R be the cost functional and denote J(α) := J(α,u(α), p(α)). We
shall study the following optimal shape design problem:

Find α∗ ∈ Uad such that

∀α ∈ Uad : J(α∗) ≤ J(α).



 (P)

Our first result is the following theorem.

Theorem 1. Let J be lower semicontinuous in the sense specified in [3], (2.9). Then (P) has
a solution.

The proof strongly relies on the fact that the family O consists of domains with uniformly
C1,1-boundary. Note that for lower regularity of the boundaries such result cannot be expected.

3 Shape optimization with the penalized state problem

We propose a new shape optimization problem for the Stokes system with threshold slip with
a penalization of the impermeability condition (3c). The boundary condition u ·να = 0 on S(α)
will be approximated by the following bilinear form:

cα(u,v) =

∫ 1

0
(u ◦ α · να)(v ◦ α · να)dx1,

where u ◦ α · να := u(x1, α(x1)) · να(x1), x1 ∈ (0, 1).

Let α ∈ Uad be fixed and ε > 0 be a penalty parameter. The penalized form of (P(α)) will be
denoted by (Pε(α)). Using the same technique as in [1] one can show that (Pε(α)) has a unique
solution (uε(α), pε(α)) for any ε > 0.
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Now we introduce the following family of shape optimization problems with the state prob-
lem (Pε(α)). For any ε > 0 fixed, we define:

Find α∗
ε ∈ Uad such that

∀α ∈ Uad : Jε(α
∗
ε) ≤ Jε(α),



 (Pε)

where Jε(α) := J(α,uε(α), pε(α)). One can prove the following result.

Theorem 2. Under the assumption of Theorem 1, problem (Pε) has a solution for any ε > 0.

In the following theorem we establish the mutual relation between solutions of (P) and (Pε) for
ε→ 0+.

Theorem 3. Let J be lower semicontinuous and continuous in the sense specified in [3], (2.9)
and (4.8), respectively. Then from any sequence {α∗

ε} of solutions to (Pε), ε → 0+ one can
choose a subsequence (denoted by the same symbol) such that

α∗
ε → α∗in C1([0, 1]), (4)

where α∗ is a solution of (P). Besides that, any accumulation point of {α∗
ε} in the sense of (4)

has this property.

4 Approximation of (Pε)

In this section, we shall assume that ε > 0 is fixed. We introduce a finite element discretization
of (Pε(α)) and a discretization of the set Uad. Finally we will study convergence properties of
such solutions if the discretization parameter h→ 0+.

4.1 Formulation of the discrete problem

Since for finite element methods it is convenient to use polygonal domains, we will consider
piecewise linear approximations of Uad. On the other hand, as Uad contains C1,1-functions, this
approximation of Uad becomes external and some technical difficulties arise especially in the
convergence analysis.

The set of discrete admissible shapes Uh
ad consists of continuous, piecewise linear functions on

an equidistant partition of [0, 1] which satisfy constraints analogous to those ones imposed in
(2), expressed in terms of difference quotients.

We will consider the system {Th(αh)| αh ∈ Uh
ad} which consists of topologically equivalent trian-

gulations of Ω(αh) (see e.g. [2]). The finite element discretization of the state problem is based
on the Galerkin method with the discrete velocity and pressure spaces built on Th(αh) and satis-
fying the Babuška-Brezzi condition (e.g. the Taylor-Hood finite element spaces). Consequently,
the resulting discrete problem (Phε(αh)) has a unique solution.

Analogously to the continuous setting, the discrete shape optimization problem is defined as the
minimization of Jhε on Uh

ad, where

Jhε(αh) := J(αh,uhε(αh), phε(αh)).
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with (uhε(αh), phε(αh)) being the solution of (Phε(αh)). Thus, for each ε > 0 and h > 0, the
discrete shape optimization problem reads:

Find α∗
hε ∈ Uh

ad such that

∀αh ∈ Uh
ad : Jhε(α

∗
hε) ≤ Jhε(αh).



 (Phε)

The existence result for an optimal discrete shape is straightforward.

Theorem 4. Let h, ε > 0 be fixed and Jhε be lower semicontinuous on Uh
ad. Then (Phε) has

a solution.

4.2 Convergence analysis

Finally, we establish the mutual relation between solutions to (Phε) and (Pε) as h→ 0+ keeping
ε > 0 fixed, aiming to show that the discrete optimal shapes converge in some sense to an
optimal shape of the continuous setting.

We have the following convergence result.

Theorem 5. Let {α∗
hε}, h → 0+ be a sequence of solutions to (Phε), h → 0+ and let J be

continuous in the sense of [3], (5.7). Then there exists a subsequence of {α∗
hε} (denoted by the

same symbol) such that
α∗

hε → α∗
ε in C([0, 1]),

where α∗
ε is a solution of (Pε).

5 Conclusion

The contribution was devoted to the shape optimization of the Stokes problem with threshold
slip boundary condition. We have shown the existence of an optimal shape, the relation to
a penalized shape optimization problem which releases the impermeability condition and finally,
we studied convergence properties of a discretization of the penalized problem.
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Numerical solution of the discrete barrier

option pricing problem
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1 Introduction

During the last decade, financial models have acquired increasing popularity in option pricing.
The valuation of different types of option contracts is very important in modern financial theory
and practice, especially exotic options have become very popular speculation instruments in
recent years. The problem of determining the fair price of such an option is standardly formulated
in the well-known Black–Scholes equation, firstly presented in [3].

A huge amount of literature has been devoted to the solving of this equation or its modification.
The performance demands on the valuation process are very high in this case. Moreover, most
of the analytical formulas for these options is limited by strong assumptions, which led to the
application of numerical methods instead. Therefore, the main goal of this paper is to develop
an efficient, robust and accurate method for the exotic option pricing problem, which arises
from the concept of the discontinuous Galerkin (DG) approach (cf. [2, 4, 7]) and enables better
resolving of occurred special properties of certain types of exotic options, in comparison with
the standard finite element approach, see e.g. [1, 6, 8] and the references cited therein.

2 Discrete barrier option pricing problem

In this paper, we focus only on one family of exotic options such as discrete barrier options.
Furthermore, we shall concentrate only on a discrete double time–independent barrier knock-
out option, i.e. an option that expires worthless if one of the two barriers has been hit at a
monitoring date, for more details see [1, 8]. Let M := {0 = tM0 < tM1 < . . . < tMl−1 < tMl = T} be
the set of monitoring dates and B− be the lower barrier and B+ the upper barrier active only
at discrete instances tMl ∈M .

Let Ω := (Smin, Smax), 0 < Smin < B− < B+ < Smax, be a bounded open interval and T stands
for the maturity. We denote by x the price of an underlying asset (e.g. stock) and by t the
time to expiry of the option. The price u : QT := Ω × (0, T ) → R of the discrete barrier option
satisfies the Black–Scholes partial differential equation with initial and boundary conditions, i.e.

∂

∂t
u(x, t) − 1

2
σ2x2 ∂

2

∂x2
u(x, t) − rx

∂

∂x
u(x, t) + ru(x, t) = 0 in QT , (1)

u(Smin, t) = 0 and u(Smax, t) = 0, (2)

u(x, 0) =

{
max(x−K, 0) · χ[B−,B+], (call)

max(K − x, 0) · χ[B−,B+], (put)
, x ∈ Ω, (3)

where σ > 0 and r > 0 are model parameters denoting the volatility of stock price and the
risk–free interest rate, respectively. In real markets, values r and σ vary with time, but to keep
the model and analysis simple, we assume r and σ to be constant.
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barrier payoff (call)

u

| | |
0 B− K x B+

barrier payoff (put)

u

| | |
0 B− x K B+

Figure 1: Initial values of a double discrete barrier knock-out call (left) and a double discrete
barrier knock-out put (right) with strike price K.

From the mathematical point of view the problem (1)–(3) represents a convection–diffusion-
reaction equation equipped with a set of two homogeneous Dirichlet boundary conditions (2)
prescribed at the endpoints of Ω and with the initial condition (3), where the symbol K stands
for the strike price and χ[B−,B+] denotes the characteristic function of the barrier interval.

Moreover the discrete monitoring of the contract introduces an updating of the solution u(x, t)
at the monitoring dates tMl ∈M , i.e.

u(x, tMl ) = lim
ε→0+

u(x, tMl − ε) · χ[B−,B+]. (4)

The knock-out clause (4) at monitoring instances introduces a discontinuity at the barriers, as
illustrated in Figure 1 for the first monitoring date.

3 DG discretization

The discontinuous Galerkin approach is suitable for problems with irregular solutions, because its
framework originally arises from a generally discontinuous piecewise polynomial approximation
uh(t) describing the global solution u(x, t) on the whole domain Ω, i.e.

uh(t) ∈ Sh =
{
vh ∈ L2(Ω); vh

∣∣
I
∈ P p(I) ∀ I ∈ Th

}
⊂ H1(Ω) (5)

where Th is a family of partitions of the closure Ω = [Smin, Smax] into closed mutually disjoint
subintervals I, and P p(I) denotes the space of all polynomials of degree ≤ p on element I.

In order to obtain a space semi–discrete DG scheme from [7], we multiply (1) by a test function
vh ∈ Sh, integrate over an element I ∈ Th and use integration by parts in the diffusion and
convection terms of (1) subsequently. Further, we sum over all I ∈ Th and add some artificial
terms vanishing for the exact solution such as penalty and stabilization terms, which replace
the inter–element discontinuities and guarantee the stability of the resulting numerical scheme,
respectively. Consequently, we employ a concept of an upwind numerical flux (see [5]) for the
discretization of the convection term and end up with the following DG formulation for the
semi–discrete solution uh(t) represented by a system of ordinary differential equations, i.e.

d

dt
(uh(t), vh) + Ah(uh(t), vh) = 0 ∀ vh ∈ Sh, ∀ t ∈ (0, T ) (6)

where a form Ah(·, ·) stands for the semi–discrete variant of the linear differential operator in (1),
see [7].

In order to obtain the discrete solution, it is necessary to equip the scheme (6) with suitable
solvers for the time integration. The suggested implicit time discretization is suitable for avoiding
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Figure 2: The 3D plot of value function of discrete barrier put option (left) and the corresponding
isolines of the option price (right).

the strong time step restriction of explicit time schemes. Moreover, a bilinearity of the form
Ah(·, ·) directly implies that the used implicit treatment in (6) corresponds to a system of linear
algebraic equations without employing any additional linearisation, cf. [1, 8].

For the sake of clarity, we use the simplest implicit method — backward Euler method — for
the time discretization and introduce the fully discrete scheme. We now partition [0, T ] as
0 = t0 < t1 < t2 < . . . < tN = T , denoting each time step by τl = tl − tl−1. We compute
the approximate values ul

h of the exact solution u(tl) only at given time levels tl according the
following formula, i.e.

(
ul

h, vh

)
+ τlAh

(
ul

h, vh

)
=
(
ul−1

h , vh

)
∀ vh ∈ Sh, l = 1, 2, . . . ,N (7)

with initial state u0
h as Sh-approximation of (3) and monitoring constraints ul

h := ul
h · χ[B−,B+]

valid only at monitoring dates tMl ∈ M . Finally, the system (7) is then solved by a suitable
linear algebraic solver.

4 Results and conclusion

In order to illustrate the potency of the derived numerical scheme (7) for a solution of dis-
crete barrier options, we consider the knock-out call option with the expiration date T = 6

12
(e.g. 6 months) and the strike price K = 6.0. The prescribed barriers are B− = 5.0, B+ = 8.0
and the computational domain was set as Ω = (3, 9). The Black–Scholes model parameters
were the risk–free interest rate r = 0.9y−1 and the volatility σ2 = 10−6y−1. We carried out
computations by piecewise cubic approximations on a priori uniformly adapted partition of Ω
with constant time step τ = 1

120 , used the restarted GMRES for the solving of linear systems
and considered monthly monitoring.

Since σ2 ≪ r, the convection term is large compared to the diffusive term and the problem is said
to be convection dominated and the partial differential equation exhibits a hyperbolic behaviour,
i.e. the first-order hyperbolic term involving ∂u

∂x propagates information in the approximation
solution from the right to the left of the x-axis, as illustrated in Figure 2 (left) together with
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the corresponding isolines of the option price in the space–time plot with well-resolved monthly
monitoring constraints, see Figure 2 (right).

We have dealt with the numerical solution of the discrete barrier option pricing model, repre-
sented by the linear convection–diffusion–reaction equation. We have derived the above men-
tioned numerical scheme: from the continuous problem, over the semi–discrete one to the fully
discrete one. The whole method is based on the space semi–discretization by the discontinuous
Galerkin method in space and on the implicit Euler method used for discretization in time. For
the future work, we intend to extend this concept to a simple theoretical analysis and also to
the multivariate Black–Scholes equation describing basket options.
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[7] B. Riviére: Discontinuous Galerkin methods for solving elliptic and parabolic equations:
theory and implementation. Frontiers in Applied Mathematics. Society for Industrial and
Applied Mathematics, Philadelphia, 2008.

[8] R. Seydel: Tools for computational finance: 4th edition. Springer, Berlin, 2008.

68



Classification of zeros of quaternionic polynomials

D. Janovská, G. Opfer
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1 Introduction

Polynomials with quaternionic coefficients located on only one side of the powers (we call them
simple polynomials) may have two different types of zeros: isolated and spherical zeros. We
will give a characterization of these types. The main tool is the representation of the powers of
a quaternion as a real, linear combination of the quaternion and the number one.

In the two–sided polynomials the coefficients are located at both sides of the powers. We show
that in this case there are, in addition, three more classes of zeros defined by the rank of a
certain real 4 × 4 matrix. The essential tool is the description of the polynomial p by a matrix
equation P (z) := A(z)z+B(z), where A(z) is a real 4×4 matrix determined by the coefficients
of the given polynomial p and P, z,B are real column vectors with four rows.

2 Preliminaries

By R, C we denote the fields of real and complex numbers, respectively, and by Z the set of
integers. By H we denote the skew field of quaternions.

Let H = R
4 be equipped with the ordinary vector space structure with an additional multiplica-

tive operation H × H −→ H which most easily can be defined by a multiplication of the four
basis elements

(1, 0, 0, 0) = 1, (0, 1, 0, 0) = i, (0, 0, 1, 0) = j, (0, 0, 0, 1) = k :

i2 = j2 = k2 = ijk = −1 . (1)

An element x = (x1, x2, x3, x4) ∈ H, x1, x2, x3, x4 ∈ R , has the representation

x = x11 + x2i + x3 j + x4k,

If we denote v = (x2, x3, x4) ∈ R
3 the vector part of x then, the quaternion x has the represen-

tation:
x = (x1,v), x1 ∈ R, v ∈ R

3.

For x = (x1, x2, x3, x4) = (x1,v) ∈ H, y = (y1, y2, y3, y4) = (y1,w) ∈ H it follows from (1) that

x y = (x1y1 − x2y2 − x3y3 − x4y4)1 + (x1y2 + x2y1 + x3y4 − x4y3) i (2)

+(x1y3 − x2y4 + x3y1 + x4y2) j + (x1y4 + x2y3 − x3y2 + x4y1)k

= (x1y1 − v ·w, x1w + y1v + v × w),

where ·, × are the dot and vector products in R
3, respectively. Obviously, in general, the

multiplication is not commutative. Given x = (x1, x2, x3, x4) ∈ H, the conjugate x of x is
defined to be

x = (x1,−x2,−x3,−x4). = ℜx− Vec x.
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We define the absolute value of x by

|x| =
√
x2

1 + x2
2 + x2

3 + x2
4. (3)

The space H is a normed vector space over H, where the norm is introduced in (3).

Example Let us see a small example. Let p2(z) = z2 + 1. This quadratic polynomial has
no real zero and it has two imaginary zeros z1,2 = ±i. How many zeros it has as a quadratic
quaternionic polynomial? Let z = h−1z1,2h , where h ∈ H \ {0} is arbitrary. Then

z2 + 1 = h−1z1,2hh
−1z1,2h+ 1 = h−1i2h+ 1 = 0 .

As a quadratic quaternionic polynomial, p2 has infinitely many zeros.

Definition Two quaternions a, b ∈ H are called equivalent, denoted by a ∼ b, if

a ∼ b ⇐⇒ ∃h ∈ H \ {0} such that a = h−1bh. (4)

The set
[a] :=

{
u ∈ H : u = h−1ah for all h ∈ H \ {0}

}
(5)

will be called an equivalence class of a.

The relation ∼ is indeed an equivalence relation. If a is not real, then [a] always contains
infinitely many elements,

[a] = {z ∈ H : ℜz = ℜa, and |z| = |a|} , (6)

and the equivalence class [a] can be regarded as a two dimensional sphere in R
4.

Let z := (z1, z2, z3, z4) ∈ H. Then it follows from (6) that z ∈ [z]. If z ∈ H is not real then the
equivalence class [z] contains exactly two complex numbers a ∈ C and a ∈ C where

a = (z1,+
√
z2
2 + z2

3 + z2
4 , 0, 0) = z1 + |Vec z|i ∈ [z],

i.e., a is the only complex element in [z] with a non negative imaginary part. The complex
number a will be called the complex representative of [z].

We introduce a mapping ω1 : H −→ R
4×4 by

ω1(a) :=




a1 −a2 −a3 −a4

a2 a1 −a4 a3

a3 a4 a1 −a2

a4 −a3 a2 a1


 ∈ R

4×4, . (7)

The mapping ω1 represents the isomorphic image of a quaternion a = (a1, a2, a3, a4) in the
matrix space R

4×4. Thus we have

ω1(ab) = ω1(a)ω1(b).

For a := (a1, a2, a3, a4) ∈ H, we define a column operator col : H → R
4 by col(a) :=




a1

a2

a3

a4


 .
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This column operator enables us to regard a quaternion as a matrix with one column and four
rows.

Let A be a square matrix over C of order n. Then, see e.g. Horn & Johnson, [1], any power Aj

belongs to a linear hull of the powers of the matrix A up to the degree ν of the minimal
polynomial of A:

Aj ∈ 〈I, A, A2, . . . ,Aν−1〉 , j ∈ N .

We will apply this theory to the real matrix ω1(a) that represents the quaternion a. It has the
minimal polynomial

µ(ω(a)) = λ2 − 2λa1 + |a|2 i.e. ν = 2 .

As a consequence, all powers zj, j ∈ Z, of a quaternion z have the form zj = αz + β with
real α, β. In order to determine the numbers α, β we set up the following iteration

zj = αjz + βj , αj , βj ∈ R, j = 0, 1, . . . , where (8)

α0 = 0, β0 = 1,

αj+1 = 2ℜz αj + βj ,

βj+1 = −|z|2αj, j = 0, 1, . . .

3 Simple (one–sided) quaternionic polynomials

Let pn(z) be a given polynomial of degree n, n positive integer,

pn(z) =

n∑

j=0

ajz
j , z, aj ∈ H, j = 0, 1, 2, . . . , n, a0, an 6= 0 . (9)

Polynomial pn(z) in (9) is called one-sided (or simple) quaternionic polynomial.

The set of zeros of the polynomial of type (9) will separate into two classes:

Definition Let z0 be a zero of a simple quaternionic polynomial (9).

– If z0 is not real and has the property that pn(z) = 0 for all z ∈ [z0], then we will say that
z0 is a spherical zero.

– If z0 is real or does not generate a spherical zero, it is called an isolated zero.

– The number of zeros of pn is defined as the number of equivalence classes, which contain
at least one zero of pn.

By means of (8) the polynomial pn can be written as

pn(z) :=

n∑

j=0

ajz
j =

n∑

j=0

aj(αj z + βj) =




n∑

j=0

αjaj


 z +

n∑

j=0

βjaj =: A(z)z +B(z).

We have the following classification of the zeros z0 of pn given in (9):

(i) z0 is real. By definition, z0 is isolated.
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(ii) z0 is not real:

– A(z0) = 0 ⇒ z0 is spherical, all z ∈ [z0] are zeros of pn.

– A(z0) 6= 0 ⇒ z0 is isolated.

The computation of all zeros of pn, including their types, can be reduced to the computation of
all zeros of a real polynomial of degree 2n. For details, see [2].

4 Two–sided quaternionic polynomials

The two–sided quaternionic polynomial has the form

p (z) :=

n∑

j=0

ajz
jbj , z, aj, bj ∈ H, j = 0, 1, . . . , n ∈ N , a0b0 6= 0, anbn 6= 0 . (10)

By means of (8), the two–sided quaternionic polynomial p can be written as

p (z) :=

n∑

j=0

ajz
jbj =

n∑

j=0

aj(αj z + βj)bj = C(z) +B(z), where (11)

C(z) :=

n∑

j=0

αjaj z bj, B(z) :=

n∑

j=0

βjajbj . (12)

Moreover, if we apply the operator col to the equations (11) to (12)we can rewrite the equation
p(z) = 0 in the equivalent form

P (z) := col(p(z)) = A(z)col(z) + col(B(z)) = col(0) :=




0
0
0
0


 . (13)

From these results we obtain a classification of the zeros of two-sided quaternionic polynomial
p as follows:

Definition Let z be a zero of p, defined in (10), and let z0 ∈ [z] be the complex representative
of [z].

The zero z will be called zero of type k if rank(A(z0)) = 4 − k, 0 ≤ k ≤ 4.

A zero of type 4 (rank(A(z0)) = 0) will be called the spherical zero. It has the property
that all z ∈ [z0] are zeros. A zero of type 0 will be called isolated zero. In this case z =
−(A(z0))

−1col(B(z0)) is the only zero in [z0]. We will also call a real zero an isolated zero. For
details see [3].

5 Number of zeros of the quaternionic polynomials

Definition Let p be any quaternionic polynomial of degree n ≥ 2. By #Z(p) we understand
the number of equivalence classes in H which contain zeros of p. We call this number, essential
number of zeros of p.
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By this definition, p(z) := z2 + 1 has one essential zero, since i and −i are located in the same
equivalence class.

All polynomials with real coefficients and degree n as well as all quaternionic, one-sided polyno-
mials of degree n have at most n essential zeros, see [3]. The essential number #Z(p) of zeros
of the two–sided quaternionic polynomial of degree n is, in general, not bounded by n. Our
conjecture is that in this case the essential number will not exceed 2n.
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Multigrid methods are among the most efficient methods for solving and preconditiong of dis-
cretized partial differential equations. They employ the effects of relaxation and coarse-grid
correction in a recursive way leading to a method with the computational cost depending lin-
early on the problem size. While the components of the “classical” geometric multigrid are
constructed using the information involving the geometry and the nature of the problem to be
solved, the algebraic multigrid (AMG) is defined entirely by the information contained in the
given linear algebraic system and in a sense can be used as a “black-box” method. This makes
the use of AMG attractive in particular for solving problems on complicated domains and un-
structured grids, where the geometric multigrid can be hardly used if its application would be
even possible.

Application of AMG splits in the setup and the solution part. In the setup part, the multigrid
hierarchy of levels is created by recursively applying a procedure, which from a given input “fine”
level constructs an output “coarse” level, until a certain stopping criterion is satisfied (e.g., the
coarsest grid is small enough). In most AMG methods, common patterns can be found in the
setup part. First, for each grid point a set of strongly coupled neighbors is determined based on
certain criteria applied to the entries of the matrix associated with the given level. Using this
information, the coarsening is then constructed. It describes how the coarse grid is created from
the input fine grid (e.g., splitting the input grid to the sets coarse points and fine points in the
classical AMG or partitioning to aggregates in aggregation-based AMG). Finally, the transfer
operators can be defined from the given coarsening.

These common patterns in AMG motivate us to create a framework which involves some attrac-
tive features of modern object oriented languages like abstraction, polymorphism, and generic
programming, and allows to implement various AMG algorithms and their components in a uni-
fied manner. We base our package on the Trilinos library (http://trilinos.sandia.gov),
in particular on the packages Epetra for the basic communication and algebraic “core” and
Teuchos. Our goal is to create an AMG package which would allow namely to:

• realize any kind of AMG method including the classical and aggregation-based AMG (even
combining them in one multigrid hierarchy),

• combine various AMG components or to implement new custom ones from scratch,

• recompute already constructed multigrid hierarchy by reusing some of its previously com-
puted parts.

In the presentation, we recall some basic AMG algorithms and describe the design of our frame-
work including its current state of development. We illustrate its use on some academic numerical
experiments including experiments on problems arising in reservoir simulations.
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1 Introduction

This contribution deals with application of methods of domain decomposition to problems with
imperfect bond on material interfaces or slip of soil along slip surface. Especially, the FETI
method is used because it defines nodal unknowns on subdomains independently on other sub-
domains. The continuity across the subdomain interfaces is enforced by Lagrange multipliers,
therefore at least two displacements are stored in the same point on subdomain interface. In the
classical FETI method, these displacements are enforced to be equal but in generalised approach,
different values can be enforced.

The continuity condition is replaced by slip condition based on bond slip law. The new condition
generates an additional vector or matrix in the coarse problem. Complicated laws with softening
is solved iteratively with the help of stiffness reduction.

2 Brief overview of FETI method

Finite element tearing and interconnecting method is a nonoverlapping domain decomposition
method which transforms an original problem to the dual one which is solved by modified
conjugate gradient method. Coarse space based on rigid body modes is used for fast exchange
of informations during the iteration process. Overview of the method and many applications of
the method can be found in references [1] and [2].

Let a domain Ω with boundary Γ is decomposed into m nonoverlapping subdomains Ωj with
boundaries Γj . Let the problem solved contain continuous unknown vector function u(x) which
depends on the spatial coordinates x. The unknown function is approximated by the finite
element method and vector of unknown nodal values is denoted d. In more detail, unknown
nodal values on the j-th subdomain are collected in the vector dj. Because of decomposition,
each subdomain contains its own unknowns on interface. The interface unknowns have to satisfy
the continuity condition because the original problem is continuous. If a new vector of all nodal
unknowns is defined in the form

dT =
(
dT

1 ,d
T
2 , . . . ,dm

)
(1)

and a new matrix

B = (B1,B2, . . . ,Bm) (2)

is assembled, the continuity condition along the whole interface can be written

Bd = 0 (3)
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For each subdomain, a system of algebraic equations can be defined in the form

Kjdj = f j −BT
j λ (4)

where Kj denotes the subdomain matrix, f j denotes the subdomain right hand side vector.
The stiffness matrix of the whole problem has the form

K =




K1 0

K2

. . .

0 Km


 (5)

and the total right hand side vector can be written

fT =
(
fT

1 ,f
T
2 , . . . ,f

T
m

)
(6)

System of all equations has the form

Kd = f −BTλ (7)

and it is accompanied with the continuity conditions (3).

The vector of unknown nodal values can be expressed from the relationship (7) in the form

d =K+(f −BTλ) +Rα (8)

where K+ is the pseudoinverse matrix, the matrix R contains basis vectors of kernel of matri-
ces Kj which are denoted Rj. The matrix R has the form

R =




R1 0

R2

. . .

0 Rm


 (9)

If a matrix Kj is nonsingular, the kernel contains no basis vector and the matrix Rj is removed
from the matrix (9). The vector f−BTλ has to be orthogonal to the kernels. The orthogonality
can be written in the form

RT (f −BTλ) = 0 (10)

Substitution of expression (8) to continuity condition (3) results to

BK+f −BK+BTλ+BRα = 0 (11)

The previous equation together with the solvability condition (10) can be written in the form

(
BK+BT −BR
−RTBT 0

)(
λ

α

)
=

(
BK+f

−RTf

)
(12)
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3 Modification of FETI method

Modification of the FETI method for problems dealing with perfect or imperfect bond was
introduced in reference [3]. The continuity condition (3) is associated with the perfect bond
where no cracks and other inelastic effects occur. On the other hand, in the case of inelastic
behaviour, the continuity condition should be replaced by interface condition which deals with
the interface because cracks or slips can occur and the continuity is violated.

The interface condition can be expressed in the general form

Bd = c (13)

where c denotes the vector of differences between two adjacent unknowns defined in the same
point on the interface. In the case of perfect bond, the vector c is the zero vector. Substitution
of nodal unknowns (8) into the interface condition (13) results in the system

(
BK+BT −BR
−RTBT 0

)(
λ

α

)
=

(
BK+f − c

−RTf

)
(14)

The imperfect bond is characterised by different displacements across material interface. There
are several possibilities of evolution of shear stress. The vector of interface slips c can be defined
in the form

c = Hλ (15)

where H denotes the compliance matrix. Generally, the matrix H can depend on attained
Lagrange multipliers λ. Substitution of (15) to the system (14) results in

(
BK+BT +H −BR

−RTBT 0

)(
λ

α

)
=

(
BK+f

−RTf

)
(16)

If the perfect bond is taken into account, the compliance matrix H is the zero matrix and the
classical FETI method is obtained. If the linear law (15) is assumed, stress-slip law is modelled.

In the case of softening branch, the previous definition of the compliance matrix does not work.
Sequence of several steps is needed in order to track the softening part of bond slip law. In such
case, a proportional load is applied on the structure and its response is computed. Locations
with the maximum stresses are determined and factor needed for attainment of the bond stress
is evaluated. The applied load is multiplied by this factor. There are some Lagrange multipliers
on interface which have the limit magnitude and slip or crack start to grow. Those multipliers
are marked and they are removed from the localisation matrices B defined by equation (3).
The structure is loaded once again but the matrix B is modified. Locations with the largest
stresses are determined and new factor needed for the limit state is evaluated. The applied load
is multiplied by this new factor and new point on bond slip curve is obtained. The described
algorithm is repeated several times and one or more multipliers are removed in each step.

4 Numerical experiments

In order to check behaviour of the proposed numerical framework, a pull out test with mild
hardening is considered. Interaction between concrete and steel reinforcement is assumed. Left
figure 1 shows detail of concrete-steel interaction in the case of a slip developed. Finally, the
right figure 1 shows stress distribution in pull out test.
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Figure 1: Detail of deformed shape and stress distribution.

5 Conclusions

A numerical framework for description of various bond slip laws between composite matrix
and fibres was introduced and implemented. The framework is based on the FETI domain
decomposition method which is slightly modified. Compliance matrix or vector of attained
interface slips are added to the coarse system of equations. Numerical experiments show better
convergence properties of the modified conjugate gradients in many cases. The bond slip laws
with hardening can be efficiently described by added compliance. On the other hand, the bond
slip laws with softening are modelled by a sequence of steps with reduced stiffness. The proposed
framework should be studied in the future because the mesh dependency has to be dealt properly.
Similar approaches to the damage or fracture mechanics have to be applied.

Acknowledgement: Financial support for this work was provided by project number
P105/11/1160 of Czech Science Foundation. The financial support is gratefully acknowledged.
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Abstract

In this short note, we give an overview of the tools needed to estimate the error of
finite element methods applied to nonlinear convective problems with smooth solutions.
These results along with their generalizations to fully discrete explicit and implicit schemes
represent a new, promising technique first outlined by [5] and extended in [4].

1 Continuous problem and discretization

Let Ω ⊂ R
d, d ∈ N, be a bounded open polyhedral domain. We treat the following nonlinear

convective problem. Find u : Ω × (0, T ) → R such that

a)
∂u

∂t
+ div f(u) = g in QT , (1)

b) u
∣∣
ΓD×(0,T )

= 0, (2)

d) u(x, 0) = u0(x), x ∈ Ω. (3)

Here g : QT → R and u0 : Ω → R are given functions and ΓD ⊂ ∂Ω has positive measure. We
assume that the convective fluxes f = (f1, · · · , fd) ∈ (C2

b (R))d = (C2(R) ∩W 2,∞(R))d, hence
f and f ′ = (f ′1, · · · , f ′d) are globally Lipschitz continuous. The technique presented in [4] allows
to generalize the results also to f = (f1, · · · , fd) ∈ (C2(R))d, i.e. the locally Lipschitz case.

As for the boundary condition (2), we assume in our analysis that ΓN := ∂Ω \ ΓD is an outflow
boundary for the exact or approximate solution, i.e. e.g. ΓN ⊆ {x ∈ ∂Ω; f ′(u(x, t)).n ≥ 0}.
We discretize problem (1)-(3) using the standard conforming p-order finite element method.
Over a quasi-uniform, shape regular, conforming system of triangulations {Th}h∈(0,h0), h0 > 0

of Ω we define the space of globally continuous piecewise p-order polynomial functions Sh =
{v ∈ C(Ω); v|ΓD

= 0, v|K ∈ P p(K)∀K ∈ Th}. We set h = maxK∈Th
diam(K). In this function

space we introduce the space semidiscrete version of problem (1). We seek uh ∈ C1([0, T ];Sh)
such that uh(0) = u0

h ≈ u0 and

d

dt

(
uh(t), ϕh

)
+ b
(
uh(t), ϕh

)
= l
(
ϕh

)
(t), ∀ϕh ∈ Sh, t ∈ (0, T ). (4)

Here, we have introduced the convective and right-hand side forms defined for v, ϕ ∈ H1(Ω):

b(v, ϕ) = −
∫

Ω
f(v)·∇ϕdx+

∫

ΓN

f(v)·nϕdS, l(ϕ)(t) =

∫

Ω
g(t)ϕdx.

We note that a sufficiently regular exact solution u of problem (1) also satisfies (4) for all
ϕh ∈ Sh, i.e. we have Galerkin orthogonality property of the error.
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2 Key estimates of the convective terms

As usual in apriori error analysis, we assume that the weak solution u is sufficiently regular:

u, ut ∈ L2
(
0, T ;Hp+1(Ω)

)
, u ∈ L∞(0, T ;W 1,∞(Ω)).

Let ηh(t) = u(t)−Πhu(t) ∈ Hp+1(Ω) and ξh(t) = Πhu(t)− uh(t) ∈ Sh, where Πhv is the L2(Ω)-
projection of v on Sh. Then we can write the error eh as eh(t) := u(t) − uh(t) = ηh(t) + ξh(t).
By C we will denote a generic constant independent of h. In our analysis, we shall need the
following standard inverse inequalities

|vh|H1 ≤ CIh
−1||vh||,

‖vh‖∞ ≤ CIh
−d/2‖vh‖

and approximation properties of η, (cf. [2]):

‖ηh(t)‖ ≤ Chp+1|u(t)|Hp+1 ,
∥∥∂ηh(t)

∂t

∥∥ ≤ Chp+1
∣∣∂u(t)

∂t

∣∣
Hp+1 ,

The key estimate of the convective terms is inspired by the work [5], originally derived for the
DG method. A complete proof of our case can be found in [4].

Lemma 2.1. There exists a constant C ≥ 0 independent of h, t, such that

b
(
uh(t), ξ(t)

)
− b
(
u(t), ξ(t)

)
≤ C

(
1 +

‖eh(t)‖∞
h

)(
h2p+1|u(t)|2Hp+1 + ‖ξ(t)‖2

)
. (5)

Proof. The key trick of the estimate is performing a Taylor expansion of f with respect to u:

f(u) − f(uh) = f ′(u)ξ + f ′(u)η − 1

2
f ′′u,uh

e2h,

where f ′′u,uh
is the Lagrange form of the remainder of the Taylor expansion. Substituting into

the definition of b(·, ·), we obtain the interior terms
∫

Ω
f ′(u)ξ·∇ξ dx+

∫

Ω
f ′(u)η·∇ξ dx− 1

2

∫

Ω
f ′′u,uh

e2h·∇ξ dx.

Estimating these terms by (5) is straightforward, using the inverse inequalities and estimates
of η. A similar procedure is done for the boundary terms of b(·, ·).

3 Error analysis of the semidiscrete scheme

We proceed similarly as for a parabolic equation. By Galerkin orthogonality, we subtract the
equations for u and uh and set ϕh := ξh(t) ∈ Sh. Since

(∂ξh

∂t , ξh
)

= 1
2

d
dt ‖ξh‖2, we get

1

2

d

dt
‖ξh(t)‖2 = b

(
uh(t), ξh(t)

)
− b
(
u(t), ξh(t)

)
−
(∂ηh(t)

∂t
, ξh(t)

)
.

For the last right-hand side term, we use the Cauchy and Young’s inequalities and estimates
of η and Lemma 2.1 for the convective terms. We integrate from 0 to t ∈ [0, T ],

‖ξh(t)‖2≤ C

∫ t

0

(
1+ ‖eh(ϑ)‖∞

h

)(
h2p+1|u(ϑ)|2Hp+1 + h2p+2|ut(ϑ)|2Hp+1 + ‖ξh(ϑ)‖2

)
dϑ, (6)

80



where C ≥ 0 is independent of h, t. For simplicity, we have assumed that ξh(0) = 0, i.e.
u0

h = Πhu
0. Otherwise we must assume e.g. ‖ξh(0)‖2 ≤ Ch2p+1|u0|2Hp+1 and include this term

in the estimate.

