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Preface

Seminar on Numerical Analysis 2013 (SNA’13) is the tenth meeting in a series of events which
started ten years ago in Ostrava 2003. The following meetings were held in Ostrava 2005,
Moninec 2006, Ostrava 2007, Liberec 2008, Ostrava 2009, Nové Hrady 2010, Roznov 2011,
Liberec 2012. The tenth SNA 2013 is again held in Roznov pod Radhostém at the hotel Relax.

Since 2005, a part of SNA is devoted to Winter School with tutorial lectures devoted to se-
lected important topics within the scope of numerical methods and modelling. This year, this
part includes invited lectures devoted to adaptivity for linear and nonlinear solvers (Vohralik),
stochastic finite elements (Sousedik), algebraic multigrid, stochastic problems and homogeniza-
tion (Marek, Pultarovd), fast solvers and parallelism in the boundary element method (Luké&s),
multigrid methods for problems of mathematical physics and multiphysics (Hron).

Like the first SNA 2003, the present SNA 2013 is also devoted to the jubilee of Prof. RNDr.
Ivo Marek, DrSc., our colleague, teacher, friend who strongly influenced the development of
numerical analysis in our country. In many respects, SNA conference series is a follower of series
Software and Algorithm of Numerical Analysis (SANM) with Ivo Marek as the main organizer.
The SANM conferences were held for thirty years, being organized each second year, starting in
1975.

Looking back at least over the ten years history of SNA, it is a pleasure to see that many
participants grown from students to recognized distinguished scientists, that there are new
young students and colleagues interested in the numerical analysis and that some ideas remain
valid for all times. To support the last statement, let us remember that in the announcement
of SNA 2003 we mentioned an anonymous general principle

the faster the computer, the more
important the speed of algorithms

which, we are convinced is valid and maybe even more important nowadays, when we start the
first supercomputing project I'T4Innovations in the Czech Republic.

Besides IT4Innovations, it is also our pleasure to acknowledge the support from the project
SPOMECH ”Creation of Multidisciplinary Team for Reliable Solution of Nonlinear Problems of
Mechanics”, reg. no. CZ.1.07/2.3.00/20.0070.

Let us wish SNA 2013 to be, similarly to the previous SNA meetings, a fruitful event, pro-
viding interesting lectures, showing new ideas, beauty of numerical analysis and starting or
strengthening collaboration and friendship.

On behalf of the Programme and Organizing Committee of SNA 2013,
Radim Blaheta and Jifi Stary



Laudatio on Prof. RNDr. Ivo Marek, DrSc.

Ivo Marek was born on the 24th January 1933 in Prague. After finishing classical gymnasium,
he decided to study mathematics at the Charles University in Prague and graduated here in
1956 with diploma thesis supervised by a famous Czech mathematician Vojtéch Jarnik. His
thesis was devoted to the number theory, especially to grid numbers. Both grids and numbers
can be found in his later work, although in a rather different context.

After graduating from university, Ivo Marek was by an administrative decision sent to work as
a computational mathematician in the Nuclear Research Institute at Rez near Prague, at that
time a new and rapidly developing institution. Such administrative decision was common at
that time and considering his case, it was very lucky. He came there in contact with problems of
reactor physics, which influenced his later scientific work and gave him a lively interest in deep
applications of mathematics in physics and engineering. Ivo started from analytical solution
but soon became interested in functional analysis, theory of operators and analysis of deep and
important problems.

The hard scientific work, which started in Rez, resulted in obtaining the scientific degrees CSc.
(1962 - Iteration of Nomlinear Bounded Operators and Iterative Processes in Nonselfadjoint
Eigenvalue Problems) and DrSc. (1968), habilitation (1965) and getting a new job at the
Mathematical Institute of the Charles University (from 1963). His scientific development was
admirably fast, e.g. his CSc. (PhD.) thesis was prepared and defended in one year! On the
other hand, he also managed to play tennis, and even more, with his wife they became winners
of the regional tennis league!

In 1967 Ivo Marek visited Novosibirsk and met here a number of distinguished scientists. Let us
mention primarily G.I. Marchuk and G.E. Forsythe, who later invited him to the USA. This led
to him getting a position of a visiting professor at Case Western Reserve University, Cleveland,
Ohio (1968 - 1970) and University of Wisconsin (1970). Here Ivo Marek met a lot of other
famous mathematicians; we can mention such names as Varga, Householder, Wilkinson, Fox,
Golub, Nickel, Aubin and Schneider. Many of them shared his enthusiasm for math and tennis.
At several conferences he played tennis matches also with G. Strang and I can imagine that
the topic of my first mathematical work supervised by Ivo Marek could have its origin just
there. This period was very fruitful for the numerical analysis in many respects. Ivo’s host, R.
Varga then wrote a beautiful book ”Matrix iterative analysis” and continued to work in iterative
methods. By a lucky chance, Ivo could inform R. Varga and Ph. Ciarlet about a new pioneering
paper by M. Zlamal ”"On the finite element method”.

For us it was important that after returning home in 1970, Ivo Marek was appointed as the
head of the Department of Numerical Mathematics at the Faculty of Mathematics and Physics
of the Charles University. Here he exploited much from his experience. He and his colleagues
introduced a lot of new courses based on functional analysis, modern theory of partial differential
equations and new achievements in numerical methods. The courses referred to distinguished
textbooks and monographs by A. Ralston, A. Taylor, J. Ortega and W. Rheinboldt, R. Varga,
J. Fix and G. Strang etc. Ivo gave the courses on theory of matrices, which later resulted in
a two-volume monograph ”Theory of Matrices in Applied Sciences” written with K. Zitny. In
1977 Ivo Marek was appointed the full professor of mathematics at the Charles University.

Besides the basic knowledge, Prof. Marek transferred to students his enthusiasm for mathe-
matics, for finding hidden relations and seeking new points of view. He transferred to us also
the feeling of the worldwide dimension of the science, which was especially important in the
seventies, when our society felt somewhat isolated from a part of the world.



Ivo was also active as an organizer of many seminars and conferences. Let us mention here
the successful series of Summer Schools on Software and Algorithms of Numerical Mathemat-
ics, which started in 1975 at Zadov and proceeded each second year for thirty years. These
conferences were very important for development of the numerical analysis and application of
the numerical methods in our country. From the other conferences, we should not omit the
international conferences ISNA 1985, 1987, 1990, 1992, which were held alternatively in Prague
and Madrid. At that time Ivo was also appointed an Honorary Professor of the Universidad
Politecnica de Madrid, Spain. Later, Ivo participated in organization of the annual GAMM
Conference in Prague in 1995; he was also involved in organizing of two important conferences
on Computational Linear Algebra at Milovy 1997 and 2002. From 2003 he is a member of the
SNA Programme Committee.

From 1996, Ivo Marek also started to teach at the Czech Technical University in Prague and
found a new space for application of his broad knowledge here. He found new colleagues and
students and contributed to their research in the field of engineering. But especially, he made a
great progress and obtained new excellent results in application of iterative methods for solving
problems with stochastic matrices. Many new results on this topics can be found in papers
with several coworkers, Daniel Szyld from Temple University, Petr Mayer and Ivana Pultarova
from CTU Prague. We are glad, that we can be further acquainted with these results at the
Winter School lectures at this SNA. The list of his research interest is definitely much broader.
I personally, together with the whole group of mathematicians from Ostrava, would like to
appreciate very much his interest and encouragement, which helps us in many cases.

The worldwide scientific reputation of Ivo Marek resulted in his membership in editorial boards
of several scientific journals; the most prestigious of them are Numerical Linear Algebra with
Applications, Numerical Functional Analysis, and Numerical Methods for Partial Differential
Equations, Integral Transforms and Special Functions. His work was awarded e.g. by the
National Price and B. Bolzano Medal for Merits in the Mathematical Sciences (Czechoslovak
Academy of Sciences).

Ivo’s enthusiasm for numerical linear algebra, functional analysis and mathematics in general,
and unfailing friendliness have brought him many friends all over the world. It deeply impressed
me, when in nineties I got my first opportunities to accompany him to conferences abroad.
The discussions with other participants usually showed the width and depth of Ivo Marek’s
mathematical knowledge and interests and, usually, he was also a centre of the fun and an
excellent companion.

After finishing this brief and incomplete enlightenment of Ivo’s exceptional personality, I would
like personally and on behalf of the conference participants to wish Ivo good health, happi-
ness and many further successes in his activities. We wish him to always be an optimist with
unbounded energy and a source of enthusiasm surrounded by friends, colleagues and students.

Radim Blaheta



SPOMECH project @m

The main goal of the SPOMECH project (European Regional Development Fund, reg. no.
CZ.1.07/2.3.00/20.0070) is to create a multidisciplinary research team working in the field of
reliable modelling of nonlinear problems of mechanics and geomechanics and promote research
activities and international cooperation in these subjects.

The project also supports seminars, invitations of specialists, three international workshops and
a final conference, all in the period from July 2011 to June 2014. Besides SNA, the main
SPOMECH supported events include:
e 1st SPOMECH Workshop, Ostrava, November 22 - 24, 2011
Main speakers: Wolfgang Hackbusch (Leipzig), Sergey Repin (St. Petersburg), Johannes Kraus
(Linz)
e 2nd SPOMECH Workshop, Ostrava, November 19 - 20, 2012

Main speakers: Maya G. Neytcheva (Uppsala University), Talal Rahman (Bergen University),
Alexander Popp (Technical University Munich), Frangois-Xavier Roux (ONERA), Frédéric Feyel
(ONERA)

We can also mention the planned future events:

e 3rd SPOMECH Workshop, Ostrava, November 2013
e Seminar on Numerical Analysis SNA 2014
e MODELLING 2014 conference, June 2014

The scope is computational modelling in engineering and science: multiscale modelling, multi-
physics modelling, progress in discretization methods, efficient solvers, nonlinear problems, chal-
lenging applications of mathematical modelling methods in engineering.

There are also events organized in strong collaboration with the SPOMECH team:
e Autumn School on Parallel Solution of Large Engineering Problems
Ostrava, November 19 - 23, 2012

Main speakers: Johannes Kraus (RICAM), Svetozar Margenov (BAS Sofia), Oliver Rheinbach
(University of Duisburg-Essen), Erhan Turan (ETH Zurich), Roman Wyrzykowski (Czestochova
University of Technology)

e High Performance Computing in Science and Engineering HPCSE 2013
Hotel Solan, Beskydy Mountains, CR, May 27 - 30, 2013

e Preconditioning of Iterative Methods: Theory and Applications PIM 2013
Prague, July 1 - 5, 2013
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Stopping criteria in the parallel one—sided
block—Jacobi SVD algorithm

M. Becka, G. Oksa, M. Vajtersic

Institute of Mathematics SAS, Bratislava

The one-sided block-Jacobi SVD algorithm is suited for the SVD computation of a general
complex matrix A of order m x n, m > n. However, we will restrict ourselves to real matrices
with obvious modifications for the complex case.

We start with the block-column partitioning of A in the form
A=Ay, As, ..., Ay,

where the width of A; isn;, 1 <1i </, so that ny +ng+---+ny =n. Due to the computational
balance and communication complexity in the case of parallel implementation, it is preferable
to choose n; of comparable size for all i.

The serial algorithm can be written as an iterative process:

A =4 vO =,
ACH) — AN ) y k) gt s (1)

Here the n x n orthogonal matrix U is the so-called block rotation of the form

I
Ul U
vo=| o T,
) )
Uji Ujj
I

where the unidentified matrix blocks are zero. The purpose of matrix multiplication AU ")
in (1) is to mutually orthogonalize individual columns between block columns i and j of A,

The matrix blocks UZ-(Z-T) and U J(;) are square of order n; and nj, respectively, while the first,

middle and last identity matrix is of order 22;11 g, g: 41 ns and Zgzj 41 Ns, Tespectively.

The orthogonal matrix
(r) (r)
e = (Ui(im Ui(’h)

Uy Uj;
of order n; + n; is called the pivot submatriz of U (") at step r. During the iterative process (1),
two index functions are defined: i = i(r), j = j(r) whereby 1 < i < j < {. At each step r, the
pivot pair (4, j) is chosen according to a given pivot strategy that can be identified with a function
F:{0,1,...} = Py={(c,d): 1 <c<d< ) IfO={(c1,d1),(c2,d2),.-.,(cng), dn)} is
some ordering of P, with N(¢) = £(¢ — 1)/2, then the cyclic strategy is defined by:

Ifc=¢—1 mod N(¢) then (i(r),j(r)) = (cs,ds) for 1 < s < N(¥).

The most common cyclic strategies are the row-cyclic one and the column-cyclic one, where the
orderings are given row-wise and column-wise, respectively, with regard to the upper triangle
of A. The first N(¢) iterations constitute the first sweep. When the first sweep is completed,
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the pivot pairs (7, j) are repeated during the second sweep, and so on, up to the convergence of
the entire algorithm.

Notice that in (1) only the matrix of right singular vectors V(") is iteratively computed by
orthogonal updates. If the process ends at iteration ¢, say, then A® has mutually highly or-
thogonal columns. Their norms are the singular values of A, and the normalized columns (with
unit 2-norm) constitute the matrix of left singular vectors.

The parallel version of the one-sided block-Jacobi SVD algorithm implemented on p processors
with the blocking factor ¢ = 2p is given in the form of Algorithm 1.

Algorithm 1 Parallel one-sided block-Jacobi SVD algorithm

1. V=1,0=2xp
2: > each processor has 2 block columns of A : Ap, and Ag
3 G = (G%L GLR> _ (A;AL A;AR)

Grr Grr ARAp ARAR

4: > global convergence criterion with a constant €, 0 < € < 1
5. while (F(A,¢) > ¢€) do

6: > local convergence criterion with a constant 6, 0 < § < 1
7. if (F(G,¢) > 0) then

8: > diagonalization of G

9: EVD(G, X)

10: > update of block columns

11: (AL,AR) = (AL,AR)*X

12: (VL, VR) = (VL, VR) x* X

13:  end if

14: > parallel ordering—choice of p independent pairs (i,7) of block columns
15:  ReOrderingComp(p)

16:  Send-Receive(As, Vi, diag(Gss)), where s is either L or R

17: end while

18: svy, : square roots of diagonal elements of G,

19: svg : square roots of diagonal elements of Grpr

20: > two block columns of left singular vectors

21: U, = Ar xdiag(1/svr), Ug = Apr = diag(1/svR)

end

Four variants of a new dynamic ordering were designed for the parallel one-sided block Jacobi
SVD algorithm in [1]. Similarly to the two-sided algorithm, the dynamic ordering takes into
account the actual status of a matrix—this time of its block columns with respect to their
mutual orthogonality. Variants differ in the computational and communication complexities
and in proposed global and local stopping criteria.

Variant 1 is based on a parallel implementation of the Lanczos processes applied to a set of the
symmetric Jordan-Wielandt matrices C,

_( 0 ATA
o= (uts ")

The aim is to estimate the absolute values of L largest eigenvalues that are the cosines of L
smallest principal angles between span(A;) and span(A;). Having p processors, p mutually most
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inclined pairs (A;, A;) are chosen for orthogonalization at the beginning of each parallel iteration
step. The mutual inclination is estimated by the weight

L L
1
wl = |TLlp =Y a2 +23 62,
s=1 s=2

where the coefficients a; = (Czs, 2z5) and fs41 = ||Czs — aszs|| are elements of the symmetric,
tri-diagonal matrix 77,. The global stopping criterion of the iteration process is based on the
maximum value of currently computed weights wS). When using a computer with machine
precision ¢, the convergence is reached when

o))

maxw,;” <mLe,
i,J
where m is the number of matrix rows and L is the number of steps in Lanczos processes.
The local stopping criterion is similar: A given pair (7,75) of block columns is not mutually
orthogonalized if
wg) <mLe.

In variant 2, the mutual position of span(A;) and span(A4;) is described by using just one
representative vector per subspace,

where e = (1,1,...,1)T € R¥¥1. The weight is defined as

w; = |(ei, )],

and p largest weights define p pairs of block columns for the orthogonalization. The global
stopping criterion takes into account that the computation of ¢; requires no scalar product (only

2)

the sum of k£ columns of A;), whereas to compute w; S, one scalar product of length m is needed.
In what follows, we neglect parameters m and k and take into account only the number of scalar
products required for the computation of weights. However, for one scalar product we would
directly work with the machine precision €. Therefore, in this case, we define the global stop
less strictly (and somewhat arbitrarily) as

2

maxw,;” < 10e€.
g Y

With respect to local computation, two block columns are not mutually orthogonalized if

wi? < 10e.

Variant 3 uses the weight
IAT Ajell

B) — AT —
Wi~ = [ A; ¢l = W,
where ¢; is the representative vector for span(A;). It can be shown that wg’) is the locally
optimal version of wg),

w) = max |(Aiy, c;)|
llyll=1

13



for given A; and c¢;. We have proposed the global stopping criterion for variant 3 as

max wﬁ) <ke.
Z?]

Locally, two block columns are not mutually orthogonalized if

wg’) < ke.

Finally, variant 4 computes the ‘exact’ weights
4) _ T
wiy = [|AT A

(4)

a small value of w;;” means that span(A;) is nearly orthogonal to span(A;). Notice that this is

not true for variant 2 because there is no lower bound for the value of wg)—it can be nearly
zero even if subspaces are significantly inclined to each other. The proposed global stopping
criterion is
max wg»l) < K¢,
i.J

and the corresponding local stopping criterion is of the form

wg»l) < ke

The performance of four variants of dynamic ordering was tested on square random matrices of
order 4000 and 8000, with six different distributions of singular values and two condition numbers
(10* for the well conditioned case and 10® for the ill conditioned one), using 16 and 32 processors.
All variants of dynamic ordering were compared with two parallel cyclic orderings with respect
to the number of parallel iteration steps needed for the convergence, total parallel execution time
and relative error in the orthogonality of computed left singular vectors. It turns out that the
variant 3, for which a local optimality in some precisely defined sense can be proved, is the most
efficient one. Additional numerical experiments show that this recommended variant 3 is about
1.5 times faster than the parallel two-sided block—Jacobi algorithm with dynamic ordering, and
about 2-3 times slower than the ScaLAPACK procedure PDGESVD.

Acknowledgments: Authors were supported by the VEGA grant no. no. 2/0003/11 from the
Scientific Grant Agency of the Ministry of Education and Slovak Academy of Sciences, Slovakia.
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Tvarova optimalizace pro 2D kontaktni problém
se zadanym trenim s koeficientem treni zavislym na reseni

P. Beremlijski, J. Haslinger, J. Outrata, R. Patho

Centrum excelence IT4Innovations a Katedra aplikované matematiky
Vysoka skola banska - Technicka univerzita Ostrava

1 Uvod

V ptispévku se zabyvame diskretizovanou tilohou tvarové optimalizace dvojrozmérného pruzného
télesa v jednostranném kontaktu s tuhou prekazkou. Stavova tloha je v nasem pripadé dana
jako Signoriniho problém s Trescovym tfenim s koeficientem tfeni zavislym na feSeni. Pfi
splnéni jistych podminek pro koeficient tfeni méa diskrétni kontaktni tloha jediné reSeni. Navic
feSeni této ulohy je zavislé lokalné lipschitovsky na fidici proménné popisujici tvar pruzného
télesa. Diky jedinému feSeni diskrétni tilohy pro fixovanou fidici proménnou, muzeme pouZit
tzv. pristup implicitniho programovéani. Ten je zalozen na minimalizaci nehladké funkce slozené
z cenové funkce a jednoznacného zobrazeni, které fidici proménné prirazuje feSeni diskrétni
dlohy, tzn. stavové proménné. Pro minimalizaci nehladké funkce lze efektivné pouzit bundle
trust metodu. K vypoc¢tu subgradientni informace, kterou metoda vyzaduje, je nutné pouzit
Morduchovicuv kalkul. Na zavér piispévku je ilustrovdno pouziti naseho pristupu. Podrobné se
lze s uvedenym pristupem sezndmit v [3].