We notice that if we knew apriori that ‖eh‖∞ = O(h) then the unpleasant term h−1‖eh‖∞ in (6)
would be O(1). Thus we could simply apply the standard Gronwall lemma to obtain the desired
error estimates. We state this formally:

Lemma 3.1. Let t ∈ [0, T ] and p ≥ d/2. If ‖eh(ϑ)‖ ≤ h1+d/2 for all ϑ ∈ [0, t], then there exists
a constant CT independent of h, t such that

max
ϑ∈[0,t]

‖eh(ϑ)‖2 ≤ C2
Th

2p+1. (7)

Proof. The assumptions imply, by the inverse inequality and estimates of η, that

‖eh(ϑ)‖∞ ≤ ‖ηh(ϑ)‖∞ + ‖ξh(ϑ)‖∞ ≤ Ch|u(t)|W 1,∞ + CIh
−d/2‖ξh(ϑ)‖

≤ Ch+ CIh
−d/2‖eh(ϑ)‖ + CIh

−d/2‖ηh(ϑ)‖ ≤ Ch+ Chp+1−d/2|u(ϑ)|Hp+1(Ω) ≤ Ch,

where the constant C is independent of h, ϑ, t. Using this estimate in (6) gives us

‖ξh(t)‖2 ≤ C̃h2p+1 + C

∫ t

0
‖ξh(ϑ)‖2 dϑ, (8)

where the constants C̃, C are independent of h, t. Gronwall’s inequality applied to (8) states
that there exists a constant C̃T , independent of h, t, such that

max
ϑ∈[0,t]

‖ξh(ϑ)‖2 ≤ C̃Th
2p+1,

which along with similar estimates for η gives us (7).

Now it remains to get rid of the apriori assumption ‖eh‖∞ = O(h). For an explicit scheme, this
can be done using mathematical induction. Starting from ‖e0h‖ = O(hp+1/2), we prove:

‖enh‖ = O(hp+1/2) =⇒ ‖en+1
h ‖∞ = O(h) =⇒ ‖en+1

h ‖ = O(hp+1/2).

For the method of lines we have continuous time and hence cannot use mathematical induction
straightforwardly. However, we can use some continuous version of mathematical induction,
cf. [1, 3]. In our case, we can use the simplest version:

Lemma 3.2 (Continuous mathematical induction). Let ϕ(t) be a propositional function depend-
ing on t ∈ [0, T ] such that

(i) ϕ(0) is true,

(ii) ∃δ0 > 0 : ϕ(t) implies ϕ(t+ δ), ∀t ∈ [0, T ] ∀δ ∈ [0, δ0] : t+ δ ∈ [0, T ].

Then ϕ(t) holds for all t ∈ [0, T ].

Theorem 3.1 (Semidiscrete error estimate). Let p > (1 + d)/2. Let h1 > 0 be such that

CTh
p+1/2
1 = 1

2h
1+d/2
1 , where CT is the constant from Lemma 3.1. Then for all h ∈ (0, h1] we

have the estimate
max

ϑ∈[0,T ]
‖eh(ϑ)‖2 ≤ C2

Th
2p+1.
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Proof. Since p > (1+d)/2, h1 is uniquely determined and CTh
p+1/2 ≤ 1

2h
1+d/2 for all h ∈ (0, h1].

We define the propositional function ϕ by

ϕ(t) ≡
{

max
ϑ∈[0,t]

‖eh(ϑ)‖2 ≤ C2
Th

2p+1
}
.

We shall use Lemma 3.2 to show that ϕ holds on [0, T ], hence ϕ(T ) holds.

(i) ϕ(0) holds, since this is the error of the initial condition.

(ii) Induction step: We fix an arbitrary h ∈ (0, h1]. Due to the regularity assumptions, the
functions u(· ), uh(· ) are uniformly continuous function from [0, T ] to L2(Ω). Therefore, there
exists δ0 > 0, such that if t ∈ [0, T ), δ ∈ [0, δ0], then ‖eh(t + δ) − eh(t)‖ ≤ 1

2h
1+d/2. Now

let t ∈ [0, T ) and assume ϕ(t) holds. Then ϕ(t) implies ‖eh(t)‖ ≤ CTh
p+1/2 ≤ 1

2h
1+d/2. Let

δ ∈ [0, δ0], then by uniform continuity

‖eh(t+ δ)‖ ≤ ‖eh(t)‖ + ‖eh(t+ δ) − eh(t)‖ ≤ 1
2h

1+d/2 + 1
2h

1+d/2 = h1+d/2.

This and ϕ(t) implies that ‖eh(s)‖ ≤ h1+d/2 for s ∈ [0, t] ∪ [t, t+ δ] = [0, t + δ]. By Lemma 3.1,
ϕ holds on [0, t + δ]. This proves the “induction step” ϕ(t) =⇒ ϕ(t+ δ) for all δ ∈ [0, δ0].

4 Conclusion

We gave a simple overview of the concepts used to obtain error estimates of smooth solutions of
nonlinear convective problems. The results can be extended much further beyond this expository
account. For example, for a fully discrete implicit scheme, similar estimates can be obtained
after introducing a suitable continuation of the discrete solution. As mentioned, the technique
can be extended to locally Lipschitz continuous nonlinearities as well. We refer to [4] for details.
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Inverse analysis for estimating some characteristics

of stress fields

J. Maĺık, A. Kolcun

Institute of Geonics AS CR, Ostrava

1 Introduction

This work was inspired by the situation which happened during the extraction of the shaft of
the Frenštát coal mine in the Beskydy Mountains. During the extraction, when the tube of
the shaft ran trough certain geological layers, significant deformations of the concrete lining
occurred. The geological structure of the layers mentioned above was complicated and some
problems connected with the expected anisotropy of horizontal stress fields were predicted.

Let us start with the description of the technology applied for the shaft. The mobile steel
formwork method was applied and the wall of the shaft was reinforced by the concrete lining.
The principle of the technology is obvious from Figure 1.

Figure 1: Two stages of technology of reinforcement of the wall of the shaft.

The rock was gradually extracted, the mobile steel formwork was shifted and the vacated room
was filled by concrete. After hardening the concrete, the process was repeated.

Because of the original stress in the rock mass some part of the stress present in the rock
transfers on the concrete lining, which results in the deformations of the lining. The value of
the transferred loads depends on the thickness of extracted rock layer and the application of
concrete lining.

2 Basic hypotheses

Let us formulate the basic hypotheses which we will hold in the following mathematical models.

1. The concrete lining is the regular circular ring whose behavior is elastic and material
properties are known.
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2. The original stress field round the shaft in a certain depth is homogeneous.

3. The loads transferred on the concrete lining result in deformations of the ring and can be
approximated by the reduced tensor corresponding to the initial stress tensor. This tensor
is a multiplication by of the reduced tensor.

4. The problem is considered to be two dimensional and is analyzed as a 2D elastic problem
in every cross section.

The hypothesis 3 yields that we cannot establish the whole stress tensor, but the deformations
of the ring give the directions of principal stresses and their ratio.

3 Basic concept of the inverse analysis

As we mentioned in the previous section, our inverse analysis is based on a solution of the 2D
elastic problem depicted in Figure 2a).

Let us consider we have material constants of both the concrete and the rock. The square
boundary in Figure 2a) is loaded. The loads are derived from the reduced initial stress tensor,
so we are going to deal with the first boundary problem. Solutions to the first boundary problem
in displacements are not unique and are given up to rigid body translations and rotations (see
[1]). Thus we cannot directly use the displacements on the lining, but the changes of possessions
between points on the wall of the ring as it is depicted in Figure 2a). We have to transform the
measurements into the required form. The date are represented by the matrix Dn,5, where n it
is the number of measurements. The matrix lines are

(x1,i, y1,i, x2,i, y2,i, di),

i.e. coordinates of the pair of the points connected with the i− th measurement and the change
of the distance between this pair of points after the deformation of the circle ring. Let us denote
the reduced stress tensor

(
a c
c b

)
= a

(
1 0
0 0

)
+ b

(
0 0
0 1

)
+ c

(
0 1
1 0

)
. (1)

Our task is to establish the values a, b, c from the analysis of measurements. Our problem is
connected with the three 2D boundary value problems, where the loads on the square boundary
in Figure 3b) are generated by the three following stress tensors

(
1 0
0 0

)
,

(
0 0
0 1

)
,

(
0 1
1 0

)
. (2)

The solutions u1, u2, u3 of these three problems are unique up to rigid body translations and
rotations. The distances between the pairs of the points in which the measurements occurred
are independent of rigid body translations and rotations.

The solution u to the general problem, where the loads are generated by the general stress tensor

σ =

(
a c
c b

)
, (3)

are then
u = au1 + bu2 + cu3.
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Now we have to choose the parameters a, b, c such that the calculated distances between the pairs
of the points, where the measurements occurred, are as near to the measurements as possible.

Thus the three solutions u1, u2, u3 are connected with the three systems h1
i , h

2
i , h

3
i , i = 1, . . . , n

representing the distances between the pair of the points.

We can choose the parameters a, b, c so that the term

n∑

i=1

(di + ah1
i + bh2

i + ch3
i )

2

achieves its minimum. We can apply the least square method, which leads to the system of
three linear equations and is easy to calculate. Let us notice that the parameters a, b, c do not
represent the horizontal stress tensor but the reduced horizontal stress tensor. Because we do
not know the magnitude of the loads transferred from the mass to the lining, the parameters
a, b, c themselves do not have physical meaning. Nevertheless from the parameters a, b, c we
can derive the directions of the principal stresses and the ratio between the principal stresses
τmax, τmin which has physical meaning.

We have to consider the thickness of the circle ring is not constant and the application of the
least square method eliminates the errors given by the non constant thickness as well as the
inaccuracy of measurements.

The method described above was implemented as an additional module in the FEM-code GEM22
which was developed in Institute of Geonics for solving geomechanical problems.

a) b)

Figure 2: Two stages of technology of reinforcement of the wall of the shaft.

This code was applied for the analysis of stress fields in a few cross sections for which the mea-
surements were available (see [2]). The graph depicted in Figure 2b) represents the displacements
on the cross section of the shaft in the depth 300 m.

The surrounding rocks and concrete were modeled as isotropic materials whose constants are as
follows:

Table 1: Material properties

E [MPa ] ν

concreete 10000 0.2
rock 10000 0.24
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The diameter of the shaft is 8.5 m and the thickness of the lining is 70 cm. The analysis of the
situation depicted in Figure 2b) resulted in the ratio between the principal stresses

τmax/τmin = 3.6,

which indicates the considerable anisotropy of the initial stress field in the corresponding geo-
logical layer.

4 Conclusion

In this case mathematical modeling is an effective method that makes possible to propose optimal
installations of bolt reinforcements. On the other hand the installation above depends very much
on the exact knowledge of the principal stress directions which can be detected by the inverse
analysis described above. Thus this inverse analysis has to be an essential part of the technology
studied in this paper.

The proposed inverse analysis can be applied not only for the situation which we study in this
paper, but for tunnels as well. In this case we can analyze the stress fields in the cross sections
perpendicular to the tunnel. For such cases we have a reliable estimate of the vertical part of
the initial stress, so we can reconstruct the whole initial stress tensor if we have the principal
directions and the anisotropy ratio. These values are important for effective installations of rock
bolt systems (see [3], [4]).
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of the Shaft Frenštát, VVUU Ostrava.
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Primárńı metody rozložeńı oblasti a hraničńı prvky

L. Malý, D. Lukáš

Katedra aplikované matematiky, VŠB-Technická univerzita Ostrava

1 Úvod

Ve své práci se zabývám analýzou a aplikaćı hraničně prvkového př́ıstupu v primárńıch metodách
rozložeńı oblasti ve dvou dimenźıch, využ́ıvaných pro řešeńı eliptických parciálńıch diferenciál-
ńıch rovnic s vysokými skoky v materiálových koeficientech. Řešeńı pomoćı konečných prvk̊u
analyzovali a předvedli autoři Bramble, Pasciak a Schatz [1] v roce 1986. Také autoři Toselli
a Widlund se zabývali podobnou metodou ve své práci o aditivńı Schwarzově teorii [3].

Primárńı metody rozložeńı oblasti autor̊u Brambla, Pasciaka a Schatze na rozd́ıl od populárněj-
š́ıch FETI metod nezvyšuj́ı počet neznámých a zachovávaj́ı pozitivńı definitnost úlohy, tud́ıž je
lze použ́ıt jako předpodmı́něńı v metodě sdružených gradient̊u. Podstatou metody je aproximace
Schurova doplňku. V našem př́ıpadě se jednotlivé podúlohy snaž́ıme nahradit hraničněprvkovým
př́ıstupem a zredukovat tak problém pouze na hranici.

2 Primárńı metody rozložeńı oblasti

Řešme parciálńı diferenciálńı úlohu ve dvou dimenźıch

{
−div(k(x)∇u(x)) = f v Ω,

u(x) = 0 na ∂Ω,

kde Ω je polygonálńı oblast a k(x) je po částech konstantńı.

Oblast Ω rozděĺıme do N nepřekrývaj́ıćıch se podoblast́ı tak, aby respektovaly skoky v mate-
riálových koeficientech k(x). Řešeńı takovéto úlohy vede na soustavu lineárńıch rovnic. Odtud
dostaneme matici tuhosti A, kterou můžeme vyjádřit v následuj́ıćım přeuspořádaném 2× 2 blo-
kovém tvaru

A =

(
AII AIΓ

AΓI AΓΓ

)
,

kde AII odpov́ıdá vniťrńım lokálńım úlohám na jednotlivých podoblastech, blok AΓΓ odpov́ıdá
úloze na hranićıch a zbývaj́ıćı bloky odpov́ıdaj́ı jejich vzájemným interakćım. Matice tuhosti A
je symetrická pozitivně definitńı.

Stejně si přeuspořádáme vektor pravé strany a dále si řešeńı vyjádř́ıme jako součet partikulárńıho
a homogenńıho řešeńı. Dostáváme soustavu

(
AII AIΓ

AΓI AΓΓ

)
·
(
uP

I + uH
I

uH
Γ

)
=

(
bI
bΓ

)
.

Řešeńı této úlohy spočteme ve ťrech kroćıch:
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1. AIIu
P
I = bI , toto odpov́ıdá úloze

{
−ki∆u

P
i = f v Ωi,
uP

i = 0 na ∂Ωi,

2. SuH
Γ = bΓ −AΓIbI , S := ASS −AΓIA

−1
ΓΓAIΓ (Schur̊uv doplněk),

3. AIIu
H
I = −AIΓu

H
Γ , toto odpov́ıdá úloze

{
−ki∆u

H
i = 0 v Ωi,
uH

i = uH
Γ na ∂Ωi.

Efektivńı řešeńı vyžaduje nalézt vhodný předpodmiňovač pro matici A. Jej́ı inverzi vyjádř́ıme
jako

A−1 =

(
I −A−1

II AIS

0 I

)
·
(
A−1

II 0

0 S−1

)
·
(
I −A−1

II AIS

0 I

)T

.

Daľśı postup spoč́ıvá v sestaveńı aproximace Schurova doplňku S. V našem př́ıpadě je skeleton
rozdělen na hrany (Edge - E) a vrcholy (Vertex - V),

S =

(
SEE SEV

SV E SV V

)
=

(
I 0

−RE I

)
·
(
SEE S̃EV

S̃V E S̃V V

)
·
(
I −RT

E

0 I

)
,

kde RE je lineárńı interpolace z vrcholu na okolńı hrany. Aproximovaný Schur̊uv doplněk

Ŝ :=

(
I 0

−RE I

)
·
(
SEE 0

0 S̃V V

)
·
(
I −RT

E

0 I

)

sestává ze dvou část́ı. SEE je bloková diagonálńı matice lokálńıch úloh s nulovou Dirichletovou
okrajovou podmı́nkou pro oblasti nad každou hranou. S̃V V je matice globálńı Dirichletovy úlohy
(hrubého problému) na kosťre.

Pro tuto konstrukci předpodmiňovače ve 2d Bramble, Pasciak a Schatz [1] dokázali, že č́ıslo
podmı́něnosti matice tuhosti je O((1 + log(H/h))2), kde H je diametr podoblast́ı a h je děleńı
použito při diskretizaci MKP.

3 Numerické výsledky

Výše popsanou metodu jsme otestovali na modelové úloze

{
−div(k(x)∇u(x)) = 1 v Ω,

u(x) = 0 na ∂Ω,

kde Ω := (a, b) × (a, b) je čtverec rozdělený na N × N podoblast́ı (menš́ıch stejných čtverc̊u)
a k(x) je šachovnicová funkce, která nabývá sťŕıdavě hodnot 1 a 1000.

V předpodmiňovači popsaném výše jsme s úspěchem nahradili řešeńı globálńı úlohy na skeletonu
(hrubého problému) metodou hraničńıch prvk̊u, tedy matici S̃V V jsme sestavili pomoćı BEM
a sledovali počet iteraćı při řešeńı celé soustavy. Výsledky jsou obsaženy v Tabulce 1, N je počet
děleńı čtverce v jednom směru, celkový počet podoblast́ı je tedy N2.
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H

h

∖
N 2 3 4 8 16 32

4 4 5 12 13 13 13

8 5 6 14 15 17 17

16 5 7 17 21 21 21

32 6 8 19 25 25 –

64 7 9 22 29 29 –

Tabulka 1: Počty iteraćı u modelové ŕlohy.

4 Závěr

Podařilo se nám úspěšně nahradit řešeńı tzv. hrubého problému metodou hraničńıch prvk̊u
a numericky ověřit očekávané chováńı při řešeńı modelové úlohy. Nadále se pokuśıme metodou
hraničńıch prvk̊u nahradit také obě lokálńı úlohy, numericky otestovat efektivnost předpodmiňo-
vače a t́ım tak doložit analytické odhady.
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Parallel implementation of fast boundary element method
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1 Introduction

Using the boundary element method (BEM) for a solution of engineering problems we can re-
duce a dimension of a problem from d to d− 1. This not only significantly reduces the number
of unknowns (when compared to the finite element method) but also the time necessary to
generate a mesh. On the other hand, because of the non-locality of the kernel function, conven-
tional BEM produces fully populated matrices with O(N2) entries, requiring O(N2) operations
to assemble, and the same amount of operations per matrix-vector multiplication in iterative
solvers. Therefore, its usage for real world problems is limited and some method for matrix
sparsification has to be employed [4]. In this work we use our parallel implementation of the
fast multipole method (FMM) to solve a boundary value problem for Laplacian with Dirichlet
boundary condition.

2 Model problem

We consider the boundary value problem

{
−∆u = 0 in Ω,

γ0u = g on ∂Ω.

The solution of this problem can be obtained by the BEM, i.e. using the representation formula

u = V γ1u−Kγ0u,

where

(V s)(x) :=

∫

∂Ω
G(x, y)s(y) dsy, (Ks)(x) :=

∫

∂Ω

∂G(x, y)

∂ny
s(y) dsy,

with G(x, y) := 1
4π

1
‖x−y‖ being the fundamental solution of the Laplace equation in 3D.

For the discretization we use the Galerkin method with piece-wise constant basis and testing
functions. After the triangulation T := ∪N

ℓ=1τℓ we obtain the following system of linear equations

Vht =

(
1

2
Mh +Kh

)
g.

The matrices Vh, Kh of the single layer and double layer potential, respectively, are given by:

V ij
h := 〈V ψj , ψi〉∂Ω, Kij

h := 〈Kψj, ψi〉∂Ω,

and Mh is the diagonal matrix with entries mii = |τi|. Because of a nonlocality of the kernel
function G, the matrices Vh and Kh are fully populated.
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3 Fast multipole method

The fast multipole method introduced by Greengard and Rokhlin [2, 3] uses the fact that the
kernel G can be expanded by the spherical harmonic functions

1

‖x− y‖ ≈
p∑

n=0

n∑

m=−n

Sm
n (y)Rm

n (x), (1)

R±m
n (x) =

1

(n+m)!

dm

dum
Pn(u)|u=x̂3(x̂1 ± ix̂2)

m|x|n,

S±m
n (y) = (n−m)!

dm

dum
Pn(u)|u=ŷ3(ŷ1 ± iŷ2)

m 1

|y|n+1
,

ŷi = yi/‖y‖, ‖x‖ < ‖y‖. This leads to

∫

τj

∫

τi

1

‖x− y‖ dsx dsy ≈
p∑

n=0

n∑

m=−n

∫

τj

R±m
n (x) dsx

∫

τi

S±m
n (y) dsy,

which significantly reduces the computational complexity because the integrals by x and y
are now decoupled. To guarantee the asymptotic convergence rate of the FMM, the order of
expansion p should be chosen proportional to log2N .

Since the expansion (1) is only valid for ‖x‖ < ‖y‖ we use the recursive geometrical bisection to
split a computational domain into clusters and to construct a binary cluster tree. The pair of
clusters (Cx, Cy) is said to be admissible if it satisfies the condition

min {diamCx,diamCy} ≤ ηdist(Cx, Cy),

otherwise it is called nonadmissible. If the pair of clusters is admissible we say that the cluster Cy

is in the farfield of the cluster Cx and vice versa. Otherwise, they are in their mutual nearfield.
The admissible cluster pairs correspond to the blocks of matrix approximated by means of FMM.

Using the expansion (1) a matrix-vector multiplication w = At can be evaluated effectively by
splitting it into a nearfield and farfield part

wi =
∑

j∈NF(i)

Aijtj +
∑

j∈FF(i)

M̂m
n (O,ψi)L̃

m
n (O,FF (i)),

where NF (i), FF (i) are the sets of clusters in the nearfield or farfield, respectively, of the cluster
containing the element τi. M̂

m
n (O,ψi), L̃

m
n (O,FF (i)) denote multipole moments and coefficients

of a local expansion associated with a given cluster, respectively. Its efficient computation
leverages the existing tree structure:

1. Upward pass - multipole moments are computed on the finest level of the tree and trans-
lated to the higher levels by multipole to multipole (M2M) translations

2. Downward pass - coefficients of a local expansion are computed on the highest posssible
level by translation of multipole moments (M2L), and translated to the lower levels by
local to local translations (L2L)

Since the multipole coefficients depend on the vector t, these tree traversals have to be repeated
in each iteration of an iterative solver. For details see [1].
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4 Parallel fast BEM

In this section we briefly describe our parallel implementation of the fast BEM leveraging the fast
multipole method. There have been many attempts for a parallel implementation of FMM, usu-
ally based on the decomposition of a tree into local subtrees and utilizing space-filling curves to
design an efficient communication. These algorithms are able to solve extremely large problems
on current supercomputers, however with increasing number of processors the communication
deteriates the scalability.

Here we propose a method which is communication-free and leads to an optimal parallel com-
putational scalability O((n log n)/N) and reasonable memory scalability O((n log n)/

√
N). The

underlying mesh is decomposed into N submeshes and the resulting matrix into corresponding
N × N blocks. Each of N processes is assigned one diagonal block (these are typically most
time and memory consuming within the fast BEM) and N − 1 geometrically closely related off-
diagonal blocks, thus the total memory consumption for storing the mesh and related structures
is minimal. It turns out that the problem can be formulated in terms of the graph theory as
a decomposition of undirected complete graphs. The optimal decomposition is known for N
such that it holds

N(N − 1)

2N
=
p(p − 1)

2
,

where p+ 1 is a power of a prime number.

5 Numerical experiments and conclusion

Our parallel implementation of fast solvers for boundary integral equations was tested on the
Vuori cluster located at CSC, Finland, and on the HECToR supercomputer at EPCC, UK.
The fast mutlipole method was compared with another method for the sparsification of BEM
matrices, adaptive cross approximation (ACA). However, using the FMM, the matrix-vector
multiplication in the conjugate gradient algorithm is relatively time-consuming, therefore a
usage of a preconditioner seems to be necessary for larger systems.
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itiveness’ funded by Structural Funds of the European Union and state budget of the Czech
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Error analysis of three methods for the parameter estimation

problem based on spatio-temporal FRAP measurement

Š. Papáček, C. Matonoha
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1 Introduction

FRAP (Fluorescence Recovery After Photobleaching) measurement technique allows detection
of diffusivity (diffusion coefficient D) of autofluorescence molecules or fluorescently tagged com-
pounds (e.g. green fluorescence proteins – GFP) in living cells. This method is based on
measurement of the change of fluorescence intensity in a region of interest (ROI – an Euclidian
2D domain) in response to an external stimulus, a short period of high-intensity laser pulse
provided by the CLSM.1 Stimulus, the so-called bleach, causes irreversible loss in fluorescence
in bleached area without any damage in intracellular structures. After the bleach, the observed
recovery in fluorescence reflects diffusion of fluorescence compounds from the area outside the
bleach. Based on spatio-temporal FRAP images, the diffusion is reconstructed using either
a closed form model or simulation based model. In the latter case, beside a single diffusion coef-
ficient D, also the sequence {Dj} can be estimated as well. Let us underline that FRAP images
are in general very noisy, with small signal to noise ratio (SNR), i.e. in order to get reliable
results for the sequence {Dj}, an adequate technique residing in regularization is mandatory.

2 Inverse problem formulation

Assuming (i) local homogeneity, i.e. the concentration profile of fluorescent particles is smooth,
(ii) isotropy, i.e. diffusion coefficient D within the domain Ω is space-invariant, (iii) an unre-
stricted supply of unbleached particles outside of the target region (i.e. assuring the complete
recovery), the following dimensionless diffusion equation describes the unbleached particle con-
centration y(r, t): ∂y

∂t − ∇ · (D∇y) = 0. Moreover, for all three further studied methods, we
assume the special geometry residing in one-dimensional simplification getting y as a function
of dimensionless quantities: spatial coordinate x, time τ and re-scaled diffusion coefficient p:

∂y

∂τ
− p

∂2y

∂x2
= 0 , (1)

where x := r
L , L is a characteristic length, τ := t/T , T is a constant with some characteristic

value (e.g. time interval between two measurements), and p := D T
L2 .

The initial condition and Dirichlet boundary conditions are:

y(x, τ0) = f(x), x ∈ [0, 1], (2)

y(0, τ) = g0(τ), y(1, τ) = g1(τ), τ ≥ τ0. (3)

1Confocal laser scanning microscopy (CLSM) allows the selection of a thin cross-section of the sample by
rejecting the information coming from the out-of-focus planes. However, the small energy level emitted by the
fluorophore and the amplification performed by the photon detector introduces a measurement noise.
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Parameter estimation, ill-posedness and error analysis

The inverse problem studied is to estimate the model parameter p∗ (generally a vector) from
time course of the signal y(x, τ)δ observed at various time instants. The available data y(x, τ)δ

are noisy and δ plays the role of a bound on the data noise (later on also the error variance σ0

will be introduced). Some methods based on FRAP data do not use all measured values of
y(x, τ)δ, hence we further define the observation operator G that evaluates y on certain space-
points i ∈ {1, . . . , n} and time-points j ∈ {1, . . . ,m} where the experimental observations (also
referred to as the model output) are taken, i.e. G(yi,j) = z(τj). Denoting by p = (p1, . . . , pq) the
parameter vector, the inverse problem can be formulated as a system of non-linear equations:

F (p) = zδ, F = G ◦ S. (4)

Here, F = G ◦ S represents the parameter-to-output map, defined as the concatenation of
the PDE solution operator S onto the solution vector y of the underlying system (1)-(3), i.e.
S(p) = yi,j and the observation operator G. Due to noisy data and model imperfections, the
system (4) is replaced by a nonlinear least squares problem where ‖ . ‖ is an appropriate norm
for measuring the discrepancy between data and simulated output:

‖ zδ − F (p) ‖2→ min p>0 (5)

The inverse problem (5) is ill-posed in the sense that its solution (in the least squares sense)
does not depend continuously on the data, i.e. noisy data as well as round-off errors may be
amplified by an arbitrarily large factor. In order to overcome these instabilities the following
regularization method is proposed:

‖ zδ − F (p) ‖2 +α ‖ p− p0 ‖2→ min p,p0>0 (6)

where the positive regularization parameter α enforces stable dependency of pδ
α (the solution

to (6)) on the noisy data zδ and p0 represents an a-priory guess subjected to the minimization.

The above described method of Tikhonov regularization [7] was studied in our paper [5], however
the error concepts were not treated there. In the next section we perform the error analysis for
three FRAP methods exploiting properties of the sensitivity matrix χ = ∂z

∂p , i.e., the Jacobian

matrix of the output, being evaluated at p0.
2 More precisely,

χjk(p0) =
∂z(τj ; p)

∂pk
|p=p0, 1 ≤ j ≤ m, 1 ≤ k ≤ q. (7)

The statistical model for the observation process is following: zδ
j = z(τj ; p0) + εj . Moreover,

assuming E[εj ] = 0, var(εj) = σ2
0 < ∞, cov(εj , εk) = 0 whenever j 6= k, we have E[zδ

j ] =

z(τj; p0), var(zδ
j ) = σ2

0 . The solution to (6) obtained using data zδ is denoted as p̂ and is used

in the calculation of error variance and q × q covariance matrix Σ0 = cov(pi, pj), i.e., σ2
0 is

approximated by σ̂2 = 1
m−q |zδ − z(p̂)|2, and Σ0 is approximated by Σ̂0 = σ̂2

[
χ(p̂)Tχ(p̂)

]−1
.

The standard errors of parameters pk used to quantify uncertainty in the estimation are

SEk(p̂) = σ̂

√
[χ(p̂)Tχ(p̂)]−1

kk , 1 ≤ k ≤ q. (8)

2Let see the first order Taylor approximation ∆z ≈ χ∆p relates the perturbation. Accordingly to [1], a param-
eter vector is defined as sensitivity identifiable if ∆z ≈ χ∆p can be solved uniquely (in the local sense) for ∆p.
Moreover, a sufficient condition for sensitivity identifiability is the nonsingularity of the Fisher information matrix
FIM = χT χ (or equivalently det(χT χ) 6= 0), i.e., one sees that parameter estimation depends inherently on the
condition number of FIM.
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The propagation of uncertainty from the observation process to the estimated parameter vector
is induced by ε = (ε1, . . . , εm)T in equation (for more details, see [1, 6]):

p ≈ p0 +
[
χ(p0)

Tχ(p0)
]−1

χ(p0)
T ε. (9)

3 Three FRAP methods: assessing uncertainty

C.W. Moulineaux et al., Nature (1997)

C.W. Moulineaux et al. [4] have measured one-dimensional bleaching profiles (with common
variance σ2

0) along the specimen long axis. Supposing both the infinite domain (r ∈ R) and

initial Gaussian bleaching profile, i.e. y(r, t0) = y0,0 exp −2r2

r0
2 , then the solution y(r, t) of diffusion

equation (1) is y(r, t) =
y0,0r0√
r0

2+8Dt
exp −2r2

r0
2+8Dt . The time evolution of maximum depth y(0, t),

which was taken as the single observed data point z(t) at time t, and the Fisher information
matrix FIM = χTχ (which collapses to a scalar for q = 1), are given by:

zM (t) =
y0,0r0√
r02 + 8Dt

, FIMM =

m∑

j=1

[
∂zM (tj)

∂D

]2

=

m∑

j=1

[
4y0,0r0tj

(r02 + 8Dtj)3/2

]2

. (10)

The weighted linear regression is used in [4] to estimate diffusion coefficient D̂ and accordingly
to (8) we quantify its standard error: SE(D̂) = σ0/

√
FIMM .

J. Ellenberg et al., J. Cell Biol. (1997)

The Ellenberg et al. (1997) method [2] to calculate the diffusion coefficient D for stripe ROI
is based on the fluorescent signal integrated from the whole ROI (2D domain Ω): frap(t) =∫
Ω y(r, t)dS and is normalized as follows: frap(t0) = 0, frap(∞) = 1. Assuming the bleach

is complete, there is no immobile fraction, the cell is uniform rectangle, the bleached strip is
perpendicular to the long direction, then plot of this so-called FRAP recovery curve against time
should give a saturation curve according to the formula: frap(t) = 1 −

√
(w2/(w2 + 4πDt)),

where w is the stripe width. Introducing the dimensionless variables 2L := w, p := D
D0
, τ := tD0

L2

we have similarly as in (10), with reduced variance σ2
E =

σ2
0√
n

(n is the number of observed data

points integrated into zE(τj) at each time instant τj):

zE(τ) = 1 − 1√
1 + pπτ

, FIME =
m∑

j=1

[
1
2πτj

(1 + pπτj)3/2

]2

, SE(p̂) =
σE√
FIME

. (11)

FD approximation of PDE (1-3) & Tikhonov regularization based method [5]

As the analytical approach has several limitations (e.g. cell geometry restriction, full recovery is
required, bleach profile must be gaussian-like, etc.) we model the process by the Fickian diffusion
equation with realistic initial and boundary conditions instead, and the parameter estimation is
formulated as an ordinary least squares problem with (6) or without (5) regularization. By this
way the sequence of parameters pk, 1 ≤ k ≤ q, is determined and the uncertainty assessment
based on q × q Fisher information matrix is led similarly as in above cases, see (7)–(9).
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4 Discussion

We have presented three methods for the estimation of diffusivity of fluorescent compounds based
on spatio-temporal FRAP measurement and the pertinent error analysis as well. The first two
methods, representing the state-of-the-art in FRAP measurement, are based on the curve fitting
to an analytical (closed form) models, and obviously need some unrealistic or hard-to-accomplish
conditions to be supposed. Our third method is based on finite difference approximation of PDE
describing the diffusion process (with the diffusion coefficient D as a parameter) and on the
minimization of an objective function evaluating both the disparity between the experimental
and simulated time-varying concentration profiles and the smoothness of the time evolution of D
as well. This latter approach naturally takes into account both the specimen geometry and time-
dependent Dirichlet boundary conditions. The uncertainty assessment is based on the sensitivity
matrix calculated either analytically (mainly in case of the curve fitting to an algebraic formula)
or numerically.3 Furthermore, the error analysis provides the tool for discerning among different
methods.
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Problem of identification of heat transfer coefficients

P. Salač

Technical University of Liberec

1 Introduction

This work concerns an identification of the heat coefficients between a cast, a mould, and an
environment. The goal of the identification is to find the flux density of modified mass coefficient
function of curing melt and the coefficient function of the heat-transfer between the mould and
the environment. The aim is to modify these coefficients to achieve the fixed given values at
n given points that were obtained as the mean values of measured courses of temperature by
sensors.

Mathematical model is a strong idealization of a non-stationary periodical problem of the heat
conduction. We study the problem of the stationary conduction of the heat for mean values of
this periodical process.

The cost functional is defined as the squared L2 norm of the difference between a given inter-
polation function and the calculated temperature.

We define a weak formulation of the state problem and formulate the problem of the identification
of the heat-transfer coefficient and the flux density of modified mass of the body coefficient.

2 Formulation of the problem

We assume the problem of steady heat conduction in the union of two regions Ω = Ω0 ∪Ω1. We
assume the existence of a heat source with given density q in the inner region Ω0 and no heat
source in the region Ω1. We divide the notion for a searched function ϑ, representing distribution
of temperature in the system, into the sum of two functions as

ϑ = ϑ0 + ϑ1 ,

where

ϑi =

{
ϑ|Ωi

in Ωi

0 in Ω \ Ωi
for i = 0, 1 . (1)

Further we denote by ϑi|Γj
the trace of the solution ϑi on the boundary Γj if Γj is a boundary

of Ωi for i, j . We assume the steady heat conduction problem

−k0∆ϑ0 = q in Ω0 , (2)

−k1∆ϑ1 = 0 in Ω1 , (3)

where k0, k1 are coefficients of thermal conductivity in the regions Ω0, Ω1 and q ∈ L2(Ω0) is
the given function.

The heat-transfer through the boundary Γ1 (i. e. between the mould and the environment)
is modeled as a boundary condition of the third kind of the contact between a body and an
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Figure 1: Scheme of the mould and the cast.

environment (see [2]), thus

−k1
∂ϑ1

∂n
= α(ϑ1|Γ1 − ϑE) on Γ1 , (4)

where ∂
∂n denotes the derivative according to the outward normal with respect to the region Ω1,

α > 0 denotes the coefficient of the heat-transfer between the mould and the environment,
ϑ1|Γ1 is a trace of ϑ1 on the boundary Γ1 of the region Ω1 and ϑE > 0 a temperature of an
environment.

We use the transit condition for contact between two bodies, where one of them changes its
state of matter because of the influence of solidification (see [2]), to describe transfer of heat
through the boundary Γ0 between the cast and the mould. Thus

k1
∂ϑ1

∂n
− k0

∂ϑ0

∂n
= β on Γ0 , (5)

where β > 0, β ∈ C(0),1(Γ0) represents the flux density of modified mass of the body, ∂
∂n denotes

the derivative according to the outward normal with respect to the region Ω1, resp. Ω0.

We define the set of admissible functions as

Uαβ
ad = { (α, β) ∈ C(0),1(Γ1) × C(0),1(Γ0) ;

(i. e. Lipschitz functions according to the length of relevant boundary),

0 < αmin ≤ α ≤ αmax, |α′| ≤ C1 , 0 < βmin ≤ β ≤ βmax, |β′| ≤ C2} ,

where the function α represents the heat-transfer coefficient on the boundary Γ1 and β represents
the flux density of modified mass of the cast on the boundary Γ0.

We define the operators

En(ϑ, ψ) = k0

∫

Ω0

(
∂ϑ0

∂x

∂ψ

∂x
+
∂ϑ0

∂y

∂ψ

∂y
+
∂ϑ0

∂z

∂ψ

∂z

)
dΩ + (6)

+ k1

∫

Ω1

(
∂ϑ1

∂x

∂ψ

∂x
+
∂ϑ1

∂y

∂ψ

∂y
+
∂ϑ1

∂z

∂ψ

∂z

)
dΩ ,

Ev(ϑ, α, ψ) =

∫

Γ1

αϑ1|Γ1ψ dS , (7)

So(ψ) = ̺1

∫

Ω0

qψ dΩ , (8)

CoefΩ(α, β, ψ) =

∫

Γ1

αϑEψ dS +

∫

Γ0

βψ dS , (9)
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to define the state problem based on the variational formulation of the heat transfer equation.

The State Problem:

We look for the function ϑ ≡ ϑ(α, β) ∈ H1(Ω) such that

En(ϑ, ψ) + Ev(ϑ, α, ψ) = So(ψ) + CoefΩ(α, β, ψ) ∀ψ ∈ H1(Ω) , (10)

where (α, β) ∈ Uαβ
ad .

Theorem 1. (existence and uniqueness of the solution of the state problem)

The state problem (10) has a unique solution ϑ(α, β) for each (α, β) ∈ Uαβ
ad .

Proof. It is sufficient to verify the assumptions of the Lax-Milgram Theorem.

We assume that the temperatures are given in the set of n points. This data can be obtained
from the measurements done in the mould during the production cycle as a mean of values
of periodic time dependent functions. We denote temperatures at the given points t(zi), for
i = 1, . . . , n. We assume the existence of a function κ ∈ C(Ω) such that κ(zi) = t(zi) for
i = 1, 2, . . . , n (κ can be an interpolation function obtained from the measured values).

Ω1

Ω0

Γ1

Γ0

b

b

b

bb

b

b

b

b

b

b

b

b

b z1

z2
z3

z4

zn

Figure 2: Scheme of the mould and the cast with the points of measurements.

We define the cost functional as

J I(α, β) = ‖ϑ(α, β) − κ‖2
1,Ω , (11)

where ϑ(α, β) is the solution of the state problem (10).

Now we formulate the problem of identification :

We look for the optimal design (α∗, β∗) ∈ Uαβ
ad such that

J I(α∗, β∗) ≤ J I(α, β) ∀(α, β) ∈ Uαβ
ad . (12)

Theorem 2. (existence of solution of the identification problem)
The problem (12) has at least one solution.

Proof. We use Theorem 2.1. published in [1] page 29.
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3 Conclusion

Presented contribution introduces some theoretical way how to estimate unknown values of
the coefficient of the flux density of modified mass coefficient function of curing melt and the
coefficient function of the heat-transfer between the mould and the environment. Both the
coefficients play an important role in calculating the temperature distribution in models of
technological process of casting into moulds. Unfortunately, there is no direct method to measure
these coefficients that increases the importance of the described identification problem.

Acknowledgement: The paper was supported by the project ESF, no. CZ.1.07/2.3.00/09.0155,
”Constitution and improvement of a team for demanding technical computations on parallel
computers at TU Liberec”.
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Weak solutions for a class of nonlinear

integrodifferential equations

I. Soukup
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Introduction

Presented work investigates a system of evolutionary nonlinear partial integrodifferential equa-
tions in three dimensional space. In particular it studies the existence of a solution to the
system introduced in [1] with Dirichlet boundary condition and given initial condition. The
studied model represents so-called generalized integral Oldroyd-type model for incompressible
viscoelastic nonnewtonian fluids.

The main goal of this work is to give a deeper theoretical knowledge about the properties of
mentioned model, which is one of many models describing such fluids like blood (especially in
thin veins) or large variety of industrial materials. We feel obligated to emphasize that this
work is purely analytical and do not study given model from the perspective of physics or
mathematical modelling.

1 Mathematical formulation of the problem

We are looking for a couple (u, π) satisfying the following system of equations

∂tu + u∇u = −∇π + divF(∇u) +

∫ t

0
G(t− s) divH(∇u) ds + f,

divu = 0,

in (0, T ) × Ω, where Ω ⊂ R
3 is a bounded domain with a sufficiently smooth boundary. We

consider the system of equations with Dirichlet boundary condition

u|∂Ω = 0 in (0, T )

and initial condition
u(0) = u0 in Ω .

The operators F and H are generally nonlinear (usually power-like) and function H is a so-called
scalar kernel. Vector functions f and u0 are given.

2 Current state of knowledge

This problem was first studied by T. Bárta in [1] and it is so far the first and the last research
paper studying given model in the precise form we described above. In particular, T. Bárta
succesfully proved the existence of weak solutions under the assumption of p-power-like behaviour
of the nonlinearities F and H, i.e. he assumed p-boundedness and p-lipschitz continuity of
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nonlinear operators F and H and monotonicity of F , where by the index p we emphasize that
the mentioned properties were dependent on some parameter p. The main idea of the proof is
based on the ideas of Ladyzhenskaya she used in her studies of similar problem with the integral
term missing. She also assumed monotone and p-bounded nonlinearity F (to demonstrate
properly the importance of parameter p, we present in what sense we understand mentioned p-
boundedness, i.e. F satisfies inequality ‖F (∇u)‖p′ ≤ C‖∇u‖p−1

p for appropriate u). She showed
the existence of global solution for values of parameter p ≥ 11

5 (see [3], [4], [5]). The results of
T. Bárta also holds for the similar values of parameter p because of the same structure of proof.

The Results of Ladyzhenskaya were later extended to values p ≥ 2 by Málek, Nečas and Růžička
(see [6]) under additional assumptions on F and then by Wolf (see [7]) to p ≥ 8/5 without
any additional assumptions. Moreover, just recently was the result of Wolf extended even for
p ≥ 6/5 (see [2]) by Diening, Růžička and Wolf without additional assumptions on F .

Nevertheless, the model in the form we are investigating was studied only by T. Bárta where
the existence of a weak solution was proven in three dimensional space with the assumption
p ≥ 11/5 as we already mentioned.

In our work we focus on the result of Málek, Nečas and Růžička and adopting their method we
aim to the same results for the integrodifferential model.

Thus, our main goal will be the improvement of Bárta’s result using the method from Málek,
Nečas and Růžička. In particular we will try to obtain existence of weak solutions for p ∈ [2, 11

5 )
and regularity properties for higher values of the parameter p. As we mentioned, we will proceed
along the lines of [6]. The main difference compared to [6] is the presence of the integral term.

3 Scheme of the proof

We adopt the scheme of the proof from [6] and try to avoid the complications rising from the
presence of the integral term. The procedure consists of an approximation of the convective term
and an approximation of the potentials of nonlinearities F and H using a quadratic function,
proving the existence of the approximative solution and then returning to the original problem
via regularity of the approximative solution and properties of the nonlinearities.

Acknowledgement: The work was supported by the grant SVV-2012-265316.
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Numerical solution of contact perfectly plastic problems:

part I – theory and numerical methods

S. Sysala, J. Haslinger, M. Čermák
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1 Introduction

Our contribution is divided into two parts. In Part I, we focus on the theory of discretized
problems and suitable numerical methods. In Part II, see [2], we describe implementation of the
problem and illustrate it on model examples.

In Section 2, we formulate the primal and dual formulation of the problem. Further we summa-
rize relations among them and their solvability in dependence on the parameter of proportional
loading. In Section 3, we consider a finite element discretization of the problem. We extend
existence results for the primal formulation (in terms of displacements). We also describe a one-
to-one relation between the load parameter and the work of external forces. In Section 4, we
introduce a modified semi-smooth Newton method for solving the problem and present conver-
gence results.

2 Formulation of the problem

We consider 3D contact problem for two elastic-perfectly plastic bodies Ω1,Ω2 with bounded
contact zones Γ1

c ,Γ
2
c , frictionless contact boundary conditions, the Hencky model with the von

Mises plastic yield criterion and the small strain assumption. The bodies are fixed on Γ1
u,Γ

2
u

and subject to external forces which are proportionally increasing from 0 up to the so-called
limit load. We investigate the problem in dependence on the loading parameter λ ∈ [0, λ]. For
more details, we refer [9, 5] or [6].

To formulate the problem, we introduce the following functional spaces:

S =
{
τ = (τij) : Ω → R

3×3
sym | τij|Ωk ∈ L2(Ωk) ∀i, j = 1, 2, 3, k = 1, 2

}
, Ω = Ω1 ∪ Ω2,

representing the stress and strain fields with the scalar product 〈τ, e〉 =
∫
Ω τ : e dx and the norm

‖e‖E =
√

〈Ce, e〉, where C represents the elasticity tensor for an isotropic material. Further

V = {v | v|Ωk ∈
(
H1(Ωk)

)3
, k = 1, 2, v = 0 on Γ1

u ∪ Γ2
u}

representing the displacement fields with the energy norm |||v||| := ‖ε(v)‖E , v ∈ V . In V and
S, we define the convex sets of kinematically admissible displacement fields, plastically and
statically admissible stress fields, respectively:

K =
{
v ∈ V | [v]n ≤ 0 on Γ1

c ∪ Γ2
c

}
,

P =
{
τ ∈ S | ‖τ(x)D‖F ≤ γ for a. a. x ∈ Ω

}

Λλ = {τ ∈ S | 〈τ, ε(v)〉 ≥ λL(v) ∀v ∈ K} , L(v) =

∫

Ω
F ·vdx+

∫

Γf

g·vds
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where ‖.‖F denotes the Frobenius norm, τD is the deviatoric part of τ , γ > 0 represents the
initial yield stress and λ ≥ 0 is the above mentioned load parameter.

The dual and primal formulations of the problem in dependence on λ ≥ 0 read as follows [5, 9]:

(P)∗λ minimize S(τ) =
1

2
〈C−1τ, τ〉 on Λλ ∩ P,

(P)λ minimize Jλ(v) = Ψ(ε(v)) − λL(v) on K.

Here the functional Ψ is convex, Fréchet differentiable and can be split into the volumetric and
deviatoric part, i.e. Ψ(e) = ΨV (tr(e))+ΨD(eD) for any e = 1

3 tr(e)I+eD ∈ S. The functional ΨV

is quadratic while ΨD has only a linear growth:

∃k0, k1 > 0 : k0 (‖e‖F − 1) ≤ ΨD(e) ≤ k1‖e‖F ∀e ∈ S. (1)

Due to this fact, the functional Jλ is not coercive on V in general, and consequently solvability
of (P)λ is not guaranteed. On the other hand, the functional S is quadratic. Therefore there
exists a unique solution to (P)∗λ if and only if

Λλ ∩ P 6= ∅. (2)

The verification of (2) however is not trivial. It is known that there exists the so-called limit
load λ̄ > 0 (possibly λ̄ = +∞) such that (2) holds if and only if λ ∈ [0, λ̄]. The way how to
find λ̄ for perfectly plastic problems with standard boundary conditions has been proposed in
[9]. Its possible numerical realization can be found in [1].

The following relationship between the dual and primal problems [9] holds:

inf
v∈K

Jλ(v) = sup
τ∈Λλ∩P

{−S(τ)} ∀λ ≥ 0, (3)

where we set sup{−S(τ)} = −∞ if Λλ ∩ P = ∅, i.e. if λ > λ̄. This means that Jλ is bounded
from below if λ ≤ λ̄, which enables us to investigate solvability of (P)λ on the larger space
BD(Ω) than V , see e.g. [9]. Notice that if λ < λ̄ then one can prove coercivity of Jλ on the
non-reflexive space LD(Ω) = {v ∈ L1(Ω); εij(v) ∈ L1(Ω)}.
If we assume that there exists a solution uλ ∈ V of (P)λ, then σλ = T (ε(uλ)) solves (P)∗λ, where
T is the Fréchet derivative of Ψ representing the stress-strain operator. It is well-known that
T can be defined by a projection on the convex set P . Due to this fact, T is also Lipschitz
continuous and monotone on V .

3 Notes to the discretized problem

The problem is discretized by the finite element method using piecewise linear continuous
approximations of the displacement field and piecewise constant approximations of the stress and
strain field. We do not investigate the influence of the domain, material and load approximation.

The primal and dual formulation of the discretized problem has the same structure as in Sec-
tion 2, only the spaces V , S are now finite-dimensional. Therefore the theoretical results from
Section 2 remain valid. For simplicity of notation, the primal and the dual formulation of
discretized problem will be denoted again by (P)λ, and (P)∗λ, respectively. Since V is now
finite-dimensional, we can also investigate solvability of (P)λ. It holds:

i) Jλ is coercive and the solution set to (P)λ is non-empty and bounded if and only if λ < λ̄.
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ii) (P)λ̄ has a solution if and only if all solutions to (P)λ, λ < λ̄, are uniformly bounded with
respect to λ. In such a case the solution set to (P)λ̄ is unbounded.

iii) For sufficiently small λ > 0, (P)λ has a unique solution which also solves the corresponding
problem for elastic bodies.

It is typical in perfect plasticity to investigate a loading process up to the limit load represented
by λ̄, which is not a priori known. So if we increase λ, we would like to known how far we are
from λ̄. To do this, it could be useful to know the dependence of the work of external forces L
on λ. It holds:

j) Let 0 ≤ λ1 < λ2 ≤ λ̄ and (P)λ2 has a solution. Then L(uλ1) < L(uλ2) for any solution uλi

to (P)λi
, i = 1, 2.

jj) Let α ≥ 0 be a given parameter. Then there exist: a unique λ := λ(α) ≤ λ̄ and a solu-
tion uλ to (P)λ such that L(uλ) = α.

jjj) If α→ +∞ then λ(α) → λ̄.

ij) The function α 7→ λ(α) is linear for sufficiently small α (elastic branch).

Thus the parameter α representing the work of the external forces is more sensitive for controlling
the loading process than λ. If the curve representing the relation between α and λ is far from
the initial linear behavior, one can expect that λ is close to λ̄.

4 Modified semi-smooth Newton’s method for (P)λ

We propose a modified semi-smooth Newton method for the primal problem. The method is
modified by a damping coefficient to keep a decrease of the functional and by the regularized
tangential stiffness matrices to ensure a uniform positive definiteness. Although the method
is primarily formulated in displacements, the main convergence results are obtained for stress
fields.

Let us recall that the stress-strain operator T is potential, Lipschitz continuous and monotone.
Since V is now finite dimensional, we can define a generalized derivative ∂T (e) of T at any
e ∈ S in the sense of Clark [3], and a function T o so that T o(e) ∈ ∂T (e), e ∈ S. Moreover it
is known that T and consequently T (ε(.)) are strongly semi-smooth on the finite dimensional
spaces S and V , respectively [8]. It means that the following estimate holds for any v ∈ V and
any sufficiently small w ∈ V :

T (ε(v + w)) − T (ε(v)) − T o(ε(v + w))ε(w) = O(|||w|||2). (4)

Thus it is possible to use the semi-smooth Newton method [7]. On the other hand, it is not
guaranteed that T o(ε(.)) is positive definite in a vicinity of a solution to (P)λ since T is only
monotone. For this reason we rather propose and use the regularized operator T o,ν :=
(1 − ν)T o + νC, ν ∈ [0, 1], instead of T o. It holds that

〈T o,ν(ε(v))ε(w), ε(w)〉 ≥ ν|||w|||2 ∀v,w ∈ V. (5)

For Newton-like methods in optimization problems, an approximation of a non-quadratic func-
tional by a quadratic one is typical. In our case, the functional Jλ contains the non-quadratic
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part Ψ. Its value at a solution uλ can be approximated by some uk
λ ∈ K close to uλ as follows:

Ψ(ε(uλ)) ≈ Ψ(ε(uk
λ)) + 〈T (ε(uk

λ)), ε(uλ − uk
λ)〉 +

1

2
〈T o,ν(ε(uk

λ))ε(uλ − uk
λ), ε(uλ − uk

λ)〉. (6)

The k-th step of the modified semismooth Newton is then defined by

uk+1
λ = uk

λ + αkδu
k ∈ K, (7)

where δuk ∈ Kk minimizes the quadratic functional

Jλ,k(δv) =
1

2
〈T o,ν(ε(uk

λ))ε(δv), ε(δv)〉 − λL(δv) + 〈T (ε(uk
λ)), ε(δv)〉 (8)

on the convex set Kk := {δv ∈ V | δv + uk
λ ∈ K} and

αk = arg min
α∈(0,1]

Jλ(uk
λ + αδuk). (9)

The algorithm is initiated by some u0
λ ∈ K. We also compute the corresponding stresses

σk
λ = T (ε(uk

λ)). If ν ∈ (0, 1], then the algorithm is well-defined and determines the descent
directions δuk. The inner problem (8) is similar to the corresponding contact problem for elas-
tic bodies. Efficient numerical methods for such a problem will be discussed in Part II of our
contribution [2].

For any ν ∈ (0, 1], the following convergence results can be proven:

lim
k→+∞

Jλ(uk
λ) = inf

v∈K
Jλ(v) ∀λ ≥ 0, (10)

σk
λ → σλ ∀λ ∈ [0, λ̄], σλ solves (P)∗λ, (11)

{uk
λ}k is bounded and its accumulation points solve (P)λ for any λ ∈ [0, λ̄). From (10) and (11),

we see that the algorithm generates a minimization sequence of Jλ and that convergence of
stresses occurs even if the primal problem does not have a unique solution, respectively.

For a wide class of the loads and λ < λ̄, one can intuitively assume that

∃ǫ := ǫ(λ) > 0 : 〈T o(ε(uλ))ε(v), ε(v)〉 ≥ ǫ|||v|||2 ∀v ∈ V, (12)

where uλ ∈ K is a solution to (P)λ and ǫ(λ) → 0+ as λ→ +λ̄.

If we accept this assumption then uλ is the unique solution to (P)λ and the following convergence
results hold:

|||uh − uk+1
h |||





≤
(
1 − αkǫ

ǫ+(1−ǫ)ν

)
|||uh − uk

h|||, ∀ν ∈ (0, 1],

= O(|||uh − uk
h|||2), ν = 0

(13)

and
lim

k→+∞
αk = 1. (14)

Thus we get local quadratic convergence for ν = 0 and local linear convergence for ν ∈ (0, 1].
However if the assumption (12) was true, we could expect that the inner problem (8) is ill-posed
for λ→ λ̄ and small ν.
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5 Conclusion

In this contribution, we summarized and slightly extended the theoretical background to the
contact problem for elastic-perfectly plastic bodies. We proposed the modified semismooth New-
ton method and studied its convergence. Parallel implementation of the problem and numerical
examples are discussed in Part II of our contribution [2].

We have also investigated Uzawa’s method for the corresponding augmented Lagrangian problem
formulated in terms of displacement, strain and stress fields, see e.g. [4, 5, 6]. The comparison
of both methods can be found in Part II [2].
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1 Introduction

We combine theMultilevel BDDC (e.g. [2, 5]) with the adaptive selection of constraints [1, 3,
6] to obtain an implementation of the algorithm of Adaptive-Multilevel BDDC [7, 8]. This
implementation is available as a part of the open-source parallel solver BDDCML.

2 Adaptive-multilevel BDDC

The goal of the Adaptive BDDC [1, 3, 4, 6] is to improve the coarse problem of BDDC so that
the worst modes are eliminated from the space of admissible functions. This is achieved by
solving a set of local generalized eigenproblems, one for each pair of subdomains. As has been
shown in [4], this approach is able to significantly improve robustness of the BDDC method for
problems with certain numerical difficulties, such as problems with strongly varying material
coefficients.

The Multilevel BDDC (e.g. [2, 5]) aims at very large problems solved on large number of
subdomains and corresponding processors. For such problems, the coarse problem becomes so
large and/or fragmented, that factorization by a parallel direct method is not scalable or even
possible. The main idea of Multilevel BDDC is to apply BDDC recursively to the arising coarse
problems, introducing an approximation on each level. Consequently, the condition number
worsens exponentially with each level [2].

The goal of the Adaptive-Multilevel BDDC [7, 8] is to enjoy the advantages of both of these
approaches — the scalability of the multilevel approach and robustness of the Adaptive BDDC.

3 BDDCML package

The Adaptive-Multilevel BDDC has been recently included into our parallel solver BDDCML4.
The BDDCML is a library for solving linear systems of algebraic equations in parallel. It is
written in Fortran 95 programming language and parallelized by MPI. The library can be linked
to users’ applications, typically finite element packages. One step of the BDDC method is used
as a preconditioner for the PCG method (for problems with symmetric positive definite matrix)
or for the BICGstab method (for symmetric indefinite or general non-symmetric matrices).

4http://www.math.cas.cz/~sistek/software/bddcml.html
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4 Numerical example

The performance of the method is analysed on a benchmark problem of elasticity analysis of
a unit cube, which is loaded by its own weight and fixed at one vertical face. Nine stiff bars are
cutting horizontally through the cube. The Young’s modulus of the outer material E1 is 106 times
smaller than that of the bars E2, creating contrast in coefficients E2/E1 = 106. In Fig. 1 (right),
the (magnified) deformed shape of the cube is shown. The cube is discretized using uniform
mesh of tri-linear finite elements and divided into an increasing number of subdomains. On the
first level, subdomains are cubic with constant H/h = 16 ratio (H is the characteristic size of
subdomains, h is the characteristic size of elements), see Fig. 1 left for an example of a division
into 64 subdomains. On higher levels, divisions into subdomains are created automatically inside
BDDCML by the METIS package, in general not preserving cubic shape of subdomains.

Figure 1: Example of a division of the cube into 64 subdomains (left) and (magnified) deformed
shape for contrast E2/E1 = 106 coloured by vertical displacement (right). Reproduced from [8].

In Tabs. 1 and 2, we present results of a weak scaling test. The growing problem is solved on 8 to
32768 processors of the Cray XE6 supercomputer Hector (EPCC), with each core handling one
subdomain of the first level. In these tables, N denotes the number of subdomains (and computer
cores), n denotes global problem size, nΓ represents the size of the reduced problem defined at
the interface Γ, nf is the number of faces in divisions on the levels (corresponding to number
of generalized eigenproblems solved in the adaptive approach), ‘its.’ is the number of iterations
needed by the PCG method, and ‘cond.’ is the estimated condition number obtained from the
tridiagonal matrix generated in PCG. We report times needed by the set-up phase (‘set-up’),
by PCG iterations (‘PCG’) and their sum (‘solve’).

Results for the non-adaptive multilevel BDDC approach in Table 1 confirm, that convergence
worsens with additional levels, as well as that the multilevel extension is capable of solving larger
problems than the two-level method (‘n/a’ in the tables). However, we can also observe, that
the non-adaptive method requires an extensive number of PCG iterations and this stage clearly
dominates the overall time of solution.

The time needed by the adaptive-multilevel BDDC is very different. Most of it is spent by
the solution of the related eigenproblems (included into time of ‘set-up’). Since we keep the
number of computed eigenvectors constant (ten) for each pair of subdomains, the method is not
able to maintain a very low condition number after all these eigenvectors are used for generating
constraints. However, number of iterations is always significantly lower than in the non-adaptive
approach, and the method typically requires about one half of the computational time. While
this is an important saving of computational time, it is shown (for the two-level method) in [4],
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N
n nΓ

nf its. cond.
time (sec)

ℓ = 1(/2/3) ℓ = 1(/2/3) set-up PCG solve

2 levels

8 0.1M 9.5k 12 582 236k 4.0 59.4 63.4
64 0.8M 0.1M 0.1k 1611 233k 4.7 171.9 176.6
512 6.4M 1.0M 1.3k 2195 240k 9.5 340.4 350.0
4096 50.9M 8.4M 11.5k n/a n/a n/a n/a n/a

3 levels

64/8 0.8M 0.1M 0.1k/18 2218 239k 4.7 234.1 238.8
512/64 6.4M 1.0M 1.3k/295 2830 250k 5.5 328.2 333.7

4096/512 50.9M 8.4M 11.5k/2930 4636 587k 19.3 1096.2 1115.5
32768/128 405.0M 69.1M 95.2k/664 6914 737k 155.0 3820.8 3975.8

4 levels

512/64/8 6.4M 1.0M 1.3k/295/23 3771 729k 5.4 434.4 439.8
4096/512/64 50.9M 8.4M 11.5k/2930/380 8548 1860k 9.3 1502.3 1511.6
32768/512/8 405.0M 69.1M 95.2k/2921/23 9532 2362k 160.2 5096.6 5256.8

Table 1: Weak scaling for the cube problem with jump in coefficients E2/E1 = 106, non-adaptive
multilevel BDDC. Reproduced from [8].

N
n nΓ

nf its. cond.
time (sec)

ℓ = 1(/2/3) ℓ = 1(/2/3) set-up PCG solve

2 levels

8 0.1M 9.5k 12 119 1951 34.1 12.3 46.5
64 0.8M 0.1M 0.1k 76 102 96.0 8.1 104.1
512 6.4M 1.0M 1.3k 58 55 164.2 8.9 173.2
4096 50.9M 8.4M 11.5k n/a n/a n/a n/a n/a

3 levels

64/8 0.8M 0.1M 0.1k/18 457 48k 96.7 48.0 144.7
512/64 6.4M 1.0M 1.3k/295 82 0.1k 165.7 10.2 175.9

4096/512 50.9M 8.4M 11.5k/2930 282 165k 238.7 74.1 312.9
32768/128 405.0M 69.1M 95.2k/664 270 24k 909.4 297.6 1207.0

4 levels

512/64/8 6.4M 1.0M 1.3k/295/23 554 63k 169.5 68.3 273.7
4096/512/64 50.9M 8.4M 11.5k/2930/380 3392 671k 299.3 800.1 1099.4
32768/512/8 405.0M 69.1M 95.2k/2921/23 3762 10495k 697.6 4925.1 5622.7

Table 2: Weak scaling for the cube problem with jump in coefficients E2/E1 = 106, adaptive
multilevel BDDC. Reproduced from [8].

that the adaptive approach can solve even problems with contrasts such high, that they are not
solvable by the non-adaptive approach with arithmetic averages on all faces and edges.
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5 Conclusion

We have presented a recently developed parallel implementation of the Adaptive-Multilevel
BDDC algorithm. The approach combines advantages of the Adaptive BDDC for numerically
difficult problems and of multilevel BDDC for very large problems solved using many subdomains
and cores. The developed parallel solver is available as an open-source library BDDCML.
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the Academy of Sciences of the Czech Republic through RVO:67985840. B. Soused́ık acknowl-
edges support from the DOE/ASCR and the NSF PetaApps award number 0904754. J. Š́ıstek
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On effective implementation of the non-penetration condition

for non-matching grids preserving scalability

of FETI based algorithms

O. Vlach, Z. Dostál, T. Kozubek, T. Brzobohatý

VŠB-Technical University of Ostrava

Mathematical models of contact include the inequalities which make the contact problems
strongly nonlinear. In spite of this, a number of interesting results have been obtained by
modifications of the methods that were known to be scalable for linear problems, in particular
of the FETI domain decomposition method introduced by Farhat and Roux for parallel solution
of linear problems. Using this approach, a body is partitioned into non-overlapping subdomains,
an elliptic problem with Neumann boundary conditions is defined for each subdomain, and in-
tersubdomain field continuity is enforced via Lagrange multipliers. The Lagrange multipliers
are evaluated by solving a relatively well conditioned dual problem of small size that may be
efficiently solved by a suitable variant of the conjugate gradient algorithm. Later Farhat, Man-
del, and Roux [1] introduced a “natural coarse problem” whose solution was implemented by
auxiliary projectors so that the resulting algorithm became scalable.

It has been soon observed that duality based domain decomposition methods may also be suc-
cessful for the solution of variational inequalities that describe equilibrium of a system of elastic
bodies in unilateral contact. Recently, we obtained the theoretical results that guarantee the
scalability also for contact problems, see [2, 3, 4, 5] .

The scalability results were originally proved for matching grids. In this case, the boolean
matrix B which imposes the “gluing” conditions and non-penetration conditions has nearly
orthogonal rows, which turns out to be a key ingredient of the proofs of optimality. By nearly
orthogonal we mean that the matrix B has singular values distributed in a given positive interval
that does not depend on the discretization parameter. For linear problems, B can be effectively
reduced to the matrix with orthogonal rows; this was used by Klawonn and Widlund to improve
the estimates of the rate of convergence. The orhogonalization of constraints that they use
comprises multiplication of constraints that is not admissible for inequalities that describe the
non-penetrations.

The point of this paper is to extend the results mentioned above to the contact problems with
non-matching grids which necessarily emerge, e.g., in the solution of transient contact problems
or in contact shape optimization. We want to get both good approximation and B with nearly
orthogonal rows. We consider both standard engineering approaches such as node to segment,
(see Wriggers [6]) or mortar elements (see Wohlmuth or Laursen [7, 8, 9]). We give simple
bounds on the singular values of the resulting matrix B and results of numerical experiments,
including both the academic examples and some problems of practical interest such as the ironing
eample in fig. 1. We conclude that the normalized orthogonal mortars proposed by Wohlmuth
can be used to approximate the non-penetration conditions in a way that complies with the
requirements of the FETI methods.

Acknowledgement: This paper has been supported by the IT4Innovations Center of Excel-
lence project, reg. no. CZ.1.05/1.1.00/02.0070 supported by Operational Programme ’Research
and Development for Innovations’ funded by the Structural Funds of the European Union and
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contract No. MSM6198910027.
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Figure 1: Ironing with insets.
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Arbitrary accurate guaranteed bounds on homogenized

coefficients by FFT-based finite element method

J. Vondřejc, J. Zeman, I. Marek

Czech Technical University in Prague

FFT-based homogenization algorithm is a popular numerical method for evaluating an effective
(homogenized) matrix of periodic linear heterogeneous materials. Originally, FFT-based ho-
mogenization method was based on a solution of Lippmann-Schwinger type of integral equation
with the Green function derived from an auxiliary homogeneous problem. A numerical solution
proposed by Moulinec and Suquet in [1] is based on the Neumann series expansion corresponding
to a simple iteration procedure.

Zeman et al. in [2] proposed a discretization of Lippmann-Schwinger equation with trigonometric
collocation method by [3, 4] and showed that Moulinec-Suquet numerical algorithm correspond-
ing to the solution of linear system can be efficiently solved by Conjugate gradients (CG) in
spite of its non-symmetry, a requirement of CG to converge.

It [5, 6], it is shown that CG minimizes an energetic quadratic functional over a subspace relating
to a space of curl-free fields with zero mean. Numerically, this is ensured by a projection operator
deduced from Green function in Lippmann-Schwinger equation and effectively performed by Fast
Fourier Transform (FFT) algorithm.

Later in [5], it has been shown that the Lippmann-Schwinger equation is equivalent to a cor-
responding weak formulation in a sense that the solution coincide; it also eliminates a refer-
ence homogeneous constant, a parameter of Lippmann-Schwinger equation. Next, a Galerkin
approximation with numerical integration is proposed to reproduce Moulinec-Suquet algorithm;
trigonometric polynomials are taken as a finite-dimensional space. Moreover, a convergence of
approximate solutions to the solution of weak formulation is provided using a standard finite
element approach together with estimates stated in [4].

Arbitrary precise guaranteed bounds of homogenized matrix were introduced by Dvořák in
[7, 8] for a scalar problem and later independently by Wieckowski in [9] for linear elasticity.
This approach is also applicable for FFT-based homogenization [10]. We present a general
technique that allows effective calculations by the FFT algorithm and maintains the upper-
lower bound structure. Dual formulation is applied to obtain lower bounds — for odd number
of discretization points, the solution of dual formulation can be avoided. A general number of
discretization points leads to a more complicated theory in both discretization and numerical
treatment.
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project No. GAČR P105/12/0331.
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Algebraic multigrid, stochastic matrices and homogenization

B. Soused́ık
Stochastic finite element methods

M. Vohraĺık
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Multigrid methods for problems of mathematical

physics and multiphysics

J. Hron

Mathematical Institute, Charles University in Prague

Geometric multigrid is well established as an efficient and fast solution method for wide variety of
problems. In this tutorial, we discuss development in application of geometric multigrid methods
for solving linear and nonlinear systems arising from the finite element discretization of physical
problems, especially solving incompressible flows. Then we discuss extension and modification
of these methods to some systems describing multiphysics problems, such as bio-fluid dynamics
and coupled fluid-structure interaction.

The tutorial will cover these topics:

• Introduction to classical geometric multigrid method.

• Geometric multigrid for incompressible Navier-Stokes equation.

• Extension to coupled multiphysics problems in continuum mechanics.

• Discussion of recent development and perspectives of these methods.
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Dalibor Lukáš
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Efficient Numerics for Boundary Integral Equations

Motto

Some people like FEM, because it is easy.

Some others like BEM, because it is difficult.

Prof. Ulrich Langer, MAFELAP 2006

Efficient Numerics for Boundary Integral Equations

Motivation: acoustics of a railway wheel

A joint work with J. Szweda, Department of mechanics, VŠB–TU Ostrava
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Efficient Numerics for Boundary Integral Equations

Motivation: UV deffectoscopy in aircraft industry

A joint TAČR project with Honeywell company.

Efficient Numerics for Boundary Integral Equations

Yet, another motto

If you can’t explain something simply, you don’t understand it deeply enough.

A. Einstein

Efficient Numerics for Boundary Integral Equations

Outline

• 1d BEM

• 2d conventional BEM

– Fundamental solution, representation formula

– Potentials, mapping properties

– Boundary integral equations (BIE)

– Galerkin boundary element method (BEM)

– Numerical quadrature of singular kernels

– Matlab pseudo–code, examples

• 3d fast parallel BEM

– Fast BEM

– Parallel BEM
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1d BEM

Boundary value problem




−u′′(x) = f(x), x ∈ (0, 1)
u(0) = u0,
u(1) = u1,

u
0

u
1

u(x)

f(x)

1d BEM

Fundamental solution

G(x, y) :=

{
2 + 1

2
(y − x), y ≤ x

2 − 1
2
(y − x), y ≥ x

0 0.2 0.4 0.6 0.8 1
1.6

1.65

1.7

1.75

1.8

1.85

1.9

1.95

2

G(x, y)

x

x

y

δ

Representation theorem

For f ∈ L2(0, 1), x ∈ (0, 1):

u(x) =

∫ 1

0

f(y) G(x, y) dy + [u′(y) G(x, y)]
y=1
y=0 −

[
u(y) G′

y(x, y)
]y=1

y=0
.

1d BEM

Proof of the representation theorem

For x ∈ (0, 1), f ∈ L2(0, 1):
∫ 1

0

f(y) G(x, y) dy
︸ ︷︷ ︸

=:N(f)(x)

=

∫ 1

0

(−u′′(y)) G(x, y) dy

=

∫ x

0

(−u′′(y)) G(x, y) dy +

∫ 1

x

(−u′′(y)) G(x, y) dy

per-partes
=

∫ x

0

u′(y) G′
y(x, y)︸ ︷︷ ︸
=1/2

dy − (u′(x) G(x, x) − u′(0) G(x, 0))

+

∫ 1

x

u′(y) G′
y(x, y)︸ ︷︷ ︸
=−1/2

dy − (u′(1) G(x, 1)−u′(x) G(x, x))

= u(x) +
[
u(y) G′

y(x, y)
]y=1

y=0︸ ︷︷ ︸
=:W (u0,u1)(x)

+ 0 − [u′(y) G(x, y)]
y=1
y=0︸ ︷︷ ︸

=:Ṽ (u′
0
,u′

1
)(x)

�



1d BEM

Newton potential N

For f ∈ L2(0, 1)

N(f(y))(x) :=

∫ x

0

f(y)

(
2 +

1

2
(y − x)

)
dy +

∫ 1

x

f(y)

(
2 − 1

2
(y − x)

)
dy

is an H1(0, 1)–function, which has the Dirichlet traces

N(f)(0) =

∫ 1

0

f(y)
(
2 − y

2

)
dy, N(f)(1) =

∫ 1

0

f(y)
(
2 +

y

2

)
dy

as well as the Neumann traces

−N(f)′(0) = N(f)′(1) = −1

2

∫ 1

0

f(y) dy,

1d BEM

Single–layer potential Ṽ

Denote the Neumann traces of u(x) by u′
0 := −u′(0), u′

1 := u′(1).