2 Stavova uloha

Necht © C R? je pruzné téleso s lipschitzovskou hranici 0. Hranice 99 je slozena ze tif
nepiekryvajicich se ¢asti I'y, I', a I'.. Viz obrazek 1.

AR

CV[)

Obréazek 1: 2D pruzné téleso.

I';, je hranice s Dirichletovskou podminkou. Povrchové sily P = (Py, P») pusobi na hranici T'p,
P € L?(T'y). Téleso je zdola "podepieno” podél hranice T'. (jejf tvar je uréen fidic{ proménnou
a € ]Rd) tuhou prekazkou. Mnozinu piipustnych navrhovych proménnych nazveme U,;. Na
této hranici je pfedepsano Trescovo tfeni s koeficientem tieni zavislym na feSeni F : Ry — R..
Zavedeme si nasledujici mnozinu

Kla):={veR"|v, > —a}, aclUy, (1)
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kde v, odpovidd normélovému posunuti. Algebraickd formulace diskrétniho Signoriniho pro-
blému s Trescovym tienim s koeficientem tfenim zavislym na feSenim je nasledujici

Najdéte u € K(a) takové, ze pro kazdé v € K(av) :

(Ala)u, v =)+ Y wil@)F(|(ur)il) (I(v:)i] = (ur)il) = (L(e), v — u)y, @
i=1

kde A € R™*™ a L € R™ jsou matice tuhosti a vektor sil zavislé na fidici proménné a.

Nynf si zavedeme vektor Lagrangeovych multiplikdtora A € RY (p je pocet kontaktnich uzli)
pro omezeni v € K(a) a vektor (u, A) nazveme stavovou proménnou. Nyni zavedeme rozdélent
vektoru posunuti w na (wu¢, u, ), kde w; piislusi tecnému posunuti a u, odpovidd normélovému
posunuti. Déle zredukujeme nasi ilohu a budeme se zabyvat pouze kontaktnimi uzly. Stavova
uloha realizuje zobrazeni S : a € R — (ug, uy, A) € R3P (fidicimu vektoru a € U,q je prifazeno
feseni kontaktni ulohy (u¢, u,,A)). Diskretizovanou stavovou tlohu lze ekvivalentné popsat
zobecnénou rovnosti (podrobné v [1] a [2]).

0cA()ur+ A (ax)u, — Ly () + Q1(a, ur)

0=A,(a)u; + A, (a)u, — L,(ax) — A (3)
0¢c u,,+a+NRzi(A),

kde multifunkce Q1 : Uyq X RP = RP je definovdna jako:

(Qi(e ur)), = wile) F(|(ur)i)Ol(ur)il Vi=1,....p, (4)

a Ngr (+) je standardni normalovy kuzel.

3 Tvarova optimalizace pro kontaktni rlohu se zadanym tirenim
s koeficientem treni zavislym na reSeni

Nasim tkolem je nalézt fidici proménnou a urcujici Beziérovu funkci, kterou je modelovana
kontaktni hranice I'c, pro kterou nabyva cenovy funkcional J(a, S(ar)) svého minima. Ulohu
diskrétni tvarové optimalizace zavedeme jako feSeni

min J(a) = J(a, S(a)), (5)
acUyq
kde funkciondl J je spojité diferencovatelny. K reseni této nehladké tlohy byla pouzita bundle
trust metoda, kterd vznikla kombinaci svazkovych metod a trust region metody (podrobné
viz [7]). Tato iteracni metoda potiebuje rutinu, kterd v kazdém kroce vypocte hodnotu ceno-

vého funkciondlu (k tomu potfebujeme vyfesit stavovou ulohu) a jeden (libovolny) Clarketuv
subgradient z Clarkeova zobecnéného gradientu 07 (). Pro jeho nalezeni pouzijeme tvrzeni

0T () = ViJ(a,S(a)) + conv {CTVyJ (e, S(a))|C € dS(a)} (6)
(viz [4]). Protoze plati {CTy*|C € 0S(a)} = conv D*S(a)(y*) pro viechna y*, staci nalézt

jeden prvek z mnoziny D*S(a)(VaJ(a,S(r))). Prvky limitni koderivace D*S(a) najdeme
pouzitim nehladkého kalkulu B. Morduchovice (viz [6]). Podrobné v [3].
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4 Numericky priklad

Pro numerické reSeni stavové ulohy byla pouzita metoda postupnych aproximaci, kde kazda ite-
race predstavuje Signoriniho lohu se zadanym tfenim a danym koeficientem tfeni vypoctenym
z predchozi iterace. Numerické feSeni stavové tlohy bylo implementovano (stejné jako celé
feseni tvarové-optimaliza¢ni tlohy) v knihovné MatSol (viz [5]). Tato knihovna byla vyvinuta
v prostredi Matlab.

Nyni pouzijeme navrzeny postup pro feSeni nasledujici ilohy:
min A — X3

s omezenim « € Uy,

Predpokladejme, ze koeficient tieni F je popsan takto

F(t) =0.25 - Vt € Ry, (8)

241
a mez skluzu je dana g = 150.

Nasi oblast jsme nyni diskretizovali siti s 1800 uzly, jeji velikost je 2x1. Povrchové tlaky na
hranici T, jsou pedepsény takto P!=(0; —60 MPa) na (0,1.8) x {1} a P! =(0;0) na (1.8,2) x
{1}, zatimco P? = (50 MPa; 30 MPa) na {2} x (0,1). Fyzikalni parametry oblasti maji tyto
hodnoty — Younguv modul £ = 1 GPa a Poissonova konstanta v = 0.3. Dimenze ndvrhové
proménné « fidici Beziérovu funkci, kterou je ddna hranice I';, je 20.

Pocéatecni navrh, jeho deformace a rozlozeni von Misesova redukovaného napéti je na obrazku 2.

250

-200
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Z

0 ug]
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Obrézek 2: Pocatecni névrh.

Obrazek 3 ukazuje optimalizovany navrh, jeho deformaci a rozlozeni von Misesova redukovaného
napéti.

Mesh Stress hmh
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Obrézek 3: Optimalizovany navrh.
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Obrazek 4: Rozlozeni normélového napéti na kontaktni hranici pro pocatetni navrh (vlevo)
a optimalizovany ndvrh (vpravo).

Rozlozeni normélového napéti na kontaktni hranici (plné ¢éra) i predepsané normélové napéti

A (teckovand ¢dra) pro pocatecni i optimalizovany tvar télesa jsou zobrazeny na obrézku 4.

Hodnota cenového funkciondlu pro pocateéni navrh je 5.910 - 104, zatfmco hodnota cenového
funkcionélu pro vysledny néavrh je 9.1457 - 10%.
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Spiders on the vineyard

M. Bidk, D. Janovskad

Department of Mathematics, Institute of Chemical Technology, Prague

1 Introduction

The population model of the spiders hunting the insect on the vineyard can be described as the
set of ordinary differential equations, see [1]. This type of model is known as the predator—prey
model. We show how to integrate a human intervention into this model. We formulate Filippov
system that includes both cases - with and without the intervention. Then we analyze this
model using the theory described in [2].

All simulations are performed in modified version of the program developed by Petri T. Piiroinen
and Yuri A. Kuznetsov, see [3] and [4].

2 Model equations

The predator—prey model of spiders and insect on the vineyard is described as the set of ordinary
differential equations:

f

fo=rf0=) —osf, (1)

5 = s(—a+ ;Tv—l-kcf), (2)
b

b= e o), 3)

where v(t) is the population of the insect on the vineyard, f(¢) is the population of the insect
outside the vineyard, s(t) is the population of the spiders. If man intervenes into the ecosystem
by spraying to prevent an overgrowth of insects, equations (1)—(3) pass to

o= - —ess-na-or, (W
5 = s(—a+ ;l—fv + kcf) — hKgs, (5)
v = vie— Hbj- v) — hqu, (6)

where an extra term in each equation represents the mortality caused by spraying. All parame-
ters in (1)—(3) and (4)—(6) are positive real numbers.

The question is how to introduce the model, that includes both cases (with and without spraying)
and that keeps the population of the insect on the vineyard below a given limit. We will show
that such model is a type of Filippov system and it can be treated using the techniques stated
e.g. in [2].
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3 Population model as Filippov system

Because only the positive values of f(t), s(t), v(t) have a physical meaning, we start with a region
D={(f,sv) €R’: f(t) >0,s(t) > 0,v(t) > 0}. Let us have a scalar function ¢ : D — R. The
function ¢ divides the region D into:

S1 = {xeD:ypix) >0},

Sy = {x€D:pkx) <0},

Y = {xeD:pkx) =0}

where x = (f,s,v)7.

In our case, we want to keep the population v(t) of the insect on the vineyard below the given
value vy, € R, v, > 0. Therefore, our function ¢(x) will be

e(f,8,0) = vm — 0. (7)
We define a Filippov system on D =57 U S, UX

g(l)(x) , X €57,
F:x=¢ gx), xex, (8)
g(z) (x), x €S,

where X = (f,4,0)7, and where the vector fields g(®) : R’ - R’ , 1=1,2, are

rf(L= L)~ st PF(L= L)~ esf-h(1 - q)f
kb kb
g = | s(—a+ T1o _;jv tkef) |, g@ = s(—a+—H :v + kcf)—hKqs
b b
v(e — Hj—v) v(e—H—j_U)—hqv

If p(f,s,v) > 0, no spraying occurs and the vector field g(!)(x) is in effect. If the population v(t)
of the insect on the vineyard rises above a given value vy, i.e. if ¢(f,s,v) < 0, the spraying
begins and the vector field g(® (x) takes place. The spraying goes on, until the value of v(t)
decreases below v,,, when g(l)(x) applies again.

Before we define the vector field g(® (x) that determines behavior of the system (8) on the
boundary ¥, we need to distinguish two types of sets on 3. We define a scalar function o : ¥ — R,

o(x) = (Vo,gM)(Ve,g?),

and we obtain two sets on X, the crossing set 3, C ¥ = {x € ¥ : ¢(x) =0 A o(x) > 0}, and
the sliding set X, C Y ={x e X:p(x) =0 A o(x) <0},

In our case, the scalar function o(f,s,v) reads

o(f,s,0) = (Vo,gW)(Ve,g?),

bs
My = —

bs
2y — _
(Vp,g'?) <H—|—vm e—i—hq).

20



If o(f,s,v) <0, trajectory slides along the sliding set X5. If o(f,s,v) > 0, we are on the crossing
set Y. and trajectory leaves the boundary.

On X, we put

g _ % (gu) n g<2>) ,

For x € X, we define a smooth vector field g© : R’ — RB,

(Vo,g?)

O = xg® 4+ (1-Ng?, N=-"257
® S (Vo g% — g')

(9)

where A € R, 0 < A < 1.
The points in which o(f, s,v) = 0 are called tangent points. There are two sets of tangent points

Ty and T9 on the boundary :

T, = {(f,s,v):f>0,s:%e(H+vm),v:vm},
Ty = {(fos,0): f > 0,5 = 2~ ha)(H + vn),v = v}

Let us assume that e < hq, i.e. s, < 0. The sets T1 and T delimit the sliding set 35, and due to
the fact that sy, < 0 < sp,, the sliding set ¥; C X ={(f,5,0) : f>0AN0<s<sp A v=1vy}
is a semi-infinite stripe with the non-zero width equal to H+—b”mhq.

If in (9) g(o) (P) =0, the point P is a pseudo-equilibrium of the Filippov system.

We performed simulations with the parameters listed in Table 1. We found that a local slid-
ing bifurcation occurs for the value v, = 0.9. During the simulations we observed a global
bifurcation, too.

Parameter Value Meaning

0.2 specific mortality rate of predators
1.18 specific reproduction rate of predators per 1 prey eaten in the vineyards
0.2 specific reproduction rate of predators per 1 prey eaten in the woods
0.5 specific growth rate of the prey in the vineyards
1 specific growth rate of the prey in the woods
1 conversion factor of prey into new spiders, k < 1
7 carrying capacity of the vineyard
1 carrying capacity of the woods
0.6 effectiveness of the insecticide against the parasites
0.01 smaller effect the insecticide should have on the spiders, 0 < K < 1

0.9 portion of insecticide sprayed directly on the vineyards

— Nb%m?vﬂmn@@

0.1 portion which may accidentally be dispersed in the woods

|
»Q

0.3-3.0 limit of the population of the insect on the vineyard

e
3

Table 1: The parameters used for the simulation of the system F.
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Figure 1: Solution diagram.

4 Conclusions

In the population model of the spiders on the vineyard, we discovered both local and global
sliding bifurcation. The local bifurcation is caused by a collision of the equilibrium with the
boundary ¥ and is called boundary—equilibrium bifurcation. The global sliding bifurcation in
the simulations is caused by a collision of the periodic trajectory with the boundary .

Acknowledgement: The work is a part of the research project MSM 6046137306 financed by
MSMT, Ministry of Education, Youth and Sports, Czech Republic.
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1 Introduction

This contribution concerns the iterative solution of singular systems which arise in many appli-
cations. Let us mention the following

e solution of PDE problems with pure Neumann boundary conditions (which is our main
aim), see [7], [8], [20]. Such problems have a specific role in numerical upscaling, see [6],

e solution of Neumann type subproblems in domain decomposition techniques as FETI,
Neumann-Neumann, BDDC methods, see [22], [16],

e analysis of Markov chain problems, computation of stochastic vector, see e.g. [18], [19],

e computer tomography [15], [14] and inverse problems [4], [21].

2 Iterative solution of singular symmetric semidefinite systems

Let us focus on iterative solution of linear systems of the form
Au = b, (1)

where A is a singular, symmetric, positive semidefinite n x n matrix, b € R". For u,v € R"
denote (u, v) = u’v and ||u| the Eucledian inner product and norm. Due to symmetry of A,
the range R(A) and the null space N(A) are mutually orthogonal with respect to the Eucledian
inner product and the vectors u € R" can be uniquely decomposed as

u=un + ugr, where uy € N(A) and ug € R(A).

Let b = by + bp, then the system (1) has infinitely many generalized (least squares) solutions u,
[Au = b|| = min{[|Av — b[|, v € R"} (2)

among which there is a unique least squares solution u* with the minimal Eucledian norm. Note
that u* = ATh, where AT is the Moore-Penrose pseudoinverse of A, see [10], [16]. If b € R(A),
i.e. the system (1) is consistent, then the generalized solutions are standard solutions of (1).

Let us assume that (1) is solved iteratively with denoting the i-th iteration u’,
u' € u® 4+ K;(A, %) = u® 4+ span{r®, Ar0 ..., AT p0 = b — 440, (3)
where K;(A,7°) = span{r® Ar? ... A~1y9} is a Krylov space. Then

0

ut =’ + qi—1(A)r”, where g;—1 is a polynomial of order <i — 1. (4)
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The convergence can be investigated through behaviour of ¢! = u’ — u*. If ¢/ — 0 then the
iterations converge to the minimal least squares solution u*. If e’ — w, where w € N(A), then
the iterations converge to a (generalized) solution of A.

From (4), it follows that
el =ud —ut + qi—1(A)(by + Au™ — Auo) = pi(A)eo + qi—1(0)by, (5)

where p;(\) =1 — Agi—1(A).

If 9 = €}, + €} then p;(A)eQ; = ul and p;(A)e}, depends on values p;(A) on A € o(A) \ {0}.
The second term is zero for consistent problems, but otherwise can be convergent if ¢;—1(0) =
—p;(0) # 0.

The simplest Richardson’s iteration ™! = u’ + wA(b — v?) fulfill (3), (4), (5) with

P = (1—w))s pil0) =1, gi1(0) = —pl(0) = (i + L)w.

Thus, the method converges (e? — u%;) for the consistent problems, but diverges (the second

terms gradually dominates) for the inconsistent case (by # 0).

To get convergence even for inconsistent case, the method needs a modification. For example,
we can use extrapolation of Richardson’s iterations [17]. For

,a’i"rl — ui"rl _ (Z + 1)(u’i+1 _ Ui),
we get

ot —wt = w T w1 =) = pigi(A)e? + (4 Dw(by + A(ut —ub))
= pis1(A)e® + (i + DwAe’ = pip1(A)e® + (i + 1wA(ps(A)e® + iwby))
= pip1(A)e” + (i + Dw(pi(A)Ae)).

This extrapolated method converges since p;(\) < ¢ for all A € o(A) \ {0}, where ¢ < 1 for a
suitable w.

It means that there are ways how to damp the divergence of the null space component of the
iterations. On the other hand, this divergence in the null space component may not cause a
problem in case that we are interested only in quantities, which do not depend on the null space
component, like gradients, fluxes, strains and stresses.

A similar analysis can be done for other iterative methods applied to singular systems, see e.g.
[10]. For the conjugate gradient (CG) method, the convergence can be proven in the consistent
case, see eg. [1]. But the inconsistence influence both N(A) and R(A) components of the
iterations, see [13], [7] and the next section.

3 Solution of Neumann problems

The solution of boundary value problems with pure Neumann boundary conditions arises in
different applications, see the other sections. If the solution of the continuous Neumann problem
exists, then global balance (consistency) conditions like (7) are satisfied. On the contrary, these
conditions guarantee the existence of the (not unique) solution. For example ([20], [7]), for the
Neumann problem,

—div(Vu) = fin Q2 and Vu-n=gindQd (6)
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the solution exits if and only if

/Qfdm—l—/{mgdmzo. (7)

In the case (6), (7), if u is a solution, then u+wv is a solution for all v € ' = span{1}, where 1 is a
constant function in €2. A finite element discretization then should provide a consistent singular
linear system (1) with the nullspace N(A) = N}, provided by discretization of N'. However,
the computer arithmetic and numerical integration errors may cause that the FEM system is
inconsistent and/or N(A) # Np,.

Problems with inconsistency and singularity can be treated by using a priori knowledge about A/
and \V,. For example, we are able to regularize the problem by fixing some degrees of freedom and
solving the problem Ry, fARdTofu = Rj,¢b instead of (1). Here, Ry,¢ is the restriction opperator
omitting the fixed DOF’s. Such a technique is frequently used in engineering community, but
without a special care [9] the modified system matrix RdofARdTof can be very ill-conditioned
which is a serious drawback for the iterative solution.

Using the knowledge of N, other techniques use the projection P : R™ — Ry, where R, is the
orthogonal complement of A}. The projector can be constructed as P = I — V(VIV)~tvT,
where V is a matrix, whose columns create a basis of NV},. Such projector can be applied within
any iterative method. In PCGstab! algorithm, the projection P is used to project the right hand
side vectors or all residuals during the PCG iterative process. In PCGstab?2, the projection P is
applied twice per iteration to project both residuals and computed iterations. Figure shows these
stabilizations of the PCG method. PCGstab2 is equivalent to the replacement of A by PAP
which also makes the system matrix singular. The fully stabilized PCGstab2 was introduced e.g.
n [11]. Note that ¢ = G(r) denotes the action of preconditioner, which can be also nonlinear
(variable, flexible).

given u® a) Standard PCG:
compute 10 = P,(b— Au®), ¢* = PB,G("), v0 = ¢° Po=P=P.=FP;=1
for i =0,1,... until convergence do b) PCGstabi:

w' = P.APv P, =P

a; = (r',g")/(w',v") P=P.=Py=1

W =t gt ¢) PCGstab2:

ritl = P(r' — ayu?) P P'b _p

gt = RG(r Pa=P—1

Bix1 = (g /(g 1) or equivalently

vt = gt 4 B0 PP =1
end P.=P;=P

Figure: PCG algorithms.