The single–layer potential is the following function

Ṽ (u′
0, u

′
1)(x) :=

(
2 − x

2

)
u′

0 +

(
3

2
+

x

2

)
u′

1.

By applying the Dirichlet traces to the latter, we introduce the single–layer operator
V : R2 → R2

(
Ṽ (u′

0, u
′
1)(0)

Ṽ (u′
0, u

′
1)(0)

)
=: V (u′

0, u
′
1) =: V ·

(
u′

0

u′
1

)
=

(
2 3

2
3
2 2

)
·
(

u′
0

u′
1

)
.

By applying the Neumann traces to Ṽ , we introduce the adjoint double–layer operator
K ′ : R2 → R2

(
−Ṽ (u′

0, u
′
1)

′(0)

Ṽ (u′
0, u

′
1)

′(1)

)
=:

1

2

(
u′

0

u′
1

)
+K ′(u′

0, u
′
1) =:

(
1

2
I + KT

)
·
(

u′
0

u′
1

)
:=

(
1

2
I +

(
0 −1

2
−1

2 0

))
·
(

u′
0

u′
1

)
.

1d BEM

Double–layer potential W

Denote the Dirichlet traces of u(x) by u0 := u(0), u1 := u(1).

The double–layer potential is the following function

W (u0, u1)(x) := −1

2
u0 −

1

2
u1

By applying the Dirichlet trace to the latter we introduce the double–layer operator
K : R

2 → R
2

(
W (u0, u1)(0)
W (u0, u1)(1)

)
=: −1

2

(
u0

u1

)
+ K(u0, u1) =

(
−1

2
I + K

)
·
(

u0

u1

)

=

(
−1

2
I +

(
0 −1

2
−1

2 0

))
·
(

u0

u1

)
.

Note that the Neumann traces of W vanish, which leads to the hypersingular operator
D(u0, u1) := (0, 0).

1d BEM

Boundary (integral) equation(s)

Recall the representation formula: for f ∈ L2(0, 1) and x ∈ (0, 1):

u(x) = N(f)(x) + Ṽ (u0, u1)(x) − W (u′
0, u

′
1)(x).

By applying the Dirichlet and Neumann traces to the latter, we arrive at the following
boundary equations

(
u0

u1

)
=

(
N(f)(0)
N(f)(1)

)
+ V ·

(
u′

0

u′
1

)
−
(
−1

2
I + K

)
·
(

u0

u1

)
,

(
u′

0

u′
1

)
=

(
−N(f)′(0)
N(f)′(1)

)
+

(
1

2
I + KT

)
·
(

u′
0

u′
1

)
+ D︸︷︷︸

=0

·
(

u0

u1

)
.

From the first row we can deduce the Steklov–Poincaré operator S mapping the Dirich-
let traces to Neumann ones:(

u′
0

u′
1

)
= V−1 ·

(
1

2
I + K

)

︸ ︷︷ ︸
=:S

·
(

u0

u1

)
−
(

N(f)(0)
N(f)(1)

)
=

(
1 −1
−1 1

)
·
(

u0

u1

)
−
(

N(f)(0)
N(f)(1)

)
.

The second row is just the Newton–Leibnitz formula: u′(1)− u′(0) = −
∫ 1

0 f =
∫ 1

0 u′′.
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Fundamental solution, representation formula

Laplace equation with mixed boundary conditions

Ω ⊂ R
2 lipschitz domain, Γ := ∂Ω = ΓD ∪ ΓN, ΓD ∩ ΓN = ∅





−△u(x) = 0, x ∈ Ω ⊂ R
2

γD u(x) := u(x) = g(x), x ∈ ΓD

γN u(x) := du
dn

(x) = h(x), x ∈ ΓN

First and second Green’s identities∫

Ω

−△u(y) v(y) dy =

∫

Ω

∇u(y)∇v(y) dy −
∫

Γ

γNu(y) γDv(y) dl(y)
∫

Ω

u(y) (−△v(y)) dy =

∫

Ω

∇u(y)∇v(y) dy −
∫

Γ

γDu(y) γNv(y) dl(y)

∫

Ω

u(y) (−△v(y)) dy =

∫

Ω

−△u(y)︸ ︷︷ ︸
=0

v(y) dy+

∫

Γ

γNu(y) γDv(y) dl(y)−
∫

Γ

γDu(y) γNv(y) dl(y)



Fundamental solution, representation formula

Second Green’s identity
∫

Ω

u(y) (−△v(y)) dy =

∫

Γ

γNu(y) γDv(y) dl(y) −
∫

Γ

γDu(y) γNv(y) dl(y)

Fundamental solution

G(x,y) := − 1

2π
ln ‖x − y‖ satisfies −△yG(x,y) = δx(y) in the distributional sense

Representation formula (v(y) := G(x,y))

∀x ∈ Ω : u(x) =

∫

Γ

γNu(y) γDG(x,y) dl(y) −
∫

Γ

γDu(y) γN,yG(x,y) dl(y)

We are left to calculate γDu on ΓN and γNu on ΓD.

Fundamental solution, representation formula

Representation formula

∀x ∈ Ω : u(x) =

∫

Γ

γNu(y) γDG(x,y) dl(y)
︸ ︷︷ ︸

=:Ṽ (γNu)

−
∫

Γ

γDu(y) γN,yG(x,y) dl(y)
︸ ︷︷ ︸

=:W (γDu)

We are left to calculate γDu on ΓN and γNu on ΓD.

Potentials

• Ṽ (γNu) . . . single–layer potential

• W (γDu) . . . double–layer potential
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Potentials, mapping properties

Single–layer potential

Given w ∈ L2(Γ), x ∈ Ω, the single–layer potential is the following function:

[Ṽ (w(y))](x) :=

∫

Γ

w(y) G(x,y) dl(y) ∈ H1(Ω).

It is harmonic in Ω
∀x ∈ Ω : −△[Ṽ (w)](x) = 0.

Operator Ṽ can be continuously extended to Ṽ ∈ L
(
H−1/2(Γ), H1(Ω)

)
, thus

V := γD ◦ Ṽ ∈ L
(
H−1/2(Γ), H1/2(Γ)

)
.

Provided diam Ω < 1, V is H−1/2(Γ)–elliptic.
For w ∈ L∞(Γ), x ∈ Γ we arrive at a weakly–singular integral

[V (w)](x) = lim
ε→0+

∫

Γ\Bε(x)

w(y) G(x,y) dl(y).

Potentials, mapping properties

Adjoint double–layer potential

Since Ṽ can be continuosly extended to Ṽ ∈ L
(
H−1/2(Γ), H1(Ω)

)
, then also

γN ◦ Ṽ ∈ L
(
H−1/2(Γ), H−1/2(Γ)

)
.

For w ∈ L∞(Γ) and smooth points x ∈ Γ it holds true that

γN[Ṽ (w)](x) =
1

2
w(x) + [K ′(w)](x),

where the latter is the adjoint double–layer potential

[K ′(w(y))](x) := lim
ε→0+

∫

Γ\Bε(x)

w(y) γN,xG(x,y) dl(y).

It can be continuosly extended to

K ′ ∈ L
(
H−1/2(Γ), H−1/2(Γ)

)
.

Potentials, mapping properties

Double–layer potential

Given v ∈ L∞(Γ), x ∈ Ω, the double–layer potential is the following, harmonic in Ω,
function:

[W (v(y))](x) :=

∫

Γ

v(y) γN,y G(x,y) dl(y) ∈ H1(Ω), ∀x ∈ Ω : −△[W (v)](x) = 0.

By continuous extension, W ∈ L
(
H1/2(Γ), H1(Ω)

)
, thus γD ◦ W ∈

L
(
H1/2(Γ), H1/2(Γ)

)
. For v ∈ L∞(Γ) and smooth points x ∈ Γ the following holds

true:

γD[W (v)](x) = −1

2
v(x) + [K(v)](x),

where the latter is the double–layer potential (a conflict of notation)

[K(v(y))](x) := lim
ε→0+

∫

Γ\Bε(x)

v(y) γN,yG(x,y) dl(y).

It can be continuously extended to K ∈ L
(
H1/2(Γ), H1/2(Γ)

)
.



Potentials, mapping properties

Hypersingular operator

Since W can be continuously extended to W ∈ L
(
H1/2(Γ), H1(Ω)

)
, then also

γN ◦ W ∈ L
(
H1/2(Γ), H−1/2(Γ)

)
.

Operator D := −γN ◦ W is called the hypersingular operator. It is not defined in
terms of the Cauchy principal value. Rather, for v ∈ C(Γ) it takes the form

[D(v)](x) = −
∫

Γ

(v(y) − v(x)) γN,x γN,y G(x,y) dl(y).

For u, v ∈ C(Γ) piecewise cotinuously differentiable the integration by–parts results in

〈D(u), v〉Γ = −
∫

Γ

v(x) γN,x

∫

Γ

u(y) γN,yG(x,y) dl(y) dl(x)

= −
∫

Γ

dv

dt
(x)

∫

Γ

du

dt
(y) G(x,y) dl(y) dl(x).

Provided diam Ω < 1, D is semi–elliptic on H1/2(Γ).

Potentials, mapping properties

Summary

Single–layer potential, w ∈ L∞(Γ):

V ∈ L
(
H−1/2(Γ), H1/2(Γ)

)
, [V (w)](x) = lim

ε→0+

∫

Γ\Bε(x)

w(y)G(x,y) dl(y).

Double–layer potential, v ∈ L∞(Γ):

K ∈ L
(
H1/2(Γ), H1/2(Γ)

)
, [K(v)](x) := lim

ε→0+

∫

Γ\Bε(x)

v(y) γN,yG(x,y) dl(y).

Adjoint double–layer potential, w ∈ L∞(Γ):

K ′ ∈ L
(
H−1/2(Γ), H−1/2(Γ)

)
, [K ′(w)](x) := lim

ε→0+

∫

Γ\Bε(x)

w(y) γN,xG(x,y) dl(y).

Hypersingular operator, u, v ∈ C(Γ) piecewise continuously differentiable:

D ∈ L
(
H1/2(Γ), H−1/2(Γ)

)
, 〈D(u), v〉Γ = −

∫

Γ

dv

dt
(x)

[
V

(
du

dt
(y)

)]
(x) dl(x).
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Boundary integral equations (BIE)

Representation formula

∀x ∈ Ω : u(x) =

∫

Γ

γNu(y) γDG(x,y) dl(y)
︸ ︷︷ ︸

=:Ṽ (γNu)

−
∫

Γ

γDu(y) γN,yG(x,y) dl(y)
︸ ︷︷ ︸

=:W (γDu)

Boundary integral equations

Applying γD and γN, respectively, to the representation formula, the following holds
true at smooth points x ∈ Γ

γDu(x) = [V (γNu)](x) +
1

2
γDu(x) − [K(γDu)](x)

γNu(x) =
1

2
γNu(x) + [K ′(γNu)](x) + [D(γDu)](x)

Boundary integral equations (BIE)

Representation formula

∀x ∈ Ω : u(x) =

∫

Γ

γNu(y) γDG(x,y) dl(y)
︸ ︷︷ ︸

=:Ṽ (γNu)

−
∫

Γ

γDu(y) γN,yG(x,y) dl(y)
︸ ︷︷ ︸

=:W (γDu)

Boundary integral equations: weak form

Making use of the map. properties: Find u := γDu ∈ H1/2(Γ), t := γNu ∈ H−1/2(Γ):

〈w, u〉 = 〈w,V (t)〉 +

〈
w,

(
1

2
I − K

)
(u)

〉
∀w ∈ H−1/2(Γ)

〈t, v〉 =

〈(
1

2
I + K ′

)
(t), v

〉
+ 〈D(u), v〉 ∀v ∈ H1/2(Γ)

Boundary integral equations (BIE)

Direct method for the Dirichlet problem

Given a lipschitz domain Ω ⊂ R
2 and g ∈ H1/2(Γ).

{
−△u(x) = 0, x ∈ Ω

u(x) = g(x), x ∈ Γ

The first BIE leads to: Find t := γNu := du
dn ∈ H−1/2(Γ):

〈w, V (t)〉 =

〈
w,

(
1

2
I + K

)
(g)

〉
∀w ∈ H−1/2(Γ).

By Riesz theorem, it is a well–posed problem, provided diam Ω < 1. The volume
solution reads as

∀x ∈ Ω : u(x) = [Ṽ (t)](x) − [W (g)](x).



Boundary integral equations (BIE)

Direct method for the Neumann problem

Given a lipschitz domain Ω ⊂ R
2 and h ∈ H−1/2(Γ) such that 〈h, 1〉 = 0.

{
−△u(x) = 0, x ∈ Ω

du
dn(x) = h(x), x ∈ Γ

The solution is unique up to a constant. The second BIE leads to a problem with
operator D, which is semi–elliptic on H1/2(Γ), provided diam Ω < 1. To regularize D

the problem is solved in the subspace H
1/2
∗∗ (Γ) := {v ∈ H1/2(Γ) : 〈v, 1〉 = 0}.

Find uα := γDu ∈ H1/2(Γ):

〈D(uα), v〉 + α〈uα, 1〉 〈v, 1〉 =

〈(
1

2
I − K ′

)
(h), v

〉
+ α〈v, 1〉 ∀v ∈ H1/2(Γ),

where α > 0. The volume solution u := uα + c is given by

∀x ∈ Ω : uα(x) = [Ṽ (h)](x) − [W (uα)](x).
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Galerkin boundary element method (BEM)

Galerkin method = orthogonal projection

Consider a Hilbert space H , a symmetric H–elliptic operator A ∈ L(H,H∗), and
b ∈ H∗. We look for u ∈ H :

A(u) = b, i.e. ∀v ∈ H : 〈A(u), v〉 = 〈b, v〉.
By Riesz theorem the problem is well–posed.
Consider now a vector subspace Hh ⊂ H and look for the Galerkin approximation
uh ∈ Hh:

∀vh ∈ Hh : 〈A(uh), vh〉 = 〈b, vh〉,
which is well–posed as well. By substracting the equations the Galerkin approximation
uh turns out to be an orthogonal projection of u

∀vh ∈ Hh : 〈A(u − uh), vh〉 = 0, t.j. uh = PA(u).

Galerkin boundary element method (BEM)

Céa’s lemma

‖u − uh‖H ≤ C inf
vh∈Hh

‖u − vh‖ =: C dist(u, Hh)

Proof. For arbitrary vh ∈ V h:

‖u − uh‖2
H

A ellip.

≤ 1

CA
〈A(u − uh), u − uh〉

=
1

CA
〈A(u − uh), u〉 − 〈A(u − uh), uh〉︸ ︷︷ ︸

=0, see PA

−〈A(u − uh), vh〉︸ ︷︷ ︸
=0, see PA

A bound.
≤ cA

CA
‖u − uh‖H ‖u − vh‖H

�

Galerkin boundary element method (BEM)

2d Galerkin BEM

• Discretization: Decompose the polygonal boundary Γ into disjoint open segments

Γ = ∪n
i=1Si, Si ∪ Sj = ∅ for i 6= j.

Sort the segments as well as the end points in the anticlockwise order so that

Si := {x(s) := xi + (xi+1 − xi) s : 0 < s < 1} , |Si| := ‖xi+1−xi‖, where xn+1 := x1.

• Approximate H−1/2(Γ) by Lh
0 consisting of piecewise constant functions

Lh
0 := 〈Ψ1(x), . . . , Ψn(x)〉 , where Ψi(x) :=

{
1 x ∈ Si,

0 elsewhere

• Approximate H1/2(Γ) by Lh
1 consisting of continuous piecewise linear functions

Lh
1 := 〈ϕ1(x), . . . , ϕn(x)〉 , where ϕi ∈ C(Γ), ϕi(x)|Sj

= aij·x+bij a ϕi(xj) = δij

Galerkin boundary element method (BEM)

Single–layer matrix V

Recall the 1–layer potential and the formula for w ∈ L∞(Γ):

V ∈ L
(
H−1/2(Γ), H1/2(Γ)

)
, [V (w)](x) = lim

ε→0+

∫

Γ\Bε(x)

w(y)G(x,y) dl(y).

Thus, for w(y), z(x) ∈ Lh
0 ⊂ H−1/2(Γ):

〈z(x), V (w(y))〉 =

〈
n∑

i=1

ziΨi(x), V




n∑

j=1

wjΨj(y)



〉

= z · V · w,

where

(V)ij :=

∫

Si

∫

Sj

G(x,y) dl(y) dl(x), z := (z1, . . . , zn), w := (w1, . . . , wn).



Galerkin boundary element method (BEM)

Double–layer matrix K

Recall the 2–layer potetial and the formula for v ∈ L∞(Γ):

K ∈ L
(
H1/2(Γ), H1/2(Γ)

)
, [K(v)](x) := lim

ε→0+

∫

Γ\Bε(x)

v(y) γN,yG(x,y) dl(y).

Thus, for v(y) ∈ Lh
1 ⊂ H1/2(Γ) and z(x) ∈ Lh

0 ⊂ H−1/2(Γ):

〈z(x), K(v(y))〉 =

〈
n∑

i=1

ziΨi(x), K




n∑

j=1

vjϕj(y)



〉

= z · K · v,

where

(K)ij :=

∫

Si

∫

Sj−1∪Sj

ϕj(y)
dG

dny

(x,y) dl(y) dl(x), z := (z1, . . . , zn), v := (v1, . . . , vn),

where S0 := Sn.

Galerkin boundary element method (BEM)

Adjoint double–layer matrix K′ = KT

Recall the adjoint 2–layer potential and the formula for w ∈ L∞(Γ):

K ′ ∈ L
(
H−1/2(Γ), H−1/2(Γ)

)
, [K ′(w)](x) := lim

ε→0+

∫

Γ\Bε(x)

w(y) γN,xG(x,y) dl(y).

Thus, for w(y) ∈ Lh
0 ⊂ H−1/2(Γ) and v(x) ∈ Lh

1 ⊂ H1/2(Γ):

〈K ′(w(y)), v(x)〉 =

〈
K ′




n∑

j=1

wjΨj(y)


 ,

n∑

i=1

viϕi(x)

〉
= v · KT · w,

or

(K′)ij :=

∫

Si−1∪Si

ϕi(x)

∫

Sj

dG

dnx

(x,y) dl(y) dl(x) =

∫

Sj

∫

Si−1∪Si

ϕi(x)
dG

dnx

(x,y) dl(x) dl(y) = (K)ji .

Galerkin boundary element method (BEM)

Hypersingular matrix D

Recall the hypersingular operator and the formula for u, v ∈ C(Γ) pcw. cont. diff.:

D ∈ L
(
H1/2(Γ), H−1/2(Γ)

)
, 〈D(u), v〉Γ = −

∫

Γ

dv

dt
(x)

[
V

(
du

dt
(y)

)]
(x) dl(x).

Thus, for u(y), v(x) ∈ Lh
1 ⊂ H1/2(Γ):

〈D(u), v〉 =

〈
D




n∑

j=1

uiϕi(x)


 ,

n∑

i=1

viϕi(x)

〉
= v · D · u,

where

D = TT · V · T, Tij :=
dϕj|Si

dt
(x) =





−1/|Si| j = i + 1 or (i = n and j = 1)

1/|Si| j = i

0 elsewhere

Galerkin boundary element method (BEM)

Mass matrix M

Yet, for w, t ∈ H−1/2(Γ) and u, v ∈ H1/2(Γ) in BIE there are terms

〈w, I(u)〉 = 〈w, u〉 =

∫

Γ

w(x) u(x) dl(x), resp. 〈I(t), v〉 = 〈t, v〉 =

∫

Γ

t(x) v(x) dl(x)

Thus, for u ∈ Lh
1 ⊂ H1/2(Γ), w ∈ Lh

0 ⊂ H−1/2(Γ):

〈w, I(u)〉 =

〈
n∑

i=1

wiΨi(x)
n∑

j=1

ujϕj(x)

〉
= w · M · u,

where

(M)ij :=

∫

Si

ϕj(x) dl(x) =

{
|Si|/2 j = i or j = i + 1 or (i = 1 and j = n)

0 elsewhere

Galerkin boundary element method (BEM)

BIE: Galerkin formulation

Find u, t ∈ Rn:

V · t −
(

1

2
M + K

)
· u = 0

(
−1

2
M + K

)T

· t + D · u = 0

Galerkin boundary element method (BEM)

Dirichlet problem

Given a polygonal domain Ω ⊂ R
2 with diam Ω < 1 and g ∈ C(Γ).

{
−△u(x) = 0, x ∈ Ω

u(x) = g(x), x ∈ Γ

The Galerkin approximation of the first BIE leads to the linear system

V · t =

(
1

2
M + K

)
· g,

where gi := g(xi). The Neumann datum is approximated by th(x) :=
∑n

i=1 tiΨi(x)
and for x ∈ Ω:

uh(x) =

n∑

i=1

ti

∫

Si

G(x,y) dl(y) −
n∑

i=1

gi

∫

Si−1∪Si

ϕi(y)
dG

dny

(x,y) dl(y).



Galerkin boundary element method (BEM)

Neumann problem

Given a polygonal domain Ω ⊂ R
2 with diam Ω < 1 and h ∈ C(Γ) such that 〈h, 1〉 = 0.

{
−△u(x) = 0, x ∈ Ω

du
dn

(x) = h(x), x ∈ Γ

The Galerkin approximation of the second BIE leads to the linear system

(
D + α (M · 1) · (M · 1)T

)
uα =

(
1

2
M − K

)T

· h + αMT · 1,

where hi := h
(
xi+xi+1

2

)
. The Dirichlet datum is approximated by uh(x) :=∑n

i=1(uα)iϕi(x) + c and for x ∈ Ω:

uh(x) =

n∑

i=1

hi

∫

Si

G(x,y) dl(y)−
n∑

i=1

(uα)i

∫

Si−1∪Si

ϕi(y)
dG

dny

(x,y) dl(y)−c

∫

Γ

dG

dny

(x,y) dl(y).
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Numerical quadrature of singular kernels

Three types of integrals

When evaluating the entries of V and K, we deal with the following integrals:

a) Identical segments — singularity in {x = y : x,y ∈ Si}, e.g.

(V)i,i =

∫

Si

∫

Si

G(x,y) dl(y) dl(x) = −|Si|2
2π

1∫

0

1∫

0

ln(|Si| |s − t|) dt ds.

b) Segments with a common node — singularity at the node, e.g.

(V)i−1,i =

∫

Si−1

∫

Si

G(x,y) dl(y) dl(x) = −|Si−1| |Si|
2π

1∫

0

1∫

0

ln ‖(xi−1−xi)s−(xi+1−xi)t‖ dt ds.

c) Disjoint segments — the kernel is a C∞ function, e.g.

(V)i,j =

∫

Si

∫

Sj

G(x,y) dl(y) dl(x) = −|Si| |Sj|
2π

1∫

0

1∫

0

ln ‖xi+(xi+1−xi)s−xj−(xj+1−xj)t‖ dt ds.

Numerical quadrature of singular kernels

a) Numerical quadrature over identical segments

Consider the parameterization Si := {x := xi + (xi+1 − xi)s : 0 < s < 1}

(V)i,i =

∫

Si

∫

Si

G(x,y) dl(y) dl(x) = −|Si|2
2π

∫ 1

0

∫ 1

0

ln(|Si| |s − t|) dt ds

= −|Si|2
2π

(
ln |Si| +

∫ 1

0

∫ 1

0

ln |s − t| dt ds

)

Let us substitute z := s − t for t in the latter integral, divide the integration domain
with respect to the singularity, and integrate by–parts:
∫ 1

0

∫ s

s−1

ln |z| dz ds =

∫ 1

0

∫ 0

s−1

1 ln(−z) dz ds +

∫ 1

0

∫ s

0

1 ln z dz ds

= −
∫ 1

0

∫ s

s−1

z
1

z
dz ds +

∫ 1

0

(s ln s − (s − 1) ln(1 − s)) ds + lim
z→0−

z ln(−z) − lim
z→0+

z ln z

= · · · = −3

2
, thus

(V)i,i = −|Si|2
2π

(
ln |Si| −

3

2

)

Numerical quadrature of singular kernels

a) Numerical quadrature over identical segments

The procedure can be generalized to fundamental solutions of other 2d PDE operators
having the sigularity for x − y = 0. Parameterize Si and denote k(s − t) := G(xi +
(xi+1 − xi)s,xi + (xi+1 − xi)t).

(V)i,i =

∫

Si

∫

Si

G(x,y) dl(y) dl(x) = −|Si|2
∫ 1

0

∫ 1

0

k(s − t) dt ds

= −|Si|2
∫ 1

0

(∫ 0

s−1

k(z) dz +

∫ s

0

k(z) dz

)
ds

=

∫ 1

0

∫ 0

s−1

−zk′(z) dz ds +

∫ 1

0

∫ s

0

−zk′(z) dz ds +

∫ 1

0

(s k(s) − (s − 1) k(s − 1)) ds

+ lim
z→0−

z k(z) − lim
z→0+

z k(z)

Substituting (s − 1) η := z, (s − 1) dη = dz, and s η := z, s dη = dz, respectively, in
the first and second integral, yields

∫ 1

0

∫ 1

0

(
(s − 1)2 η k′((s − 1)η) − s2 η k′(sη)

)
dη ds.

Numerical quadrature of singular kernels

a) Numerical quadrature over identical segments

If the kernel k(s− t) := G(xi + (xi+1 −xi)s,xi + (xi+1 −xi)t), having the singularity
for s − t = 0, additionaly satisfies

z k(z) and z k′(z) continuous at 0,

then

(V)i,i =

∫ 1

0

∫ 1

0

(
(s − 1)2 η k′((s − 1)η) − s2 η k′(sη)

)
dη ds+

∫ 1

0

(s k(s) − (s − 1) k(s − 1)) ds

and we can employ e.g. a Gauss quadrature rule with the points ξ
(N)
k and weights

w
(N)
k , k = 1, . . . , N :

(V)i,i ≈ w(N)·
(
(ξ

(N)
k − 1)2 ξ

(N)
l k′((ξ(N)

k − 1)ξ
(N)
l ) − (ξ

(N)
k )2 ξ

(N)
l k′(ξ(N)

k ξ
(N)
l )
)N

k,l=1
·w(N)

+
(
ξ

(N)
k k(ξ

(N)
k ) − (ξ

(N)
k − 1) k(ξ

(N)
k − 1)

)N

k=1
· w(N) =: (V(N))i,i



Numerical quadrature of singular kernels

a) Numerical quadrature over identical segments

Observe a numerical exponential convergence of the Gauss quadrature (to be proven).

rel. error :=

∣∣(V(N))i,i − (V)i,i
∣∣

|(V)i,i|
for k(z) := −|Si|2

2π
ln (|Si| |z|) .

1 2 3 4 5 6 7 8
0

0.02

0.04

0.06

0.08

0.1
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0.14

N

re
l. c

hy
ba

Numerical quadrature of singular kernels

b) Numerical quadrature over segments with a common node

Consider the parameterization Si−1 := {x := xi + (xi−1 − xi) s : 0 < s < 1} and
Si := {y := xi + (xi+1 − xi) t : 0 < t < 1}

(V)i−1,i =

∫

Si−1

∫

Si

G(x,y) dl(y) dl(x) = −|Si−1| |Si|
2π

1∫

0

1∫

0

ln ‖(xi−1−xi)s−(xi+1−xi)t‖ dt ds.

The kernel k(s, t) has a singularity at the origin s = t = 0. We replace it by decom-
posing the integration domain and the Duffy substitution τ := s, τ η := p
∫ 1

0

∫ 1

0

ds dt =

∫ 1

0

∫ t

0

k(s, t) ds dt+

∫ 1

0

∫ s

0

k(s, t) dt ds =

∫ 1

0

∫ τ

0

(k(τ, p)+k(p, τ )) dp dτ

=

∫ 1

0

∫ 1

0

τ (k(τ, τη) + k(τη, τ )) dη dτ.

The resulting kernel is continuous and we can employ e.g. a Gauss quadrature

(V)i,i ≈ w(N) ·
(
ξ

(N)
k

(
k(ξ

(N)
k , ξ

(N)
k ξ

(N)
l ) + k(ξ

(N)
k ξ

(N)
l , ξ

(N)
k )
))N

k,l=1
· w(N).

Numerical quadrature of singular kernels

c) Numerical quadrature over disjoint segments

Consider Si ∩ Sj = ∅, parameterize Si := {x := xi + (xi+1 − xi) s : 0 < s < 1} and
Sj := {y := xj + (xj+1 − xj) t : 0 < t < 1}

(V)i,j =

∫

Si

∫

Sj

G(x,y) dl(y) dl(x) = −|Si| |Sj|
2π

1∫

0

1∫

0

ln ‖xi+(xi+1−xi)s−xj−(xj+1−xj)t‖ dt ds.

The kernel is a C∞ function and the Gauss qudrature guarantees an exponential con-
vergence

(V)i,j ≈ w(N) ·
(
k(ξ

(N)
k , ξ

(N)
l )
)N

k,l=1
· w(N).

Numerical quadrature of singular kernels

Numerical quadrature for K

Recall the matrix K

(K)ij :=

∫

Si

∫

Sj−1∪Sj

ϕj(y)
dG

dny

(x,y) dl(y) dl(x),

where
dG

dny

(x,y) =
1

2π

(x − y) · n(y)

‖x − y‖2
.

a) The identical segments, e.g. i = j, do not contribute, since

(x− y) · n(y) = 0.

b) In case of segments with a common node we employ the same technique as for V.

c) In case of disjoint segments we employ the same technique as for V.
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Matlab pseudo–code, examples

function [V,K,D,M] = BEM2dLaplace(X ∈ R2,n,N ∈ N) — see a)

ξ(N,N) := ξ(N)⊗ ξ(N), see meshgrid
V = K = M = T := 0
for i = 1 : n do

ei := (i, i + 1), or ei := (i, 1) for i = n
x1 := X:,(ei)1, x2 := X:,(ei)2

τ i := x2 − x1, |Si| := ‖τ i‖
Mi,ei

:= |Si| (1/2, 1/2), Ti,ei
:= (−1, 1)/|Si|

for j = 1 : m do
if i = j then

Vi,i = |Si|2(ln |Si| − 3/2)
else

. . .
end if

end for
end for
V := V/(−2π), K := K/(−2π), D := TT · V · T



Matlab pseudo–code, examples

function [V,K,D,M] = BEM2dLaplace(X ∈ R2,n,N ∈ N) — see b)
. . .
if i = j then

. . .
else

ej := (j, j + 1), or ej := (j, 1) for j = n
y1 := X:,(ej)1, y2 := X:,(ej)2

τ j := y2 − y1, |Sj| := ‖τ j‖, nj := ((τ j)2,−(τ j)1)/|Sj|
if ei ∩ ej 6= ∅ then

Reorder ei and ej to ẽi and ẽj such that (ẽi)1 = (ẽj)1
a := X:,(ẽi)2 − X:,(ẽi)1, b := X:,(ẽj)2 − X:,(ẽj)1

F1 :=
(
(a)1 − (b)1 ξ(N)

)
.ˆ2 +

(
(a)2 − (b)2 ξ(N)

)
.ˆ2

F2 :=
(
(a)1 ξ(N) − (b)1

)
.ˆ2 +

(
(a)2 ξ(N) − (b)2

)
.ˆ2, F := ln(F1.*F2)

(V)i,j := |Si| |Sj| (−1 + F · w(N))/2
. . .

end if
end if

Matlab pseudo–code, examples

function [V,K,D,M] = BEM2dLaplace(X ∈ R2,n,N ∈ N) — see b), c)
. . .
if ei ∩ ej 6= ∅ then

. . .
(K)i,(ẽj)1 −= |Si| |Sj| (a · nj)

(
(1 − ξ(N)/2)./F1 + (ξ(N)/2)./F2

)
· w(N)

(K)i,(ẽj)2 −= |Si| |Sj| (a · nj)
(
(ξ(N)/2)./F1 + (ξ(N)/2)./F2

)
· w(N)

else
a := x1 − y1

A1 := (a)1 + (τ i)1ξ
(N,N) − (τ j)1ξ

(N,N)

A2 := (a)2 + (τ i)2ξ
(N,N) − (τ j)2ξ

(N,N)

N := A1.ˆ2 + A2.ˆ2, F := lnN, (V)i,j := |Si| |Sj|w(N) · F · w(N)

F := ((nj)1 A1 + (nj)2 A2) ./N

Ki,(ej)1 −= |Si| |Sj|w(N) ·
(
(1 − ξ(N,N)).*F

)
· w(N)

Ki,(ej)2 −= |Si| |Sj|w(N) ·
(
ξ(N,N).*F

)
· w(N)

end if
. . .

Matlab pseudo–code, examples

function [Ṽ,W ∈ Rp] = BEM2dLaplace inner(X,N ,t,u ∈ Rn,P ∈ R2×p)

ξ(N,N) := ξ(N)⊗ ξ(N), see meshgrid

Ṽ = W := 0
for i = 1 : n do

x := P:,i

for j = 1 : m do
ej := (j, j + 1), or ej := (j, 1) for j = n, y1 := X:,(ej)1, y2 := X:,(ej)2

τ j := y2 − y1, |Sj| := ‖τ j‖, nj := ((τ j)2,−(τ j)1)/|Sj|
a := x− y1, A1 := (a)1 − (τ j)1ξ

(N,N), A2 := (a)2 − (τ j)2ξ
(N,N)

N := A1.ˆ2 + A2.ˆ2, F := lnN, Ṽ:,i += (t)j |Si| |Sj|w(N) · F · w(N)

F := ((nj)1 A1 + (nj)2 A2) ./N

W̃:,i −= (u)(ej)1 |Si| |Sj|w(N) ·
(
(1 − ξ(N,N)).*F

)
· w(N)

W̃:,i −= (u)(ej)2 |Si| |Sj|w(N) ·
(
ξ(N,N).*F

)
· w(N)

end for
end for
Ṽ := Ṽ/(−2π), W := W/(−2π)

Matlab pseudo–code, examples

Dirichlet problem on the square Ω := (−1/4, 1/4)2, g(x) := mini{|xi|}2,
n = 128

−0.3 −0.2 −0.1 0 0.1 0.2 0.3

−0.2

−0.15

−0.1

−0.05

0

0.05

0.1

0.15

0.2

Matlab pseudo–code, examples

Neumann problem on the square

{ −△u(x) − κ2 u(x) = −△uinc(x), x ∈ Ω ⊂ R2

du
dn(x) = −duinc

dn (x), x ∈ Γ
G(x−y) :=

ı

4
H

(1)
0 (κ‖x−y‖)

incident wave uinc total field u + uinc

Matlab pseudo–code, examples

Convection–reaction–diffusion equation
{
−div (A · ∇u(x)) + 2b · ∇u(x) + c u(x) = 0, x ∈ Ω ⊂ R

2

u(x) = g(x), x ∈ Γ

where A ∈ R2×2 is positive definite, b ∈ R2 and c ∈ R satisfy

c + b · A−1 · b = 0.

The fundamental solution reads as follows:

G(z) := − eb·A−1·z

2π
√

detA
ln
√

z · A−1 · z,

where z := x− y.
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Fast BEM

Cluster geometric bisection

C := {γC
1 , . . . , γC

nC} . . . cluster of elements from discretization {γ1, . . . , γm} of Γ,

xC := 1∑
k |γC

k
|
∑
k

|γC
k |xC

k . . . cluster centroid, where xC
k is the centroid of γC

k ,

CC :=
∑
k

|γC
k | (xC

k − xC) · (xC
k − xC)T . . . cluster covariance matrix,

nC . . . a dominant eigenvector of CC.

The cluster is cutted into two subclusters by the plane (x − xC) · nC = 0 as follows:
C1 :=

{
γk ∈ C : (xC

k − xC) · nC ≥ 0
}

. . . first subcluster,
C2 :=

{
γk ∈ C : (xC

k − xC) · nC < 0
}

. . . second subcluster.

METIS could be an alternative.
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Fast BEM

Admissible pairs of clusters (quadratic complexity)

min{diam Cx, diam Cy} ≤ η dist(Cx, Cy), η ∈ (0, 1)

Stronger admissibility criterion (linear complexity)

min{diam Cx, diam Cy} ≤
2 min {rad Cx, rad Cy) ≤ η

(
|xCx − xCy| − rad Cx − rad Cy

)

≤ η dist(Cx, Cy),

where rad C := max
k

|xC
k − xC|.

Quad–tree of cluster pairs

({γ1, . . . , γm}, {γ1, . . . , γm}) is the root.
Leaves (C, D) are either admissible or min{nC, nD} ≤ nmin.
Nonleaves (C,D) has four sons (C1, D1), (C1,D2), (C2, D1), and (C2,D2).

Fast BEM

Quad–tree of cluster pairs, H–matrices

� � �� � �� � �� � �� � �

� � �� � �� � �� � �� � �

� � �� � �� � �� � �� � �� � �

� � �� � �� � �� � �� � �

C × C

C1 × C1 C1 × C2 C2 × C1 C2 × C2

� � � �� � � �� � � �� � � �� � � �� � � �� � � �� � � �� � � �

� � � �� � � �� � � �� � � �� � � �� � � �� � � �� � � �� � � �

� � � �� � � �� � � �� � � �� � � �� � � �� � � �� � � �

� � � �� � � �� � � �� � � �� � � �� � � �� � � �� � � �

Nonadmissible blocks assembled as full, admissible approximated by low–rank matrices.

Fast BEM

Compression by singular value decomposition (SVD)

A =

r:=rankA∑

i=1

σi ui v
T
i ≈

k∑

i=1

σi ui v
T
i =: Ak, where k < r,

σ1 ≥ σ2 ≥ . . . σr ≥ 0 . . . singular values,
(u1, . . . ,ur) . . . an orthogonal system of left singular vectors,
(v1, . . . ,vr) . . . an orthogonal system of right singular vectors.
SVD gives the best approximation in the spectral (operator) norm:

Ak = arg min
M:rankM=k

‖A − M‖.

The best compression, but worse than quadratic computational complexity O(mnr).

Fast BEM

Asymptotically smooth functions

Assume (A)i,j := f(xi,yj), where xi ∈ Cx, yj ∈ Cy, Cx, Cy ⊂ R
d.

f : Cx × Cy → R is asymptotically smooth if

∃c1, c2 > 0 ∃g ≤ 0 ∀α ∈ N
d
0 : |∂α

xf(x,y)| ,
∣∣∂α

yf(x,y)
∣∣ ≤ c1p!(c2)

p|x−y|g−p, p = |α|.
Compression by Taylor expansion

Provided diam Cy ≤ diam Cx, dc2η < 1, choose y0 ∈ Cy about which we expand f :

x ∈ Cx, y ∈ Cy : f(x,y) =

p−1∑

k=0

1

k!
((y − y0)∂yf(x,y0))

k + Rp(x,y),

where

|Rp(x,y)| =
1

p!
|(y − y0)∂yf(x, ỹ)|p ≤ 1

p!
dp|y − y0|pc1p!(c2)

p|x − ỹ|g−p

≤ c1d
pcp

2

diamp Cy

distp(Cx, Cy)
distg(Cx, Cy) ≤ c1(dc2η)pdistg(Cx, Cy) → 0 as p → ∞.



Fast BEM

Function interpolation on a skeleton

Given distinct points x1, . . . ,xr ∈ Cx and y1, . . . ,yr ∈ Cy.

fk+1(x,y) :=

{
0 k = −1,

fk(x,y) + rk(x,yik) rk(xik,yik)
−1 rk(xik,y) k ≥ 0

rk+1(x,y) :=

{
f(x,y) k = −1,

rk(x,y) − rk(x,yik) rk(xik,yik)
−1 rk(xik,y) k ≥ 0

where ∀j : |rk(xik,yik)| ≥ |rk(xik,yj)| > 0. Then f(x,y) = fk(x,y) + rk(x,y) and

rk(xij,y) = rk(x,yjl) = 0 for j, l ≤ k ∀x ∈ Cx ∀y ∈ Cy.

Moreover, provided f asymptotically smooth, then

|rnp(x,y)| ≤ c1 (c2dη)p (1 + 2np) Cp distg(Cx, Cy)

with np =
p−1∑
l=0

(
l+d−1

l

)
≤ cdp

d and Cp the Lagrange interpolation error on the skeleton.

Fast BEM

Adaptive cross approximation (ACA)

PCx APT
Cy

=:

(
Ã11 Ã12

Ã21 Ã22

)
≈
(

Ã11 Ã12

Ã21 Ã21 Ã−1
11 Ã12

)
=

(
Ã11

Ã21

) [
Ã−1

11

(
Ã11, Ã12

)]

=: (u1, . . . ,ur) (v1, . . . ,vr)
T .

The rank r := r(ε), where Ã11 ∈ Cr×r, is adaptively controlled by ε as follows:

‖uk+1‖2 ‖vk+1‖2 ≤
ε(1 − η)

1 + ε
‖Ak‖F , where Ak :=

k∑

m=1

umvT
m

which implies, provided ‖Rk+1‖F ≤ η‖Rk‖F , that ‖Rk‖F

‖A‖F
≤ ε, where Rk := A − Ak.

The pivots, stored in PCx, PCy, are chosen as to maximize |det Ãk
11| with a wish to

minimize ‖Rk‖ ≡ ‖Ãk
22 − Ãk

21 (Ãk
11)

−1 Ãk
12‖.

Fast BEM

ACA algorithm (a simple version)

Given an admissible block A ∈ Cm×n, η ∈ (0, 1), and a relative precision ε > 0.

k := 1, R := ∅, C := ∅, i1 := 1
repeat

vk := (A)ik,∗, vk := vk −
k−1∑
l=1

(ul)ik vl % Note that vk = (Rk)ik,∗.

R := R ∪ {ik}
jk := argmaxj 6∈C |(vk)j|, vk := (vk)

−1
jk

vk

uk := (A)∗,jk, uk := uk −
k−1∑
l=1

(vl)jk ul % Note that uk = (Rk)∗,jk.

C := C ∪ {jk}
ik+1 := argmaxi 6∈R |(uk)i|
k := k + 1

until ‖uk+1‖2 ‖vk+1‖2 ≤ ε(1−η)
1+ε ‖Ak‖F or R = {1, . . . , m} or C = {1, . . . , n}

The algorithm can be easily adapted to the cases (vk)jk = 0, vk = 0 and uk = 0.

Fast BEM

ACA algorithm: an example (R0 := A)

R0 =




0.431 0.354 0.582 0.417
0.491 0.396 0.674 0.449
0.446 0.358 0.583 0.413
0.380 0.328 0.557 0.372




i1=1, j1=3−−−−−−→
R={1}

1

0.582




0.582
0.674
0.583
0.557


 (0.431, 0.354, 0.582, 0.417)

R1 =




0 0 0 0
−0.008 −0.014 0 −0.034
0.014 0.003 0 −0.005
−0.033 −0.011 0 −0.027




i1=2, j1=4−−−−−−→
R={1,2}

1

−0.034




0
−0.034
−0.005
−0.027


 (−0.008,−0.014, 0,−0.034)

R2 =




0 0 0 0
0 0 0 0

0.015 0.005 0 0
−0.026 0.0004 0 0




i1=4, j1=1−−−−−−→
R={1,2,4}

1

−0.026




0
0

0.015
−0.026


 (−0.026, 0.0004, 0, 0)

The relative error decays as follows: ‖Rk‖2/‖A‖2 = 0.030, 0.016, 0.003 for k = 1, 2, 3

Fast BEM

An improved ACA for the Helmholtz equation: ball

Given the solution p(x) := eiκ|x−xs|/ (4π|x− xs|) with κ := 2π151.6/340 and the
scaterrer placed at xs := (0.05, 0.05, 0.05).

ACA (η := 0.4, ε := 10−8) Elem. ACA (η := 0.4, ε := 10−8)
nodes/elements error D GMRES Tot. mem. error D GMRES Tot. mem.

22/40 0.099 100%/1s. 13iters./0s 7 MB 0.099 0s 13/0 8 MB
82/160 0.020 100/2 19/0 8 MB 0.020 3 19/0 9 MB
322/640 3.9e-3 100/30 28/0 13 MB 3.9e-3 34 28/1 23 MB

1282/2560 8.7e-4 94/973 42/7 85 MB 1.0e-3 255 42/49 130 MB
5122/10240 2.7e-4 39/8095 60/70 484 MB 3.9e-4 1259 60/450 727 MB
20482/40960 1.0e-4 12/42397 86/496 2.24 GB 2.3e-4 5515 86/6662 2.93 GB
81922/163840 4.2e-4 25768 123/23877 13.19 GB

Fast BEM

An improved ACA for the Helmholtz equation: cube

Given the solution p(x) := eiκ|x−xs|/ (4π|x− xs|) with κ := 2π151.6/340 and the
scaterrer placed at xs := (0.05, 0.05, 0.05).

ACA (η := 0.4, ε := 10−8) Elem. ACA (η := 0.4, ε := 10−8)
nodes/elements error D GMRES Tot. mem. error D GMRES Tot. mem.

8/12 0.538 100%/0s 7iters./0s 7 MB 0.538 0s 7/0 8 MB
26/48 0.186 100/0 21/0 7 MB 0.186 1 21/0 8 MB
98/192 0.166 100/3 30/0 8 MB 0.166 3 30/0 9 MB
386/768 0.035 100/43 37/1 16 MB 0.037 45 37/3 29 MB

1538/3072 9.3e-3 91/1661 48/12 115 MB 0.015 282 48/87 165 MB
6146/12288 3.5e-3 37/12134 66/107 641 MB 4.6e-3 1236 66/729 918 MB
24578/49152 3.5e-3 12/60671 92/738 2.81 GB 5.2e-3 5157 93/5060 3.90 GB



Fast BEM

An improved ACA for the Helmholtz equation: railway wheel

ACA(10−4,0.4)

• D: 56%/27286s,

• K: 44%, 3121s,

• GMRES: 138iters./490s

Elem. ACA(10−4,0.4)

• D: 78%/5732s,

• K: ?, 2658s,

• GMRES: 142iters./2524s
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Parallel BEM

Parallel implementation on a shared memory system

processor 1

master

processor 2

slaveslave

processor N

Nonadm/adm

blocks 1

Nonadm/adm

blocks 2

Nonadm/adm

blocks N

. . .

. . .

Quad-tree

trianglesnodes

shared

memory

Parallel BEM

Helmholtz, Dirich. u(x) := eıκ|x−xs|/(4π|x−xs|), κ := 2.8, xs := (2, 2, 2) on B1

compr. scheduling+assembling times of Vκ [s]
n err. of Vκ N := 2 N := 4 N := 8 N := 16 N := 32
40 3.3e-1 100% 0+0 0+0 0+0 0+0 0+0
160 1.2e-1 100% 0+1 0+1 0+1 0+1 0+1
640 3.6e-2 100% 0+10 0+4 0+3 0+2 0+2
2560 9.9e-3 100% 0+142 0+72 0+38 0+20 0+9
10240 2.8e-3 65% 66+1388 27+673 7+335 7+168 5+88
40960 9.0e-4 26% 452+3600 280+1823 233+929
163840 3.3e-4 8% 4011+19892

err. :=

√
〈M(u − uh), u − uh〉Γ√

〈Mu, u〉Γ

Towards parallel scalability: CPU = O
(

n log n
N

)
, but Mem = O(N n log n).

Parallel BEM

The idea

N processes, N × N submatrices

• Each diagonal block with the related geometry data assigned to one process

⇒ both memory and CPU balanced, since most nonadmissible blocks are dis-
tributed efficiently.

• Each geometrically closely related N−1 off–diagonal blocks assigned to one process

? memory balanced: Mem = O
(

n log n
N

+ n√
N

)

? CPU balanced

Parallel BEM

Finding optimal distributions by brute force fails

• N = 2: 2 cases,

• N = 4: 34650 cases,

• N = 8: 4 · 1042 cases.

number of cases =

(
(N − 1) N

N

)
·
(

(N − 2) N

N

)
· · ·
(

2 N

N

)



Parallel BEM

Cyclic decomposition of undirected graphs

N := 3 N := 7 N := 21

It is equivalent to perfect difference sets [Singer, 1934]: decompositions available for

N(N − 1)

2N
=

p(p − 1)

2
,

where p + 1 is a power of a prime number.

Parallel BEM

The algorithm

1. Decomposition of the mesh into N submeshes (by Metis).

−1

−0.5

0

0.5

1

−1

−0.5

0

0.5

1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

2. Assignment of O(
√

N) submeshes to each processor, using the cyclic decomposition.

3. Parallel assembling of the N × N block matrix by means of a fast BEM.

Parallel BEM

ACA for Laplace 1-layer matrix on a cube

compr. average memory [MB], CPU [s] per process
n V N := 1 N := 7 N := 31 N := 57 N := 73 N := 91 N := 133

3072 21.5% 160, 8 148, 1 170, 0 194, 0 177, 0 197, 0 ?, 0
12288 13.1% 267, 59 163, 7 175, 1 176, 1 167, 1 200, 1 207, 1
49152 5.2% 884, 367 263, 51 201, 10 194, 8 195, 6 214, 5 220, 4
196608 1.8% 705, 226 353, 53 274, 32 254, 25 280, 25 276, 18
786432 0.7% 999, 294 668, 172 599, 119 570, 110 535, 99
3145728 0.3% 1911 MB, 596 s

ACA: η := 1.1, ε := 10−4, . . . , 10−9, nmin := 10, . . . , 60

Parallel scalability: CPU = O
(

n log n
N

)
,Mem = O

(
n log n

N + n√
N

)
.

Parallel BEM

Int. Laplace problem with Dir. datum u(x) := 1/|x−(2, 2, 2)| on Ω := (0, 1)3

#elems assemble time: CPU(V)/CPU(K) [s]
error, #CG memory [MB] per process: compression of V/compression of K [%]

N := 7 N := 31 N := 57 N := 73 N := 133

3072 114:2/84 42:2/24 24:0/21 20:1/17
2.6e-2, 59 159:41/84 173:40/93 176:42/99 192:46/100

12288 545:11/396 153:2/81 95:0/54 77:2/75 47:0/30
1.3e-2, 78 247:19/41 213:19/45 210:18/49 206:20/53 202:23/67

49152 2752:69/2209 819:13/474 601:6/280 446:8/292 241:7/176
6.5e-3, 102 803:8/16 347:8/17 291:8/19 277:8/20 258:9/25

196608 3171:83/2521 2122:45/1282 1885:39/1348 1016:31/790
3.3e-3, 129 1025:3/6 717:3/7 646:3/7 529:3/8

786432 4247 s:161/4085
1.7e-3, 167 1885 MB:1/3

Efficient Numerics for Boundary Integral Equations

Outline

• 1d BEM

• 2d conventional BEM

– Fundamental solution, representation formula

– Potentials, mapping properties

– Boundary integral equations (BIE)

– Galerkin boundary element method (BEM)

– Numerical quadrature of singular kernels

– Matlab pseudo–code, examples

• 3d fast parallel BEM

– Fast BEM

– Parallel BEM

• Conclusion, references

Conclusion, references

Area of use

• BEM reduces the problem to the boundary

• Fundamental solution is known for many 2d/3d PDEs, e.g., elasticity, acoustics,
electromagnetism

• Recently also time–domain BEM for parabolic and hyperbolic PDEs

• Problems in bounded as well as unbounded domains

• Natural coupling with FEM

• Cons: restricted to linear material laws, difficult implementation and theory



Conclusion, references

BEM references

• Bouchala, J., Úvod do BEM. SNA 2007.

• Sadowská, M., Řešeńı variačńıch nerovnic pomoćı hraničńıch integrálńıch rovnic.
Diplomová práce. VŠB–TU Ostrava, 2005.

• Steinbach, O. and Rjasanow, S., The Fast Solution of Boundary Integral Equations.
Springer, 2007.

• Steinbach, O., Numerical Approximation Methods for Elliptic Boundary Value
Problems. Springer, 2008.

• Sauter, S. and Schwab, C., Boundary Element Methods. Springer, 2011.

• McLean, W., Strongly Elliptic Systems and Boundary Integral Equations. Cam-
bridge University Press, 2000.

• Hsiao, G.C. and Wendland, W.L., Boundary Integral Equations. Springer, 2008.

Conclusion, references

Fast BEM references

• Bebendorf, M., Hierarchical Matrices: A Means to Efficient Solve Elliptic Boundary
Value Problems. LNCSE 63, Springer, 2008.

• Nishimura, N. and Liu, Y.J., The fast multipole boundary element method for
potential problems. EABE 30, 371–381, 2006.

• Greengard, L. and Rokhlin, V., A fast algorithm for particle simulations. J. Com-
put. Phys. 73, 1987.

• Hackbusch, W. and Nowak, Z.P., On the fast matrix multiplication in the boundary
element method by panel clustering. Numer. Math. 54, 1989.

Conclusion, references

Our work

• Lukáš, D., Postava, K., and Životský, O., A shape optimization method for nonlin-
ear axisymmetric magnetostatics using a coupling of finite and boundary elements.
Math. Comp. 82, 2012.
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Outlook

• with M. Merta: parallel FMM BEM, SNA ’13

• with L. Malý: primal BEM–based domain decomposition, SNA ’13

• with A. Veit (ETH Zürich) and M. Merta: parallel BEM for the wave equation

• with P. Kovář and M. Kravčenko: (sub)optimal noncyclic decompositions of graphs



Algebraic multigrid, stochastic matrices and homogenization

I. Marek, I. Pultarová

Faculty of Civil Engineering, Czech Technical University in Prague

Multilevel and multigrid methods have become rather popular in many areas of numerical math-
ematics, especially in numerical solution of discretized partial differential equations (PDEs).

Theory of multigrid methods for discretized elliptic PDEs is presently quite well developed
and understood. Multigrid schemes are successfully used also for the Helmholtz equation and
some related theoretical results are available. Nonsymmetric problems including Markov chains
have been solved by multigrid methods for several decades. Nevertheless, their theoretical
justifications are still rare.

In our presentation we use the name algebraic multigrid (AMG) in cases of a solution of symmet-
ric positive definite problems and the name iterative aggregation-disaggregation (IAD) method
in case of a Markov chain. These two approaches are formally close each to the other but of
course, due to the different areas of applicability, there are differences that have to be taken into
account.

The presentation consists of the following main issues.

• Basic definitions and properties of Markov chains, stochastic matrices, their stationary
probability distribution vectors and many related examples.

• Some areas of application of these problems.

• Difficulties that can be met during numerical computation.

• Basics of the IAD methods. Comparing them to the AMG methods.

• Theorems of convergence of the IAD methods. Emphasizing that different tools are needed
than for AMG. Counter-examples of propositions that could be desired.

• Broader connections. Positive cones. Semigroups of linear operators. Partial differential
operators as generators of semigroups of linear operators. A typical model problem Laplace
operators.

• Homogenization.
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Definitions

Vector of all ones e. Spectrum σ(M). Spectral radius ρ(M).

Stochastic matrix B: [B]rs ≥ 0 and ∑
n
r=1[B]rs = 1.

Then ||B||1 = 1 and thus ρ(B)≤ 1.

Since eT B = eT , e is left eigenvector of B, then 1 ∈ σ(B) and ρ(B) = 1.

Irreducible matrix B: there is no permutation matrix P that

PBPT =

(

B̃11 B̃12

0 B̃12

)

.

In the following B will be irreducible.

Theorem. (Perron - Frobenius)

There exists a unique eigenvector x̂ of B that Bx̂ = x̂ and eT x̂ = 1.

Vector x̂ is positive, x̂ > 0. Multiplicity of 1 in σ(B) is one.

x̂ is stationary probability (distribution) vector or Perron eigenvector of matrix B.

[A. Berman, R. J. Plemmons, Nonnegative Matrices in the Mathematical

Sciences, 1994; R. S. Varga, Matrix Iterative Analysis, 2000]
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−1 0 1
−1

0

1

−1 0 1
−1

0

1

−1 0 1
−1

0

1

2 x

B is primitive if Bn > 0 for some n. Otherwise B is cyclic.

Let λ2(B) = max{|λ |; λ ∈ σ(B),λ 6= 1}.

B is primitive iff λ2(B)< 1. Then limn→∞ Bn = x̂eT . How fast?

Examples.

B1 =





0 0 1

1 0 0

0 1 0



 , B2 =





0 0.7 0

0.6 0.3 1

0.4 0 0



 , B3 =





0.2 0.2 0.2

0.1 0.1 0.1

0.7 0.7 0.7



 ,

B2
1 =





0 1 0

0 0 1

1 0 0



 , B2
2 =





0.42 0.21 0.7

0.58 0.51 0.3

0 0.28 0



 , B2
3 =





0.2 0.2 0.2

0.1 0.1 0.1

0.7 0.7 0.7



 ,

B3
1 =





1 0 0

0 1 0

0 0 1



 , B3
2 =





0.406 0.357 0.21

0.426 0.559 0.51

0.168 0.084 0.28



 , B3
3 =





0.2 0.2 0.2

0.1 0.1 0.1

0.7 0.7 0.7




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Let P = x̂eT and Z = B−P. Then

1) P2 = P, thus P is projection;

2) eT Z = 0;

3) ZP = (B−P)P = BP−P2 = Bx̂eT −P = x̂eT −P = P−P = 0 and PZ = 0;

4) Eigenvalues of Z: Let Zu = λu. Then either λ = 0 or eT u = 0 (because

eT Z = 0). Then Pu = 0. Then Bu = (P+Z)u = λu. Thus λ ∈ σ(B).
Let Zu = u. Then eT u = 0, thus Pu = 0 and thus (P+Z)u = Bu = u. Then u is

Perron vector of B and this is the contradiction to eT = 0. So that

σ(Z) = σ(B)\{1}∪{0}.

We want to obtain an approximation to x̂.

Let x0 > 0, eT x0 = 1 and use power method: xk+1 = Bxk. Then eT xk = 1 and

xk+1 − x̂ = B(xk − x̂) = (P+Z)(xk − x̂) = Z(xk − x̂).

The second largest eigenvalue of B is important, λ2(B) !
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Let Bx̂ = x̂ be
(

B11 B12

B21 B22

)(

x̂1

x̂2

)

=

(

x̂1

x̂2

)

.

Then
(

I −B11 −B12

−B21 I −B22

)(

x̂1

x̂2

)

=

(

0

0

)

and after elimination
(

I −B11 −B12

0 I −B22 −B21(I −B11)
−1B12

)(

x̂1

x̂2

)

=

(

0

0

)

.

Then x̂2 is the Perron vector of the stochastic complement of B22 in B

S22 = B22 +B21(I −B11)
−1B12

which is stochastic.

Proof.

eT(B22 +B21(I −B11)
−1B12) = eT B22 + eT B21(I −B11)

−1B12

= eT B22 + eT(I −B11)(I −B11)
−1B12

= eT B22 + eT B12

= eT .
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Localization of spectrum of B

−1 0 1
−1

0

1

−1 0 1
−1

0

1

−1 0 1
−1

0

1

2 x

Let

τ(B) :=
1

2
max{||B(ei − ej)||1; i, j = 1, . . . ,n}

then [E. Seneta, 1984]

λ2(B)≤ τ(B)

Examples.

B1 =





0 0 1

1 0 0

0 1 0



 , B2 =





0 0.7 0

0.6 0.3 1

0.4 0 0



 , B3 =





0.2 0.2 0.2

0.1 0.1 0.1

0.7 0.7 0.7



 ,

τ(B1) = 1, τ(B2) = 0.7, τ(B3) = 0,

λ2(B1) = 1, λ2(B2)≈ 0.5292, λ2(B3) = 0.
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Comparison of the upper bounds [I. Ipsen, S. Kirkland, 2006]

τ(S22)≤ τ(B).

Let A SPD, Ax = b and

A =

(

A11 A12

AT
12 A22

)

and the Schur complement S22 = A22 −AT
12A−1

11 A12. Then (interlacing property)

λmin(A)≤ λmin(S22)≤ λmax(S22)≤ λmax(A).

Proof.

vT Av

vT v
=

vT
1 A11v1 + vT

2 A22v2 +2vT
1 A12v2

vT
1 v1 + vT

2 v2

,
vT

2 S22v2

vT
2 v2

=
vT

2 A22v2 − vT
2 AT

12A−1
11 A12v2

vT
2 v2

.

First ”≤” for vT = ((−A
−1/2

11 A12v2)
T ,vT

2 )
T

third ”≤” for vT = (0,vT
2 )

T .
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Recommendation

If B symmetric then I −B positive semidefinite.

We solve here

(I −B)x = 0.

We may also solve

Ax = b,

where A is SPD.

This talk can be followed

with stochastic matrices and SPD problems in ones mind at the same time,

noticing the differences and similarities between A and I −B, e.g.

B=









0 1/2 0 1/2

1/2 0 1/2 0

0 1/2 0 1/2

1/2 0 1/2 0









,A= I−B=









1 −1/2 0 −1/2

−1/2 1 −1/2 0

0 −1/2 1 −1/2

−1/2 0 −1/2 1








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Applications

In general, homogeneous discrete finite Markov chains. Stochastic processes with

discrete times t1, t2, . . . and finite set of states {1,2, . . . ,N}.

Probability of transition from the jth state to the ith state within any time interval

is constant and equal to Bij.

Some applications:

1) Student’s life

2) Original motivation from economy

3) Google

4) Tandem queues

5) Genetic signal processing
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1) Student’s life

Where the student can be found?

He can be at the university (s1), in the library (s2), at U Beránka (s3) ?

Matrix of transition probabilities among states s1,s2,s3

B =





0.1 0 0.4

0.4 0.2 0

0.5 0.8 0.6



 .

Let us have at the beginning a probability distribution v1, then after one hour

v2 = Bv1, after two hours v3 = Bv2, etc.

Thus for example, v1 =





1

0

0



, v2 = Bv1 =





0.1

0.4

0.5



, v3 = Bv2 =





0.21

0.12

0.67



,

v4 =





0.289

0.108

0.603



, v5 =





0.2701

0.1372

0.5927



, v6 =





0.2666

0.1327

0.6007



, . . . , v∞ =





4/15

2/15

9/15




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2) Original motivation from economy

[H. A. Simon, A. Ando, Aggregation of variables in dynamic systems.

Econometrica, 1961]

”Government planners are interested in the effect of a subsidy to a basic industry,

say steel industry on the total effective demand in the economy.”

=⇒ Tracing through all interactions among the economics agents,

small number of groups and separating the short-run from long-run dynamics.

B =









0.97 0.02 0 0.0002

0.0291 0.98 0 0.0002

0.0009 0 0.96 0.0396

0 0 0.04 0.96









, x̂ =









0.1433

0.2118

0.3225

0.3225









,

y=









0.25

0.25

0.25

0.25









,B100y=









0.1984

0.2928

0.2549

0.2539









,ynew =









0.1432

0.2113

0.3234

0.3222









;B7000y=









0.1444

0.2134

0.3211

0.3211









where ỹ = B100y and let B̃ = RBS(ỹ) and B̃z̃ = z̃ and ynew = S(ỹ)z̃.
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3) Google

20001 30000 40000

20001

30000

40000

nz = 36283
20001 30000 40000

20001

30000

40000

nz = 36283

One of the ways how to evaluate the

reliability and popularity of web pages:

according to links among them.

[ S. Brin, L. Page, et al., 1998;

C. Moler, The world largest

computation, 2002]

Let Gij > 0 mean that there is

a link from j to i.

G huge and sparse.

Since G can be reducible, apply B := 0.85G+0.15veT , where v ≥ 0 and eT v = 1.

Perron vector of B is the PageRank vector.

A higher PageRank score of a page

means a higher popularity.

Spy-plots of Stanford web matrix

- original and its small block;

- a block and its reordering.
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4) Tandem queues

−1 −0.5 0 0.5 1

−1

−0.5

0

0.5

1

System of servers connected in different ways.

For example, serial connection of two servers:

”rates of new clients coming : served at first server : served at second server =”

= m1 : m2 : m3 = 10 : 11 : 10

Example of σ(B):

N = 276

λ2(B) = 1

fourth largest eigenvalue 0.9890
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5) Genetic signal processing

Probabilistic Boolean networks (PBN), first in [S. A. Kauffman, 1969]

Boolean network contains n elements {x1, . . . ,xn}, each xi ∈ {0,1},

and Boolean functions fi : {0,1}n →{0,1}.

Genes: every {x1, . . . ,xn} is a gene activity profile (GAP).

In case of n genes, transition matrix has 2n ×2n elements!

Perturbations, e.g. Bij := Bij +pk, where p ∈ (0,1) and k is the Hamming distance

of ith and jth GAPs.

Finding optimal intervention targets: the best gene to intervene in order to achieve

the desired attractor (desired stable state). Mean first passage times.

”What is the probability that gene A will be expressed in the long run?”

”What is the probability that genes B and C will both be expressed in the long

run?”

Most studied genes - human cancer [I. Schmulevich, 2002; M. Brun et al., 2004;

W.-W. Xu et al., 2011].

Most cited (3459 refs) paper in Nature: Genome-wide association study of 14,000

cases of seven common diseases and 3,000 shared controls, Nature 447, (2007).
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Solution methods

Basic solution methods

Let B irreducible and stochastic, N ×N. Solve (I −B)x = 0.

D i r e c t m e t h o d s

Gauss elimination

Rank of I −B is N −1.

Substitute some row of I−B by eT and the corresponding right hand element by 1.

I t e r a t i v e m e t h o d s

Krylov subspace methods

Conjugate gradient method for all extremal eigenvectors [Tanabe, 1985],

GMRES,

computed vectors can have negative elements during the computation.
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Stationary matrix iterative methods

Power method

Algorithm xk+1 = Bxk, for x0 > 0, eT x0 = 1.

Error rk+1 = xk+1 − x̂ = Bxk − x̂ = Bxk −Bx̂ = Brk.

Denote the projection P = x̂eT and Z = B−P. Note that P2 = x̂eT x̂eT = x̂eT = P.

a) B primitive: The sequence xk = Bkx0 converges to x̂ for any x0 > 0, eT x0 = 1

and the rate of convergence is at most ρ(Z).

b) B cyclic: The sequence xk = Bkx0 does not converge to x̂ in general. The

eigenvalues of B of the magnitude one are of the form λ = e2kπi/m.

We can take B̃ = αB+(1−α)I, α ∈ (0,1)and use it for the iterations.

The spectrum of B̃ is evidently σ(B̃) = 1−α +ασ(B).

It is not known a priori which α is appropriate.

For sure we can always use B̃ instead of B for iteration.
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Weak regular splitting

A is an M-matrix if A = cI −B, where c ≥ ρ(M).
A is a nonsingular M-matrix if A is M-matrix and nonsingular.

Inverse of a nonsingular M-matrix is positive, A−1 > 0.

Let M, W be a weak regular splitting of I −B,

i.e. I −B = M−W and M−1 ≥ 0 and W ≥ 0.

Let T = M−1W.

Then Tx̂ = x̂ and T ≥ 0 and ρ(T)≤ 1.

It may happen that ρ(B)< 1 and ρ(T) = 1.

Thus T̃ = αT +(1−α)I is a good iteration matrix.

What is a suitable splitting? The choice of splitting is not straightforward:
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Comparison theorems

Let A be a nonsingular M-matrix, A = M1 −N1 = M2 −N2 two weak regular

splittings.

a) If N1 ≥ N2 ≥ 0 then

1 > ρ(M−1
1 N1)≥ ρ(M−1

2 N2)≥ 0.

b) If moreover, A−1 > 0 and N1 ≥ N2 ≥ 0, equality excluded, then

1 > ρ(M−1
1 N1)> ρ(M−1

2 N2)> 0.

Counter-example for singular M-matrices by L. Kaufman [1983]:

I −B =









1 −1/2 −1/2 0

−1/2 1 0 −1/2

−1/2 0 1 −1/2

0 −1/2 −1/2 1









,

N1 =









0 1/2 1/2 0

0 0 0 1/2

0 0 0 1/2

0 0 0 0









and N2 =









0 0 1/2 0

0 0 0 1/2

0 0 0 0

0 0 0 0









.

Then N1 > N2 but λ2(M
−1
1 N1) = 0 and λ2(M

−1
2 N2) = 1/9.

Different cones are needed [I. Marek, D. Szyld, 2000].
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Block methods with overlap - Schwarz methods, additive and multiplicative

Restriction matrices corresponding to i-th group Ri.

Algorithm is

xk+1 = Txk + c,

where for multiplicative Schwarz method

T = Π
p
i=1

(

I −RT
i (RiART

i )
−1RiA

)

and for additove Schwarz method

T = I −Θ

p

∑
i=1

RT
i (RiART

i )
−1RiA, Θ > 1/p,

and vectors c are appropriate residual vectors.

Choice of blocks - mostly according to strength of connections or to the nonzero

pattern of diagonal blocks [T. Dayar, G. Noyan, 2011]

Restricted additive Schwarz method [M. Benzi, V. Kuhlemann, 2011]. Special

ordering suggested by A. Langville and C. D. Meyer, [2005, 2006]. Special

methods - based on stochastic complement [C. D. Meyer, 1989].
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Iterative aggregation - disaggregation (IAD) methods

Stationary matrix iterations (or Krylov subspace method) + coarse correction -

recursively repeated

Building the coarse problem:

Reduction matrix R and prolongation matrix S(y) are

R=

(

1 1 0 0 0

0 0 1 1 1

)

, S(y)=













1/3 0

2/3 0

0 2/6

0 3/6

0 1/6













for y=













2/12

4/12

2/12

3/12

1/12













,

Note, S(y) 6= RT .

Identity RS(y) = I,

Projection P(y) := S(y)R =

=













1/3 1/3 0 0 0

2/3 2/3 0 0 0

0 0 2/6 2/6 2/6

0 0 3/6 3/6 3/6

0 0 1/6 1/6 1/6












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Matrix RBS(y) is stochastic and irreducible.

RBS(y) =

=

(

1 1 0 0 0

0 0 1 1 1

)













0 0.3 0 0.6 0

0.9 0 0 0 0

0 0.7 0.7 0.3 0

0 0 0.1 0.1 1

0.1 0 0.2 0 0

























1/3 0

2/3 0

0 2/6

0 3/6

0 1/6













=

=

(

1/2 3/10

1/2 7/10

)

.

Main idea of IAD:

If y = x̂,

the eigenvector z of RBS(x̂)z = z

is z = Rx̂

and S(x̂)z = x̂ !
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IAD algorithm

IAD procedure (input B, y; output ỹ)

1. µ steps of basic iteration y := Tµ y

2. if size(B)< τ solve RBS(y)z = z, eT z = 1,

else IAD procedure (input RBS(y), Ry; output z)

3. set y := S(y)z,

ν steps of basic iteration ỹ := Tν y
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Some special two-level IAD methods

Koury-McAllister-Stewart method:

µ1 +ν1 = 1, T corresponds to block Gauss-Seidel method

Takahashi method:

modified block Gauss-Seidel m. with a coarse correction

(after recomputing of i-th part of xk, it is normalized, ||xk
i ||1 = [z]k, where z is the

current solution of the coarse problem).

Vantilborgh method:

modified Jacobi method with coarse correction

(individual parts of xk are obtained as Perron vectors of stochastic complement

matrices Sjj of Bjj in B̃, where B̃ arises form B after aggregation of all blocks

except the j-th one nto a single state.

[W. J. Stewart, 1994]
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Convergence of the IAD methods

Let us distinguish local and global convergence.

a) B almost symmetric - local convergence (similar to AMG for SPD problems)

[H. De Sterck et al.]

b) B almost block diagonal (NCD) - global fast convergence

[P. Buchholz, T. Dayar, W. J. Stewart]

c) General B - several results

[I. Marek, P. Mayer, I. Pultarová]
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AMG for SPD problems

Algebraic multigrid (AMG) for symmetric positive definite (SPD) problems

Ax = b

Let R and RT are reduction and prolongation matrices.

The coarse problem RART z = Rr, where r is the current residual.