Note that an application of PCG to inconsistent system is problematic from two reasons. The
inconsistent part of the right hand side enters the N(A)-part of the iterations and can make
them divergent, but the inconsistent part also enters the formulas for @ and 8 and spoils the
R(A)-part of the iterations, see [13], [5].

4 Application in upscaling

The elastic response of a representative volume ) is characterized by homogenized elasticity C'
or compliance S tensors (S = C~1). The compliance tensor can be determined from the relation

S{o) = Sog = (e), (8)
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where (o) and (g) are volume averaged stresses and strains computed from the Neumann problem
—div(e) =0, o=Cpe, e=(Vu+(Vu)b)/2 inQ, (9)

on =oopn on Of. (10)

Above, o and ¢ denote stress and strain in the microstructure, C,, is the variable local elasticity
tensor, u and n denote the displacement and the unit normal, respectively. The use of Neumann
boundary conditions allows us to get a lower bound for the upscaled elasticity tensor [6].

In analysis of geocomposites (see [6]), the domain 2 is a cube with a relatively complicated
microstructure. The FEM mesh is constructed on the basis of CT scans. Consequently using
the GEM software [3], the domain is discretized by linear tetrahedral finite elements. The arising
singular system is then solved by stabilized PCGstab! method implemented in different software
and using various preconditioners:

GEM-DD is a solver fully implemented in GEM software. It uses one-level additive Schwarz
domain decomposition preconditioner with subproblems replaced by displacement decom-
position incomplete factorization described in [2]. The resulting preconditioner is symmet-
ric positive definite.

GEM-DD-CG solver differs in preconditioning, which is a two-level Schwarz domain decom-
position arising from the previous GEM-DD by additive involvement of a coarse problem
correction. The coarse problem is created by a regular aggregation of 6 x 6 x 3 nodes with
3 DOF’s per aggregation. In this case, the coarse problem is singular with a smaller null
space containing only the rigid shifts. The coarse problem is solved only approximately
by inner (not stabilized) CG method with a lower solution accuracy - relative residual
accuracy €g < 0.01.

Trilinos ILU is solver running in Trilinos, where the system from GEM is imported. The
preconditioner is similar to GEM-DD, i.e. one-level Schwarz with the minimal overlap and
working on the same subdomains as in GEM-DD are used. The subproblems are replaced
by ILU without displacement decomposition, using a drop tolerance and a fill limit.

Trilinos ML-DD is again running in TRILINOS and uses multilevel-level V-cycle precondi-
tioner exploiting smoothed aggregations with aggressive coarsening, see [12]. Six DOF’s
translational plus rotational are used per aggregation. ILU is applied as smoother at
the finest level, other smoothing is realised by symmetrized Gauss-Seidel. The coarsest
problem is solved by a direct solver.

GEM Trilinos
DD DD+CG ILU ML-DD
# Sd # It Tprep Titer # It Tprep Titer # It Tprep Titer # It Tprep Titer
1 345 2245 26724 X

2| 293 0.3 5414 | 137 20.1 256.4 | 472 1359 1628.3 | 43 813.6 804.5
41 302 0.2 3022 | 124 20.0 1259 | 463 112.5 1022.6 | 46 445.6 404.9
8 | 300 0.1 175.3 | 115 19.9 75.7 | 441 85.9 517.6 | 53 3029 203.8
16 | 350 0.1 148.5 | 116  19.9 73.6 | 387 75.4 4439 | 57 3354 146.9

Table: Solution of the Neumann problem in elasticity, slightly more than 6 million mil DOF’s, stopping
criterion ||r||/||rhs|| < e = 107°. Numbers of iterations (#It), wall-clock time in seconds for solver
preparation (Tp.ep) and time for performing the iterations (Tj,) are provided for various numbers of
subdomains (# Sd; always corresponding to the number of employed processing units). GEM solvers
have not the single processor mode, the ML-DD solver ended on single processor with the message ”Not
enough space for domain decomposition” (x).
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The parallel computing was performed on 32 core NUMA machine at the Institute of Geonics
with eight quad-core AMD Opteron 8830/2.5 GHz processors and 128 GB of DDR2 RAM. Be-
cause of using stabilized PCG and also because we were interested only on strains and stresses,
we concentrate on R(A)-part of the solution and watch in Table only the convergence in the
residual norm.

We can see that the stabilized CG works well. On the other hand the unstabilized version
converge up to a smaller residual tolerance € = 0.01 — 0.001 and then started to blow up, see
[5]. It indicates that numerical consistency and numerical singularity are not enough, which
was a bit unexpected in our case as we used lowest order linear finite elements and problem
with piecewise constant boundary condition, so that the adopted numerical integration should
be exact. On the other hand, the systems were assembled in single precision.

5 Conclusions

The aim of this contribution was to show techniques for efficient solution of singular symmetric
positive semidefinite problems. We can see that the stabilized PCG is a good choice for systems
arising from the numerical solution of Neumann problems, or more generally problems with a
known small dimensional null space. There are also other possibilities of stabilization as e.g.
the use of additive regularization.

The second aim was a comparison of specialized solvers from the in-house finite element software
GEM and more general solvers from the Trilinos library. We provided some comparison while
this work is still continuing.
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1 Introduction

The voiding is a very complex process. It consists of the transfer of information about the state
of the bladder filling in to the spinal cord. Next part is the sending of the action potentials
to the smooth muscle cells of the bladder. Even this process is not simple and includes the
spreading of the action potential along the nerve axon and the transmission of the mediator
(Ach — acetylcholine) in the synapse. The action potential starts the process of the smooth
muscle contraction. The sliding between actin and myosin causing the change of the form
(length) of the muscle cell and its stiffness can be observed as a kind of growth and remodeling.
This approach described e.g. in [6] is used in this model. To be able to describe the very complex
processes in the SMC in the efficient form it is necessary to use the irreversible thermodynamics.
This approach was described in [7].

2 Bladder contraction

The whole model of the bladder contraction consists of the following parts:

e Model of the time evolution of the Ca®t concentration. The Ca?* intracellular concen-
tration is the main control parameter for the next processes and finally for the smooth
muscle contraction. Its increase depends on the flux Jogonist of the mediator (in this case
acetylcholine) via the nerve synapse.

dc

i Jips — Jvocc + Inajca — JSRuptake + JCICR — Jeatrusion T Jieak + Istreten
ds

- JSsRuptake — JoICR — Jleak

dv

E = 7(_JNa/K —Jor —2Jvoce — JNa/Ca —Jk — Jstretch) (1)
dw

E = /\Kactivate

dl

E = Jagonist - Jdegrada

where the unknown functions represents: ¢ = ¢(t) calcium concentration in cytoplasm, s =
s(t) calcium concentration in ER/SR, v = v(¢) membrane tension, w = w(t) probability of
opening channels activated by Ca®t and I = I(t) IP3 sensitive reservoirs concentration in
cytoplasm. For details and complete description of the functions and parameters see [4].

e Model of the time evolution of the phosphorylation of the light myosin chain. The muscle
cell contraction is caused by the relative movement of the myosin and actin filaments. For
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this it is necessary that the phosphorylation of the mentioned light myosin chain on the
heads of the myosin occurs.

dA
d—;w = ksAn, — (k7 + ke) A,
dAy
o == ksMy + keAn — (kg + k5) A, (2)
M,
7t = kl(l —An) + (k‘4 — kl)AMp — (/431 + ko + kg)Mp,
where the unknown functions represent the following: Ay = Aps(t) connected cross-

bridges, Ay, = Ap,(t) connected phosphorylated cross-bridges and M, = M, (t) uncon-
nected phosphorylated cross-bridges. kg = kg(c), the other terms k; are constant. For
details and complete description of the functions and parameters see [3]. Knowing this
process also the time evolution of the ATP consumption (chcl) can be determined. The
ATP (adenosintriphosphate) is the main energy source for the muscle contraction.

dY
E = _QQY + Lchcla (3)
where Y = Y'(t) represents the ATP concentration, Q¢ is the damping parameter and L is

the constant.

e Model of the own contraction based on the GRT and the irreversible thermodynamics. The
growth and remodelling theory [2] together with the laws of irreversible thermodynamics
with internal variables was applied in [7] to describe the mechano-chemical coupling of the
smooth muscle cell contraction. The product of the chemical reaction affinity (the ATP
hydrolysis) with its rate plays an important role in the discussed model. Further it can
be assumed that the rate of the ATP hydrolysis depends on the ATP consumption. The
corresponding equations in the non-dimensional form are following:

T =ki[r—z(x—1)], ka% xT—%z(x—l)z—i—C" , z":sgn(m).[r—%z(w—l)z],

(4)
where x = %, Y= f—g, lp is the initial length of the muscle fibre, [, its length after stimulation
when the fibre is unloaded (s. c. resting length), [ the actual length ( when the contraction
is isometric this is the input value), 7 the stress and k is the fibre stiffness, m and r are
constants. The non-dimensional values are labeled with the single quote mark. The others
symbols are the parameters.

3 Bladder and voiding model

To model the contraction of the bladder during the voiding process we will use the very simple
model according [5]. The bladder is modelled as a hollow sphere with the output corresponding
to the input into urethra. For the pressure in the bladder the following formula is introduced
in [5]

p:;/;?‘ﬂ 7_:%7 (5)
where Vi, is the volume of the wall, V' the inner volume, S the inner surface, F' the force in the
muscle cell and 7 stress in the muscle fibre, which can be derived as

T [klzy(x S 1) B (- 1)2 B

T= . (6)
kvy + %y

This will be putted into the equations for the isotonic contraction.
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4 Urethra flow

We now briefly introduce a problem describing fluid flow through the elastic tube. In the case
of the male urethra, the system has the following form

ar+q: = 0,
? | _ afa a? ¢z (7)
qr + (; + 275)96 = 5 (F)x + Wﬁx — 7V EA(Re),
where a = a(x,t) is the unknown cross-section area, ¢ = ¢(x,t) is the unknown flow rate, p is
the fluid density, ag = ag(x) is the cross-section of the tube under no pressure, 5 = ((x,t)
is the coefficient describing tube compliance and A(Re) is the Mooney-Darcy friction factor

(A(Re) = 64/ Re for laminar flow). Re is the Reynolds number. This model contains constitutive
relation between the pressure and the cross section of the tube

a — agp
p:
B

where p. is surrounding pressure. Presented system (7) can be written in the matrix form

uy + [f(u7 x)]:v = 'AD(U, 33‘), (9)

+ e, (8)

with u(z,t) being the vector of conserved quantities, f(u,z) the flux function and (u, x) the
source term. This relation represents the balance laws. For the following consideration, we
reformulate this problem to the nonconservative form.

4.1 Decompositions based on augmented system

The numerical scheme for solving problems (9) can be written in fluctuation form

0U; 1 _ _
a—tJ - _M[A (Uj+1/27U;r+1/2) ™ A(Uj+1/27U;r—1/2) T A+(Uj—1/27U;r—1/2)]7 (10)
where A* (Uj]_1 /2 U;FH /2) are so called fluctuations. They can be defined by the sum of waves

moving to the right or to the left. We use the notation U;.:l /2 and U]._Jrl /2 for the approximations
of limit values of reconstructions from the discrete cell averages at the points x; /5. The most

common choices are based on the minmod function or ENO and WENO techniques.

The our approach is based on the extension of the system (7) by other equations appropriately
chosen degenerate conservation laws. The advantage of this step is in the conversion of the
nonhomogeneous system to the homogeneous quasilinear one wy + B(w)w, = 0 and possibility
of preserving general steady states (see [1]). It is very important to choose such approximation
which conserves steady states, if these states occur exactly. The steady state for the augmented
system means B(w)w, = 0, therefore w, is a linear combination of the eigenvectors correspond-
ing to the zero eigenvalues.

5 Complex model of the bladder and the urethra

The whole voiding model consists of the detrusor smooth muscle cell model and the model of
the urethra flow. It is described by the system of 12 equations describing the bladder model and
the detrusor contraction during voiding (1), (2) and (4) and 2.J equations of urethra flow, where
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J is the number of finite volumes of the urethra region. The connection between the detrusor
model and urethra flow is implemented by the relation (6) and the constitutive relation (8). The
outflow of the bladder is the same as the inflow to the urethra region. So the pressure of the
bladder is dependent on the flow rate in the tube (6). The cross-section in the first finite volume
of the urethra region is then given by the constitutive relation (8). From the view of urethra
flow, the inflow boundary condition consists of the given cross-section and extrapolation of the
flow rate from the urethra region.

6 Conclusion

We presented the complex model of the lower part of the urinary tract. A simple bladder
model and the detrusor contraction model were developed during voiding together with the
detailed model of urethra flow. The urethra flow was described by the high-resolution positive
semidefiniteness method, which preserves general steady states.
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1 Introduction

The behaviour of the solution of Stokes and Navier-Stokes equations in domains with corners
or with discontinuities in boundary conditions is still not quite well understood. We use the
analytical solution to characterize the singular part of the solution. The asymptotics apply also
to Navier-Stokes equations. The results are applied to two examples: the flow in a channel with
forward and backward steps, and the problem of lid driven cavity.

2 Analytical solution of the Stokes flow near corners

We consider the Stokes problem in vorticity - stream function formulation, cf [1], and transform
the problem to polar coordinates x = rcos?¥ , y = rsind , with the pole in the corner P, cf.
Fig. 1.

I
—

Figure 1: The solution domain 2.

So we have to find stream function (r,9J) and vorticity w(r,d), satisfying the equations

%y 1oy 1 0% B Pw 10w 1 0%w

W—F;E—Fﬁw__w’ W—F;E—’_EW: 0. (1)

To solve the equations (1) we use separation of variables,
Y(r,9) =P(r)- FW), w(r,9)=R(r) -GW). (2)
Analyzing arizing differential equations we come to the asymptotic formula for stream function
Y(rd) =r VF2LR@W)  (+hodt), (3)
where k is a positive parameter depending only on the angle of the corner.

Example 1. We consider flow in 2D region with boundary corner of internal angle ¢, as e.g.
on Fig. 1. We assume nonslip boundary conditions, so the boundary conditions for the stream
function are

o
09

(r,0) =0, 8—¢(r, v)=0. (4)

U(,0) =0, b(r,) =0, -
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As an example we take the domain shown in Fig. 1, where the angle ¢ = %ﬂ'. Then we get
vk = 0.45552. Now, by (3) we get e.g. the asymptotics for stream function, near the corner P

Y(r,9) = rPHB U P9)  (+hoot.), (5)
with F' independent of r. So we get the asymptotics for velocity components and pressure
u, = 054448 Fi(9), ug= ,-0.54448 B(9), p= —0.45552 Fy(0), (6)

where Fy (), F5(¥), F3(19) are independent of r. The same formulas apply to point Q.

Example 2.
Let us consider 2D flow in lid driven cavity, see Fig. 2, with boundary conditions
3
W(r, 571) =0, Y(r,27) =0, (7)
10¢, 3 10y
22— o) =1

for left upper corner.

Figure 2: The lid driven cavity.

We solve the equations (1) similarly as above, by means of separation (2). One can then derive
the asymptotics in upper corners of the cavity

P(r,9) =r-FW), u.=F'(9), ug=F®W), prJ)= %@(19), 9)

which are much worse than in case of the corner in Example 1.

3 Application to finite element calculations

The application of the asymptotics may be at least twofold. First, the analytical solution near
corners may be used to direct checking of numerical solution. Second, combining the asymptotics
of Navier-Stokes equations with a priori estimates we get an algorithm for generating the finite
element mesh at such corners cf. [2, 3]. As an application we show on Fig. 3 the locally refined
mesh near upper corners of lid driven cavity, and pressure calculated by this algorithm.

4 Conclusion

We solve analytically the Stokes problem in 2D domains, using polar coordinates and separation
of variables. This is then used to find the asymptotics of the solution near corners, also for
Navier-Stokes equations. We show application to very precise finite element solution.

Acknowledgement. This work has been supported by the grant No. 106/08/0403 - GACR
and by the project IT4Innovations.
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Figure 3: Lid driven cavity, Re = 10,000 Left: mesh 128x128 refined locally Right: pressure.
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1 Introduction

Our contribution is divided into two parts. In Part I, see [6], we focus on theory of discretized
problems and suitable numerical methods. In Part II, we describe implementation of the problem
and illustrate it on a model example.

In Part I [6], we have proposed the modified semismooth Newton method for the primal formula-
tion of the problem and mentioned the Uzawa method for the augmented Lagrangian formulation
of the problem. In each step of both methods, we mainly solve a problem that is similar to the
contact problem with elastic bodies. This inner problem can be classified as a quadratic problem
with simple constraints.

In Part II, we rewrite the inner problem on its dual form in terms of Lagrange multipliers
enforcing the non-penetration condition on the contact zones. The dual problem is solved by
the SMALSE method [3]. For a parallel implementation, we combine the method with the
TFETI domain decomposition method [2], see Section 2. The whole contact problems of elastic-
perfectly plastic bodies is implemented in MatLab within the MatSol library [5]. We illustrate
the investigated numerical methods introduced in Part I [6] and Part IT in Section 3.

2 Solution of the inner problem

Since we apply the TFETI domain decomposition method [2], we tear the bodies from the
parts of the boundaries with the Dirichlet boundary condition, decompose it into subdomains,
assign each subdomain by a unique number, and introduce new “gluing” conditions on the
artificial intersubdomain boundaries and on the boundaries with imposed Dirichlet condition. In
particular, the domain Qﬁl = () is decomposed into a system of s; disjoint polynomial subdomains
QP C QY p=1,2,...,8, i =1,2, see Fig. 1. The partition corresponds to the finite element
partition described in Part I [6].

We introduce an algebraic scheme of the inner problem related to the domain decomposition.
It means that a displacement vector v € R™ has the following structure:

(ST T T T T \T
VvV = (V1’17V1’27... 7V17817V2717"' 7V2782) 5

where v; ,, denotes the displacement vector on Q%?, i = 1,2. Then the algebraic representations
of the space V and the set K introduced in Part I [6] are defined as follows:

V:={veR" | Bgv=o0}, (1)

K:={veR"|Bgv=o, Bv<cs}. (2)

36



Here the equality constraint matrix By € R™E*" represents the gluing conditions among neigh-
bouring subdomains and the Dirichlet boundary conditions. The inequality constraint matrix
B; € R™*™ represents the non-penetration condition on the contact zones.

Let K. € R™"™ be a block diagonal matrix consisting of the elastic stiffness matrices K5 defined
on each subdomain Q*?, i = 1,2, p = 1,...,s;. Due to the presence of the Dirichlet boundary
conditions on both subdomains and the Korn inequality, we can define the energy norm on V:

2 S;
i T
IVlle :== VVITK.v = ZZVZpKé’pvi,p, v = (V{l,...,v{sl,vgl,...,v;@) ev.

i=1 p=1

The scheme of the inner problem is the following:
findue Ky: Jr(u) < Jg (v) Vv e Ky, (3)

where )
Jp(v) = ivTKkv —flv, veky. 4)

Here k denotes the k-step of both methods. In case of the Uzawa method K = K, K; = K,
and u represent the displacement at the next step k + 1. In case of the Newton method,

Kp:=K—uF = {veR"; Bgv=o0, Bjv<cri}, crp=cy— Bu”,
K represents the function 7" introduced in Part I [6], i.e.
viwl? < wiKpw < ||w|? Vv,weV, (5)

and u, u® represent du¥, u*F from Part I [6], respectively. For both methods fj denotes the
load vector in dependence on the k-th step. The problem (3) is practically the same as contact
problems of elastic bodies. Therefore we can use the same techniques as in [4], [3] or [1] based
on the SMALSE method.