The iteration matrix is M = (I −Tm)(I −RT(RART)−1RA), where

T is symmetric, commutes with A and ρ(T)< 1,

R is any matrix for which RART is invertible, we have

ρ(M)< 1.

Advantageous choice of R: according to strongly connected elements.

Then rows of R represent low frequency vectors.

[A. Brandt, Algebraic multigrid theory: The symmetric case, 1983]
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AMG for Helmholtz equation

Consider

Au = f ,

a discretization of the indefinite Helmholtz equation

−△u− k2u = f .

Fourier analysis:

eigenvalues of I −ωD−1A (weighted Jacobi m.) are

λj = 1−ω

(

1−
cos jπh

1− 1
2 k2h2

)

, j = 1, . . . ,N, h =
1

N
.

Fine grid - fast frequencies are eliminated from the error,

smoothed modes can be amplified !

Coarse grid - the problem becomes negative definite

Intermediate grid - several methods

E.g. [H. C. Elman, O. G. Ernst, D. P. O’Leary, 2001]
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IAD for NCD problems

Nearly completely reducible (NCD) Markov chains.

Convergence estimate according to Stewart’s book [1994].

[T. Dayar, W. J. Stewar, SIAM, 1996]:

”If B is a sum of a block diagonal matrix and E, where ε := ||E||2 ≪ 1

B =









X ε . . . ε

ε X . . . ε

. . . . . . . . . . . .

ε ε . . . X









then the error is reduced by ε in every cycle of the Koury-McAllister-Stewart,

Takahashi and Vantilborgh methods.”

More precisely:
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Sufficient conditions for global convergence with factor O(ε) [W. L. Cao, W. J.

Stewart, 1985]

1. B has block structure, for diagonal blocks ||Bii||2 = O(1) and ||Bij||2 = O(ε)
for i 6= j, i, j = 1, . . . ,p.

2. There exists constant M1 > 0 such that ||x̂i||1 > M1, i = 1,2, . . . ,p.

3. Each block Bii is similar to

(

1−O(ε) 0

0 Hi

)

and there exists constant M2 > 0 such that ||(I −Hi)
−1||2 < M2 for

i = 1,2, . . . ,p.

4. B is similar to
(

1−O(ε) 0

0 K

)

and there exists constant M3 > 0 such that ||(I −K)−1||2 < M3ε−1.

But:

Hard to estimate.

For ||E||2 ≈ 1 the method can diverge.
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Two level IAD for general stochastic matrices

[J. Mandel, B. Sekerka, 1983; I. Marek, P. Mayer, 1998, 2003; U. Krieger, 1995]

Recall B = P+Z, P = x̂eT , aggregation groups, R and S(y), e.g.

R =

(

1 1 0

0 0 1

)

, S(y) =





3/7 0

4/7 0

0 1



 for y =





3/13

4/13

6/13



 .

Convention: elements in groups always consecutively numbered.

Error propagation matrices - derivation:

No eigenvalue of RZS(y) is equal to one. Proof:

RZS(y)u = u

then eT u = 0 then PS(y)u = 0 then

R(Z +P)S(y)u = u

and thus u is the Perron vector of an irreducible stochastic matrix RBS(y) and thus

eT u 6= 0, which is a contradiction.
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Having xk and starting with the coarse problem RBS(xk)z = z, eT z = 1:

RBS(xk)z = z

R(Z +P)S(xk)z = z

RZS(xk)z+Rx̂eT S(xk)z = z

RZS(xk)z+Rx̂ = z

Rx̂ = (I −RZS(xk))z

(I −RZS(xk))−1Rx̂ = z.

Then

S(xk)z = S(xk)(I −RZS(xk))−1Rx̂

S(xk)z = (I −S(xk)RZ)−1S(xk)Rx̂

S(xk)z = (I −P(xk)Z)−1P(xk)x̂,

where P(xk) := S(xk)R is a projection. Then

xk+1 − x̂ = Tµ+ν (I −P(xk)Z)−1P(xk)x̂− x̂,

xk+1 − x̂ = Tµ+ν (I −P(xk)Z)−1P(xk)x̂−Tν (I −P(xk)Z)−1x̂,

xk+1 − x̂ = Tµ+ν (I −P(xk)Z)−1(P(xk)− I)x̂,

xk+1 − x̂ = Tµ+ν (I −P(xk)Z)−1(I −P(xk))(xk − x̂),
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Thus the error propagation matrix is

J(xk) = Tµ+ν (I −P(xk)Z)−1(I −P(xk)).

In case of convergence, the asymptotic error propagation matrix is

J(x̂) = Tµ+ν (I −P(x̂)Z)−1(I −P(x̂)).

Then

ρ(J(xk))< 1

would mean global convergence (it is not feasible!), and

ρ(J(x̂))< 1

means local convergence.

Nevertheless, the Perron vector is a fixed point of all general IAD algorithms.

It is proved that the fixed point is unique - only for some special types of the IAD

methods.
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Some convergence criteria

Let T = B and µ +ν = 1, so that J(x̂) = B(I −P(x̂)Z)−1(I −P(x̂)), basic iteration

by one step of power method.

Theorem. If at least one of the following options holds for B

1) one row is positive,

2) one column is positive;

3) the diagonal is positive;

4) stochastic complements of all diagonal blocks are primitive matrices,

then ρ(J(x̂))< 1 (local convergence).

[1) Mandel, Sekerka, 1983; 2)-3) Marek, Pultarová, 2006; 4) Pultarová, 2008]

Counter-example.

B =





1/2 0 1/2

1/2 0 1/2

0 1 0



 ,

groups G1 = {1}, G2 = {2,3}. Divergence, ρ(J(x̂)) = 1.
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Note that

• Only one step of basic iteration is allowed.

• Only T = B is allowed. Power method.

• Only local convergence is obtained.

Thus not so much efficient, not robust.

Theorem. Let T = B and µ +ν = 1. Let

a) m < N and G1 = {1}, . . . , Gm = {m}, Gm+1 = {m+1, . . . ,N}, and

b) the stochastic complement to BGm+1
be a primitive matrix.

Then ρ(J(xk))< 1 (global convergence).

[Ipsen, Kirkland, 2006].
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Two levels, but more steps of basic iteration

Divergence in general:

Let C2n, N = 2n, be a permutation (cyclic) matrix represented, for example for

n = 6, by a directed path

1 → 3 → 5 → 7 → 9 → 11 → 12 → 10 → 8 → 6 → 4 → 2 → 1.

Theorem. Consider B = C4n. Suppose 2n aggregation groups, each containing

two elements. Let T = C4n and µ +ν = n. Then

ρ(J(x̂))≥ n.

Theorem. Consider B = C4n. Suppose 2n aggregation groups, each containing

two elements. Let µ +ν = n and let T correspond to the block-Jacobi iteration

matrix with 2×2 blocks. Then

ρ(J(x̂))≥ n.
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More steps again, but better ordering

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2

−1

−0.5

0

0.5

1

Ordering according to strong connections.

Let C̃N be defined by [C̃N ]k+1,k = 1, [C̃N ]1,N = 1 and [C̃N ]i,j = 0 otherwise, e.g.

C̃4 =









0 0 0 1

1 0 0 0

0 1 0 0

0 0 1 0









.

Theorem. [P., 2009] For any N there exists a choice of the aggregation groups

and µ +ν such that limsupN→∞ ρ(J(x̂)) = 2.

Example. B = C600, Tµ+ν = BN/2−1.

20 groups, each containing 30 elements.

Spectrum (thick dots) of the error matrix J(x̂).
(Three thin circles help to recognize a location of the eigenvalues.)

Again, divergence in general, even in local sense.
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Even better ordering (if possible) . . .

fast convergence

Theorem. Let the block rows of the basic iteration matrix T be rank one matrices.

Then the IAD method yields the exact solution after the second cycle.

[I. Marek, P. Mayer, 1998]

Example. Let

B =





1/5 0 1/5

4/5 0 4/5

0 1 0



 ,

groups G1 = {1,2}, G2 = {3}, let T = B.

The parts of x1 are already parallel to the corresponding parts of x̂. Then x2 = x̂.

Indeed, ρ(J(x̂)) = 0.

x̂ =





1/9

4/9

4/9



 .
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Fourier analysis

−1 0 1
−1

0

1
µ = 1

−1 0 1
−1

0

1
µ = 2

−1 0 1
−1

0

1
µ = 3

−1 0 1
−1

0

1
µ = 4

Fourier analysis enables quantitative estimates and optimal choice of parameters.

B must have some structure.

First results for B cyclic. B = CN , where [CN ]i+1,i = 1 and [CN ]1,N = 1.

Theorem. [P, 2012] Let N = 100, B = CN , (then x̂ = e/N). T = αB+(1−α)I,

#Gi = 2. Then spectrum of the error propagation matrix J(x̂) is

σ(J(x̂)) = {0,v0,v1, . . . ,vn−1},

where vk =
1
2

((

1− e2πki/N
)(

1−α +αe−2πki/N
)µ

+
(

1+ e2πki/N
)(

1−α −αe−2πki/N
)µ)

.

Example. T = αB+(1−α)I, α = 0.8 and µ +ν ∈ {1,2,3,4}. Spectra of J(x̂).
(The solid lines represent reference unit cycles.)
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More than two levels, L > 2

Theorem. [P, 2012] Let L = 3, µm +νm ≥ 1, m = 1,2. Let T commute with B.

The error in n+1-th cycle is

xn+1 − x̂ = J (xn)(xn − x̂),

where

J(xn) = Tν1

(

(

P2T
)ν2
(

I −P3Z
)−1
(

(

P2 −P3

)

µ2−1

∑
k=0

(

TP2

)k
(T − I)+ I −P3

)

+
ν2−1

∑
k=0

(

P2T
)k(

I −P2

)

)

Tµ1 ,

where

Pk = S(xn)1S(xn)2R2R1

where Rk and S(y)k maps vectors from level k into level k−1 and vice versa,

respectively.
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Theorem. [P, 2012] Let L ≥ 2 and µm = νm = 1 for all levels up to the coarsest

one, m = 1,2, . . . ,L−1. Let T commute with B.

The error in n+1-th cycle is

xn+1 − x̂ = J (xn)(xn − x̂),

where

J(xn) = T
L−1

∏
k=2

(PkT)(I −PLZ)−1
L−1

∑
k=1

(Pk −Pk+1)Mk−1

+T
L−2

∑
m=1

m

∏
k=2

(PkT)
m

∑
k=1

(Pk −Pk+1)Mk−1,

where M0 = T and

Mk =
(

T +
k

∑
j=2

TPj(T − I)
)

T,

for k = 1,2, . . . ,L−2.
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Some consequences

Previous two theorems =⇒ local convergence is not preserved

1. if we use L+1 levels instead of L levels;

2. if we use L levels instead of L+1 levels;

3. if we change µk and νk, but the sum µk +νk remains the same.
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Numerical example I. - Tandem queue

−1 −0.5 0 0.5 1

−1

−0.5

0

0.5

1

−1 −0.5 0 0.5 1

−1

−0.5

0

0.5

1

Serial connection of two servers.

Left: σ(B), N = 276

λ2(B) = 1

fourth largest eigenvalue 0.9890

Right: σ(Bnew),
Bnew = αB+(1−α)I
α = 0.7

λ2(Bnew) = 0.9923

Table: Number of cycles and times for achieving the accuracy 10−6.

N #Gk power m. cycles time IAD cycles time

36 2 - - 24 0,02

4 - - 29 0,02

528 2 - - 25 0,68

4 - - 30 0,38

2080 2 - - 25 22,96

4 - - 28 10,78
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Numerical example II. - Genetics
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1
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−1 0 1
−1
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1
µ = 2
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1
µ = 3

−1 0 1
−1

0

1
µ = 4

Matrix of transitions of genes (with a perturbation 10−5), N = 1200.

Left: original B

Middle: reordered B

Right: σ(B)

Table: Number of cycles and solution times for obtaining the accuracy 10−6.

steps of basic it., T = 0.8B+0.2I 1 2 3 4 5 6

time 8.2 28.5 3.6 8.2 3.7 4.9

cycles 25 83 10 22 9 12

Fourier analysis: ”Three steps of basic iteration are best (among{1, . . . ,4} for

α = 0.8 in the iteration matrix T = αT +(1−α)I”:

Spectra

of J’s

for B cyclic:
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Numerical example II. - Genetics, cont.
Fourier analysis says:

In case of one step of basic iteration in every cycle, α = 1/2 is best.

In case of two steps of basic iteration in every cycle, α = 1/3 is best.

Table: Two steps of basic iteration. Number of cycles and times for achieving the accuracy
10−6.

α = 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

time 21.0 10.8 7.4 5.6 4.3 3.6 4.9 8.2 18.4

cycles 61 33 22 17 13 11 15 25 56

Table: Three steps of basic iteration. Number of cycles and times for achieving the
accuracy 10−6.

α = 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

time 11.6 6.5.8 4.4 3.8 5.8 8.6 14.9 28.3 -

cycles 34 19 13 11 17 25 43 83 -
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Recent papers and topics:

Adaptive smoothed aggregation multigrid for nonsymmetric problems (for Markov

chains; with application to web ranking):

M. Brezina, H. De Sterck, T. A. Manteuffel, S. F. McCormick, K. Miller,

Q. Nguyen, J. Pearson, J. Ruge, G. Sanders

Multilevel methods for Kronecker-based Markovian representations:

P. Buchholz, T. Dayar

Algebraic analysis of two-grid methods: The nonsymmetric case:

Y. Notay

Some open questions:

More criteria of convergence of the IAD methods, for more levels.

Special IAD methods for genes.

Fourier analysis of the IAD with larger groups, more levels, . . . .

Main question: Does local convergence always imply global convergence?
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Essentially, all models are wrong, but some are useful.

George E. P. Box
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Why stochastic models: uncertainty is everywhere

Many applications (physical, biological, social, economic, etc.) are
affected by a relatively large amount of uncertainty.

As a result, mathematical models of these processes should
account for uncertainty

Accounting for uncertainty in processes governed by partial
differential equations can involve

random coefficients,
random right-hand side (forcing terms),
random boundary conditions, initial conditions
random geometry, i.e., random boundary shapes
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Examples

forecasting financial markets (economic factors, human behavior, ...)

modeling of wildfires (fuel, weather, ...),

reliability of smart energy grids,

development of renewable energy technologies,

vulnerability analysis of water and power supplies,

complex biological networks,

climate change,

design and licensing of nuclear reactors,

etc.
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Reasons for uncertainty

available data are incomplete (incomplete description of parameters)

observable, but too difficult or costly to measure
Example: media properties in oil reservoirs or aquifers
not observable/predictable
Example: rainfall, wind shear

not all scales in the data and/or solution can or should be resolved
(there might be small, uresolved scales in the model that act as a kind
of background noise ,i.e., macrobehavior from the microstructure).

it is too difficult (perhaps imposible) or costly to do so in a
computational simulation
Example: effect molecular scale (vibrations), turbulence
some scales may not be of interest
Example: surface roughness, hourly stock prices
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(image courtesy of Roger Ghanem)
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Guidance in modeling

Uncertainty is not a property of a system.
It is a property of knowledge we have about that system.

Knowledge evolves, and uncertainty should evolve accordingly.
Question: evolution of vocabulary, or grammar, or both?

If uncertainty reflects ignorance, then models of uncertainty should
reflect on ignorance, on its sources and ways to manage it.
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Types of uncertainties

Stochastic models give quantitative information about uncertainty.
In practice it is necessary to address the following types of uncertainties:

Aleatoric - random, due to the intrinsic variability in the system
Example: turbulent fluctuations of a flow field around an airplane
wing, permeability in an aquifer, etc.
→ such variability is inherent and irreducible

Epistemic - due to incomplete knowledge
Example: mechanical properties of materials, etc.
→ can be reduced by experiments, improving measuring devices, etc.
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Modelling noise (1)

White noise - input data vary randomly and independently from one
point of the domain to another and from one time instant to another

uncertainty is described in terms of uncorrelated random fields
Examples: surface roughness, porosity, thermal fluctuations

Colored noise - input data vary randomly from one point of the
physical domain to another and from one time instant to another
according to a given (spatial/temporal) correlation structure

uncertainty is described in terms of correlated random fields
Examples: bone densities, rainfall amounts, permeabilities within
subsurface layers
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Modelling noise (2)

Random parameters - input data depend on a finite1 number of
random parameters

each parameter may vary independently according to its own given
probability density
alternately, the parameters may vary according to a given joint
probability density

Examples: homogeneous material properties, e.g, Young’s modulus,
Poisson’s ratio, inflow mass, ...

1What we really mean is that the number of parameters is not only finite, but
independent of the spatial/temporal discretization; this is not possible for the
approximation of white noise for which the number of parameters increases as the grid
sizes decrease
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Uncertainty Quantification (UQ)

Uncertainty Quantification (UQ) attempts to quantitatively assess the
impact of input uncertainties on simulation outputs:

- of course, the system may have deterministic inputs as well.
We are interested in systems governed by partial differential equations:

- the solution of the partial differential equation defines the mapping from
the input variables to the output variables
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Quantity of interest

Often, solutions of the PDEs are not the primary output

quantity of interest (QoI).

Quantities obtained by post-processing solutions of the PDE
are often of interest
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A realization of random system

A realization of the random system is determined by:

specifying a specific set of input variables

and then

using the PDE to determine the corresponding output variables.

- thus, a realization is a solution of a deterministic problem.

One is never interested in individual realizations of solutions of the PDE
or of the quantities of interest.
- one is interested in determining statistical information about the
quantities of interest, given statistical information about the inputs.
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Suppose we have N random parameters {yn}
N
n=1

- we use the abbreviation ~y = {y1, y2, . . . , yN}
- each yn could be distributed independently2 according to its probability
density function (pdf) ρn(yn) defined in a (possibly infinite) interval Γn.
- alternately, the parameters could be distributed according to a joint pdf
ρ(y1, . . . , yN) that is a mapping from an N−dimensional set Γ into the real
numbers
- independently distributed parameters are the special case for which

ρ(y1, . . . , yN) =

N
∏

n=1

ρn(yn) and Γ = Γ1 ⊗ Γ2 ⊗ · · · ⊗ ΓN

2Without proper justification and sometimes incorrectly, it is almost always assumed
that the parameters are independent; based on empirical evidence, sometimes this is a
justifiable assumption if the parameters are “knobs” case, but for correlated random
fields, it is justifiable only for the (spherical) Gaussian case. In general, independence is
a simplifying assumption that is involveed for the sake of convenience, e.g., because of a
lack of knowledge.
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Realization = a solution u(x , t, ~y) of a PDE for a specific choice
~y = {yn}

N
n=1 for the random parameters

- again, there is no interest in individual realizations

One may be interested in statistics of solutions of the PDE

average or expected value

u(x , t) = E[u(x , t; ·)] =

∫

Γ

u(x , t, ~y)ρ(~y) d~y

covariance

Cu(x , t; x
′, t ′) = E [(u(x , t; ·)− u(x , t)) (u(x ′, t ′; ·)− u(x ′, t ′))]

=

∫

Γ

(u(x , t, ~y)− u(x , t)) (u(x ′, t ′, ~y)− u(x ′, t ′)) ρ(~y) d~y

variance Cu(x , t; x , t)
higher moments
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One may instead be interested in statistics of spatial/temporal integrals
of the solution of the PDE

for any fixed ~y ,

J (t;~y) =

∫

D

F (u;~y)dx or J (x ;~y) =

∫ t1

t0

F (u;~y)dt

or

J (~y) =

∫ t1

t0

∫

D

F (u;~y) dxdt

where F (·; ·) is given, D is a spatial domain, and (t0, t1) is a time
interval.

quantities defined with respect to integrals over boundary segments
also often occur in practice
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Examples (QoI): the space-time average of u,

J (~y) =

∫ t1

t0

∫

D

u(x , t;~y) dxdt

if u denotes a velocity field, then

J (t;~y) =

∫

D

u(x , t;~y) · u(x , t;~y) dx

is proportional to the kinetic energy

Again, one is not interested in the values of these quantities for specific
choices of the parameters ~y ,

one is interested in their statistics.
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Example: expected value of the kinetic energy

E

[∫

D

u(x , t;~y) · u(x , t;~y) dx

]

=

∫

Γ

∫

D

u(x , t;~y) · u(x , t;~y)ρ(~y) dx d~y

Thus, quantities of interest of this common type
involve integrals over the parameter space 3

Example: for some G (·), integrals to the type
∫

Γ
G (u(x , t;~y)) ρ(~y) d~y or possibly

∫

Γ
G (u(x , t;~y); x , t, ~y) ρ(~y) d~y

3An important class of quantities of interest that arises in, e.g., reliability studies, but
that we do not have time to consider involves integrals over a subset of Γ; in particular,
we have

∫

Γ

χu0G(u(x ;~y))ρ(~y) d~y =

∫

Γu0

G(u(x ;~y))ρ(~y) d~y ,

where, for some given u0

χu0 =

{

1, if u(x ;~y) ≥ u0
0, otherwise

and Γu0 = {~y ∈ Γ such that u(x ;~y) ≥ u0}
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Ideally, one wants to determine an approximation of the pdf for the
quantity of interest, i.e.,

more than just a few statistical moments

of some output quantity

the quantity of interest is a pdf

one way (but not the only way) to construct the approximate pdf is to
compute many statistical moments of the output quantity

so, again we are faced with evaluating stochastic integrals
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Quadrature rules for stochastic integrals

Integrals of the type
∫

Γ
G (u(x , t;~y)) ρ(~y) d~y

cannot, in general, be evaluated exactly.
Thus, these integrals are approximated using a quadrature rule

∫

Γ
G (u(x , t;~y)) ρ(~y) d~y ≈

Q
∑

q=1

wqG (u(x , t;~yq)) ρ(~yq)

for some choice of

quadrature weights {wq}
Q
q=1 (real numbers)

quadrature points {~yq}
Q
q=1 (points in the parameter domain Γ)
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Alternately, sometimes the probability density function is used in the
determination of the quadrature points and weights so that instead one
ends up with the approximation

∫

Γ
G (u(x , t;~y)) ρ(~y) d~y ≈

Q
∑

q=1

wqG (u(x , t;~yq))

Monte-Carlo integration - the simplest rule =⇒

randomly select Q points in Γ according to the pdf ρ(~y)

evaluate the integrand at each of the sample points

average the values so obtained , i.e., for all q, wq = 1/Q
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Big problem

In practice, one usually does not know much about the statistics of the
input variables

one is lucky if one knows a range of values, e.g., maximum or
minimum values, for an input parameter (in which case one after
assumes that the parameter is uniformly distributed over that range),

if one is luckier, one knows the mean and variance for the input
parameter (in which case one often assumes that the parameter is
normally distributed),

of course, one may be completely wrong in assuming such simple
probability distributions for a parameter.

This leads to the need to solve stochastic model calibration problem.
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Model calibration

Model calibration is the task of determining statistical information about
the inputs of a system, given statistical information about the outputs

e.g., one can use experimental observations to determine the
statistical information about the outputs

in particular, one wants to identify the probability density function
(pdf) of the input variables

Of course, the system still maps the input to the outputs

thus, determining the input pdf is an inverse problem

usually involves an iteration in which guesses for the input pdf are
updated

several ways to do the update, e.g., Bayesian, maximum likelihood, ...
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Colored noise: correlated random fields

We now consider correlated random fields η(x , t;ω)

at each point x in a spatial domain D and at each instant t in a time
interval [t0, t1], the value of η is determined by a random variable ω
whose values are drawn from a given probability distribution
however, unlike the white noise case, the covariance function of the
random field η(x , t;ω) does not reduce to delta function

In rare cases, a formula for the random field is “known”

again, we cannot sample the random field at every spatial and temporal
point
on the other hand, unlike the white noise case, the fact that the
random field is correlated implies that one can find a discrete
approximation to the random field for which the number of degrees of
freedom can be thought of as fixed, i.e., independent of the spatial and
temporal grid sizes
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More often, only the
mean µη(x , t)

and
covariance function covη(x , t; x

′, t ′0)

are known for points x , x ′ in D and time instants t, t ′ in [t0, t1]

in this case, we do not have a formula for η(x , t;ω)
thus, we cannot evaluate η(x , t;ω) when we need to
for example, if η(x , t;ω) is a coefficient or a forcing function in a PDE,
then to determine an approximate realization of the PDE we need to
evaluate η(x , t;ω) for a specific choice of ω and at specific points x
and specific instants of time t used in the discretized PDE
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Examples of covariance functions

cov(x , t; x ′, t ′) = e−|x−x ′|/L−|t−t′|/T

and
cov(x , t; x ′, t ′) = e−|x−x ′|2/L2−|t−t′|2/T 2

where L is the correlation length and T is the correlation time

large L,T =⇒ long-range order
small L,T =⇒ short-range order

Note that the covariance functions are symmetric and positive
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So, we have two cases:

(more common:) only the mean and covariance are known

we would like to find a simple formula depending on only a few
parameters whose mean and covariance function are approximately the
same as the given mean and covariance function

(rare:) random field is given as a formula, but we want to
approximate it

we would like to approximate it using few random parameters, certainly
with a number of parameters that is independent of the spatial and
temporal grid sizes
of course, this case can be turned into the first case by determining the
mean and covariance function of the given random field (this may or
may not be a good idea)
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Among the known ways for doing these tasks, we will focus on perhaps
the most popular

the Karhunen–Loève (KL) expansion of a random field η(x , t;ω)

Given the mean and covariance of a random field η(x , t;ω)

the KL expansion provides a simple formula that
can be used whenever one needs a value η(x , t;ω)

- to keep things simple, we discuss KL expansions
for the case of spatially-dependent random fields
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The Karhunen–Loève expansion

Given the mean µη(x) and covariance covη(x , x
′) of a random field η(x , ω),

determine the eigenpairs {λn, vn(x)}
∞

n=1 from the eigenvalue problem

∫

D

covη(x , x
′) v(x ′) dx ′ = λv(x)

often in practice, an approximate version of this problem is solved,
e.g., using a finite element method

due to the symmetry of covη(·, ·), the eigenvalues λn are real and the
eigenfunctions vn(x) can be chosen to be real and orthonormal, i.e.,

∫

D

vn(x)vm(x) dx = δmn

due to positivity of η(x ;ω), the eigenvalues are all positive

without loss of generality, they may be ordered in non-increasing order
λ1 ≥ λ2 ≥ . . .
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Then, the random field η(x ;ω) admits the KL expansion4

η(x ;ω) = µη(x) +

∞
∑

n=1

√

λnvn(x)Yn(ω),

where {Yn(ω)}
∞

n=1 are centered and uncorrelated random variables, i.e.,

E (Yn(ω)) = 0 E (Yn(ω)Ym(ω)) = 0

that inherit the probability structure of the random field η(x ;ω)

e.g., if η(x ;ω) is a Gaussian random field, then the Yn’s are all
Gaussian random variables

4Let’s see the next slide.
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To see this, let’s suppose

η(x ;ω) = µη(x) +
∞
∑

n=1

anbn(x)yn(ω)

where
∫

D

bn(x)bn′ (x) dx = δnn′ , E(yn) = 0, E(ynyn′ ) = δnn′

i.e., {bn(·)}∞n=1 is a set of orthonormal functions and {yn(·)}∞n=1 is a set of uncorrelated random
variables; we then have that

E
(

(η(x ; ·)− µη(x))
(

η(x ′; ·)− µη(x
′)
))

=

∞
∑

n=1

∞
∑

n′=1

anan′bn(x)bn′ (x
′)E(ynyn′ ) =

∞
∑

n=1

a2nbn(x)bn(x
′)

so that

covη(x , x
′) =

∞
∑

n=1

a2nbn(x)bn(x
′)

then, we have that

∫

D

covη(x , x
′)bn′ (x

′)dx ′ =

∞
∑

n=1

a2nbn(x)

∫

D

bn(x
′)bn′ (x

′)dx ′ = a2n′nn′ (x)

so that indeed {a2n, bn(x)}
∞

n=1 are the eigenpairs, i.e., we recover the KL expansion
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The usefulness of the KL expansion results from the fact that

the eigenvalues {λn}
∞

n=1 decay as n increases

how fast they decay depends on the smoothness of the covariance
function covη(x , x

′) and on the correlation length L
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Eigenvalue decay vs. correlation length

L = 0.5 L = 0.05

cov(x , x ′) = σ2e−|x−x ′|2/L2
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The decay of the eigenvalues implies that truncated KL expansions

ηN(x ;ω) = µ(x) +

N
∑

n=1

√

λnvn(x)Yn(ω)

can be accurate approximations to the exact expansion

if one wishes for the relative error to be less than a prescribed
tolerance δ, i.e., if one wants

‖ηN − η‖2

‖η‖2
≤ δ,

one should choose N to be the smallest integer such that

∞
∑

n=N+1

λn

∞
∑

n=1
λn

≤ δ or, equivalently,

N
∑

n=1
λn

∞
∑

n=1
λn

≥ 1− δ
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Although the Yn’s are uncorrelated, in general they are not
independent

in fact, they are independent if and only if they are (spherical)
Gaussian

however, every random field can, in principle, be written as a function
of a Gaussian random field

the inverse of the cumulative probability density of the given field

so that, in this way, we only have to deal with Gaussian random
variables

Dealing with independent random variables can have important
practical consequences
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One important issue is the well posedness of the PDE when using a KL
representation of random fields

suppose the coefficient a(x ;ω) of an elliptic PDE is a random field

it cannot be a Gaussian random field since then it would admit
negative values, which is not allowable

one way to get around this is to let, with amin > 0,

a(x ;ω) = amin + eη(x ;ω)

where η(x ;ω) is a Gaussian random field with given mean and
covariance

then, using a truncated KL expansion for η(x ;ω) we have that

a(x ;ω) = amin + eµ(x)+
∑N

n=1

√

λnvn(x)Yn(ω)

where {Yn(ω)}
N
n=1 are Gaussian random variables
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PDE’s with random inputs depending on random parameters

One or more
input functions,

e.g., coefficients, forcing terms, initial data, etc. in a PDE
depend on a finite number of random parameters,

the input function could also depend on space and time

the random parameters could come from a Karhunen-Loève expansion
of a correlated random field

the random parameters could appear naturally in the definition of
input function, e.g., the Young’s modulus or a diffusivity coefficient
could be random
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Ideally, we would know the probability density function (PDF)
for each parameter

as has already been mentioned, in practice, we know very little about
the statistics of input parameters

however, we will assume that we know the PDFs for all the random
input parameters
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The well-posedness of the PDE for all possible values of the parameters is
a very important (and sometimes ignored) consideration

for the simple elliptic PDE

∇ · (a(x ; y1, . . . , yN)∇u) = f (x), in D

we must have, for some 0 < amin ≤ amax ,

amin ≤ a(x ; y1, . . . , yN) ≤ amax ∀x ∈ D and ∀~y ∈ Γ

this could place a constraint on how one chooses the PDF for the
parameters

for example, if we have

a(x ; y) = a0 + y

where a0 > 0, we cannot choose y to be Gaussian random parameter
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A brief overview of numerical methods for stochastic PDEs

Stochastic finite element methods (SFEMs)
=⇒ methods for which spatial discretization is effected using finite
element methods

Stochastic Galerkin methods (SGMs)
=⇒ methods for which probabilistic discretization is also
effected using a Galerkin method

polynomial chaos and generalized polynomial chaos are SGMs
we will also consider other SGMs

Stochastic sampling methods (SSMs)
=⇒ points in the parameter domain Γ are sampled,
then used as inputs for PDE, and then ensemble averages of output
quantities of interest are computed

Monte-Carlo finite element methods are the simplest SSMs
stochastic collocation methods (SCMs) are also SSMs
- the sampling points are the quadrature points corresponding
to some quadrature rule

B. Soused́ık Stochastic Finite Element Methods SNA’13, Jan. 2013 40 / 111

Spaces used in numerical methods for stochastic PDEs

Let D ∈ R
d denote a spatial domain with boundary ∂D

d = 1, 2, 3 denotes the spatial dimension
x ∈ D denotes the spatial variable

Let Γ ∈ R
N denote a parameter domain

N denotes the number of parameters
~y = (y1, . . . , yN) ∈ Γ denotes the random parameter vector
note that we have a finite number of parameters {yn}

N
n=1

but they can take on values anywhere in the Euclidean domain Γ.
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Let u(x ;~y) ∈ X × Z denote the solution of the SPDE
- often X is the Sobolev space such as H1

0 (D)
- generally Z = L

q
ρ(Γ) is the space of functions of N variables

whose q−th power is integrable wrt the joint PDF (the weight fction) ρ(·),
i.e., those functions g(~y) for which

∫

Γ
|g(~y)|q ρ(~y) d~y <∞

q is chosen according to how many statistical moments
one wants to have well defined

the most common choice is q = 2 so that up to
the second moments are well defined

if {y1, . . . , yN} are independent and if Lqρn(Γn) denotes the space of
functions that have integrable q−th powers wrt the PDF ρn(yn),
we have that

Lqρ(Γ) = Lqρ1(Γ1)⊗ Lqρ2(Γ2)⊗ · · · ⊗ LqρN (ΓN)
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It is entirely natural to treat a function u(x ;~y) of d spatial variables
and of N random parameters as a function of d + N variables

We will assume here that all methods use the same approach to effect
discretization wrt the spatial variables
(we focus on finite element methods → stochastic FEM)

We assume that Γ is a parameter box

without loss of generality, Γ can be taken to be a hypercube in R
N

for parameters with unbounded PDFs, Γ can be of infinite extent
if the parameters are constrained, Γ need not be so simple,
e.g., if y1 and y2 are independent except that we require that
y2
1 + y2

2 ≤ 1, then Γ would be the unit circle
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Representation of random variables using polynomial chaos
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Probability spaces and random variables

Let (Ω,F ,P) be a probability space

Ω is an event space
F is a σ−algebra on Ω
P is a probability measure

Random variables are functions X : Ω → R with a measure
corresponding to their image:

if X−1(A) ∈ F , then define µ(A) = P(X−1(A)).
p(x) = dµ/dx ; the density of the random variable X (with respect to
the Lebesgue measure on R).
Expectation: 〈f 〉 =

∫

f dµ =
∫

f p(x) dx

Let ξ : Ω → R
N such that for i = 1, . . . ,N each ξi : Ω → R, be a set

of random variables

F(ξ): σ−algebra generated by the set ξ of random variables

L2(Ω,F(ξ),P): Hilbert space of real-valued random variables defined
on (Ω,F(ξ),P) with finite second moments
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One dimensional polynomial chaos expansion

Consider:

u =

P
∑

k=0

ukψk(ξ)

u: random variable (RV) represented with 1D PCE

uk : PC coefficients (deterministic)

ψk : 1D Hermite polynomial of order k

ξ: Gaussian RV

A random quantity is represented with an expansion consisting of
functions of random variable multiplied with deterministic coefficients

Set of deterministic PC coefficients fully describes RV

Separates randomness from deterministic dimensions
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One-dimensional Hermite polynomials

(Note: this is probabilistics’, not physicists’, definition)

ψ0(ξ) = 1,

ψk(ξ) = (−1)keξ
2/2 dk

dξk
e−ξ2/2, k = 1, 2, . . .

ψ1(ξ) = ξ, ψ2(ξ) = ξ2 − 1, ψ3(ξ) = ξ3 − 3ξ, . . .

The Hermite polynomials form an orthogonal basis over [−∞,∞] with
respect to the inner product

〈ψi , ψj〉 =

∫

∞

−∞

ψi (ξ)ψj(ξ)w(ξ) dξ = δij
〈

ψ2
i

〉

where w(x) is the weight function

w(ξ) =
1

√
2π

e−ξ2/2.

Note that w(ξ) is the density of a standard normal random variable.
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Example of one-dimensional polynomials: pdf plots

u = 0.5 + 0.2φ1(ξ) + 0.1φ2(ξ)

Hermite pol. Legendre pol.
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Multidimensional Hermite polynomials

The multidimensional Hermite polynomial Ψi (ξ1, . . . , ξn) is a tensor
product of the 1D Hermite polynomials, with a suitable multi-index

αi = (αi
1, α

i
2, . . . , α

i
n),

and

Ψi (ξ1, . . . , ξn) =

n
∏

k=1

ψαi
k
(ξk) .

For example, 2D Hermite polynomials:

i p Ψi

0 0 1

1 1 ξ1
2 1 ξ2

3 2 ξ21 − 1
4 2 ξ1ξ2
5 2 ξ22 − 1

. . . . . . . . .
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Multidimensional inner products – orhogonality

〈ΨiΨj〉 ≡

∫

. . .

∫

Ψi (ξ)Ψj(ξ)w(ξ1)w(ξ2) . . .w(ξn) dξ1dξ2 . . . dξn

=

n
∏

k=1

〈

ψαi
k
(ξk)ψαj

k

(ξk)
〉

= δij
〈

Ψ2
i

〉

where, w(ξ) = 1
√

2π
e−ξ2/2

such that

u =

P
∑

k=0

ukΨk ⇒ 〈Ψiu〉 =

P
∑

k=0

uk〈ΨiΨk〉 = ui 〈Ψ
2
i 〉

⇒ ui =
〈uΨi 〉

〈Ψ2
i 〉
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Multidimensional polynomial chaos expansion (1)

Consider:

u(ω) =

P
∑

k=0

ukΨk(ξ1(ω), . . . , ξn(ω))

u: Random Variable (RV) represented with multidimensional PCE

uk : PC coefficients (deterministic)

Ψk : Multidimensional Hermite polynomials up to order p

ξi : Gaussian RV

n: Dimensionality of stochastic space

P + 1: Number of PC terms: P + 1 = (n+p)!
n!p!

The number of stochastic dimensions represents the number of
independent inputs, degrees of freedom that affect the random variable u

E.g., one stochastic dimension per uncertain model parameter

Contributions from each uncertain input can be identified

Compact representation of random variable and its dependencies
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Multidimensional polynomial chaos expansion (2)

A r.v. u(ω) in L2(Ω,F(ξ),P) can be described by a PC expansion in
terms of: the infinite-dimensional i.i.d. Gaussian basis ξ = {ξi (ω)}

∞

i=1

u(ω) = a0Γ0 +

∞
∑

i1=1

ai1Γ1(ξi1(ω))

+

∞
∑

i1=1

∞
∑

i2=1

ai1i2Γ2(ξi1(ω), ξi2(ω))

+

∞
∑

i1=1

∞
∑

i2=1

∞
∑

i3=1

ai1i2i3Γ3(ξi1(ω), ξi2(ω), ξi3(ω)) + . . .

where Γp is the Polynomial Chaos of order p, Γ0 = 1, and

Γp(ξi1 , . . . , ξip) = (−1)pe
1
2
ξT ξ ∂p

∂ξi1 . . . ∂ξip
e−

1
2
ξT ξ
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Notes on the PC construction

The Polynomial Chaoses are by construction orthogonal with respect
to the Gaussian probability measure

They are thus identical with the corresponding multidimensional
Hermite polynomials

The first four PCs are given by

Γ0 = 1

Γ1(ξi ) = ξi

Γ2(ξi1 , ξi2) = ξi1ξi2 − δi1i2

Γ3(ξi1 , ξi2 , ξi3) = ξi1ξi2ξi3 − ξi1δi2i3 − ξi2δi1i3 − ξi3δi1i2

. . .

[R. G. Ghanem, and P. D. Spanos, 1991]

B. Soused́ık Stochastic Finite Element Methods SNA’13, Jan. 2013 53 / 111

A more compact notation

An L2 random variable u(x , t, ω) can be described by a PC expansion
in terms of:

Hermite polynomials Ψk , k = 1, . . . ,∞
the associated infinite-dimensional Gaussian basis {ξi (ω)}

∞

i=1

spectral mode strengths uk(x , t), k = 1, . . . ,∞

Truncated to finite dimension n and order p, the PC expansion for u
is written as

u(x , t, ω) ≃

P
∑

k=0

uk(x , t)Ψk(ξ(ω))

where ξ(ω) = {ξ1(ω), . . . , ξn(ω)}, and P + 1 = (n+p)!
n!p!
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Generalized Polynomial Chaos (gPC)

PC type Domain Density w(ξ) Polynomial Free parameters

Gauss (−∞,∞) 1
√

2π
e−

ξ2

2 Hermite none

uniform [−1, 1] 1
2 Legendre none

Gamma [0,∞) xαe−ξ

Γ(α+1) Laguerre α > −1

Beta [−1, 1] (1+ξ)α(1−ξ)β

2α+β+1B(α+1,β+1)
Jacobi α > −1, β > −1

Inner product: 〈ψiψj〉 ≡
∫ b

a
ψi (ξ)ψj(ξ)w(ξ) dξ

Wiener-Askey scheme provides a hierarchy of possible continuous PC
bases, see Xiu and Karniadakis, SISC, 2002.

Input parameter domain often dictates the most convenient choice of
PC

Polynomial functions can also be tailored to be orthogonal w.r.t.
chosen, arbitrary, density
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Postprocessing/Analysis

Moments

Plotting PDFs of RVs represented with PCEs

When is a PCE accurate enough?
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Moments of RVs described with PCEs

u =

P
∑

k=0

ukΨk(ξ)

Expectation: 〈u〉 = u0
Variance: σ2

σ2 =
〈

(u − 〈u〉)2
〉

=

〈(

P
∑

k=1

ukΨk(ξ)

)2〉

=

〈

P
∑

k=1

P
∑

j=1

ujukΨj(ξ)Ψk(ξ)

〉

=

P
∑

k=1

P
∑

j=1

ujuk 〈Ψj(ξ)Ψk(ξ)〉 =

P
∑

k=1

u2k
〈

Ψk(ξ)
2
〉
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Plotting PDFs of RVs correponding to PCEs

u =

P
∑

k=0

ukΨk(ξ)

Analytical formula for PDF(u) exists

Involves polynomial root finding, and is hard to generalize to multi.
dim.

PCE is cheap to sample

Brute-force sampling and bin samples into histogram
Use Kernel Density Estimation (KDE) to get smoother PDF with fewer
samples ui

PDF (u) =
1

Nsh

Ns
∑

i=1

K

(

u − ui

h

)

K is the kernel, h is the bandwidth
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Comparison of histograms and KDE

KDE . . . Kernel Density Estimation

(source: Wikipedia)

Bandwidth h needs to be chosen carefully to avoid over smoothing

B. Soused́ık Stochastic Finite Element Methods SNA’13, Jan. 2013 59 / 111

How do I know my PCE has converged?

Approximation error in PCE is topic of a lot of research

Often, rules of thumb:

Higher order PC coefficients should decay
Increase order until results no longer change
Not always fail-proof, ...
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Propagation of uncertain inputs represented with PCEs

Collocation approaches

Non-intrusive: Match PCE to random variable at chosen sample points

Galerkin projection approaches project uncertain quantity onto space
covered by PC basis functions

Relying on orthogonality of basis functions

uk =
〈uΨk〉

〈Ψ2
k〉
. k = 0, . . . ,P

Intrusive: project governing equations

Residual orthogonal to space of basis functions
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Non-intrusive spectral stochastic UQ formulation

Let ΘM =
{

ξ(j)
}M

j=1
⊂ Γ be a set of prescribed nodes in the random space,

where ΘM = θ11 × · · · × θN1 and M is the total number of nodes
(reproduced from Babuška et al., SIAM Review (2010))

Solve a governing (deterministic) equation for each u(x ; ξ(j))
and interpolate

u(x ; ξ) =

M
∑

j=1

u(x ; ξ(j))Lj(ξ)
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Intrusive spectral stochastic UQ formulation

Sample ODE with parameter λ:

du

dt
= λu

Let λ be uncertain; introduce ξ ∼ N (0, 1).

Express λ and u using PCEs in ξ:

λ =

P
∑

k=0

λkΨk(ξ), u(t) =

P
∑

k=0

uk(t)Ψk(ξ)

Substitute in ODE and apply a Galerkin projection on Ψi (ξ),
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Galerkin projection on Ψi(ξ)

d

dt

(

P
∑

k=0

uk(t)Ψk(ξ)

)

=





P
∑

p=0

λpΨp(ξ)









P
∑

q=0

uq(t)Ψq(ξ)





P
∑

k=0

duk(t)

dt
Ψk(ξ) =

P
∑

p=0

P
∑

q=0

λpuq(t)Ψp(ξ)Ψq(ξ)

〈

P
∑

k=0

duk(t)

dt
Ψk(ξ)Ψi (ξ)

〉

=

〈

P
∑

p=0

P
∑

q=0

λpuq(t)Ψp(ξ)Ψq(ξ)Ψi (ξ)

〉

P
∑

k=0

duk(t)

dt
〈Ψk(ξ)Ψi (ξ)〉 =

P
∑

p=0

P
∑

q=0

λpuq(t) 〈Ψp(ξ)Ψq(ξ)Ψi (ξ)〉

duk(t)

dt

〈

Ψ2
i

〉

=
P
∑

p=0

P
∑

q=0

λpuq(t) 〈ΨpΨqΨi 〉
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Resulting spectral ODE system

(P + 1)-dimensional ODE system

duk

dt
=

P
∑

i=0

P
∑

j=0

cijkλiuj , k = 0, . . . ,P ,

where cijk = 〈ΨiΨjΨk〉/〈Ψ
2
k〉

The tensor cijk can be evaluated once and stored for any given PC
order and dimension

This tensor is sparse, i.e., many elements are zero
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Example of cijk

n = 4 . . . stochastic dimension
p = 4 . . . order of the polynomial expansion of u
pλ . . . order of the polynomial expansion of the coefficient λ

pλ = 0 pλ = 1
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Example of cijk

n = 4 . . . stochastic dimension
p = 4 . . . order of the polynomial expansion of u
pλ . . . order of the polynomial expansion of the coefficient λ

pλ = 2 pλ = 3
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Example of cijk

n = 4 . . . stochastic dimension
p = 4 . . . order of the polynomial expansion of u
pλ . . . order of the polynomial expansion of the coefficient λ

pλ = 4 pλ = 8
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Challenges for PCE-based Uncertainty Quantification

Representing input variables with arbitrary distributions

Systems with high-dimensional uncertainty

Systems with long time horizon / oscillatory behavior

Nonlinearities in governing equations for intrusive UQ

Physical constraints in uncertain quantities

Systems with non-smooth behavior - discontinuities

Systems with inherent stochasticity

Various approaches have been developed to tackle these challenges ...
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An example problem

Consider the following example problem

−∇ · (a (x)∇u (x)) = f (x) in D,

u (x) = 0 on ∂D,

where a (x) is the permeability, f (x) is the source and u (x) is the solution.

What if the input data is random?

We get a stochastic problem

−∇ · (a (ω, x)∇u (ω, x)) = f (ω, x) in Ω× D,

u (ω, x) = 0 on Ω× ∂D,

where a (ω, x), f (ω, x) and u (ω, x) are now random fields.

Challenge: Instead of just the mean-value solution u (x0) we would like
also to know E [u] (x0), Var [u] (x0) or even P [u (ω, x0) ≥ u0].
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Random fields

A random field (RF) a (ω, x) is defined on a probability space (Ω,F ,P)
and indexed by a deterministic domain D:

1 a set of RVs indexed by x ∈ D: for every x ∈ D, a (·, x) is a RV on Ω.

2 a function-valued RV: for every ω ∈ Ω, a (ω, ·) is a realization of the
RF in the domain D.

Mean

a (x) = E [a] (x) =

∫

Ω
a (ω, ·) dP (ω) ,

and variance
Var [a] (x) = E

[

(ã)2
]

(x)

as a function of x with fluctuation (noise) part ã (ω, x) = a− a.

Often only second order information (mean and covariance) are known.
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Assumption: finite dimensional “noise”

Assume random fields (RFs) a(ω, x), f (ω, x) depends on finite number of
random variables (RVs) Y(ω) = [Y1(ω), . . . ,YN(ω)] : Ω → R

N :

aN (ω, x) = a (Y (ω) , x) , fN (ω, x) = f (Y (ω) , x)

Motivation: piecewise constant material properties

Let {Dn}
N
n=1 be a partition of the spatial domain D

then define aN (ω, x) =
∑N

i=1 σiYi (ω)χDi
(x).

Procedure: ∞−dimensional random field suitably truncated

the interaction between points is described by a covariance function,

e.g., Cov [a] = (x1, x2) = E [ã (·, x1) ã (·, x2)] = σ2 exp
(

−‖x1−x2‖
2

L2c

)

Expand a in a Karhunen-Loève expansion and retain the first N terms,
denoted aN , to capture most of the variability.
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Properties of the covariance function

Let a (ω, x) be a RF with continuous covariance Ca : D × D → R

Ca is symmetric, i.e., Ca (x1, x2) = Ca (x2, x1) , ∀x1, x2 ∈ D

Ca is non-negative definite, i.e., vTCa (x , x) v ≥ 0, ∀v , x .

Define the associated linear covariance operator TCa : L
2 (D) → L2 (D) by

[TCa f ] (x1) =

∫

D

Ca (x1, x2) f (x2) dx2, ∀f ∈ L2 (D) .

Then TCa f ∈ C 0 (D) , ∀f ∈ L2 (D) , Ca 7→ TCa is injective and
TCa is compact, symmetric and non-negative definite:

it has a countable sequence of real eigenvalues {λn} ⊂ R+, λ→ 0

corresponding eigenfunctions {bn (x)} are L2 (D)−orthonormal
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Karhunen-Loève expansion

a Fourier-type series based on the spectral expansion of covariance func.

a (ω, x) = a (x) +
∞
∑

n=1

√

λnbn (x)Yn (ω) ,

and (λn, bn (x)) are eigenpairs of TCa ; Yn (ω) are centered and
uncorrelated RVs:

E [Yn] = 0, Cov [Yn,Ym] = E [YnYm] = δnm,

but not necessarily independent.
We truncate the series

a (ω, x) ≈ aN (ω, x) = a+

N
∑

n=1

√

λnbn (x)Yn (ω) .

Rate of decay depends on the smoothness of Ca and the corr. length Lc .
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Parametrization of random fields

Consider a random vector Y(ω) = [Y1(ω), . . . ,YN(ω)] : Ω → R
N and

define:

Γn ≡ Yn (Ω) ⊂ R and Γ = ΠN
n=1Γn ⊂ R

N - image of the random
vector Y (Ω)

ρ : Γ → R+ with ρ ∈ L∞ (Γ) as a joint PDF of Y(ω),
i.e., if y ∈ Γ, and ρ (y) = ΠN

n=1ρn (yn) for all n, yn ∈ Γn, then

P [Z ∈ γ ⊂ Γ] =

∫

γ
ρ (y) dy,

which is a transformation of the measure P defined on Ω to R
N .

Remark: curse of dimensionality when N is large
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Approximating a stochastic PDE

Given a description of aN (Y (ω) , x) and ev. of fN (Y (ω) , x) ,
we would like to find uN (Y1 (ω) , . . . ,YN (ω) , x) such that

L (aN) uN = fN in D a.s.

Quantities of interest (QoI)

Our goal of predicting the statistical behavior of a physical system often
requires the approximation of multi-dimensional statistical QoI, e.g:

E [u] (x) =

∫

Γ
u (y, x) ρ (y) dy, where y ∈ ΓN and x ∈ D
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An application to a linear elliptic SPDE

Strong formulation:

find u (y, x) such that

−∇ · (a (y, x)∇u (y, x)) = f (y, x) for a.e. x ∈ D,

u (y, x) = 0 for a.e. x ∈ ∂D,

where y ∈ Γ ⊂ R
N and x ∈ D

Next, define Vρ = L2ρ (Γ)⊗ H1
0 (D)

Weak formulation:

find u ∈ Vρ such that ∀v ∈ Vρ,

E

[∫

D

a (y, x)∇u (y, x) · ∇v (y, x) dx

]

= E

[∫

D

f (y, x) v (y, x) dx

]

B. Soused́ık Stochastic Finite Element Methods SNA’13, Jan. 2013 77 / 111

Stochastic FEM: Stochastic Sampling Methods

Remark: The spatial discretization using finite element methods (FEM).

Stochastic Sampling Methods (SSMs):
randoms samples in Γ of PDE inputs are used to compute ensemble
averages of statistical QoIs, e.g., Monte-Carlo FEM - non-intrusive

pros:

allow reusability of deterministic codes

the convergence rate is independent of the regularity of the solution u

(and dimension with MC methods)

cons:

do not yield fully discrete approximations

slow conv. rates do not exploit the possible regularity of the solution
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Stochastic FEM: Stochastic Polynomial Approximation

Observation: The analyticity of the solution u (y, x) wrt each random
direction yn suggests the use of (multivariate) polynomial approximation.

Idea

Approximate the response u (y, ·) by multi-variate global polynomials. The
numer. solution should converge quickly since the solution is analytic in y.

Stochastic polynomial approximation:

1 Stochastic Collocation Methods (SCMs):
probabilistic discretization is effected by collocating the FE solution
on a particular set of points and then connecting the realizations with
a suitable interpolating basis (Lagrangean) - non-intrusive

2 Stochastic Galerkin Methods (SGMs):
probabilistic discretization is effected by a spectral Galerkin projection
onto, e.g., an L2ρ−orthogonal basis (Wiener or polynomial chaos) -
intrusive
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Approximating spaces

1 Let Th be a triangulation of D and Wh (D) ⊂ W (D) contains cont.
piecewise polynomials defined in Th Assume J = dim [Wh (D)] and
{φj (x)}

J
j=1 ⊂ Wh is a FE basis for the deterministic domain

2 Let p = (p1, . . . , pN) be a multi-index, J (p) ⊂ N
N a multi-index set,

with p ∈ N+ and define:

Multivariate polynomial space

P
J (p) (Γ) = span

{

ΠN
n=1y

pn
n , with p ∈ J (p)

}

⊂ L2ρ (Γ)

Assume M = dim
[

P
J (p) (Γ)

]

and {ψk}
M
k=1 form a basis for

P
J (p) (Γ), e.g. multivariate Legendre, Hermite, Lagrange, etc.
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(Hermite) Orthogonal polynomials

The L2ρ−orthogonal basis was originally developed to approximate
white noise processes with Gaussian measure [Wiener, 1938].

Let
{

H
(n)
pn

}P

pn=0
be the set of univariate Hermite polynomials (deg. ≤ P)

defined in L2ρn (Γn) that are orthonormal wrt the Gaussian PDF ρn (yn)
for each n = 1, . . . ,N:

∫

Γn

H
(n)
pn (yn)H

(n)
rn (yn) ρn (yn) dyn = δpnrn , pn, rn ∈ {0, . . . ,P}

The multivariate L2ρ (Γ)−orthogonal Hermite basis is defined as a
tensor-product of univariate polynomials with p ∈ J (P):

Hp (y) = ΠN
n=1H

(n)
pn (yn) , s.t. ρ (y) = ΠN

n=1ρn (yn) ,

where ρ (y) is the Gaussian joint-PDF.
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The Askey scheme: different PDFs and orthogonal polynomials

Identical construction for other orthogonal bases → generalized PC (gPC).
Example: uniform RVs → Legendre polynomial basis, etc.

distribution polynomial type support

Normal Hermite (−∞,∞)
Uniform Legendre [−1, 1]
Beta Jacobi [−1, 1]

Gamma Generalized Laguerre [0,∞)
Exponential Laguerre [0,∞)
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Fully discrete approximation

We would like to find up ∈ P
J (p) (Γ)⊗Wh (D) such that

up (y, x) =

J
∑

j=1

M
∑

k=1

cjkφj (x)ψk (y) =

M
∑

k=1

uk (x)ψk (y) , uk (x) ∈ Wh (D)

To compute the fully discrete approximation using SFEMs requires the
resolution of the coefficients uk which can be accomplished via:

non-intrusive methods by de-coupling the above expression and
solving a M systems of size J −→ Stochastic Collocation Methods
pros: de-coupling
cons: possibility of integration and interpolation errors (aliasing).

intrusive methods by solving the fully coupled JM × JM system
−→ Stochastic Galerkin Methods
pros: optimality of Galerkin projections
cons: Implementation - requires development of new solvers.
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Iterative solvers: motivation

Iterative solution and preconditioning of systems of linear equations,
with a typical block structure given as:

(a) block sparse matrix (b) block dense matrix
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Outline

Model problem and its discretization

Block sparse matrices:

Structure of the global stochastic Galerkin matrix

Hierarchical Schur complement preconditioner

Numerical experiments (uniform random field)

Block dense matrices:

Variant of the preconditioner for block dense matrices

Numerical experiments (lognormal random field)
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Model problem

Let D ⊂ R
d , d = 2, 3, and let (Ω,F , µ) be a complete probability space.

We would like to find a function u (x , ω) : D × Ω → R satisfying a.s.

−∇ · (k (x , ω) ∇u (x , ω)) = f (x) in D × Ω

u (x , ω) = 0 on ∂D × Ω

Note: ∇ denotes the differentiation with respect to the spatial variables

Here k (x , ω) is a random scalar field such that

µ
(

ω ∈ Ω : 0 < kmin ≤ k (x , ω) ≤ kmax ∀x ∈ D
)

= 1

Next, let us introduce

U = H1
0 (D)⊗ L2 (Ω) , ‖u‖U =

√

E

[∫

D

|∇u|2 dx

]

.
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Model problem: variational formulation

In the weak formulation we would like to solve

u ∈ U : a (u, v) = 〈f , v〉 , ∀v ∈ U

where

a (u, v) = E

[∫

D

k (x , ω) ∇u · ∇v dx

]

, 〈f , v〉 = E

[∫

D

f v dx

]

We assume that k has a Karhunen-Loève (KL) expansion

k (x , ω) =

N
∑

i=0

ki (x) ξi (ω) ξ0 = 1, ξi ∼ U[0, 1] i > 0

further assuming ξi (ω) to be i.i.d. random variables. We consider

u =

M
∑

j=0

ujψj(ξ0, . . . , ξN) .
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Model problem: stochastic finite element discretization

Finite element discretization yields

M
∑

j=0

N
∑

i=0

cijkKiuj = fk , k = 0, . . . ,M,

where cijk = E [ξiψjψk ] or more generally cijk = E [ψiψjψk ]. Defining

K (j ,k) =

N
∑

i=0

cijkKi

the global system can be written as


















K (0,0) K (0,1) · · · K (0,M)

. . .
... K (k,k)

...
. . .

K (M,0) K (M,1) · · · K (M,M)



































u0
...
uk
...

uM

















=

















f0
...
fk
...
fM

















.
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Matrix hierarchy

N = 4, P = 4 → 350 blocks N = 4, P = 7 → 2010 blocks

N . . . stochastic dimension
P . . . order of the polynomial expansion
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Matrix hierarchy: two points of view

hierarchical ...

... Schur complement preconditioner ... Gauss-Seidel preconditioner
(hS) (hGS)
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Matrix hierarchy (towards the Schur complement preconditioner)

Let us write the global problem as

APuP = fP

where the matrix has a recursive structure

Aℓ =

[

Aℓ−1 Bℓ

Cℓ Dℓ

]

, ℓ = P , . . . , 1

ℓ . . . corresponding to the ℓ−th degree stoch. polynom. expansion

block Dℓ is block diagonal for all ℓ

The mean-value problem is
A0u0 = f0
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Idea of the preconditioner

By block LU decomposition

[

A B

C D

]

=

[

IA BD−1

0 ID

] [

S 0
0 D

] [

IA 0
D−1C ID

]

where S = A− BD−1C is the Schur complement with respect to D.

Inverting

[

A B

C D

]

−1

=

[

IA 0
−D−1C ID

] [

S−1 0
0 D−1

] [

IA −BD−1

0 ID

]

Idea of the preconditioner:
1. replace S−1 by A−1

2. use this block inverse throughout the hierarchy of the global matrix
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Idea of the preconditioner: matrix hierarchy

In the action of the preconditioner we would like to approximate

APuP = fP

written as
[

AP−1 BP

CP DP

] [

uP−1
P

uPP

]

=

[

f P−1
P

f PP

]

by

A−1
P ≈

[

IA 0

−D−1
P CP ID

] [

A−1
P−1 0

0 D−1
P

] [

IA −BPD
−1
P

0 ID

]

and replace inverse of S = A− BD−1C by inverse only of A as

S−1
ℓ−1 ≈ A−1

ℓ−1 ℓ = P − 1, . . . , 1.
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Hierarchical Schur complement preconditioner

The preconditioner MP : rP 7−→ uP is defined as follows:
for ℓ = P , . . . 1,

split the residual as rℓ =
[

r ℓ−1
ℓ , r ℓℓ

]

compute the pre-correction as

gℓ−1 = r ℓ−1
ℓ − BℓD

−1
ℓ r ℓℓ

if ℓ > 1, set rℓ−1 = gℓ−1, else solve A0u0 = g0.

end
for ℓ = 1, . . .P,

compute the post-correction, i.e., set uℓ−1
ℓ = uℓ−1, solve

uℓℓ = D−1
ℓ

(

r ℓℓ − Cℓu
ℓ−1
ℓ

)

and concatenate uℓ =
[

uℓ−1
ℓ , uℓℓ

]

.

If ℓ < P , set uℓℓ+1 = uℓ.

end
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Implementation

The main computational work is in the application of D−1
ℓ , ℓ = P , . . . , 1.

Note:

all Dℓ are block diagonal matrices

each block of Dℓ has the size of the underlying deterministic problem

the blocks are closely related to A0 = K0 (the mean-value problem).

Idea:
Replace the exact solves of Dℓ with iterative block solves
(independent inner Krylov iterations, using a preconditioner M0 ≈ A0).
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Block count: in the action of the Schur complement preconditioner

N . . . stochastic dimension, P . . . order of polynomial expansion
(one is changing, the other one is set to four)

N or P nb ndb nm nds
1 13 5 8 9
2 55 15 40 29
3 155 35 120 69
4 350 70 280 139
5 686 126 560 251
6 1218 210 1008 419
7 2010 330 1680 659
8 3135 495 2640 989

nb . . . total number of blocks
ndb . . . number of diagonal blocks
nm . . . number of block matrix-vector multiplications
nds . . . number of its block diagonal solves
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Numerical results: increasing the stochastic dimension

Poisson’s eq. in [0, 1]2, 10× 10 finite elements, uniform r.f., CoV = 50%,
N . . . stochastic dimension, P . . . order of polynom. expansion (P = 4),
mb ...mean-based, bGS ...block Gauss-Seidel, hS ...hierarchical Schur prec.,

setup mb bGS hS

N ndof iter κ iter κ iter κ

1 605 12 2.0127 5 1.0507 5 1.0465
2 1815 15 2.7340 6 1.1279 6 1.1236
3 4235 16 2.9995 7 1.1693 6 1.1514
4 8470 17 3.3413 7 1.2131 7 1.2028
5 15,246 18 3.5891 7 1.2447 7 1.2434
6 25,410 18 3.6349 7 1.2501 7 1.2559
7 39,930 19 4.0993 8 1.3202 7 1.3146
8 59,895 19 4.0597 8 1.3198 7 1.3182

ndof . . . degrees of freedom of the global stochastic Galerkin matrix,
iter . . . CG iterations (tol 10−8), κ . . . cond. number estimate.
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Numerical results: increasing the polynomial degree

Poisson’s eq. in [0, 1]2, 10× 10 finite elements, uniform r.f., CoV = 50%,
N . . . stochastic dimension (N = 4), P . . . order of polynom. expansion,
mb ...mean-based, bGS ...block Gauss-Seidel, hS ...hierarchical Schur prec.,

setup mb bGS hS

P ndof iter κ iter κ iter κ

1 605 9 1.6391 5 1.0626 5 1.0624
2 1815 13 2.2379 6 1.1117 6 1.1109
3 4235 15 2.8122 7 1.1658 6 1.1559
4 8470 17 3.3413 7 1.2131 7 1.2028
5 15,246 18 3.7824 7 1.2538 7 1.2426
6 25,410 19 4.1534 8 1.2921 7 1.2798
7 39,930 20 4.4708 8 1.3219 7 1.3125
8 59,895 20 4.7371 8 1.3472 7 1.3398

ndof . . . degrees of freedom of the global stochastic Galerkin matrix,
iter . . . CG iterations (tol 10−8), κ . . . cond. number estimate.
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Numerical results: increasing the Coefficient of Variation

Poisson’s equation in [0, 1]2, 10× 10 elements, uniform random field,
N . . . stoch. dim., P . . . order of polynom. expansion (N = P = 4),
mb ...mean-based, bGS ...block Gauss-Seidel, hS ...hierarchical Schur prec.,

setup mb bGS hS

CoV (%) iter κ iter κ iter κ

5 6 1.0960 3 1.0008 3 1.0009
15 9 1.3514 4 1.0090 4 1.0089
25 11 1.7021 5 1.0314 5 1.0304
35 13 2.1808 6 1.0770 5 1.0664
45 16 2.8773 6 1.1510 6 1.1414
55 19 3.9523 8 1.2948 7 1.2830

CoV = µ/σ . . . the Coefficient of Variation (%),
ndof . . . size of the global stochastic Galerkin matrix is 8470.
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Numerical results: decreasing the mesh size

Poisson’s equation in [0, 1]2, 10× 10 elements, uniform random field,
N . . . stoch. dim., P . . . order of polynom. expansion (N = P = 4),
mb ...mean-based, bGS ...block Gauss-Seidel, hS ...hierarchical Schur prec.,

setup mb bGS hS

h ndof iter κ iter κ iter κ

1/5 2520 16 3.2484 7 1.2022 6 1.1790
1/10 8470 17 3.3413 7 1.2131 7 1.2028
1/15 17920 17 3.3145 7 1.2063 7 1.2047
1/20 30870 17 3.3463 7 1.2110 7 1.2032
1/25 47320 17 3.3473 7 1.2112 7 1.2032
1/30 67270 17 3.3190 7 1.2070 7 1.2054

ndof . . . size of the global stochastic Galerkin matrix.
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Structure of the matrix (block dense case)

structure of the matrix Q: structure of the preconditioner?

K (j ,k) =

Mk
∑

i=0

cijkKi MAT-VEC: v(j) =

M
∑

k=0

Mk
∑

i=0

cijkKiu(k)

Theory (Matthies & Keese, 2005): Mk >> M.
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Stiffness matrices: decay of norm(Ki)

Plots: norm(Ki ) and c(j ,k) =
∑

i cijk · norm (Ki ), where cijk = E [ψiψjψk ].

CoV = 50% CoV = 150%
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Modification 1: truncated preconditioners

Idea: in the action of the preconditioner, replace the MAT-VEC operation

v(j) =

M
∑

k=0

Mk
∑

i=0

cijkKiu(k) by v(j) =

M
∑

k=0

∑

i∈Mt

cijkKiu(k),

Mt . . . adaptively selected subset of indexes from the set {0, 1, . . . ,Mk}.
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Modification 2: approximate preconditioners

Idea: approximate the solves with submatrices Dℓ by diagonal block solves.

Schur complement preconditioner approximate Gauss-Seidel prec.
(hS) (ahGS)
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Numerical results: increasing the stochastic dimension

full vs. approximate preconditioners (no truncation yet)

Poisson’s eq., [0, 1]2, 10× 10 finite elements, lognormal r.f., CoV = 100%,
N . . . stoch. dim., P . . . order of polynom. expansion (P = 4,Pk = 2P),

setup mb hS ahS bGS ahGS

N iter κ iter κ iter κ iter κ iter κ

1 48 28.76 15 3.40 15 3.40 15 3.42 15 3.42
2 61 37.16 16 3.62 27 8.06 17 3.75 16 3.45
3 62 38.07 16 3.76 31 10.77 17 3.74 18 4.35
4 66 43.65 16 4.17 38 15.28 19 4.29 19 4.74

ndof . . . degrees of freedom of the global stochastic Galerkin matrix,
iter . . . CG iterations (tol 10−8), κ . . . cond. number estimate.
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Numerical results: increasing the polynomial degree

full vs. approximate preconditioners (no truncation yet)

Poisson’s eq., [0, 1]2, 10× 10 finite elements, lognormal r.f., CoV = 100%,
N . . . stoch. dim. (N = 4), P . . . order of polynom. expansion, Pk = 2P ,

setup mb hS ahS bGS ahGS

P iter κ iter κ iter κ iter κ iter κ

1 15 3.50 7 1.39 11 1.76 8 1.39 8 1.31
2 28 8.95 10 1.93 16 3.04 12 1.97 11 1.76
3 44 20.04 13 2.80 24 6.09 15 2.87 14 2.58
4 66 43.65 16 4.17 38 15.28 19 4.29 19 4.74

ndof . . . degrees of freedom of the global stochastic Galerkin matrix,
iter . . . CG iterations (tol 10−8), κ . . . cond. number estimate.
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Numerical results: increasing the Coefficient of Variation

full vs. approximate preconditioners (no truncation yet)

Poisson’s eq., [0, 1]2, 10× 10 finite elements, lognormal r.f., CoV = 100%,
N . . . stoch. dim., P . . . order of polynom. expan. (N = P = 4,Pk = 2P),

mb hS ahS bGS ahGS
CoV iter κ iter κ iter κ iter κ iter κ

25 16 3.24 7 1.18 8 1.25 7 1.18 6 1.12
50 29 9.36 10 1.78 14 2.45 11 1.77 10 1.62
75 46 22.21 13 2.85 23 6.01 15 2.82 14 2.69
100 66 43.65 16 4.17 38 15.28 19 4.29 19 4.74
125 85 72.76 19 5.54 58 36.34 23 5.98 26 8.21
150 103 107.07 21 6.85 84 77.73 26 7.75 35 13.74

CoV (%) . . . the Coefficient of Variation,
ndof . . . size of the global stochastic Galerkin matrix is 8470.
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Numerical results: decreasing the mesh size

Poisson’s equation in [0, 1]2, 10× 10 elements, uniform random field,
N . . . stoch. dim., P . . . order of polynom. expansion (N = P = 4),
mb ...mean-based, hS ...hierarchical Schur prec.,
bGS ...block Gauss-Seidel, ahGS ...approximate hierarchical Gauss-Seidel,

setup mb hS bGS ahGS

h ndof iter κ iter κ iter κ iter κ

1/5 2520 59 40.62 15 3.84 18 3.99 19 4.91
1/10 8470 66 43.65 16 4.17 19 4.29 19 4.74
1/15 17920 68 44.42 16 4.24 19 4.38 20 4.72
1/20 30870 69 44.89 17 4.25 19 4.37 20 4.78
1/25 47320 69 44.94 17 4.26 20 4.40 20 4.81
1/30 67270 71 45.11 17 4.26 19 4.37 20 4.75

ndof . . . size of the global stochastic Galerkin matrix.
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Numerical results: truncation of the MAT-VEC

N . . . stoch. dim., P . . . order of polynom. expansion (N = P = 4,Pk = 2P).
Drop matrices corresponding to higher order expansion of the coefficient than ℓt .

setup hS ahS bGS ahGS
ℓt Mt + 1 nz(cijk) iter κ iter κ iter κ iter κ

CoV = 25% (mb: iter = 16 κ = 3.24)
0 1 70 16 3.20 16 3.19 16 3.19 16 3.19
1 5 350 8 1.27 8 1.33 7 1.23 7 1.23
2 15 1210 7 1.21 8 1.25 7 1.20 6 1.17
4 70 4980 7 1.18 8 1.25 7 1.18 6 1.12
8 495 12585 7 1.18 8 1.25 7 1.18 6 1.12

CoV = 150% (mb: iter = 103 κ = 107.07)
0 1 70 71 61.44 89 90.18 89 90.18 89 90.18
1 5 350 51 29.92 59 39.66 57 36.85 57 36.85
2 15 1210 51 30.18 60 42.06 46 24.26 50 27.53
4 70 4980 32 12.05 58 38.08 28 9.42 34 13.86
8 495 12585 21 6.85 84 77.73 26 7.75 35 13.74
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Numerical results: adaptive truncation of the MAT-VEC

N . . . stoch. dim., P . . . order of polynom. expansion (N = P = 4,Pk = 2P).
Adaptively drop matrices for which maxjk(cijk) · norm(Ki ) < τ .

setup hS bGS ahGS
τ Nadapt nz(cijk) iter κ iter κ iter κ

CoV = 25% mb: iter = 16 κ = 3.23556
10+1 5 345 10 1.63 10 1.57 10 1.57
100 13 877 7 1.20 7 1.18 6 1.12
10−1 32 2057 7 1.18 7 1.17 6 1.12
0 495 12585 7 1.18 7 1.18 6 1.12

CoV = 150% mb: iter = 103 κ = 107.067
10+2 10 336 66 50.2 70 50.68 70 50.68
10+1 55 2450 30 10.89 29 9.49 25 6.95
100 171 6338 23 7.00 27 7.98 32 11.48
10−1 313 9714 22 6.86 26 7.74 35 13.54
0 495 12585 21 6.85 26 7.75 35 13.74
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Conclusion

A methodology of hierarchical preconditioning (Schur and Gauss-Seidel):

1 approximation using the diagonal block solves

2 truncation of the MAT-VEC operations

Advantages:

neither the matrix, nor the preconditioner need to be formed explicitly

the ingredients include only
1 the stiffness matrices from the polynomial chaos expansion
2 a good preconditioner M0 for the mean-value deterministic problem

allows an obvious parallel implementation

can be written as a “wrapper” around existing deterministic code
(for the corresponding mean-value problem); and thus

minimally intrusive
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Numerical approximation of a nonlinear, unsteady
PDE

Exact and approximate solution

let u be the weak solution of A(u) = f , A nonlinear,
unsteady partial differential equation (PDE) on Ω× (0,T )

let uhτ be its approximate numerical solution,
Ahτ (uhτ ) = Fhτ

Solution algorithm

introduce a temporal mesh of (0,T ) given by tn, 0 ≤ n ≤ N

introduce a spatial mesh T n
h of Ω on each tn

on each tn, solve a system of nonlinear algebraic
equations An

h(u
n
h) = F n

h
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Iterative solvers and space and time steps choice

Iterative linearization of An
h(u

n
h) = F n

h on each tn

A
n,k−1
h u

n,k
h = F

n,k−1
h : discrete iterative linearization

(Newton, fixed-point)
loop in k

when do we stop?