To use the method, we replace all the constraints by the Lagrange multipliers, see the Figure 1.
In particular, we use two types of Lagrange multipliers, namely A; € R™, A; > o related to
the non-penetration condition, Ap € R related to the “gluing” and Dirichlet conditions. To
simplify the notation, we denote

o AE o BE o o
=3 ] e-lw ] el

A={x= AL ADHT e RmET™ . N; > 0}

Then the Lagrangian associated with problem (3) reads as

and

1
Lip(v,A) = §vTKkv —flv+ AT (Bv—c;), veR", AeA. (6)

Using the convexity of the cost function and constraints, we can use the classical duality theory
to reformulate problem (3) to get

Jp(u) = min Ji(v) = mi Le(v,A) = inf Ly(v,\) = —OL(A 7
k(u) Doin Ji(v) in sup (v, A) = max inf Li(v,A) = max{-©;(A)},  (7)
with
INTBKIBTA - AT(BK[f, — ¢), RI(fy — BTA) =o,
400, otherwise,

Or(A) = {
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Figure 1: Scheme of the geometry and domain decomposition.

where K}; is a pseudoinverse matrix to Kj, and Ry, € R™*! represents the null space of K. Thus
the corresponding dual problem has the form:

find Ak e A ©,(AF) <OL(A) VAeA. (8)

We solve the dual problem by algorithm SMALSE-M [3]. The algorithm is based on active set
strategy and it combines three steps: CG with preconditioning based on orthogonal projectors,
expansion, and proportioning.

Once the solution A* of (8) is known, the solution of (3) can be evaluated in this way:
u=K(f-B"A) + Ryar, ar=(R}B BR;) 'RIB’ (¢, — BKL(f, — BTA")),

where the matrix B and the vector €, are formed by the rows of B and c;, corresponding to all
equality constraints and all active inequality constraints.

Notice that we use in fact the inexact Newton method with respect to computing of u.

3 Numerical experiment

In this section we compare numerical methods introduced in Part I [6] on a numerical example.
The geometry of the problem is depicted in Figure 1. The dimensions of Q!, Q2 are
3000 1000x 1000. The indicated traction forces are prescribed by the constant function g = 150.
The mesh is generated in MatSol and has 53802 nodes and 288 000 tetrahedrons. Finally, we
decompose ', Q? into 48 subdomains. After decomposition we have 191664 primal variables,
33933 dual variables, and from these are 1029 contact pairs. The bodies Q!, Q? are made of
homogenous isotropic materials with the parameters E' = E? = 206900, v' = v? = 0.29, and
a; = af/ = 450. The influence of the loading parameter A has not been investigated yet in this
example, i.e. we set A = 1. The proposed algorithms are parallelized using Matlab Distributed
Computing Server and Matlab Parallel Toolbox. For all computations we use 24 cores with 2GB
memory per core of the HP Blade system, model BLc7000. Since we expect that the choisen
load is far from the limit load, we use the stopping criterion which compare relative displacement
increments.

In Table 1, we see the iteration process of the Newton method for » = 0. In this table we show,
how the program behaves in each Newton iteration. The column ”Val. of J,” means the value
of the nonlinear functional 7, defined in Part I.
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Numb. of | SMALSE | Hessian | Numb. of Conv. | Time | Val. of J
Newt. its. its. | multipl. | plas. els. disp. times 10°
1 21 272 0 1] 822 -1011.622
2 10 656 22 246 | 4.5328e-1 | 147.3 | -1 102.614
3 9 829 32 624 | 1.2649e-1 | 200.9 | -1 130.835
4 8 1317 38 918 | 6.2349¢-2 | 323.3 | -1 136.048
5 8 1399 39 994 | 2.8553e-2 | 274.1 | -1 139.456
6 8 1 406 41 055 | 2.1786e-2 | 301.3 | -1 139.540
7 8 1564 41 236 | 2.8527e-3 | 343.3 | -1 139.540
8 8 1618 41 236 | 1.5401e-6 | 383.2 | -1 139.540

Table 1: The Newton method for v = 0.

v | Numb. of | SMALSE-M | Hessian | Numb. of | Time for total
Newt. its. its. multi. | plas. els. | 1 New. it. time

0 8 8 1618 41 236 383.2 | 2067.5
0.05 24 13 743 41 236 177.1 | 37577
0.10 33 15 572 41 216 140.9 | 4 551.7
0.15 45 16 507 41 220 136.4 | 5 644.8
0.20 54 17 472 41 209 126.2 | 6 383.4
0.25 62 17 428 41 200 114.5 | 6 803.1
0.30 69 18 332 41 181 107.5 | 7 042.0
1.00 139 22 275 40 886 98.1 | 14 099.7

Table 2: The Newton method with approx hessian by parametr v.

r | Numb. of | SMALSE-M | Hessian | Numb. of | Time for total
iters. iters. multi. | plas. els. 1 iter. time

0.05 86 20 395 41 192 102.0 | 8 178.4
0.10 58 22 279 41 200 74.8 | 4 618.8
0.15 47 22 273 41 216 72.1 | 3992.1
0.20 45 22 276 41 223 75.8 | 3 790.6
0.25 54 22 276 41 218 73.6 | 4 446.9
0.30 63 22 275 41 212 72.3 | 5297.8
0.35 71 22 277 41 209 75.4 | 5 923.3
0.40 78 22 276 41 206 73.4 | 6 423.9

Table 3: The Uzawa algorithm with parametr r.

In Table 2, we compare the number of Newton iteration, the average number of SMALSE-M
iteration for one Newton iteration, the average number of Hessian multiplication, the worst
time for one Newton iteration and the total time for the Newton method in dependence on the
regularization parameter v. In this case, we observe the best convergence for v = 0. Therefore
we suppose that the prescribed load is far from the limit load based on the theoretical results
from Part I.

In Table 3, we compare similar quantities as in Table 2 for the Uzawa algorithm in dependence
on the penalty parameter r > 0 from the augmented Lagrangian formulation of the problem.
We see that the best convergence results are observed for r = 0.2. However it seems to be
problematic to estimate an optimal value of r a priori.

In Figures 2 and 3, there are depicted the von Mises stress distribution and total displacement
which are the same for both methods.
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Figure 2: Distribution of von Mises stress. Figure 3: Total displacement.

4 Conclusion

In this contribution, we have described some implementation details of the contact problems of
elastic-perfectly plastic bodies. We have also illustrated the Newton and Uzawa methods on the
numerical example. We plan to study stability and robustness of the methods in dependence on
increasing A up to the limit load. We also plan to use different numerical methods for solving
the inner problem like the semi-smooth Newton method for its primal-dual formulation.
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On using unitary matrices for the investigation
of GMRES convergence behavior

J. Duintjer Tebbens

Institute of Computer Science AS CR, Prague

1 Introduction

In this extended abstract, we consider the convergence behavior of the GMRES method [9] for

solving linear systems
Ax =b, AeC™" beC".

With zero initial guess zog = 0, the kth GMRES iterate is the vector z; in the kth Krylov
subspace minimizing the residual norm, i.e.
xp =arg min |[|b— Az, Ki(A,b) = span{b, Ab, ..., AF=1p}. (1)
IE/Ck(A,b)
Hence the kth residual vector r, = b — Ax;, is the difference between b and its orthogonal
projection onto the Krylov residual subspace AK(A,b).

It has been known for some time that eigenvalues alone cannot explain GMRES convergence
behavior for general non-normal matrices. This was shown in the 1994 paper [5], in which the
authors studied so-called GMRES(A, b)-equivalent matrices. A GMRES(A, b)-equivalent matrix
B generates the same Krylov residual space as the one given by the pair (A,b), that is

BICk(B,b) = AICk(A, b), k= 1,2, oo,

(we assume throughout, that GMRES applied to A, b does not terminate until the step n, i.e.,
dim(K,, (A,b)) = n). Then GMRES applied to (B, b) yields the same convergence history (with
respect to residual norms) as GMRES applied to (A4, b). It was proved in [5] that the spectrum
of B can consist of arbitrary nonzero values. In [6] this was complemented with the fact that
any nonincreasing sequence of residual norms can be generated by GMRES and [1] closed this
series of papers with a description of the class of matrices and right-hand sides giving prescribed
convergence history while the system matrix has prescribed nonzero spectrum; for a survey
see [7, Section 5.7]. In [2] one finds a parametrization of the class of matrices and right-hand
sides generating, in addition to prescribed residual norms and eigenvalues, prescribed Ritz values
in all iterations.

All these results show that spectral information can be very misleading when explaining GMRES
convergence behavior with general, non-normal matrices. On the other hand, for normal matrices
the behavior of the GMRES method is well-understood in terms of the eigenvalues of the matrix
and the components of the right-hand side in the eigenvector basis. It was shown in [5] that
for every pair (A,b) there always exist GMRES(A, b)-equivalent matrices B which are normal
and even unitary. Therefore we can try to analyze the behavior of the GMRES method applied
to (A,b) with the spectral properties of any normal GMRES(A, b)-equivalent matrix. The goal
of this extended abstract is to explain how the eigenvalues of a unitary GMRES(A, b)-equivalent
matrix are related to properties of the pair (A,b) and to briefly discuss what these eigenvalues
can tell about the convergence of GMRES applied to (A, b). For proofs and more details on the
presented material, see the forthcoming publication [4]. This is joint work with Gérard Meurant
and Zdenék Strakos.
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2 Eigenvalues of unitary GMRES(A, b)-equivalent matrices

Unitary GMRES(A, b)-equivalent matrices can be characterized as follows [4].

Theorem 2.1. Let A € C™™ be nonsingular and let b € C™. The following assertions are
equivalent:

1- B is unitary and GMRES (A, b)-equivalent,

2- B =WV*, where V is a unitary matriz whose first k columns give a basis of Ki(A,b) for
1<k <n and W is a unitary matriz whose first k columns give a basis of AKk(A,b) for
1<k<n.

It follows that the eigenvalues of unitary GMRES (A, b)-equivalent matrices are the eigenvalues
of generalized eigenvalue problems of the form

Ve =pW*a,

where V and W are as defined in the previous theorem. The same holds for the eigenvalues of
unitary matrices C such that the pair (C, ¢), with ¢ not necessarily equal to b, generates the same
GMRES convergence curve as (A,b) [4]. Note that V' and W depend strongly on the interplay
between A and b, hence the eigenvalues p will in general also depend on this interplay and not
on properties of A alone.

It is clear from Theorem 2.1 that there may exist unitary GMRES(A, b)-equivalent matrices
with different spectra: If V' is a unitary matrix whose first & columns give a basis of K (A, b) for
1 <k < n, then so is V. D* for any diagonal unitary matrix D. Hence all matrices of the form

WDV*, D is diagonal and unitary,

are unitary GMRES(A, b)-equivalent. But the spectra of WV* and WDV™* can differ signifi-
cantly; they need not be rotations the one of the other and they do not interlace in general.

Let us give a small example. We can construct an unreduced upper Hessenberg matrix H of size
seven such that GMRES applied to (H,e;), e; being the first column of the identity, generates
the residual norms

il = 0.5, [l =0.1
Irs = 0.05, 4] =0.01, 2)
sl = 0.005, ||rg|l = 0.001.

To achieve this, we can use the parametrization of [3, Theorem 2] and define H as

H—v-cu v—| 9
) 0 T )

with

_ VIre—2l* = llre—1]]?
[re—2lllre—1]|
and where C is the companion matrix of a polynomial having as its roots the eigenvalues of H.
Here we choose T' = Ig and we choose the spectrum of H to consist of the value 1. A unitary
matrix V' whose first k£ columns give a basis of Kr(H,e1) for 1 < k < n is given by V = I;
and a unitary matrix W whose first & columns give a basis of HI,(H,ep) for 1 < k < n is

k=2,...,7

g =1,
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Figure 1: Spectrum of @ (left) and of QD; (right).
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Figure 2: Spectrum of @Dy (left) and of QD3 (right).

any Q factor @) of a QR factorization of H. Hence with Theorem 2.1, B = WV* = Q is
GMRES(H, e;)-equivalent and so is QD for any diagonal unitary D. We computed a Q factor @
of a QR factorization of H and the spectrum of this (real) @ is displayed on the left part
of Figure 1. The spectra of QDy,QDs and QD3 where D;,i = 1,2,3 are random (complex)
diagonal unitary matrices, are displayed on the right part of Figure 1 and in Figure 2. The four
spectra do not seem to be related by any special properties, but GMRES applied to (QD;,e1)
and to (Q,e1) generates the residual norm history (2) for all i = 1,2, 3.

Thus, in general there will be more than one unitary spectrum corresponding to a certain
GMRES convergence curve and one may ask wether the eigenvalues of unitary GMRES(A, b)-
equivalent matrices need tell us anything at all about GMRES-convergence for (4,b). In fact, all
we now is that if the spectrum of a unitary equivalent matrix has a large maximum gap, then we
have fast GMRES convergence. This was shown in [8]. On the other hand, fast convergence can
be forced with any unitary spectrum by appropriate choice of the right-hand side [4]. A special
case is when GMRES stagnates. Then the corresponding unitary spectra will all be rotations
of the roots of unity [10]. This result is slightly modified in case of partial stagnation [4]. But
as follows from what we mentioned, if a unitary equivalent matrix has a spectrum representing
a rotation of the roots of unity, it may also generate fast convergence if we choose the right-hand
side appropriately.

Summarizing, in special situations the eigenvalues of unitary GMRES(A, b)-equivalent matrices
can tell us something on the convergence of GMRES for (A, b) and vice-versa, some special cases
of convergence behavior for (A, b) determine the eigenvalues of unitary GMRES(A, b)-equivalent
matrices. In general, however, looking only at the eigenvalues of unitary matrices is not enough
to explain GMRES convergence. Components of the right-hand side in the eigenvector basis
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must also be taken into account. If time allows it, the last part of the talk will address a novel
formula for the kth GMRES residual norm generated with normal matrices, which contains only
eigenvalues and components of the right-hand side in the eigenvector basis.

Acknowledgement: The work of J. Duintjer Tebbens is a part of the Institutional Research
Plan AV0Z10300504 and it was supported by the project M100301201 of the institutional support

of the AS CR.
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Composite polynomial convergence bounds, the CSI method
and finite precision CG computations

T. Gergelits, Z. Strakos

Faculty of Mathematics and Physics, Charles University in Prague

1 Introduction

The conjugate gradient method (CG) [6] is used for solving linear algebraic system
Az =b (1)

with Hermitian and positive definite (HPD) matrix A € CV*¥ which is large and sparse. The
CG method is nonlinear (see, e.g., a thorough discussion in [12]) and it exhibits the so-called
superlinear convergence, i.e., it tends to accelerate during computations. The bound most com-
monly associated with the convergence rate of CG is, however, linear and thus unable to describe
this phenomenon. In case of isolated large eigenvalues, Axelsson [1] and Jennings [8] describe the
CG superlinear convergence behaviour via the so-called composite polynomial bounds. Assuming
exact arithmetic, they work quite well. Since the finite precision CG behaviour is quantitatively
and qualitatively different from the CG behaviour in exact arithmetic, the composite polynomial
bounds must fail in practical applications. Despite experimental warnings (see, e.g., [8, 17])
and clear theoretical arguments ([5]), misleading conclusions and inaccurate statements keep
reappearing in literature; see [13, Remark 2.1], [16, Theorem 2.5], [7, Section 9], [9, p. 18 and
Exercise 2.8.5] and [10, p. 261].

2 The CSI convergence bound based on scaled and shifted Che-
byshev polynomial

The importance of Chebyshev polynomials in numerical computations was pointed out in the
works of Flanders and Shortley [3], Lanczos [11] and Young [19]. This gave rise to the Chebyshev
semi-iterative method (CSI) thoroughly described, e.g., in [18, Chapter 5], [20, Chapter 11] which
was understood as an acceleration of the stationary Richardson iterations [14]. The k-th error
of the CSI method can be written as

Xk (A)

T— Tk = T—z 2

) (z — o) (2)

where xx () is the k-th shifted Chebyshev polynomial
2\ — Av —
cos | k arccos LS S for A € [A1, An],

_ AN — A1

Xk(A) X — Ay — \; (3)

cosh [ karccosh | —————— for A ¢ [\, A\n]
AN — A

and the method is optimal in a sense that xx(\)/xx(0) represents the unique solution of the
minimization problem

i M. 4
R, 23 ) “
deg(p)<k
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Using the spectral decomposition of the HPD matrix A = Udiag(Ay,...,An)U*, U*U=UU*=1,
where 0 < A\ < ... < Ay, U = [u1,...,uy], and using |xx(N)| < 1 for A € [\, Ay], the relative
A-norm of the error is in the CSI method bounded as

lz — 2|4 xe(A) ]| o |
[ —zoll4 = H xx(0) ” = b max ba(A)l (5)
< Ixx(0)| ! o k(M) = [xx(0)] 7 (6)

k
gz(%), H(A)zi—flv, k=12 (7)

where the last inequality is an easy consequence of the alternative definition of the Chebyshev
polynomials (see, e.g., [15, Section 1.1]). The bound (7) for the CSI method was published
explicitly in this form by Rutishauser [2, 11.23] in 1959 and we see that it is based only on
information about the extreme eigenvalues A1 and Ay. It should be emphasized that Rutishauser
then trivially concluded that since the CG method minimizes the A-norm of the error, the
bound (7) is valid also for the CG method.

Using the spectral decomposition of A, we can for the CG approximations write

1/2

N
|z — 2l o = min  [(A)(z —z0)l, = min >[N ENN) (8)
©(0)=1 »(0)=1 .
deg(p)<k deg(p)<k (I=1

<l|lz—= min max i
<loe—wola min max ()
deg(p)<k

; 9)

where |¢;| represents the size of the component of the initial error  — x( in the direction of the
eigenvector u; corresponding to Aj, i.e., x — xg = Z;Vzl §juj. The formula (8) shows that the
error of CG computations is based on information about all eigenvalues of A and all projections
of the initial error on the corresponding invariant subspaces. Naturally

Join - :Iglng\sO( il < Join Ae?;i};N]‘(b( )| = Ixx(0)] (10)
deg(p)<k deg(¢)<k

where the right part depends only on the extreme eigenvalues of A.

3 Composite polynomial bounds and their relevance in finite
precision computations

In order to describe the superlinear convergence, Axelsson [1] and Jennings [8] consider in the
presence of m outlying large eigenvalues the following polynomial

(V) = fv[ (1_%) (1)

j=N—m+1

Using |gm(A;)] < 1for j=1,...,N —m and the composite polynomial
Qm(A)Xk—m(A)/Xk—m(O)v (12)
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Figure 1: The sequence of the composite polynomial bounds (13) (dashed lines) for increasing

number of large outlying eigenvalues (m = 0,3,6,...) is compared with the results of finite
precision CG computations (bold solid line) and exact CG behaviour (dash-dotted line).

where Xk_m(A) denotes the Chebyshev polynomial of degree k — m shifted to the interval
[A1, AN—m] results in the bound

o —ally _ (/o) 1
[z —zolla = \ \/Em(A) +1

where k,,(A) = An_m/A1 is the so-called effective condition number. This quantity is typi-
cally substantially smaller than the condition number x(A) which indicates a possibly faster
convergence after m initial iterations (cf. [12, Theorem 5.6.9]).

k—m
) , k=m,m+1,..., (13)

This is true, however, only in ezxact arithmetic. In finite precision computations this bound
must, in general, fail. Motivating example is presented in Figure 1. While the bounds with the
increasing number of the largest eigenvalues considered as outliers form close envelope of the
exact CG behaviour (dash-dotted line), none of the straight lines describes the finite precision
behaviour (bold line). The failure of the composite polynomial bound (13) in finite precision
CG computations can occur even for a small size and/or conditioning of the problem. The
explanation of the point is based on the backward-like analysis done by Greenbaum [5]. For
more details we refer to [4] and [12, Chapter 5].