Iterative algebraic solver on each tn and for each k

A
n,k−1
h u

n,k
h = F

n,k−1
h is a linear algebraic system

we only solve it inexactly by some iterative algebraic
solver: loop in i

when do we stop?

Temporal mesh

choice of the discrete times tn?

Spatial mesh

choice of the meshes T n
h ?
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Optimal solution strategy

Optimal solution strategy

give a guaranteed and robust upper bound on the overall
error ‖u − uhτ‖Ω×(0,T ), as tight as possible

distinguish the algebraic, linearization, temporal, and
spatial error components

stop the iterative solvers whenever the corresponding
errors do not affect the overall error significantly

refine/derefine adaptively the time and space meshes

and equilibrate the space and time errors

Benefits

optimal computable overall error bound

important computational savings

improvement of approximation precision
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Previous results

Steady problems

Babuška and Rheinboldt (1978), introduction of a posteriori
estimates

Ladevèze and Leguillon (1983), equilibrated fluxes
estimates (equality of Prager and Synge (1947))

Verfürth (1996), residual-based estimates

Ainsworth (2005), nonconforming methods

Unsteady problems

Bieterman and Babuška (1982), introduction

Verfürth (2003), efficiency, robustness with respect to the
final time

Makridakis and Nochetto (2003), elliptic reconstruction
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Previous results

Nonlinear problems

Han (1994), general framework

Verfürth (1994), residual estimates

Stopping criteria

engineering literature, since 1950’s

Becker, Johnson, and Rannacher (1995), multigrid st. crit.

Arioli (2000’s), general linear solver st. crit.

Chaillou and Suri (2006, 2007), distinguishing
discretization and linearization errors
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Model diffusion problem
Model diffusion problem

Let Ω ⊂ R
d , d ≥ 1. Find u : Ω → R such that

−∇·(K∇u) = f in Ω,
u = 0 on ∂Ω,

where

K : Ω → R
d×d is a diffusion tensor,

f : Ω → R is a source term.

Form in 1D

Let Ω =]a, b[, a < b. Let k :]a, b[→ R and f :]a, b[→ R be two
given functions. Find u :]a, b[→ R such that

−(ku′)′ = f ,
u(a) = u(b) = 0.

Weak formulation

Find u ∈ V := H1
0 (Ω) such that

(K∇u,∇v) = (f , v) ∀v ∈ V .
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Example: elastic string
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Elastic string with displacement u and weight f
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Example: heat flow

f > 0

�

A room with a heater of f > 0 and temperature u
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Example: underground water flow

f > 0

�

Underground with a water well of f > 0 and pressure head u
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Properties of the exact solution
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Solution u (displacement,
temperature, pressure . . . ) is

continuous
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exact solution gradient

Solution gradient ∇u (derivative
u′ in 1D) is not necessarily

continuous
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Properties of the exact solution
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Flux t := −K∇u (or −ku′ in 1D)
is continuous

Martin Vohralík Adaptivita pro lineární, nelineární a časo-prostorové řešiče
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Approximate solution and approximate flux
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h) is not necessarily
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Potential and flux reconstructions
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A posteriori error estimate for −∇·(∇u) = f (K = I)
Assumption A (Equilibrated flux reconstruction)

There exists an equilibrated flux reconstruction th∈H(div,Ω)s.t.
(∇·th, 1)K = (f , 1)K ∀K ∈ Th.

Assumption B (Potential reconstruction)

There exists a potential reconstruction sh ∈ V.

Theorem (A guaranteed a posteriori error estimate)

Let
u ∈ V be the weak solution,

uh∈V (Th) :={v ∈L2(Ω), v |K ∈ H1(K ) ∀K ∈Th} be arbitrary,

Assumptions A and B hold.

Then

‖∇(u − uh)‖
2 ≤

∑

K∈Th

(ηF,K + ηR,K )
2 +

∑

K∈Th

η2
NC,K ,

where ηF,K , ηR,K , ηNC,K are fully computable from uh, th, sh.

Martin Vohralík Adaptivita pro lineární, nelineární a časo-prostorové řešiče
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Estimators

nonconformity estimator

ηNC,K := ‖∇(uh − sh)‖K

evaluates the departure of uh from V

constraint u ∈ V

flux estimator

ηF,K := ‖∇uh + th‖K

evaluates the departure of ∇uh from H(div,Ω)
constitutive law t = −∇u and constraint t ∈ H(div,Ω)

residual estimator

ηR,K :=
hK

π
‖f −∇·th‖K

strong form of the PDE evaluated for the flux th

equilibrium ∇·t = f
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Assumptions for efficiency
Assumption C (Technical assumption)

Let Th be shape-regular and uh, f , and th pw polynomials.

Assumption D (Potential reconstruction)

Let the potential reconstruction sh be a piecewise polynomial

constructed from uh by local averaging.

Assumption E (Approximation property – flux reconstruction)

For all K ∈ Th, there holds
ηF,K . η♯,TK

,
where

η♯,TK
:=







∑

K ′
∈TK

h2
K ′‖f +∆uh‖

2
K ′







1/2

+







∑

e∈Eint
K

he‖[[∇uh]]·ne‖
2
e







1/2

+







∑

e∈EK

h−1
e ‖[[uh]]‖

2
e







1/2

.
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Local efficiency

Theorem (Local efficiency)

Let 〈[[uh]], 1〉e = 0 for all faces e of the mesh Th. Then, under

Assumptions C to E,

ηNC,K + ηR,K + ηF,K . ‖∇(u − uh)‖TK

for all K ∈ Th.
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I Space mesh Linear and nonlinear solvers Time step C Reconstructions Estimate Efficiency Appl. & num. res.

Summary for −∇·(∇u) = f

Summary

guaranteed upper bound:

‖∇(u − uh)‖ ≤







∑

K∈Th

η2
K







1/2

local efficiency:

ηK . ‖∇(u − uh)‖TK
∀K ∈ Th

close to asymptotic exactness:
{

∑

K∈Th
η2

K

}1/2

‖∇(u − uh)‖
ց 1

robustness: the three previous properties hold
independently of the parameters of the problem and of
their variation (size of Ω, shape of Ω, regularity of u, local
refinement of Th, sizes hK )
small evaluation cost of ηK
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Application

Discretization methods

conforming finite elements

nonconforming finite elements

discontinuous Galerkin method

various finite volumes

mixed finite elements

Application

specification of the potential reconstruction sh and flux
reconstruction th

sh = uh in conforming methods (FE, VCFV) ⇒ ηNC,K = 0

th = −K∇uh in flux-conforming methods (CCFV, MFE) ⇒
ηF,K = 0

verification of Assumptions A to E
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Numerics: finite elements in 1D

Model problem

−u′′ = π2sin(πx) in (0, 1),

u = 0 in 0, 1

Exact solution

u(x) = sin(πx)
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Estimated and actual errors, effectivity index
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Numerics: cell-centered finite volumes

diffusion equation

−∇·(K∇u) = 0 in Ω = (−1, 1)× (−1, 1)

discontinuous and inhomogeneous K, two cases:

f1 0 1
f1

0

1

s
1
=5s

2
=1

s
3
=5 s

4
=1

f1 0 1
f1

0

1

s
1
=100s

2
=1

s
3
=100 s

4
=1

analytical solution: singularity at the origin

u(r , θ)|Ωi
= rα(ai sin(αθ) + bi cos(αθ))

(r , θ) polar coordinates in Ω
ai , bi constants depending on Ωi

α regularity of the solution
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Analytical solutions

Case 1 Case 2

Martin Vohralík Adaptivita pro lineární, nelineární a časo-prostorové řešiče
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Error distribution on an adaptively refined mesh,
case 1
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Approximate solution and the corresponding
adaptively refined mesh, case 2
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Estimated and actual errors in uniformly/adaptively
refined meshes
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Effectivity indices in uniformly/adaptively refined
meshes
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Inexact Newton method

System of nonlinear algebraic equations

Nonlinear operator A :RN → R
N , vector F ∈ R

N : find U ∈ R
N s.t.

A(U) = F

Algorithm (Inexact linearization)

1 Choose initial vector U0. Set k := 1.

2 Uk−1 ⇒ matrix A
k−1 and vector F k−1: find Uk s.t.

A
k−1Uk ≈ F k−1.

3 1 Set Uk,0 := Uk−1 and i := 1.
2 Do 1 algebraic solver step ⇒ Uk,i s.t. (Rk,i algebraic res.)

A
k−1Uk,i = F k−1 − Rk,i .

3 Convergence? OK ⇒ Uk := Uk,i . KO ⇒ i := i + 1, back

to 3.2.

4 Convergence? OK ⇒ finish. KO ⇒ k := k + 1, back to 2.

Martin Vohralík Adaptivita pro lineární, nelineární a časo-prostorové řešiče
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Context and questions

Approximate solution

approximate solution Uk ,i does not solve A(Uk ,i) = F

Numerical method

underlying numerical method: the vector Uk ,i is associated
with a (piecewise polynomial) approximation u

k ,i
h

Partial differential equation

underlying PDE, u its weak solution: A(u) = f

Question (Stopping criteria)

What is a good stopping criterion for the nonlinear solver?

What is a good stopping criterion for the linear solver?

Question (Error)

How big is the error ‖u − u
k ,i
h ‖ on Newton step k and

algebraic solver step i, how is it distributed?
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Quasi-linear elliptic problem
Quasi-linear elliptic problem

−∇·σ(u,∇u) = f in Ω,
u = 0 on ∂Ω

quasi-linear diffusion problem
σ(v , ξ) = A(v)ξ ∀(v , ξ) ∈ R× R

d

Leray–Lions problem
σ(v , ξ) = A(ξ)ξ ∀ξ ∈ R

d

p > 1, q := p
p−1 , f ∈ Lq(Ω)

Example

p-Laplacian: Leray–Lions setting with A(ξ) = |ξ|p−2I

Nonlinear operator A : V := W
1,p
0 (Ω) → V ′

〈A(u), v〉V ′,V := (σ(u,∇u),∇v)

Weak formulation

Find u ∈ V such that
A(u) = f in V ′
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Approximate solution and error measure
Approximate solution

u
k ,i
h ∈ V (Th) 6⊂ V , u

k ,i
h not necessarily in V

V (Th) := {v ∈ Lp(Ω), v |K ∈ W 1,p(K ) ∀K ∈ Th}

Error measure

Ju(u
k ,i
h ) := sup

ϕ∈V ; ‖∇ϕ‖p=1
(σ(u,∇u)−σ(uk ,i

h ,∇u
k ,i
h ),∇ϕ)+Ju,NC(u

k ,i
h )

Ju,NC(u
k ,i
h ) :=







∑

K∈Th

∑

e∈EK

h
1−q
e ‖[[u − u

k ,i
h ]]‖q

q,e







1/q

weak difference of the fluxes (dual norm of the residual) +
nonconformity (computable jump term)
there holds Ju(u

k ,i
h ) = 0 if and only if u = u

k ,i
h

physical relevance: strong difference of the fluxes +
nonconformity

Ju(u
k ,i
h ) ≤ J

up
u (uk ,i

h ) := ‖σ(u,∇u)− σ(uk ,i
h ,∇u

k ,i
h )‖q + Ju,NC(u

k ,i
h )
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A posteriori error estimate

Assumption A (Total flux reconstruction)

There exists a flux reconstruction tk ,i
h ∈ Hq(div,Ω) and an

algebraic remainder ρ
k ,i
h ∈ Lq(Ω) such that

∇·tk ,i
h = fh − ρ

k ,i
h ,

with the data approximation fh s.t. (fh, 1)K = (f , 1)K ∀K ∈ Th.

Theorem (A guaranteed a posteriori error estimate)

Let
u ∈ V be the weak solution,

u
k ,i
h ∈ V (Th) be arbitrary,

Assumption A hold.

Then there holds

Ju(u
k ,i
h ) ≤ ηk ,i ,

where ηk ,i is fully computable from u
k ,i
h , tk ,i

h , and ρ
k ,i
h .
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Distinguishing error components

Assumption B (Discretization, linearization, and algebraic
errors)

There exist fluxes dk ,i
h , lk ,ih , ak ,i

h ∈ [Lq(Ω)]d such that

(i) dk ,i
h + lk ,ih + ak ,i

h = tk ,i
h ;

(ii) as the linear solver converges, ‖ak ,i
h ‖q → 0;

(iii) as the nonlinear solver converges, ‖lk ,ih ‖q → 0.

Comments

dk ,i
h : discretization flux reconstruction

lk ,ih : linearization error flux reconstruction

ak ,i
h : algebraic error flux reconstruction
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Estimate distinguishing error components

Theorem (Estimate distinguishing different error components)

Let

u ∈ V be the weak solution,

u
k ,i
h ∈ V (Th) be arbitrary,

Assumptions A and B hold.

Then there holds

Ju(u
k ,i
h ) ≤ ηk ,i := η

k ,i
disc + η

k ,i
lin + η

k ,i
alg + ηk ,i

rem + η
k ,i
quad + ηk ,i

osc.
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Estimators
discretization estimator

η
k ,i
disc,K := 21/p

(

‖σk ,i
h + dk ,i

h ‖q,K +

{

∑

e∈EK

h
1−q
e ‖[[uk ,i

h ]]‖q
q,e

} 1
q
)

linearization estimator
η

k ,i
lin,K := ‖lk ,ih ‖q,K

algebraic estimator
η

k ,i
alg,K := ‖ak ,i

h ‖q,K

algebraic remainder estimator
η

k ,i
rem,K := hΩ‖ρ

k ,i
h ‖q,K

quadrature estimator
η

k ,i
quad,K := ‖σ(uk ,i

h ,∇u
k ,i
h )− σ

k ,i
h ‖q,K

data oscillation estimator
η

k ,i
osc,K := CP,phK‖f − fh‖q,K

ηk ,i
·

:=

{

∑

K∈Th

(

η
k ,i
·,K

)q

}1/q
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Stopping criteria

Global stopping criteria

stop whenever:

ηk ,i
rem ≤ γrem max

{

η
k ,i
disc, η

k ,i
lin , η

k ,i
alg

}

,

η
k ,i
alg ≤ γalg max

{

η
k ,i
disc, η

k ,i
lin

}

,

η
k ,i
lin ≤ γlinη

k ,i
disc

γrem, γalg, γlin ≈ 0.1

Local stopping criteria

stop whenever:

η
k ,i
rem,K ≤ γrem,K max

{

η
k ,i
disc,K , η

k ,i
lin,K , η

k ,i
alg,K

}

∀K ∈ Th,

η
k ,i
alg,K ≤ γalg,K max

{

η
k ,i
disc,K , η

k ,i
lin,K

}

∀K ∈ Th,

η
k ,i
lin,K ≤ γlin,Kη

k ,i
disc,K ∀K ∈ Th

γrem,K , γalg,K , γlin,K ≈ 0.1
Martin Vohralík Adaptivita pro lineární, nelineární a časo-prostorové řešiče
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Assumption for efficiency

Assumption C (Approximation property)

For all K ∈ Th, there holds

‖σk ,i
h + dk ,i

h ‖q,K . η
k ,i
♯,TK

+ η
k ,i
osc,TK

,

where

η
k ,i
♯,TK

:=

{

∑

K ′
∈TK

h
q
K ′‖fh +∇·σk ,i

h ‖q
q,K ′ +

∑

e∈Eint
K

he‖[[σ
k ,i
h ·ne]]‖

q
q,e

+
∑

e∈EK

h
1−q
e ‖[[uk ,i

h ]]‖q
q,e

} 1
q

.
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Global efficiency

Theorem (Global efficiency)

Let the mesh Th be shape-regular and let the global stopping

criteria hold. Recall that Ju(u
k ,i
h ) ≤ ηk ,i . Then, under

Assumption C,

ηk ,i . Ju(u
k ,i
h ) + η

k ,i
quad + ηk ,i

osc,

where . means up to a constant independent of σ and q.

robustness with respect to the nonlinearity thanks to the
choice of the dual norm as error measure
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Local efficiency

Theorem (Local efficiency)

Let the mesh Th be shape-regular and let the local stopping

criteria hold. Then, under Assumption C,

η
k ,i
disc,K + η

k ,i
lin,K + η

k ,i
alg,K + η

k ,i
rem,K

. J
up
u,TK

(uk ,i
h ) + η

k ,i
quad,TK

+ η
k ,i
osc,TK

for all K ∈ Th.

robustness and local efficiency for an upper bound on the
dual norm
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Algebraic error flux reconstruction and algebraic
remainder

Construction of ak ,i
h and ρ

k ,i
h

On linearization step k and algebraic step i , we have

A
k−1Uk ,i = F k−1 − Rk ,i .

Do ν additional steps of the algebraic solver, yielding

A
k−1Uk ,i+ν = F k−1 − Rk ,i+ν .

Construct the function ρk ,i
h from the algebraic residual

vector Rk ,i+ν (lifting into appropriate discrete space).
Suppose we can obtain discretization and linearization flux
reconstructions dk ,i

h , lk ,ih on each algebraic step. Then set

ak ,i
h := (dk ,i+ν

h + lk ,i+ν
h )− (dk ,i

h + lk ,ih ).

ν chosen adaptively so that ηk ,i
rem,K or ηk ,i

rem are small enough.
Independent of the algebraic solver.
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Nonconforming finite elements for the p-Laplacian

Discretization

Find uh ∈ Vh such that

(σ(∇uh),∇vh) = (fh, vh) ∀vh ∈ Vh.

σ(∇uh) = |∇uh|
p−2∇uh

Vh the Crouzeix–Raviart space

fh := Π0f

leads to the system of nonlinear algebraic equations

A(U) = F
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Linearization

Linearization

Find uk
h ∈ Vh such that

(σk−1(∇uk
h ),∇ψe) = (fh, ψe) ∀e ∈ E int

h .

u0
h ∈ Vh yields the initial vector U0

fixed-point linearization

σ
k−1(ξ) := |∇uk−1

h |p−2
ξ

Newton linearization

σ
k−1(ξ) := |∇uk−1

h |p−2
ξ + (p − 2)|∇uk−1

h |p−4

(∇uk−1
h ⊗∇uk−1

h )(ξ −∇uk−1
h )

leads to the system of linear algebraic equations

A
k−1Uk = F k−1
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Algebraic solution

Algebraic solution

Find u
k ,i
h ∈ Vh such that

(σk−1(∇u
k ,i
h ),∇ψe) = (fh, ψe)− R

k ,i
e ∀e ∈ E int

h .

algebraic residual vector Rk ,i = {R
k ,i
e }e∈E int

h

discrete system

A
k−1Uk = F k−1 − Rk ,i
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Flux reconstructions

Definition (Construction of (dk ,i
h + lk ,ih ))

For all K ∈ Th,

(dk ,i
h +lk ,ih )|K :=−σ

k−1(∇u
k ,i
h )|K+

fh|K
d

(x−xK )−
∑

e∈EK

R
k ,i
e

d |De|
(x−xK )|Ke

,

where, R
k ,i
e := (fh, ψe)− (σk−1(∇u

k ,i
h ),∇ψe) ∀e ∈ E int

h .

Definition (Construction of dk ,i
h )

For all K ∈ Th,

dk ,i
h |K := −σ(∇u

k ,i
h )|K +

fh|K
d

(x − xK )−
∑

e∈EK

R̄
k ,i
e

d |De|
(x − xK )|Ke

,

where R̄
k ,i
e := (fh, ψe)− (σ(∇u

k ,i
h ),∇ψe) ∀e ∈ E int

h .

Definition (Construction of σk ,i
h )

Set σk ,i
h := σ(∇u

k ,i
h ). Consequently, ηk ,i

quad,K = 0 for all K ∈ Th.
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Verification of the assumptions – upper bound

Lemma (Assumptions A and B)

Assumptions A and B hold.

Comments

‖ak ,i
h ‖q,K →0 as the linear solver converges by definition.

‖lk ,ih ‖q,K →0 as the nonlinear solver converges by the
construction of lk ,ih .

Both (dk ,i
h + lk ,ih ) and dk ,i

h belong to RTN0(Sh) ⇒

ak ,i
h ∈ RTN0(Sh) and tk ,i

h ∈ RTN0(Sh).
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Verification of the assumptions – efficiency

Lemma (Assumption C)

Assumption C holds.

Comments

dk ,i
h close to σ(∇u

k ,i
h )

approximation properties of Raviart–Thomas–Nédélec
spaces
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Discontinuous Galerkin for the quasi-linear diffusion

Discretization

Find uh ∈ Vh := Pm(Th), m ≥ 1, such that, for all vh ∈ Vh,

(σ(uh,∇uh),∇vh)−
∑

e∈Eh

{

〈{{σ(uh,∇uh)}}·ne, [[vh]]〉e

+ θ〈{{A(uh)∇vh}}·ne, [[uh]]〉e

}

+
∑

e∈Eh

〈ᾱeh−1
e [[uh]], [[vh]]〉e = (f , vh).

θ ∈ {−1, 0, 1}

ᾱe := ‖A‖L∞(R)χe, χe large enough

leads to the system of nonlinear algebraic equations

A(U) = F
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Linearization

Linearization

Find uk
h ∈ Vh such that, for all K ∈ Th and all

j ∈ CK := {1, . . . , dim(Pm(K ))},

(σk−1(uk
h ,∇uk

h ),∇ψK ,j)−
∑

e∈Eh

{

〈{{σk−1(uk
h ,∇uk

h )}}·ne, [[ψK ,j ]]〉e

+θ〈{{Ak−1(uk
h )∇ψK ,j}}·ne, [[u

k
h ]]〉e

}

+
∑

e∈Eh

〈ᾱeh−1
e [[uk

h ]], [[ψK ,j ]]〉e=(f , ψK ,j).

u0
h ∈ Vh yields the initial vector U0

fixed-point linearization σ
k−1(v , ξ) := A(uk−1

h )ξ
Newton linearization

σ
k−1(v , ξ) := A(uk−1

h )ξ + (v − uk−1
h )∂v A(uk−1

h )∇uk−1
h ,

Ak−1(v) := A(uk−1
h ) + ∂v A(uk−1

h )(v − uk−1
h )

leads to the system of linear algebraic equations

A
k−1Uk = F k−1
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I Space mesh Linear and nonlinear solvers Time step C Estimate Stoping criteria & efficiency Appl. & num. res.

Algebraic solution

Algebraic solution

Find u
k ,i
h ∈ Vh such that

(σk−1(uk ,i
h ,∇u

k ,i
h ),∇ψK ,j)−

∑

e∈Eh

{

〈{{σk−1(uk ,i
h ,∇u

k ,i
h )}}·ne, [[ψK ,j ]]〉e

+ θ〈{{Ak−1(uk ,i
h )∇ψK ,j}}·ne, [[u

k ,i
h ]]〉e

}

+
∑

e∈Eh

〈ᾱeh−1
e [[uk ,i

h ]], [[ψK ,j ]]〉e

= (f , ψK ,j)− R
k ,i
K ,j .

algebraic residual vector Rk ,i = {R
k ,i
K ,j}K∈Th, j∈CK

discrete system

A
k−1Uk = F k−1 − Rk ,i
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Flux reconstructions

Definition (Construction of (dk ,i
h + lk ,ih ) ∈ RTNl(Th), l := m−1/m)

For all K ∈ Th and all e ∈ EK ,

〈(dk ,i
h +lk ,ih )·ne,qh〉e :=〈−{{σk−1(uk ,i

h ,∇u
k ,i
h )}}·ne+ᾱeh−1

e [[uk ,i
h ]],qh〉e,

(dk ,i
h + lk ,ih , rh)K := −(σk−1(uk ,i

h ,∇u
k ,i
h ), rh)K

+ θ
∑

e∈EK

we〈A
k−1(uk ,i

h )rh·ne, [[u
k ,i
h ]]〉e,

for all qh ∈ Pl(e) and all rh ∈ [Pl−1(K )]d .

Definition (Construction of dk ,i
h ∈ RTNl(Th), l := m−1 or l := m)

For all K ∈ Th and all e ∈ EK ,

〈dk ,i
h ·ne, qh〉e := 〈−{{σ(uk ,i

h ,∇u
k ,i
h )}}·ne + ᾱeh−1

e [[uk ,i
h ]], qh〉e,

(dk ,i
h , rh)K :=−(σ(uk ,i

h ,∇u
k ,i
h ), rh)K +θ

∑

e∈EK

we〈A(uk ,i
h )rh·ne, [[u

k ,i
h ]]〉e,

for all qh ∈ Pl(e) and all rh ∈ [Pl−1(K )]d .
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Verification of the assumptions – upper bound

Definition (Construction of fh, σk ,i
h )

Set fh := Πl f and σ
k ,i
h := IRTN

l (σ(uk ,i
h ,∇u

k ,i
h )).

Lemma (Assumptions A and B)

Assumptions A and B hold.

Comments

‖ak ,i
h ‖q,K →0 as the linear solver converges by definition.

‖lk ,ih ‖q,K →0 as the nonlinear solver converges by the
construction of lk ,ih .

Both (dk ,i
h + lk ,ih ) and dk ,i

h belong to RTNl(Th) ⇒

ak ,i
h ∈ RTNl(Th) and tk ,i

h ∈ RTNl(Th).
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Verification of the assumptions – efficiency

Lemma (Assumption C)

Assumption C holds.

Comments

dk ,i
h close to σ

k ,i
h

approximation properties of Raviart–Thomas–Nédélec
spaces
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Summary

Discretization methods

conforming finite elements

nonconforming finite elements

discontinuous Galerkin

various finite volumes

mixed finite elements

Linearizations

fixed point

Newton

Linear solvers

independent of the linear solver

. . . all Assumptions A to C verified
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Numerical experiment I

Model problem

p-Laplacian

∇·(|∇u|p−2∇u) = f in Ω,

u = u0 on ∂Ω

weak solution (used to impose the Dirichlet BC)

u(x , y) = −p−1
p

(

(x − 1
2)

2 + (y − 1
2)

2
)

p
2(p−1)

+ p−1
p

(

1
2

)
p

p−1

tested values p = 1.5 and 10

nonconforming finite elements
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Analytical and approximate solutions
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Error and estimators as a function of CG iterations,
p = 10, 6th level mesh, 6th Newton step.
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Error and estimators as a function of Newton
iterations, p = 10, 6th level mesh
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Error and estimators, p = 10
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Effectivity indices, p = 10
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Error distribution, p = 10
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Newton and algebraic iterations, p = 10
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Error and estimators as a function of CG iterations,
p = 1.5, 6th level mesh, 1st Newton step.

0 100 200 300 400 500
10

−10

10
−8

10
−6

10
−4

10
−2

10
0

Algebraic iteration

D
ua

l e
rr

or

3 6 9 12 15
10

−3

10
−2

10
−1

10
0

Algebraic iteration

D
ua

l e
rr

or

0 20 40 60 80 100
10

−5

10
−4

10
−3

10
−2

10
−1

10
0

Algebraic iteration

D
ua

l e
rr

or

error up
estimate
disc. est.
lin. est.
alg. est.
alg. rem. est.

Newton inexact Newton ad. inexact Newton

Martin Vohralík Adaptivita pro lineární, nelineární a časo-prostorové řešiče
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Error and estimators as a function of Newton
iterations, p = 1.5, 6th level mesh
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Error and estimators, p = 1.5
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Effectivity indices, p = 1.5
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Newton and algebraic iterations, p = 1.5
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Numerical experiment II

Model problem

p-Laplacian

∇·(|∇u|p−2∇u) = f in Ω,

u = u0 on ∂Ω

weak solution (used to impose the Dirichlet BC)

u(r , θ) = r
7
8 sin(θ 7

8)

p = 4, L-shape domain, singularity in the origin
(Carstensen and Klose (2003))

nonconforming finite elements
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Error distribution on an adaptively refined mesh
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Estimated and actual errors and the effectivity index
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Energy error and overall performance
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Two-phase flow in porous media

Two-phase flow in porous media

∂t(φsα) +∇·uα = qα, α ∈ {n,w},

−λα(sw)K(∇pα + ραg∇z) = uα, α ∈ {n,w},

sn + sw = 1,

pn − pw = pc(sw)

Mathematical issues

coupled system

unsteady, nonlinear

elliptic–parabolic degenerate type

dominant advection
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Two-phase flow in porous media

Theorem (A posteriori error estimate distinguishing the error
components)

Let

n be the time step,

k be the linearization step,

i be the algebraic solver step,

with the approximations (sn,k ,i
w,hτ , p

n,k ,i
w,hτ ). Then

|||(sw − s
n,k ,i
w,hτ , pw − p

n,k ,i
w,hτ )|||In ≤ ηn,k ,i

sp + η
n,k ,i
tm + η

n,k ,i
lin + η

n,k ,i
alg .

Error components

η
n,k ,i
sp : spatial discretization
η

n,k ,i
tm : temporal discretization
η

n,k ,i
lin : linearization
η

n,k ,i
alg : algebraic solver
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Local estimators
spatial estimators

η
n,k ,i
sp,K (t) :=

{

∑

α∈{n,w}

(

‖dn,k ,i
α,h − vα(p

n,k ,i
w,h , s

n,k ,i
w,h )‖K

+ hK/π‖qn
α − ∂n

t (φs
n,k ,i
α,hτ )−∇·un,k ,i

α,h ‖K

)2

+
(

‖K(λw(s
n,k ,i
w,hτ ) + λn(s

n,k ,i
w,hτ ))∇(p(pn,k ,i

w,hτ , s
n,k ,i
w,hτ )− p̄

n,k ,i
hτ )‖K (t)

)2

+
(

‖K∇(q(sn,k ,i
w,hτ )− q̄

n,k ,i
hτ )‖K (t)

)2

} 1
2

temporal estimators

η
n,k ,i
tm,K ,α(t) :=‖vα(p

n,k ,i
w,hτ , s

n,k ,i
w,hτ )(t)−vα(p

n,k ,i
w,hτ , s

n,k ,i
w,hτ )(t

n)‖K α ∈ {n,w}

linearization estimators

η
n,k ,i
lin,K ,α := ‖ln,k ,iα,h ‖K α ∈ {n,w}

algebraic estimators

η
n,k ,i
alg,K ,α := ‖an,k ,i

α,h ‖K α ∈ {n,w}
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Global estimators

Global estimators

ηn,k ,i
sp :=







3
∫

In

∑

K∈T
n

h

(ηn,k ,i
sp,K (t))2 dt







1
2

,

η
n,k ,i
tm :=







∑

α∈{n,w}

∫

In

∑

K∈T
n

h

(ηn,k ,i
tm,K ,α(t))

2 dt







1
2

,

η
n,k ,i
lin :=







∑

α∈{n,w}

τn
∑

K∈T
n

h

(ηn,k ,i
lin,K ,α)

2







1
2

,

η
n,k ,i
alg :=







∑

α∈{n,w}

τn
∑

K∈T
n

h

(ηn,k ,i
alg,K ,α)

2







1
2
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Cell-centered finite volume scheme
Cell-centered finite volume scheme

For all 1 ≤ n ≤ N, look for sn
w,h, p̄

n
w,h such that

φ
sn

w,K − sn−1
w,K

τn
|K |+

∑

eK K ′∈E
int
K

Fw,eK K ′
(sn

w,h, p̄
n
w,h) = 0,

−φ
sn

w,K − sn−1
w,K

τn
|K |+

∑

eK K ′∈E
int
K

Fn,eK K ′
(sn

w,h, p̄
n
w,h) = 0,

where the fluxes are given by

Fw,eK K ′
(sn

w,h, p̄
n
w,h) := −

λw(s
n
w,K ) + λw(s

n
w,K ′)

2
|K|

p̄n
w,K ′ − p̄n

w,K

|xK − xK ′ |
|eK K ′ |,

Fn,eK K ′
(sn

w,h, p̄
n
w,h) := −

λn(s
n
w,K ) + λn(s

n
w,K ′)

2
|K|

×
p̄n

w,K ′ + π(sn
w,K ′)− (p̄n

w,K + π(sn
w,K ))

|xK − xK ′ |
|eK K ′ |.
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Linearization and algebraic solution
Linearization step k and algebraic step i

Couple s
n,k ,i
w,h , p̄

n,k ,i
w,h such that

φ
s

n,k ,i
w,K − sn−1

w,K

τn
|K |+

∑

eK K ′∈E
int
K

F k−1
w,eK K ′

(sn,k ,i
w,h , p̄

n,k ,i
w,h ) = −R

n,k ,i
w,K ,

−φ
s

n,k ,i
w,K − sn−1

w,K

τn
|K |+

∑

eK K ′∈E
int
K

F k−1
n,eK K ′

(sn,k ,i
w,h , p̄

n,k ,i
w,h ) = −R

n,k ,i
n,K ,

where the linearized fluxes are given by

F k−1
α,eK K ′

(sn,k ,i
w,h , p̄

n,k ,i
w,h ) :=Fα,eK K ′

(sn,k−1
w,h , p̄

n,k−1
w,h )

+
∑

M∈{K ,K ′
}

∂Fα,eK K ′

∂sw,M
(sn,k−1

w,h , p̄
n,k−1
w,h )·(sn,k ,i

w,M − s
n,k−1
w,M )

+
∑

M∈{K ,K ′
}

∂Fα,eK K ′

∂p̄w,M
(sn,k−1

w,h , p̄
n,k−1
w,h )·(p̄n,k ,i

w,M − p̄
n,k−1
w,M ).
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Fluxes reconstructions and pressure postprocessing

Fluxes reconstructions

(dn,k ,i
α,h ·nK , 1)eK K ′

:=Fα,eK K ′
(sn,k ,i

w,h , p̄
n,k ,i
w,h ),

((dn,k ,i
α,h + ln,k ,iα,h )·nK , 1)eK K ′

:=F k−1
α,eK K ′

(sn,k ,i
w,h , p̄

n,k ,i
w,h ),

an,k ,i
α,h :=dn,k ,i+ν

α,h + ln,k ,i+ν
α,h − (dn,k ,i

α,h + ln,k ,iα,h )

Phase pressures postprocessing

Piecewise constant p̄
n,k ,i
α,h postprocessed to piecewise

quadratic p
n,k ,i
α,h :

−λw(s
n,k ,i
w,K )K∇(pn,k ,i

w,h |K ) = dn,k ,i
w,h |K ,

p
n,k ,i
w,h (xK ) = p̄

n,k ,i
w,K ,

−λn(s
n,k ,i
w,K )K∇(pn,k ,i

n,h |K ) = dn,k ,i
n,h |K ,

p
n,k ,i
n,h (xK ) = π(sn,k ,i

w,K ) + p̄
n,k ,i
w,K
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I Space mesh Linear and nonlinear solvers Time step C Estimate Application and numerical results

Water saturation/water pressure evolution
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Estimators/meshes evolution
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Estimators and stopping criteria
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GMRes relative residual/Newton iterations
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GMRes iterations
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Conclusions

Entire adaptivity

only a necessary number of algebraic solver iterations

on each linearization step

only a necessary number of linearization iterations

“smart online decisions”: algebraic step / linearization
step / space mesh refinement / time step modification

important computational savings

guaranteed and robust error upper bound via a posteriori

estimates

Future directions

other coupled nonlinear systems

convergence and optimality
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