Acknowledgement: This work has been supported by the ERC-CZ project LL1202 and the
GAUK grant 695612.
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FLLOP: a massively parallel QP solver
V. Hapla, D. Hordk, F. Stanék

IT4Innovations & DAM, VSB-Technical University of Ostrava

1 Quadratic programming

Discretization of most engineering problems, describable as partial differential equations (PDE),
leads to large sparse linear systems of equations (perhaps using some linearization technique).
However, problems that can be expressed as elliptic variational inequalities, such as those de-
scribing the equilibrium of elastic bodies in mutual contact, are more naturally discretized to
quadratic programming problems (quadratic programs, QP). They take this canonical form:

1
min - x' Ax — b'x (1)

x 2
subject to Bpx = cp, (2)
B[X < Cy. (3)

We will consider problems with a symmetric positive definite Hessian A. The vector b is called
righ-hand side. QP can be thought of as a generalization of a linear system of equations with
prescribed equality (2) and inequality (3) constraints. Very common special case of inequality
constraints are box constraints

I<x<u (4)

where elements of 1 have values from RU {—o0} and elements of u have values from RU {+o00}.
Note that unconstrained QP (Bg,cg, By, cs are zero objects) has the same solution as a linear
system Ax = b.

2 FLLOP design

We present here our novel software package for solution of QP called FLLOP (FETT Light Layer
On top of PETSc). It is an extension of PETSc framework. PETSc (Portable, Extensible Toolkit
for Scientific Computation) [8] is a suite of data structures and routines for the parallel solution
of scientific applications modelled by PDE.

FLLOP is carefully designed to be user-friendly while remaining efficient and targeted to HPC.
The typical workflow looks like this:

1. natural specification of the QP by the user,
2. a user-specified series of QP transformations,

automatic or manual choice of a sensible solver,

- W

solution of the most derived QPs by the chosen solver,

5. a series of backward transformations to get a solution of the original QP (triggered by the
solver).
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Specification of the QP. A class used to specify a QP problem is called simply QP. It is
a data structure containing at least the Hessian matrix A, right hand side b and the solution
vector x (these objects are called Operator, Rhs, SolutionVector in FLLOP). Additionaly,
any combination of these constraints can be specified:

1. equality constraints (Beq, ceq),
2. inequality constraints (Bineq, cineq),

3. box constraints (1b, ub).

Objects that are not specified (i.e. set to PETSC_NULL) are handled as zero objects.

QP transformations and backward transformations. A QP transformation derives a new
QP from the given QP. They allow use of efficient solvers but are themselves solver-neutral.
Currently, we have these in FLLOP:

1. dualization (Dualize),
2. homogenization of the equality constraints (HomogenizeEq),

3. enforce Bpx = o using penalty or projector onto the kernel (EnforceEq).

For instance, homogenization of the equality constraints transforms a QP with general equality
constraints Bgx = cg to a new one with homogeneous equality constraints Bgx = o. It
consinsts in finding a particular solution X that satisfies BgX = ¢p. The right hand side by and
the box constraints (lp,ug) of the original problem are then transformed to by = b — Ax and
(11,u1) = (I — X, ug — X), respectively.

In FLLOP, every QP transformation creates a new instance QP1 of the QP class based on the
original QPO. The data are either (1) shared between QPO and QP1, (2) copied from QPO, modified
and stored to QP1. Furthermore, links between QPO and QP1 are created: QPO has a child link
to QP1, QP1 has a parent link to QPO. Thus, sort of doubly linked list is generated where every
node is a QP.

Of course, the solution x; of the new QP is not equal to a solution xg of the original one —
we have to carry out a properbackward transformation of the solution. In the above-mentioned
case, it holds that xg = x; + X. In FLLOP, we use a notion of post-solve function for this
purpose. It is a pointer to function that computes the solution of the parent QP based on
solution of the children QP; it is injected to the child QP by the transformation function. The
post-solve functions connected to a given series of QP transformations are called by the solver
in the reversed order of those to get the solution of the very original problem.

We also need to store somewhere the auxiliary data created by the transformation and needed
by the backward transformation (X in our case). For this purpose so called post-solve context
is used; it is a void pointer, also injected to a child QP. Note that the child QP does not
use nor know anything about the post-solve function and context; they are only set by the
transformation function and accessed by the solver.
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QP problems (QP)
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Matlab (KSP) (pc)
METIS - torf Matrices Vectors Index Sets
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MUMPS (Mat) (Vec) (1S)
SuperlLU
MPI BLAS LAPACK

Figure 1: Hierarchy of PETSc and FLLOP and their relations to external software.
3 FETI in FLLOP

FLLOP was originally developed as an implementation of the FETI domain decomposition
method. However, most recent advances in the design of FLLOP allow more general use. There
are essentially two levels of generalization:

1. It allows to apply FETI to variational inequalities (e.g. contact problems).

2. The algebraic part of FETI computation is generalized to a specific combination of data
structures, QP transformations, direct and iterative solvers. However, these ingredients
can make sense also out of the original FETI method. For instance, dualization can be
useful also for undecomposed problems; on the other hand, decomposed problems can be
solved without dualization.
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On a pathfollowing method for solving the contact problem
with Coulomb friction

J. Haslinger, V. Janovsky, R. Kucera

L2 Faculty of Mathematics and Physics, Charles University, Prague
3 Department of Mathematics and Descriptive Geometry, VSB-TU, Ostrava

1 Discrete static contact problems with Coulomb friction

Consider deformable bodies in mutual contact. The relevant mathematical description consists
in modelling both non-penetration conditions and a friction law. The widely accepted Coulomb
friction law represents a serious mathematical and numerical problem.

In particular, we consider the static contact problem with Coulomb friction on a planar domain.
The problem is uniquely solvable, provided that the friction coefficient F > 0 is sufficiently small,
see e.g. [2]. Note that no essential contribution was made concerning solvability of this problem
for general data. Nevertheless, engineers had always solved this important problem numerically,
regardless unresolved theoretical issues. In the natural finite element (FEM) approximation, the
discrete problem has always a solution, disregarding the size of F, see [6, 4, 9].

RERRRR
]

I Y VAN BN AN Y RNAY,
N N ENENAN AN N RN NN

YYVYYYYYVYVVVVVYVYYY g

Figure 1: Contact of two elastic bodies Q! (the upper body) and Q?, along the contact bound-
ary ['c.. The loading is due to the surface traction. On the right: Resulting displacements.

We consider a particular geometry, see Figure 1. The FEM approximation (linear elements)
yields the following primal-dual discrete state problem:

Ku+ N\, +T™\ =f, (1)
Nu <0, A, >0, Al Nu=0, (2)
|Atil < Fnis

|Atil < FAni = (Tu); =0, i=1,...,m, (3)

Aeil = Fhni = Feei >0 (Tu); = cridis

where (u, Ay, Ar) € R” x R™ x R™. Here u approximates displacement field, n is dofs. A, and
A: approximate normal and tangential stress components along the contact boundary I';, m is
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the number of contact nodes. Data of the model: K € R™*™ is positive definite stiffness matrix,
N, T € R™ " are full rank matrices (the actions of distributed contact forces along normal and
tangential directions), f € R™ are nodal forces.

The inequalities (2) and (3) can be equivalently written as
)\,, — PRT ()\,, + pNu) =0 and )\t — P[—]:Au,fku}()‘t + pTu) = 0,

respectively, where Prm and P_zy, ra, are suitable projectors, see [3]. Parameter p > 0
m —FAu.FA]

is arbitrary, but fixed (e.g., p = 1). Therefore, solving (1)—(3) is equivalent to finding roots

Yy = (u, Ay, A¢) € R" x R™ x R™ of the equation

Ku+N'A, +T"X\ f
G(y) = )\,, — PRT(AV + pNu) = 0 5 (4)
At — P[—]:Ay,]:)\u](At + pTU) 0

where y = (u, A, A¢{) € R” x R™ x R™. The mapping G : R"*?" - R"+2™ is continuous and
piecewise smooth. In particular, it is piecewise affine, see e.g. [10] for the notion.

2 The semi-smooth Newton method

For solving (4), we apply the Newton iterations. Due to nature of the operator GG, semi-smooth
methods are applicable, see e.g. [7]. Let M = {1,2,...,m} be the set of all indices of contact
points: Given y = (u,A,,A;) € R" x R™ x R™ we define the inactive sets I, = Z,(y),
I =T (y), I, =1, (y) by
7T, ={ie M:\,; + p(Nu); <0},
It+ = {Z eM: )\m + p('I\ll)Z — f)\,,,i > 0},
It_ = {Z eM: )\m + p('I\ll)Z —|—f>\,,,i > 0},
and the active sets A, = A,(y), Ar = Ai(y) as their complements:
A, =M\, A=M\ (T UTL).
Let us introduce the indicator matrix Dg € R™*™ of § C M as follows:
) 1, ieS,
DS_dzag(S:L?"'?Sm)? S’l_{ O7 ZGM\S.
We observe that
Ku+ N, +TT\
Gly)=| A —Da (A +pNu) =J(y)y,
At — Dy, (A + pTu) — Dzj]:)‘v + DI;]-")\V

where
K NT T
J(y)=| —pDa,N Dz, 0 : (5)
—pD 4T | F (DI; - Ij) DI;rUI;

ALGORITHM SSNM: Denote F € R"*?™ F = (£,0,0) € R" x R™ x R™, the right-hand side
of (4). Set the tolerance Frepsilon > 0. Let yO e R*H2m >0, k= 1.
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(a(k+1), y(k+1))

(a®) D

ye Rn+2m

(@t=D) y 1)

Figure 2: Solution path. For a fixed «, we may encounter up to five intersection points on the
path. They are related to five different solutions of equation (4) for the same right-hand side.

(i) Define the inactive/active sets related to y*~). Assembly the relevant J(y*—1).
(ii) Compute y*) by solving the linear system J(y*—1)y*) = F.

(iii) If [|y®) — yE=D||/||ly®)|| < Frepsilon, return y := y*).

(iv) Set k :=k+ 1 and go to step (7).

In the case of convergence, let y = SSNM(y(O), f) as a numerical solution of problem (4).

3 Continuation

Consider the Coulomb friction model (1)-(3), i.e. (4), assuming that f = f(«) depends on
a scalar parameter a. We impose a continuous loading regime and seek for a continuous response
of the model. In particular, we consider a linear loading path

fla)=(1—-a)fi +af:, acR,

where fi € R” and f> € R" are given. The resulting solution path is a curve in R x R"T2™  gee
a qualitative sketch in Figure 2. It consists of oriented linear branches, connected by transition
points.

e In order to follow the oriented linear branches, we implemented tangent continuation,
see [1], Algorithm 4.25, with SSNM as a corrector. We implemented an adaptive step-size
control.

e In order to detect transition points, we introduced branching and orientation indicators.

The idea is to modify inactive sets Z properly.

Details will be given in [5]. The actual computations are illustrated in Figure 3.

Acknowledgement: This work was supported by the Grant Agency of the Czech Republic
(grant No. P201/12/0671).
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Figure 3: Discretization: n = 1320, m = 30. Plots: Parameter a vs. the solution component A; 1,
for selected friction coefficients F.
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Shape sensitivity analysis in discretized 2D contact problems
with Coulomb friction and a solution-dependent coefficient
of friction

J. Haslinger, J. V. Outrata, R. Patho

13 Department of Numerical Mathematics, Charles University in Prague
2 Institute of Information Theory and Automation AS CR, Prague

1 Introduction

The contribution deals with shape optimization of an elastic body that is unilaterally supported
by a rigid foundation. We aim at extending existing results [1, 2] to the more general case when
the coefficient of friction F may depend on solution, namely on the magnitude of the unknown
tangential displacement: F = F(|u,|). As state problem we consider the two-dimensional,
discretized Signorini problem with Coulomb friction, but in contrast to [1], the coefficient of
friction is a function of the unknown solution. In particular, we concentrate on deriving first order
sensitivities of the displacement field and normal contact stresses along the contact boundary.
This will be done in the fashion of [2] and [4], namely, using the generalized differential calculus
of Mordukhovich ([5]).

2 The state problem

Let a,b > 0 be given and let an elastic body be represented by the domain Q(«) := {(x1,22) €
R? |0 <21 <a, afr) < 19 < b}, where

o € Uyg = {a € C¥([0,a]) | 0 < a < Co, [|]|0(0,0) < C1, Co < meas Q) < Cs}. (1)

It is implicitly assumed in (1) that U,q # 0. Let 9Q(«) be split into three non-empty, disjoint
parts I'y, I'p and I'.(«) with different boundary conditions: on I', the body is fixed, while
surface tractions of density P = (Pi, P») act along I'p. On T'.(a) = Gra, representing the
contact part of 9Q(a), the body is unilaterally supported by the perfectly rigid foundation
= :={(z1,22) | xz2 < 0}. In addition to the non-penetration conditions, we shall consider effects
of friction between Q(a) and =. We use the local Coulomb friction law, but with a coefficient of
friction F which depends on the solution:

up =0 = |Ti(u)| < F(0)Tr(u) } on (1)
ur #0 = Ti(u) = —sgn(u)F(ur)To(u) o

where T'(u) = (Ti(u), Ta(u)) : 9Q(a) — R? stands for the stress vector associated with the
displacement field w = (u1,u2) : 2(a) — R2. The equilibrium state of Q(«) is characterized by
a displacement u that satisfies the system of linear equilibrium equations in Q(«), the classical
boundary conditions on I',, I'p and the unilateral and friction conditions on I'c(c).
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Following the approximation procedure described in [1, 2, 4] one arrives at the following dis-
cretized Signorini problem with Coulomb friction and a solution-dependent coefficient of friction:

For given a € Uyq find (u, A) € R™ x RY. such that:

(Ala)u,v —u)y + D F(l(ur)il)Xi(|(vr)i] = |(ur)i])
i=1

> (L(a),v —u)n + (A, v, —u,), VveR"
(L—Au,+a),>0 VueRE,

where U,q C R‘i is the convex, compact set of admissible design variables corresponding to the
discretization of (1) (p denotes to the number of contact nodes) and A is the Lagrange multiplier
releasing the non-penetration constraint. It is related to the discretization of the normal contact
stress Th(u). Further, v, v, € RP stand for the subvectors of v € R™ consisting of the first and
second components, respectively, of the displacement vector v at all contact nodes. As usual,
A and L denote the stiffness matrix and load vector, respectively. Note, that A € C1(U,q; R™*")
and L € CY(U,q; R™).

In the rest of the paper we shall be dealing with the reduced form of (M(a)) (cf. [1, 2]),
which consists in eliminating all components of the displacement field u corresponding to the
noncontact nodes of the finite element partition of the domain (a). Thus one obtains a system
of variational inequalities in terms of w,, u,, A only:

0c A (a)u; + Ay (a)uy, — Li(a) + Q1(ur, A)
0=A,()u+A, (ax)u, —A— L,(ax) (2)
Oeu,,—l—a—l—NRi()\)

Introducing the state variable y = (u;,u,, A) € R? x RE x RE | (2) can be written in the more
compact form of one generalized equation (GE):

0€e Fla,y)+Qy), (3)

where F' is continuously differentiable, Q(y) := (Ql(yl,yg),O,NRi (yg))T and the multifunc-
tion @ in (2) is defined as:

(Ql(uT,)\))i = F(|(ur)i)Ai0|(ur)i] Yi=1,...,p.

Here 70” stands for the convex subdifferential and NRi (+) is the standard normal cone mapping
in the sense of convex analysis.

Theorem 1. Let S : o — {y | 0 € F(o,y) + Q(y)} denote the control-to-state mapping and
let F : Ry — Ry be bounded and Lipschitz continuous with sufficiently small upper bound and
Lipschitz constant. Then S is single-valued and strongly reqular in Uyq. Consequently, S is
(locally) Lipschitz continuous.

Proof. By modifying the proofs of Theorem 3.8, Proposition 3.11 and Theorem 3.13 in [2]. O
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3 Shape optimization and sensitivity analysis

Let J : Uyg x RP)> — R be a continuously differentiable cost functional. Then the shape
optimization problem reads as:

minimize J(a,y)
subj. to 0 € F(a,y) + Q(y) (P)
a € Uy.

In the sequel we shall assume that the assumptions of Theorem 1 are satisfied. Then (P) is
equivalent to the following nonlinear program:

minimize J(a) := J(e, S(ev)) (P)
subj. to  a € Uy,

which may be solved by algorithms of nonsmooth optimization (note, that J is locally Lip-
schitz continuous due to Theorem 1). Such algorithms, however, require knowledge of some
subgradient information, usually in the form of one (arbitrary) subgradient from the Clarke
subdifferential 0.7 at each iteration step. Following [2] and [4], we are not going to use Clarke’s
calculus (cf. [3]) to obtain the desired subgradient, but the substantially richer calculus devel-
oped by B. Mordukhovich. A straightforward application of this theory is the next result. For
the rest of this section let & € U,q be arbitrary and put g := S(&).

Lemma 1. 0J(&) C VoJ(&,9) + D*S(&)(V,J (&, F)).
Therefore, it is sufficient to determine one element of the (limiting) coderivative D*S(&)
(VyJ(a,g)) = {v* e R? | (v*, -V, J(@,7)) € Ngrs(&)}, where Ng, g stands for the (limiting)

normal cone to the graph of S (cf. [5, 6]). To facilitate the computation of this quantity, we
have the following result at hand:

Theorem 2. For every v* € D*S(&)(V,J(&,y)) there exists a vector p* € RP)? such that
v* = V. F(a,y)'p* and p* is a solution of the (limiting) adjoint GE:

0 € VyJ(@g)+ VyF(a.9) p" + D*Qg, —F (6. 9))(p"). (AGE)
Proof. See Theorem 4.1 in [2]. O

In the rest of this section we show how one may express the coderivative D*Q in terms of
the data of the problem. First, we group the equations in (3) corresponding to each contact
node, so that the multivalued part Q becomes: Q(y) = (®(y1), ®(y2),...,®(y,))" , where

Yi = ((,u’T)iy (uy)i,)\i)T eR xRy xRy forevery i =1,...,p and
®(a) := (F(la1])asdlar], 0, Ng, (az))”  VaeR xRy xR,.
Thus, for arbitrary (g, q) € Gr@ and d* € (R3)P:
D (1. )(d)
D" Q. g)(d") = D*q’(yzjqz)(dé)
D*(yy, gp)(dy)

It means, that in order to obtain D*Q), it is sufficient to evaluate the coderivative D*® for every
contact node. The computation of these quantities is facilitated by the natural decomposition
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of Gr® according to the corresponding contact and sliding modes (see Table 1; impossible
combinations are crossed out):

Gr® = LU M; UMy UM; UM; U M,y.

Due to the relatively simple structure of ® it is already manageable for each one of these sets
¥ € {L, My, My, M5, M3 , My} above to express Ngyo(a,b) for (a,b) € ¥ exactly, in terms of
the data of our problem. More importantly, no additional smoothness of F is required to carry
out the analysis, except the one ensuring validity of Theorem 1. In addition, when F happens
to be constant, one recovers the formulas in [2] for the two-dimensional case.

no contact: weak contact: | strong contact:
a3 =0,b3<0|a3=0,b3=01] az3>0, b3=0
sliding:
aj 75 0, MQ M1

b1 = sgn(a1)F(Jai)as
weak sticking:
a; =0, My My
[b1] = F(0)as
strong sticking:
a; =0, X X X X X X M
|b1] < F(0)as

Table 1: Contact and sliding mode of (a,b) € Gr ®.

Acknowledgement: Financial support from the GAUK project no. 719912 of the Charles
University is gratefully acknowledged.
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Shape optimization for Stokes problem with threshold slip
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1 Introduction

We study the Stokes system with a friction-type condition, which switches between a slip and
no-slip stage depending on the magnitude of the shear stress. Our main goal is to study under
which conditions concerning smoothness of the domain €2, solutions to this problem depend
continuously on variations of €. This is the basic property enabling us to prove the existence
of optimal shapes for a large class of optimal shape design problems. In order to release the
impermeability condition, whose numerical treatment could be troublesome, we use a penalty
approach. We introduce a family of shape optimization problems with the penalized states
and establish mutual relation between solutions to the original and the modified optimization
problems when the penalty parameter tends to zero. Finally, we study a discretization of the
penalized problem and its convergence properties.

2 Formulation of the problem

In this work we shall consider a specific family of domains, namely O = {Q(«)| o € U4}, where

Q(a) = A{(z1,32)| 21 € (0,1), 2 € (1), )}, (1)
Upg = {a € CH([0,1])] @min < @ < e i [0,1], [ < G, j=1,2ae in (0,1)}, (2)

see Figure 1. Here v, aumin, Qmaz, C1, Co are given positive constants Ehosen in such a way that
Uyq # 0. The boundary 9Q(«) is split into S(a) and I'(a) = 9Q(«) \ S(«a), where

S(a) ={(z1,x2)| 1 € (0,1), xo = a(x1)}, @ € Uyg,
i.e. S(a) is the graph of a.
For any a € U,q we consider the Stokes problem
—Au+Vp=f, divu =0 in Q(«a) (3a)

with the following boundary conditions:

u=0 on I'(a), (3b)

uy, =0 on S(a), (3c)
lo-ll < g on S(a), (3d)
U, #0=|lo-|=9g & IN>0:u, =)o, on S(a). (3e)

Here u = (uj,u9) is the velocity field, p is the pressure and f is the external force. Further,
v, T denote the unit outward normal, and tangential vector to 9, respectively. If a € R? is
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Figure 1: Geometry of the domain Q(a).

a vector then a, := a - v, a, := a — a,V is its normal component, and the tangential part on
09, respectively. The Euclidean norm of a is denoted by ||a||. Finally, o := (g—’;)T stands for

the shear stress and g > 0 a.e. on S is a given slip bound.

In what follows we shall suppose that f € (L2 (R?))? and for simplicity of our analysis that

g is a positive constant. It is known [1] that (3) has a unique weak solution (u(«),p(c)). The
weak formulation of (3) will be denoted by (P(«)) in the sequel. For the definition of the weak
formulation and further details we refer to [3].

Finally, let J : (a,y,q) — R be the cost functional and denote J(a) := J(a, u(a), p(c)). We
shall study the following optimal shape design problem:

Find o* € U,q such that

(P)
Vo € Uyg: J(a*) < J(a).

Our first result is the following theorem.
Theorem 1. Let J be lower semicontinuous in the sense specified in [3], (2.9). Then (P) has

a solution.

The proof strongly relies on the fact that the family O consists of domains with uniformly
Cl1-boundary. Note that for lower regularity of the boundaries such result cannot be expected.

3 Shape optimization with the penalized state problem

We propose a new shape optimization problem for the Stokes system with threshold slip with
a penalization of the impermeability condition (3c). The boundary condition w-v* = 0 on S(«)
will be approximated by the following bilinear form:

1
ca(u,'v):/ (woa-v*)(voa- v*)dr,
0

where w o - v := u(zy,a(r1)) - v¥(x1), 1 € (0,1).

Let o € U, be fixed and € > 0 be a penalty parameter. The penalized form of (P(«a)) will be
denoted by (P-(«)). Using the same technique as in [1] one can show that (P-(«)) has a unique
solution (u.(a),ps()) for any £ > 0.
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Now we introduce the following family of shape optimization problems with the state prob-
lem (P.(«)). For any € > 0 fixed, we define:

Find of € Uyq such that

(P:)
VYo € Uyg: J-(af) < Je(a),

where J.(a) := J(a, ue(a),pe(a)). One can prove the following result.

Theorem 2. Under the assumption of Theorem 1, problem (P:) has a solution for any e > 0.

In the following theorem we establish the mutual relation between solutions of (P) and (P.) for
e — 0+.

Theorem 3. Let J be lower semicontinuous and continuous in the sense specified in [3], (2.9)
and (4.8), respectively. Then from any sequence {at} of solutions to (Pc), € — 0+ one can
choose a subsequence (denoted by the same symbol) such that

o — a*in C*([0,1]), (4)

where o is a solution of (P). Besides that, any accumulation point of {a}} in the sense of (4)
has this property.

4 Approximation of (P.)

In this section, we shall assume that € > 0 is fixed. We introduce a finite element discretization
of (P-(c)) and a discretization of the set U,q. Finally we will study convergence properties of
such solutions if the discretization parameter h — 0+.

4.1 Formulation of the discrete problem

Since for finite element methods it is convenient to use polygonal domains, we will consider
piecewise linear approximations of U,y. On the other hand, as U,q contains C1'-functions, this
approximation of U,; becomes external and some technical difficulties arise especially in the
convergence analysis.

The set of discrete admissible shapes Z/{gd consists of continuous, piecewise linear functions on
an equidistant partition of [0, 1] which satisfy constraints analogous to those ones imposed in
(2), expressed in terms of difference quotients.

We will consider the system {7}, (a;)| o, € UM} which consists of topologically equivalent trian-
gulations of Q(ay) (see e.g. [2]). The finite element discretization of the state problem is based
on the Galerkin method with the discrete velocity and pressure spaces built on 7, () and satis-
fying the Babuska-Brezzi condition (e.g. the Taylor-Hood finite element spaces). Consequently,
the resulting discrete problem (Pp.(ay,)) has a unique solution.

Analogously to the continuous setting, the discrete shape optimization problem is defined as the
minimization of Jp. on L{fd, where

3hs(ah) = J(afw uhs(ah)vpfw(ah))’
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with (wpe(ap), pre(ap)) being the solution of (Pre(ay)). Thus, for each € > 0 and h > 0, the
discrete shape optimization problem reads:

Find oj_ € L{gd such that

(]P)he)
Yoy, € Ugd : 3he(a25) < 3ha(ah)-

The existence result for an optimal discrete shape is straightforward.

Theorem 4. Let h,e > 0 be fixed and Jne be lower semicontinuous on L{fd. Then (Pp.) has
a solution.

4.2 Convergence analysis

Finally, we establish the mutual relation between solutions to (Pp.) and (P.) as h — 0+ keeping
e > 0 fixed, aiming to show that the discrete optimal shapes converge in some sense to an
optimal shape of the continuous setting.

We have the following convergence result.

Theorem 5. Let {aj_}, h — 0+ be a sequence of solutions to (Py.), h — 0+ and let J be
continuous in the sense of [3], (5.7). Then there exists a subsequence of {a;_} (denoted by the
same symbol) such that

— ol in C([0,1]),

*
Qpe

where o is a solution of (Pg).

5 Conclusion

The contribution was devoted to the shape optimization of the Stokes problem with threshold
slip boundary condition. We have shown the existence of an optimal shape, the relation to
a penalized shape optimization problem which releases the impermeability condition and finally,
we studied convergence properties of a discretization of the penalized problem.
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Numerical solution of the discrete barrier
option pricing problem

J. Hozman
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1 Introduction

During the last decade, financial models have acquired increasing popularity in option pricing.
The valuation of different types of option contracts is very important in modern financial theory
and practice, especially exotic options have become very popular speculation instruments in
recent years. The problem of determining the fair price of such an option is standardly formulated
in the well-known Black—Scholes equation, firstly presented in [3].

A huge amount of literature has been devoted to the solving of this equation or its modification.
The performance demands on the valuation process are very high in this case. Moreover, most
of the analytical formulas for these options is limited by strong assumptions, which led to the
application of numerical methods instead. Therefore, the main goal of this paper is to develop
an efficient, robust and accurate method for the exotic option pricing problem, which arises
from the concept of the discontinuous Galerkin (DG) approach (cf. [2, 4, 7]) and enables better
resolving of occurred special properties of certain types of exotic options, in comparison with
the standard finite element approach, see e.g. [1, 6, 8] and the references cited therein.

2 Discrete barrier option pricing problem

In this paper, we focus only on one family of exotic options such as discrete barrier options.
Furthermore, we shall concentrate only on a discrete double time—independent barrier knock-
out option, i.e. an option that expires worthless if one of the two barriers has been hit at a
monitoring date, for more details see [1, 8]. Let M = {0 =}l <t} <... <tM <tM =T} be
the set of monitoring dates and B_ be the lower barrier and B, the upper barrier active only
at discrete instances t{w e M.

Let Q := (Smins Smaz ), 0 < Spin < B— < By < Spaz, be a bounded open interval and T stands
for the maturity. We denote by x the price of an underlying asset (e.g. stock) and by ¢ the
time to expiry of the option. The price u : Qp := Q2 x (0,7) — R of the discrete barrier option
satisfies the Black—Scholes partial differential equation with initial and boundary conditions, i.e.

9wty 22 L uiwt) — ra Lol t) + rue,t) =0 in @ 1)
5 W@ 50 1 5@, ragu(z, u(x,t) = T,
u(Smin,t) =0 and  u(Smaz,t) =0, (2)

_K,0)- . (call
u(z,0) = { max(z )Xy (call r e, (3)

maX(K -, 0) *X[B—,By) (pUt)
where ¢ > 0 and r > 0 are model parameters denoting the volatility of stock price and the

risk—free interest rate, respectively. In real markets, values r and o vary with time, but to keep
the model and analysis simple, we assume 7 and ¢ to be constant.
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barrier payoff (put) s

barrier payoff (call)

0 B_ K x By 0 B_ T K B,

Figure 1: Initial values of a double discrete barrier knock-out call (left) and a double discrete
barrier knock-out put (right) with strike price K.

From the mathematical point of view the problem (1)—(3) represents a convection—diffusion-
reaction equation equipped with a set of two homogeneous Dirichlet boundary conditions (2)
prescribed at the endpoints of © and with the initial condition (3), where the symbol K stands
for the strike price and x[p_ p,] denotes the characteristic function of the barrier interval.

Moreover the discrete monitoring of the contract introduces an updating of the solution u(z,t)
at the monitoring dates th eM,ie.

U(I', tl]w) = El—i%l—i- U(.Z', tl]w - E) " X[B_,B4]" (4)

The knock-out clause (4) at monitoring instances introduces a discontinuity at the barriers, as
illustrated in Figure 1 for the first monitoring date.

3 DG discretization

The discontinuous Galerkin approach is suitable for problems with irregular solutions, because its
framework originally arises from a generally discontinuous piecewise polynomial approximation
up(t) describing the global solution u(z,t) on the whole domain €, i.e.

up(t) € Sy = {vy € L*(Q); vy|, € PPI) VI € Tp} € H'(Q) (5)

where 7}, is a family of partitions of the closure Q = [Smins Smaz] into closed mutually disjoint
subintervals I, and PP(I) denotes the space of all polynomials of degree < p on element I.

In order to obtain a space semi-discrete DG scheme from [7], we multiply (1) by a test function
v, € Sp, integrate over an element I € 7, and use integration by parts in the diffusion and
convection terms of (1) subsequently. Further, we sum over all I € 7} and add some artificial
terms vanishing for the exact solution such as penalty and stabilization terms, which replace
the inter—element discontinuities and guarantee the stability of the resulting numerical scheme,
respectively. Consequently, we employ a concept of an upwind numerical flux (see [5]) for the
discretization of the convection term and end up with the following DG formulation for the
semi—discrete solution uy(t) represented by a system of ordinary differential equations, i.e.

% (un (), vn) + An(un(t),vn) = 0 Yoy € Sp, ¥t € (0,T) (6)

where a form Ay, (-, -) stands for the semi-discrete variant of the linear differential operator in (1),
see [7].

In order to obtain the discrete solution, it is necessary to equip the scheme (6) with suitable
solvers for the time integration. The suggested implicit time discretization is suitable for avoiding
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Figure 2: The 3D plot of value function of discrete barrier put option (left) and the corresponding
isolines of the option price (right).

the strong time step restriction of explicit time schemes. Moreover, a bilinearity of the form
Ap(,-) directly implies that the used implicit treatment in (6) corresponds to a system of linear
algebraic equations without employing any additional linearisation, cf. [1, 8.

For the sake of clarity, we use the simplest implicit method — backward Euler method — for
the time discretization and introduce the fully discrete scheme. We now partition [0,7] as
0=ty <ty <ty <...<ty =T, denoting each time step by 7, = ¢; — t;_1. We compute
the approximate values uﬁl of the exact solution u(¢;) only at given time levels ¢; according the
following formula, i.e.

(uﬁl,vh) + 1 Ap, (uﬁl,vh) = (uﬁ;l,vh) Yo, €Sy, 1=1,2,...,N (7)

with initial state u% as Sp-approximation of (3) and monitoring constraints uﬁl = uﬁl “X[B_,B4]
valid only at monitoring dates th € M. Finally, the system (7) is then solved by a suitable
linear algebraic solver.

4 Results and conclusion

In order to illustrate the potency of the derived numerical scheme (7) for a solution of dis-
crete barrier options, we consider the knock-out call option with the expiration date T' = %
(e.g. 6 months) and the strike price K = 6.0. The prescribed barriers are B_ = 5.0, By = 8.0
and the computational domain was set as = (3,9). The Black—Scholes model parameters
were the risk-free interest rate r = 0.9y~ and the volatility 02 = 107%y~!. We carried out
computations by piecewise cubic approximations on a priori uniformly adapted partition of €
with constant time step 7 = ﬁ, used the restarted GMRES for the solving of linear systems

and considered monthly monitoring.

Since 02 < r, the convection term is large compared to the diffusive term and the problem is said
to be convection dominated and the partial differential equation exhibits a hyperbolic behaviour,
i.e. the first-order hyperbolic term involving % propagates information in the approximation
solution from the right to the left of the z-axis, as illustrated in Figure 2 (left) together with
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the corresponding isolines of the option price in the space—time plot with well-resolved monthly
monitoring constraints, see Figure 2 (right).

We have dealt with the numerical solution of the discrete barrier option pricing model, repre-
sented by the linear convection—diffusion—reaction equation. We have derived the above men-
tioned numerical scheme: from the continuous problem, over the semi—discrete one to the fully
discrete one. The whole method is based on the space semi—discretization by the discontinuous
Galerkin method in space and on the implicit Euler method used for discretization in time. For
the future work, we intend to extend this concept to a simple theoretical analysis and also to
the multivariate Black—Scholes equation describing basket options.
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1 Introduction

Polynomials with quaternionic coefficients located on only one side of the powers (we call them
simple polynomials) may have two different types of zeros: isolated and spherical zeros. We
will give a characterization of these types. The main tool is the representation of the powers of
a quaternion as a real, linear combination of the quaternion and the number one.

In the two—sided polynomials the coefficients are located at both sides of the powers. We show
that in this case there are, in addition, three more classes of zeros defined by the rank of a
certain real 4 x 4 matrix. The essential tool is the description of the polynomial p by a matrix
equation P(z) := A(z)z+ B(z), where A(z) is a real 4 x 4 matrix determined by the coefficients
of the given polynomial p and P, z, B are real column vectors with four rows.

2 Preliminaries

By R, C we denote the fields of real and complex numbers, respectively, and by Z the set of
integers. By H we denote the skew field of quaternions.

Let H = R* be equipped with the ordinary vector space structure with an additional multiplica-
tive operation H x H — H which most easily can be defined by a multiplication of the four
basis elements

(1,0,0,0) =1, (0,1,0,0) =1, (0,0,1,0)=3j, (0,0,0,1) =k :
i?=j2=k?=ijk=—-1. (1)
An element = = (21,29, x3,24) € H, 1,29, 23,24 € R, has the representation
= x11 4+ 221 + 23 + 24k,

If we denote v = (x2,73,24) € R3 the vector part of z then, the quaternion z has the represen-
tation:
x=(x1,v), 1 €R, ve R3.

For z = (1'1,1172,333,334) = (xlav) € H7 y= (y17y27y37y4) = (ylyw) € H it follows from (1) that

zy = (191 — T2y2 — x3y3 — Taya) 1+ (192 + Toy1 + T3ys — 24y3) i (2)
+(21Y3 — T2y + T3y1 + Tay2) j + (T1ys + T2y3 — x3Y2 + 24y1) K

= (i1 —v-wW, ;LiW+ v+ VvV X W),

where -, x are the dot and vector products in R3, respectively. Obviously, in general, the
multiplication is not commutative. Given z = (z1,x2,23,24) € H, the conjugate T of x is
defined to be

T = (1, —x9, —x3, —14). = Rz — Vecx.
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We define the absolute value of z by

2| = \/x%—i-x%—kx%—kx?l. (3)

The space H is a normed vector space over H, where the norm is introduced in (3).

Example Let us see a small example. Let pa(z) = 22 + 1. This quadratic polynomial has
no real zero and it has two imaginary zeros z;2 = £i. How many zeros it has as a quadratic
quaternionic polynomial? Let z = h™121 oh, where h € H \ {0} is arbitrary. Then

P24 l=h"tz0hh 2 0h +1=h"'2h+1=0.

As a quadratic quaternionic polynomial, ps has infinitely many zeros.

Definition Two quaternions a,b € H are called equivalent, denoted by a ~ b, if
a~b <= 3JhecH\{0} suchthat a=h"'bh. (4)

The set
[a] :={u€H :u=h""ah forall heH\{0}} (5)

will be called an equivalence class of a.

The relation ~ is indeed an equivalence relation. If @ is not real, then [a] always contains
infinitely many elements,

[a] ={z € H : Rz=RNa, and |z|=]|al}, (6)

and the equivalence class [a] can be regarded as a two dimensional sphere in R%.

Let z := (21, 22, 23, 24) € H. Then it follows from (6) that Z € [z]. If z € H is not real then the
equivalence class [z] contains exactly two complex numbers a € C and @ € C where

a = (21,+1/23 + 22 +22,0,0) = 21 + |Vec zli € [z],

i.e., a is the only complex element in [z] with a non negative imaginary part. The complex
number a will be called the complex representative of [z].

We introduce a mapping w; : H — R*** by

ay —ay —az —ay4
a2 a;p —aq as 4x4
= R .
i) = |2 0L T e R (7)

aqg —as az ai

The mapping w; represents the isomorphic image of a quaternion a = (a1, as,as,a4) in the
matrix space R**%. Thus we have

w1(ab) = wi(a)w(b).

ai
For a := (a1, as,as,as) € H, we define a column operator col : H — R* by col(a) := @2

a4
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This column operator enables us to regard a quaternion as a matrix with one column and four
rows.

Let A be a square matrix over C of order n. Then, see e.g. Horn & Johnson, [1], any power A/
belongs to a linear hull of the powers of the matrix A up to the degree v of the minimal
polynomial of A:

Al e (I, A, A% ... A1) jeN.

We will apply this theory to the real matrix wy(a) that represents the quaternion a. It has the
minimal polynomial
p(w(a)) = X2 —2xay + |a* ie. v=2.

As a consequence, all powers z7,j € 7Z, of a quaternion z have the form 2/ = az + 3 with
real «, 5. In order to determine the numbers «, 3 we set up the following iteration

2= ajz+ B, o565 €R, j=0,1,..., where (8)
a = 0, Bo=1,

ajr1 = 2Rzoj+ G,

ﬁj+1 = —|Z|2Oéj, jZO,l,...

3 Simple (one—sided) quaternionic polynomials

Let p,(z) be a given polynomial of degree n, n positive integer,
n
pn(2) = Zajz], z,a; €H, j=0,1,2,...,n, ag, a, #0. 9)
j=0

Polynomial p,(z) in (9) is called one-sided (or simple) quaternionic polynomial.
The set of zeros of the polynomial of type (9) will separate into two classes:

Definition Let zg be a zero of a simple quaternionic polynomial (9).

— If 2z is not real and has the property that p,(z) = 0 for all z € [zg], then we will say that
zg is a spherical zero.

— If 7 is real or does not generate a spherical zero, it is called an isolated zero.

— The number of zeros of p,, is defined as the number of equivalence classes, which contain

at least one zero of p,.

By means of (8) the polynomial p,, can be written as

pn(2) = Zajzj = Zaj(ozj z+0B;) = Zajaj z+ Zﬁjaj =: A(2)z + B(z).
=0

J=0 J=0 J=0

We have the following classification of the zeros zy of p,, given in (9):

(i) 2o is real. By definition, 2 is isolated.
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(ii) zo is not real:

— A(z9) =0 = 2z is spherical, all z € [zg] are zeros of pj,.
— A(z0) #0 = 2 is isolated.

The computation of all zeros of p,,, including their types, can be reduced to the computation of
all zeros of a real polynomial of degree 2n. For details, see [2].

4 Two—sided quaternionic polynomials
The two—sided quaternionic polynomial has the form

n
p(z) ::Zajzjbj, z, a5, bjeH, j=0,1,...,n €N, agby # 0, apb, #0. (10)
7=0

By means of (8), the two—sided quaternionic polynomial p can be written as

p(z) = Zajzjbj = Z aj(ajz+ Bj)bj = C(2) + B(z), where (11)
j=0 J=0

C(z) = Zajaj 2 bj, B(z) = Zﬁjajbj . (12)
j=0 Jj=0

Moreover, if we apply the operator col to the equations (11) to (12)we can rewrite the equation
p(z) = 0 in the equivalent form

P(z) := col(p(z)) = A(z)col(z) + col(B(z)) = col(0) := (13)

o O o o

From these results we obtain a classification of the zeros of two-sided quaternionic polynomial
p as follows:

Definition Let z be a zero of p, defined in (10), and let 2y € [z] be the complex representative
of [z].

The zero z will be called zero of type k if rank(A(zp)) =4 —k, 0 <k < 4.

A zero of type 4 (rank(A(zp)) = 0) will be called the spherical zero. It has the property
that all z € [zg] are zeros. A zero of type 0 will be called isolated zero. In this case z =

—(A(20)) teol(B(zg)) is the only zero in [zg]. We will also call a real zero an isolated zero. For
details see [3].

5 Number of zeros of the quaternionic polynomials

Definition Let p be any quaternionic polynomial of degree n > 2. By #Z(p) we understand
the number of equivalence classes in H which contain zeros of p. We call this number, essential
number of zeros of p.
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By this definition, p(z) := 22 + 1 has one essential zero, since i and —i are located in the same
equivalence class.

All polynomials with real coefficients and degree n as well as all quaternionic, one-sided polyno-
mials of degree n have at most n essential zeros, see [3]. The essential number #Z(p) of zeros
of the two—sided quaternionic polynomial of degree n is, in general, not bounded by n. Our
conjecture is that in this case the essential number will not exceed 2n.
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Multigrid methods are among the most efficient methods for solving and preconditiong of dis-
cretized partial differential equations. They employ the effects of relaxation and coarse-grid
correction in a recursive way leading to a method with the computational cost depending lin-
early on the problem size. While the components of the “classical” geometric multigrid are
constructed using the information involving the geometry and the nature of the problem to be
solved, the algebraic multigrid (AMG) is defined entirely by the information contained in the
given linear algebraic system and in a sense can be used as a “black-box” method. This makes
the use of AMG attractive in particular for solving problems on complicated domains and un-
structured grids, where the geometric multigrid can be hardly used if its application would be
even possible.

Application of AMG splits in the setup and the solution part. In the setup part, the multigrid
hierarchy of levels is created by recursively applying a procedure, which from a given input “fine”
level constructs an output “coarse” level, until a certain stopping criterion is satisfied (e.g., the
coarsest grid is small enough). In most AMG methods, common patterns can be found in the
setup part. First, for each grid point a set of strongly coupled neighbors is determined based on
certain criteria applied to the entries of the matrix associated with the given level. Using this
information, the coarsening is then constructed. It describes how the coarse grid is created from
the input fine grid (e.g., splitting the input grid to the sets coarse points and fine points in the
classical AMG or partitioning to aggregates in aggregation-based AMG). Finally, the transfer
operators can be defined from the given coarsening.

These common patterns in AMG motivate us to create a framework which involves some attrac-
tive features of modern object oriented languages like abstraction, polymorphism, and generic
programming, and allows to implement various AMG algorithms and their components in a uni-
fied manner. We base our package on the TRILINOS library (http://trilinos.sandia.gov),
in particular on the packages EPETRA for the basic communication and algebraic “core” and
TEUCHOS. Our goal is to create an AMG package which would allow namely to:

e realize any kind of AMG method including the classical and aggregation-based AMG (even
combining them in one multigrid hierarchy),

e combine various AMG components or to implement new custom ones from scratch,

e recompute already constructed multigrid hierarchy by reusing some of its previously com-
puted parts.

In the presentation, we recall some basic AMG algorithms and describe the design of our frame-
work including its current state of development. We illustrate its use on some academic numerical
experiments including experiments on problems arising in reservoir simulations.
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1 Introduction

This contribution deals with application of methods of domain decomposition to problems with
imperfect bond on material interfaces or slip of soil along slip surface. Especially, the FETI
method is used because it defines nodal unknowns on subdomains independently on other sub-
domains. The continuity across the subdomain interfaces is enforced by Lagrange multipliers,
therefore at least two displacements are stored in the same point on subdomain interface. In the
classical FETI method, these displacements are enforced to be equal but in generalised approach,
different values can be enforced.

The continuity condition is replaced by slip condition based on bond slip law. The new condition
generates an additional vector or matrix in the coarse problem. Complicated laws with softening
is solved iteratively with the help of stiffness reduction.

2 Brief overview of FETI method

Finite element tearing and interconnecting method is a nonoverlapping domain decomposition
method which transforms an original problem to the dual one which is solved by modified
conjugate gradient method. Coarse space based on rigid body modes is used for fast exchange
of informations during the iteration process. Overview of the method and many applications of
the method can be found in references [1] and [2].

Let a domain Q with boundary I' is decomposed into m nonoverlapping subdomains 2; with
boundaries I';. Let the problem solved contain continuous unknown vector function w(x) which
depends on the spatial coordinates . The unknown function is approximated by the finite
element method and vector of unknown nodal values is denoted d. In more detail, unknown
nodal values on the j-th subdomain are collected in the vector d;. Because of decomposition,
each subdomain contains its own unknowns on interface. The interface unknowns have to satisfy
the continuity condition because the original problem is continuous. If a new vector of all nodal
unknowns is defined in the form

d' = (di.d},....dn) (1)
and a new matrix

B =(B,Bs,...,B,,) (2)
is assembled, the continuity condition along the whole interface can be written

Bd=0 (3)
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For each subdomain, a system of algebraic equations can be defined in the form
Kjd;j=f; - BjX (4)

where K; denotes the subdomain matrix, f; denotes the subdomain right hand side vector.
The stiffness matrix of the whole problem has the form

K, 0
K,
0 | K,,
and the total right hand side vector can be written
=115 ) (6)
System of all equations has the form
Kd=f— BT\ (7)
and it is accompanied with the continuity conditions (3).
The vector of unknown nodal values can be expressed from the relationship (7) in the form
d=K*(f — BTA) + Ra (8)

where K is the pseudoinverse matrix, the matrix R contains basis vectors of kernel of matri-
ces K; which are denoted R;. The matrix R has the form

Ry 0
R,
R = . (9)
0 R,
If a matrix K ; is nonsingular, the kernel contains no basis vector and the matrix R; is removed

from the matrix (9). The vector f— B” X has to be orthogonal to the kernels. The orthogonality
can be written in the form

RT(f-BTXA) =0 (10)

Substitution of expression (8) to continuity condition (3) results to
BK"f - BK"B'A+ BRa=0 (11)

The previous equation together with the solvability condition (10) can be written in the form

(758 ) (2)-(751)
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3 Modification of FETI method

Modification of the FETI method for problems dealing with perfect or imperfect bond was
introduced in reference [3]. The continuity condition (3) is associated with the perfect bond
where no cracks and other inelastic effects occur. On the other hand, in the case of inelastic
behaviour, the continuity condition should be replaced by interface condition which deals with
the interface because cracks or slips can occur and the continuity is violated.

The interface condition can be expressed in the general form
Bd=c (13)

where ¢ denotes the vector of differences between two adjacent unknowns defined in the same
point on the interface. In the case of perfect bond, the vector ¢ is the zero vector. Substitution
of nodal unknowns (8) into the interface condition (13) results in the system

BK*B" —-BR A BK"f—-c
(Phroe ") ()= as

The imperfect bond is characterised by different displacements across material interface. There
are several possibilities of evolution of shear stress. The vector of interface slips ¢ can be defined
in the form

c=HA (15)

where H denotes the compliance matrix. Generally, the matrix H can depend on attained
Lagrange multipliers A. Substitution of (15) to the system (14) results in

BK'B"+H -BR A\ _ (BK'f (16)

—RTBT 0 a) \ -R'f
If the perfect bond is taken into account, the compliance matrix H is the zero matrix and the
classical FETT method is obtained. If the linear law (15) is assumed, stress-slip law is modelled.

In the case of softening branch, the previous definition of the compliance matrix does not work.
Sequence of several steps is needed in order to track the softening part of bond slip law. In such
case, a proportional load is applied on the structure and its response is computed. Locations
with the maximum stresses are determined and factor needed for attainment of the bond stress
is evaluated. The applied load is multiplied by this factor. There are some Lagrange multipliers
on interface which have the limit magnitude and slip or crack start to grow. Those multipliers
are marked and they are removed from the localisation matrices B defined by equation (3).
The structure is loaded once again but the matrix B is modified. Locations with the largest
stresses are determined and new factor needed for the limit state is evaluated. The applied load
is multiplied by this new factor and new point on bond slip curve is obtained. The described
algorithm is repeated several times and one or more multipliers are removed in each step.

4 Numerical experiments

In order to check behaviour of the proposed numerical framework, a pull out test with mild
hardening is considered. Interaction between concrete and steel reinforcement is assumed. Left
figure 1 shows detail of concrete-steel interaction in the case of a slip developed. Finally, the
right figure 1 shows stress distribution in pull out test.
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Figure 1: Detail of deformed shape and stress distribution.

5 Conclusions

A numerical framework for description of various bond slip laws between composite matrix
and fibres was introduced and implemented. The framework is based on the FETI domain
decomposition method which is slightly modified. Compliance matrix or vector of attained
interface slips are added to the coarse system of equations. Numerical experiments show better
convergence properties of the modified conjugate gradients in many cases. The bond slip laws
with hardening can be efficiently described by added compliance. On the other hand, the bond
slip laws with softening are modelled by a sequence of steps with reduced stiffness. The proposed
framework should be studied in the future because the mesh dependency has to be dealt properly.
Similar approaches to the damage or fracture mechanics have to be applied.
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Convergence of finite element methods
for nonlinear convective problems

V. Kucera

Faculty of Mathematics and Physics, Charles University in Prague

Abstract

In this short note, we give an overview of the tools needed to estimate the error of
finite element methods applied to nonlinear convective problems with smooth solutions.
These results along with their generalizations to fully discrete explicit and implicit schemes
represent a new, promising technique first outlined by [5] and extended in [4].

1 Continuous problem and discretization

Let © c R% d € N, be a bounded open polyhedral domain. We treat the following nonlinear
convective problem. Find u : Q x (0,7) — R such that

ou

a) N +divf(u) =¢ in Qr, (1)
b) “‘er(o,T) =0, (2)
d) u(z,0)=u’zx), zecQ. (3)

Here g : Q7 — R and u” : Q — R are given functions and I'p C 99Q has positive measure. We
assume that the convective flures f = (f1,--, fa) € (CZ(R))¢ = (C?*(R) N W2><(R))¢, hence
f and ' = (f],--- , f}) are globally Lipschitz continuous. The technique presented in [4] allows
to generalize the results also to £ = (f1,--- , f4) € (C%(R))%, i.e. the locally Lipschitz case.

As for the boundary condition (2), we assume in our analysis that I'y := 9Q \ I'p is an outflow
boundary for the exact or approximate solution, i.e. e.g. I'ny C {z € 9Q; f'(u(z,t)).n > 0}.

We discretize problem (1)-(3) using the standard conforming p-order finite element method.
Over a quasi-uniform, shape regular, conforming system of triangulations {7} }4e(0,n0), ho > 0
of Q we define the space of globally continuous piecewise p-order polynomial functions S =

{veC(Q);vlr, =0,v|x € PP(K)VK € T,,}. We set h = maxgeg,diam(K). In this function
space we introduce the space semidiscrete version of problem (1). We seek u;, € C*([0,7]; Sp)
such that uy,(0) = u) ~ u® and

d

E(Uh(t)ﬂph) + b(un(t), on) = U(gn)(t), Von € S, t € (0,T). (4)

Here, we have introduced the convective and right-hand side forms defined for v, p € H'(Q):

b(v, ) :—/Qf(v)-Vgpd:E+/ fw)npdS, (o)1) :/Qg(t)godaz.

'y

We note that a sufficiently regular exact solution w of problem (1) also satisfies (4) for all
pp € Sy, i.e. we have Galerkin orthogonality property of the error.
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2 Key estimates of the convective terms

As usual in apriori error analysis, we assume that the weak solution w is sufficiently regular:
u,u € L*(0,T; HPYHQ)), we L®(0,T; WhH™e(Q)).

Let np,(t) = u(t) — Mpu(t) € HPTH(Q) and &,(t) = Hpu(t) — up(t) € Sp, where v is the L2(9)-
projection of v on Sy. Then we can write the error ep as ep(t) := u(t) — up(t) = nu(t) + En(t).
By C we will denote a generic constant independent of h. In our analysis, we shall need the
following standard inverse inequalities

|onl g < Crh™H|onll,
[valloo < Crh™?|lup]
and approximation properties of 7, (cf. [2]):

e ()] < CRP*Hult )IHPH,

Hﬁnh H < Chp+1‘ ‘Hpﬂv

The key estimate of the convective terms is inspired by the work [5], originally derived for the
DG method. A complete proof of our case can be found in [4].

Lemma 2.1. There exists a constant C > 0 independent of h,t, such that

b(un(8).€(0) — b(utr).£0) < 0(1 + 12O g e, )

Proof. The key trick of the estimate is performing a Taylor expansion of f with respect to w:

£(u) — £(un) = P (0)é + F(u)n — 580,

where f{;uh is the Lagrange form of the remainder of the Taylor expansion. Substituting into
the definition of b(-,-), we obtain the interior terms

/Qf(u)f-Vde—F/Qf( ) ngac——/ fuu,eh'Vfdx.

Estimating these terms by (5) is straightforward, using the inverse inequalities and estimates
of n. A similar procedure is done for the boundary terms of b(-,-). O

3 Error analysis of the semidiscrete scheme

We proceed similarly as for a parabolic equation. By Galerkin orthogonality, we subtract the

equations for u and uy and set ¢, := & (t) € Sp,. Since (851;5 &) =33 4164112, we get

onp(t)

2 IO = b(un(0),60(0) — b(u(0). &) - (P2, 64(0).

For the last right-hand side term, we use the Cauchy and Young’s inequalities and estimates
of n and Lemma 2.1 for the convective terms. We integrate from 0 to ¢ € [0, 77,

t
Jen )17 < € [ (1 L2 ) 027 a0) s+ 12 9) s+ 61(0) )00, (6)
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where C' > 0 is independent of h,t. For simplicity, we have assumed that £,(0) = 0, i.e.
uf) = Ixu’. Otherwise we must assume e.g. [[£,(0)]* < Ch**Hu[2, ., and include this term
in the estimate.

We notice that if we knew apriori that ||ep,||co = O(h) then the unpleasant term h=!||ep, /o in (6)
would be O(1). Thus we could simply apply the standard Gronwall lemma to obtain the desired
error estimates. We state this formally:

Lemma 3.1. Lett € [0,T] and p > d/2. If |len(9)|| < h*F%2 for all 9 € [0,], then there exists
a constant Cp independent of h,t such that

9)||? < CFh%HL.
max [len(D)|I° < CF (7)

Proof. The assumptions imply, by the inverse inequality and estimates of 7, that

len(®lloo < I (@)lloe + 1669l < Chlu(t) 1. + Crh=2 ()]
< Ch+ Cl™ P en(D)]| + Coh™ 2 (9)]| < Ch+ CHPH2ju() i) < O,

where the constant C' is independent of h, 9, t. Using this estimate in (6) gives us
t
Jen(t)]? < Cn¥+1 40 [ @) an (®)

where the constants 5’,0 are independent of h,t. Gronwall’s inequality applied to (8) states
that there exists a constant Cr, independent of h,t, such that

19 2 < 6« h2p+1
£%§]|’€h( N < Cr ,

which along with similar estimates for n gives us (7). O

Now it remains to get rid of the apriori assumption ||e;||c0c = O(h). For an explicit scheme, this
can be done using mathematical induction. Starting from ||} = O(hP*1/2), we prove:

lef]| = O(hPHY2) = et = O(h) = |lefTh| = O(hP+Y/2).

For the method of lines we have continuous time and hence cannot use mathematical induction
straightforwardly. However, we can use some continuous version of mathematical induction,
cf. [1, 3]. In our case, we can use the simplest version:

Lemma 3.2 (Continuous mathematical induction). Let ¢(t) be a propositional function depend-
ing ont € [0,T] such that

(i) ©(0) is true,

(11) Fdo > 0: @(t) implies p(t +0), Vt € [0,T] Vé € [0,d0] : t + 0 € [0,T].

Then ¢(t) holds for all t € [0,T].

Theorem 3.1 (Semidiscrete error estimate). Let p > (1 + d)/2. Let hy > 0 be such that

C:rh’l’ﬂ/2 = %h}+d/2, where Cr is the constant from Lemma 3.1. Then for all h € (0, h;] we
have the estimate

9|2 < C2p2PHL,
ﬂgg§]lleh( = <Cr
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Proof. Since p > (14d)/2, hy is uniquely determined and Cph?t1/2 < %h”d/Q for all h € (0, hq].
We define the propositional function ¢ by

= 2 21 2p+1
p(t) = { o llen(@) | < CA2r+! .

We shall use Lemma 3.2 to show that ¢ holds on [0, 7], hence ¢(T') holds.
(1) ¢(0) holds, since this is the error of the initial condition.

(ii) Induction step: We fix an arbitrary h € (0,hi]. Due to the regularity assumptions, the
functions u(-),up(-) are uniformly continuous function from [0,7] to L?(2). Therefore, there
exists & > 0, such that if ¢t € [0,7),6 € [0,d0], then |lex(t + ) — en(t)|| < 2A1TY/2. Now
let t € [0,T) and assume ¢(t) holds. Then ¢(t) implies |lex(t)|| < CrhP*1/2 < IpMH4/2. Let
0 € [0, dp], then by uniform continuity

len(t + )| < llen(®) + llen(t +8) — en(t)]| < Gh' Y2 4 Fh!+H2 = pIF4/2,

This and ¢(t) implies that |les(s)|| < h'+%/2 for s € [0,t] U [t,t + 6] = [0,t + 6]. By Lemma 3.1,
¢ holds on [0,¢ + 6]. This proves the “induction step” p(t) = ¢(t +¢) for all 6 € [0,00]. O

4 Conclusion

We gave a simple overview of the concepts used to obtain error estimates of smooth solutions of
nonlinear convective problems. The results can be extended much further beyond this expository
account. For example, for a fully discrete implicit scheme, similar estimates can be obtained
after introducing a suitable continuation of the discrete solution. As mentioned, the technique
can be extended to locally Lipschitz continuous nonlinearities as well. We refer to [4] for details.
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Modelling, Applied Analysis and Computational Mathematics (Math MAC).
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Inverse analysis for estimating some characteristics
of stress fields

J. Malik, A. Kolcun

Institute of Geonics AS CR, Ostrava

1 Introduction

This work was inspired by the situation which happened during the extraction of the shaft of
the Frenstat coal mine in the Beskydy Mountains. During the extraction, when the tube of
the shaft ran trough certain geological layers, significant deformations of the concrete lining
occurred. The geological structure of the layers mentioned above was complicated and some
problems connected with the expected anisotropy of horizontal stress fields were predicted.

Let us start with the description of the technology applied for the shaft. The mobile steel
formwork method was applied and the wall of the shaft was reinforced by the concrete lining.
The principle of the technology is obvious from Figure 1.

concrete
new
concrete
mobile
formwork

]
1 extracted rock !
L e d

Figure 1: Two stages of technology of reinforcement of the wall of the shaft.

The rock was gradually extracted, the mobile steel formwork was shifted and the vacated room
was filled by concrete. After hardening the concrete, the process was repeated.

Because of the original stress in the rock mass some part of the stress present in the rock
transfers on the concrete lining, which results in the deformations of the lining. The value of
the transferred loads depends on the thickness of extracted rock layer and the application of
concrete lining.

2 Basic hypotheses

Let us formulate the basic hypotheses which we will hold in the following mathematical models.

1. The concrete lining is the regular circular ring whose behavior is elastic and material
properties are known.
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2. The original stress field round the shaft in a certain depth is homogeneous.

3. The loads transferred on the concrete lining result in deformations of the ring and can be
approximated by the reduced tensor corresponding to the initial stress tensor. This tensor
is a multiplication by of the reduced tensor.

4. The problem is considered to be two dimensional and is analyzed as a 2D elastic problem
in every cross section.

The hypothesis 3 yields that we cannot establish the whole stress tensor, but the deformations
of the ring give the directions of principal stresses and their ratio.

3 Basic concept of the inverse analysis

As we mentioned in the previous section, our inverse analysis is based on a solution of the 2D
elastic problem depicted in Figure 2a).

Let us consider we have material constants of both the concrete and the rock. The square
boundary in Figure 2a) is loaded. The loads are derived from the reduced initial stress tensor,
so we are going to deal with the first boundary problem. Solutions to the first boundary problem
in displacements are not unique and are given up to rigid body translations and rotations (see
[1]). Thus we cannot directly use the displacements on the lining, but the changes of possessions
between points on the wall of the ring as it is depicted in Figure 2a). We have to transform the
measurements into the required form. The date are represented by the matrix D,, 5, where n it
is the number of measurements. The matrix lines are

(1,05 Y105 2,65 Y2,i5 di )5

i.e. coordinates of the pair of the points connected with the ¢ — th measurement and the change
of the distance between this pair of points after the deformation of the circle ring. Let us denote
the reduced stress tensor

<iz>:“<38>+b<8?>+6(?$)- (1)

Our task is to establish the values a,b, ¢ from the analysis of measurements. Our problem is
connected with the three 2D boundary value problems, where the loads on the square boundary
in Figure 3b) are generated by the three following stress tensors

Coa)(av) (Vo) @
1,2

The solutions u!,u?,u? of these three problems are unique up to rigid body translations and
rotations. The distances between the pairs of the points in which the measurements occurred
are independent of rigid body translations and rotations.

The solution u to the general problem, where the loads are generated by the general stress tensor

(15

w=au' + bu® + cu’.

are then
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Now we have to choose the parameters a, b, ¢ such that the calculated distances between the pairs
of the points, where the measurements occurred, are as near to the measurements as possible.

Thus the three solutions u', u?, u? are connected with the three systems h!, h?, h‘;’, i=1,...,n

(a
representing the distances between the pair of the points.

We can choose the parameters a, b, ¢ so that the term

n

> (di + ahj + bh? + chi)?
=1

achieves its minimum. We can apply the least square method, which leads to the system of
three linear equations and is easy to calculate. Let us notice that the parameters a, b, ¢ do not
represent the horizontal stress tensor but the reduced horizontal stress tensor. Because we do
not know the magnitude of the loads transferred from the mass to the lining, the parameters
a, b, c themselves do not have physical meaning. Nevertheless from the parameters a,b,c we
can derive the directions of the principal stresses and the ratio between the principal stresses
Timaz, Tmin Which has physical meaning.

We have to consider the thickness of the circle ring is not constant and the application of the
least square method eliminates the errors given by the non constant thickness as well as the
inaccuracy of measurements.

The method described above was implemented as an additional module in the FEM-code GEM22
which was developed in Institute of Geonics for solving geomechanical problems.

a)

Figure 2: Two stages of technology of reinforcement of the wall of the shaft.

This code was applied for the analysis of stress fields in a few cross sections for which the mea-
surements were available (see [2]). The graph depicted in Figure 2b) represents the displacements
on the cross section of the shaft in the depth 300 m.

The surrounding rocks and concrete were modeled as isotropic materials whose constants are as
follows:

Table 1: Material properties

E[MPa]| v
concreete 10000 0.2
rock 10000 0.24
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The diameter of the shaft is 8.5 m and the thickness of the lining is 70 cm. The analysis of the
situation depicted in Figure 2b) resulted in the ratio between the principal stresses

Tmax/Tmin = 367

which indicates the considerable anisotropy of the initial stress field in the corresponding geo-
logical layer.

4 Conclusion

In this case mathematical modeling is an effective method that makes possible to propose optimal
installations of bolt reinforcements. On the other hand the installation above depends very much
on the exact knowledge of the principal stress directions which can be detected by the inverse
analysis described above. Thus this inverse analysis has to be an essential part of the technology
studied in this paper.

The proposed inverse analysis can be applied not only for the situation which we study in this
paper, but for tunnels as well. In this case we can analyze the stress fields in the cross sections
perpendicular to the tunnel. For such cases we have a reliable estimate of the vertical part of
the initial stress, so we can reconstruct the whole initial stress tensor if we have the principal
directions and the anisotropy ratio. These values are important for effective installations of rock
bolt systems (see [3], [4]).

Acknowledgement: This work has been supported by the grant FR-TI3/579.

References

[1] J. Necas, I. Hlavdcek: Mathematical Theory of Elasto/Plastic Bodies: An Introduction.
Elsevier, 1981.

[2] Research Report 67 025, Study of Geological and Geomechanical State during Excavation
of the Shaft Frenstat, VVUU Ostrava.

[3] J. Malik: Mathematical Modelling of Rock Bolt Systems I. Appl.Math. 43, 1998, pp. 413-438.

[4] J. Malik: Mathematical Modelling of Rock Bolt Systems II. Appl.Math. 45, 2000, pp. 177—
203.

86



Primarni metody rozlozeni oblasti a hrani¢ni prvky

L. Maly, D. Lukas

Katedra aplikované matematiky, VSB-Technick4 univerzita Ostrava

1 Uvod

Ve své praci se zabyvam analyzou a aplikaci hranié¢né prvkového piistupu v primarnich metodach
rozlozeni oblasti ve dvou dimenzich, vyuzivanych pro feSeni eliptickych parcidlnich diferencial-
nich rovnic s vysokymi skoky v materidlovych koeficientech. Reseni pomoci koneénych prvki
analyzovali a predvedli autoii Bramble, Pasciak a Schatz [1] v roce 1986. Také autori Toselli
a Widlund se zabyvali podobnou metodou ve své praci o aditivni Schwarzové teorii [3].

Primérni metody rozloZeni oblasti autort Brambla, Pasciaka a Schatze na rozdil od populdrnéj-
gich FETI metod nezvysuji po¢et nezndmych a zachovavaji pozitivni definitnost ulohy, tudiz je
lze pouzit jako pfedpodminéni v metodé sdruzenych gradientu. Podstatou metody je aproximace
Schurova dopliiku. V nasem ptipadé se jednotlivé podilohy snazime nahradit hrani¢néprvkovym
pristupem a zredukovat tak problém pouze na hranici.

2 Primarni metody rozlozeni oblasti

Resme parcidlni diferencialni ilohu ve dvou dimenzich

{—div(k(m)Vu(m)) = f v,
u(z) = 0 na 0f},

kde Q je polygondlni oblast a k(x) je po ¢astech konstantni.

Oblast 2 rozdélime do N nepiekryvajicich se podoblasti tak, aby respektovaly skoky v mate-
ridlovych koeficientech k(x). ReSeni takovéto ulohy vede na soustavu linedrnich rovnic. Odtud
dostaneme matici tuhosti A, kterou muzeme vyjadrit v nasledujicim preusporadaném 2 x 2 blo-

kovém tvaru
A < Arr A >
Arr Arr )’

kde Aj; odpovida vnitinim lokalnim dloham na jednotlivych podoblastech, blok Arr odpovida
dloze na hranicich a zbyvajici bloky odpovidaji jejich vzdjemnym interakcim. Matice tuhosti A
je symetrickd pozitivné definitni.

Stejné si preusporadame vektor pravé strany a déle si feSeni vyjadiime jako soucet partikularniho
a homogenniho feseni. Dostdavame soustavu

<A[[ A1p>'<uf+u?>:<b1>
Arr Arr uft br -

Resen{ této 1ilohy spocteme ve tiech krocich:
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1. Anuf = by, toto odpovida tloze —k‘ZAuf = f v €,
ul = 0 na 0€2;,

2. Su{? =br — Arsby, S = Agg — AI‘IAEII‘AIF (Schurtuv doplnék),

ull = uff na 0€;.

3. Anu? = —A[FUFH, toto odpovida loze { —k:iAuZH = 0 v ;,
(]

Efektivni feSeni vyzaduje nalézt vhodny piredpodminovaé pro matici A. Jeji inverzi vyjadiime

jako
_ _ _ T
e I —AjtAss ‘ A0 (1 —A;} Ars
0 I 0 St 0 I '

Dalsi postup spociva v sestaveni aproximace Schurova dopliiku S. V naSem piipadé je skeleton
rozdélen na hrany (Edge - E) a vrcholy (Vertex - V),

S:<SEE SEV>: I 0 (k?EE 5:'EV> I —Rj
Sve Svv —Rp I Sve Svv 0 I ’

kde Rpg je linedrni interpolace z vrcholu na okolni hrany. Aproximovany Schurtv doplnék

& I 0 < Sgr 0 ) I —-REL
"\ —Rp I 0  Syy 0 I
sestavé ze dvou ¢ésti. Spg je blokova diagonalni matice lokdlnich tiloh s nulovou Dirichletovou

okrajovou podminkou pro oblasti nad kazdou hranou. Sy je matice globaln{ Dirichletovy tlohy
(hrubého problému) na kostfe.

Pro tuto konstrukci pfedpodminovace ve 2d Bramble, Pasciak a Schatz [1] dokazali, ze ¢islo
podminénosti matice tuhosti je O((1 + log(H/h))?), kde H je diametr podoblasti a h je délen{
pouzito pii diskretizaci MKP.

3 Numerické vysledky

Vyse popsanou metodu jsme otestovali na modelové tloze

{ —div(k(z)Vu(z)) = 1 v,
u(z) = 0 na 0,

kde Q := (a,b) x (a,b) je ¢tverec rozdéleny na N x N podoblasti (mensich stejnych ¢tvercu)
a k(z) je sachovnicova funkce, kterd nabyvé stiidavé hodnot 1 a 1000.

V predpodminovaci popsaném vyse jsme s uspéchem nahradili feSeni globalni tilohy na skeletonu
(hrubého problému) metodou hraniénich prvku, tedy matici Sy jsme sestavili pomoci BEM
a sledovali pocet iteraci pri feSeni celé soustavy. Vysledky jsou obsazeny v Tabulce 1, N je pocet
déleni ¢tverce v jednom sméru, celkovy pocet podoblasti je tedy N2.
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% \N 2 3 4 8 16 32
4 4 ) 12 13 13 13
8 5 6 14 15 17 17
16 ) 7 17 21 21 21
32 6 8 19 25 25 -
64 7 9 22 29 29 -

Tabulka 1: Pocty iteraci u modelové flohy.
4 Zaver

Podarilo se nam uspésné nahradit feSeni tzv. hrubého problému metodou hrani¢nich prvku
a numericky ovérit otekavané chovani pri feSeni modelové tlohy. Nadéle se pokusime metodou
hrani¢nich prvka nahradit také obé lokalni dlohy, numericky otestovat efektivnost predpodmirio-
vace a tim tak dolozit analytické odhady.
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Parallel implementation of fast boundary element method
M. Merta, D. Lukas

IT4Innovations & DAM, VSB-Technical University of Ostrava

1 Introduction

Using the boundary element method (BEM) for a solution of engineering problems we can re-
duce a dimension of a problem from d to d — 1. This not only significantly reduces the number
of unknowns (when compared to the finite element method) but also the time necessary to
generate a mesh. On the other hand, because of the non-locality of the kernel function, conven-
tional BEM produces fully populated matrices with O(N?) entries, requiring O(N?) operations
to assemble, and the same amount of operations per matrix-vector multiplication in iterative
solvers. Therefore, its usage for real world problems is limited and some method for matrix
sparsification has to be employed [4]. In this work we use our parallel implementation of the
fast multipole method (FMM) to solve a boundary value problem for Laplacian with Dirichlet
boundary condition.

2 Model problem

We consider the boundary value problem

—Au=0 in,
Yu=g on .

The solution of this problem can be obtained by the BEM, i.e. using the representation formula
uw=Vylu — K%,

where
Vo)) = [ Glaasas, (K@= [ LD,
o0 o0 Y

with G(z,y) := ﬁm being the fundamental solution of the Laplace equation in 3D.

For the discretization we use the Galerkin method with piece-wise constant basis and testing
functions. After the triangulation T := UéV: 17¢ we obtain the following system of linear equations

1
Vit = <§Mh + Kh> g.
The matrices Vy, K} of the single layer and double layer potential, respectively, are given by:
Vil = (Vi i)an, K3 = (K4, ai)a0,

and Mp, is the diagonal matrix with entries m;; = |r;|. Because of a nonlocality of the kernel
function G, the matrices V}, and K}, are fully populated.
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3 Fast multipole method

The fast multipole method introduced by Greengard and Rokhlin [2, 3] uses the fact that the
kernel G can be expanded by the spherical harmonic functions

NZZsm )R™ (), (1)

IIw —yll

n=0m=-n
1 dam
+m _ (A A\ T
Rn (‘T) - (n_i_m)'dumpn(u)’U:mS(‘Tlj:m:2) ‘.Z" ’
dm 1
+m _ ~ s AN
Sy (y) =(n—m )'d—mP( Nu=g5 (91 £ i72) MGas

9i = i/ llyll, =]l < ly[|. This leads to

/ ”x_ dsxdsy Z Z /Rim dsx/S y) dsy,

n=0m=—n

which significantly reduces the computational complexity because the integrals by x and y
are now decoupled. To guarantee the asymptotic convergence rate of the FMM, the order of
expansion p should be chosen proportional to logy N.

Since the expansion (1) is only valid for ||z|| < ||y|| we use the recursive geometrical bisection to
split a computational domain into clusters and to construct a binary cluster tree. The pair of
clusters (Cy, Cy) is said to be admissible if it satisfies the condition

min {diamC;, diamC},} < ndist(C5, Cy),

otherwise it is called nonadmissible. If the pair of clusters is admissible we say that the cluster C,
is in the farfield of the cluster C, and vice versa. Otherwise, they are in their mutual nearfield.
The admissible cluster pairs correspond to the blocks of matrix approximated by means of FMM.

Using the expansion (1) a matrix-vector multiplication w = At can be evaluated effectively by
splitting it into a nearfield and farfield part

= > Aytj+ Y MPO)LT(0,FF(i)),

JENF (i) JEFF(4)

where NF(i), FF(i) are the sets of clusters in the nearfield or farfield, respectively, of the cluster
containing the element ;. M™(O,4);), L(O, FF(i)) denote multipole moments and coefficients
of a local expansion associated with a given cluster, respectively. Its efficient computation
leverages the existing tree structure:

1. Upward pass - multipole moments are computed on the finest level of the tree and trans-
lated to the higher levels by multipole to multipole (M2M) translations

2. Downward pass - coeflicients of a local expansion are computed on the highest posssible
level by translation of multipole moments (M2L), and translated to the lower levels by
local to local translations (L2L)

Since the multipole coefficients depend on the vector t, these tree traversals have to be repeated
in each iteration of an iterative solver. For details see [1].
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4 Parallel fast BEM

In this section we briefly describe our parallel implementation of the fast BEM leveraging the fast
multipole method. There have been many attempts for a parallel implementation of FMM, usu-
ally based on the decomposition of a tree into local subtrees and utilizing space-filling curves to
design an efficient communication. These algorithms are able to solve extremely large problems
on current supercomputers, however with increasing number of processors the communication
deteriates the scalability.

Here we propose a method which is communication-free and leads to an optimal parallel com-
putational scalability O((nlogn)/N) and reasonable memory scalability O((nlogn)/v/N). The
underlying mesh is decomposed into N submeshes and the resulting matrix into corresponding
N x N blocks. Each of N processes is assigned one diagonal block (these are typically most
time and memory consuming within the fast BEM) and N — 1 geometrically closely related off-
diagonal blocks, thus the total memory consumption for storing the mesh and related structures
is minimal. It turns out that the problem can be formulated in terms of the graph theory as
a decomposition of undirected complete graphs. The optimal decomposition is known for N

such that it holds
N(N-1) plp-1)

2N 2
where p + 1 is a power of a prime number.

5 Numerical experiments and conclusion

Our parallel implementation of fast solvers for boundary integral equations was tested on the
Vuori cluster located at CSC, Finland, and on the HECToR supercomputer at EPCC, UK.
The fast mutlipole method was compared with another method for the sparsification of BEM
matrices, adaptive cross approximation (ACA). However, using the FMM, the matrix-vector
multiplication in the conjugate gradient algorithm is relatively time-consuming, therefore a
usage of a preconditioner seems to be necessary for larger systems.
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Error analysis of three methods for the parameter estimation
problem based on spatio-temporal FRAP measurement

S. Papdcek, C. Matonoha

University of South Bohemia in Ceské Budéjovice, Nové Hrady
Institute of Computer Science AS CR, Prague

1 Introduction

FRAP (Fluorescence Recovery After Photobleaching) measurement technique allows detection
of diffusivity (diffusion coefficient D) of autofluorescence molecules or fluorescently tagged com-
pounds (e.g. green fluorescence proteins — GFP) in living cells. This method is based on
measurement of the change of fluorescence intensity in a region of interest (ROI — an Euclidian
2D domain) in response to an external stimulus, a short period of high-intensity laser pulse
provided by the CLSM.! Stimulus, the so-called bleach, causes irreversible loss in fluorescence
in bleached area without any damage in intracellular structures. After the bleach, the observed
recovery in fluorescence reflects diffusion of fluorescence compounds from the area outside the
bleach. Based on spatio-temporal FRAP images, the diffusion is reconstructed using either
a closed form model or simulation based model. In the latter case, beside a single diffusion coef-
ficient D, also the sequence {D;} can be estimated as well. Let us underline that FRAP images
are in general very noisy, with small signal to noise ratio (SNR), i.e. in order to get reliable
results for the sequence {D;}, an adequate technique residing in regularization is mandatory.

2 Inverse problem formulation

Assuming (i) local homogeneity, i.e. the concentration profile of fluorescent particles is smooth,
(ii) isotropy, i.e. diffusion coefficient D within the domain € is space-invariant, (iii) an unre-
stricted supply of unbleached particles outside of the target region (i.e. assuring the complete
recovery), the following dimensionless diffusion equation describes the unbleached particle con-
centration y(r,t): % — V- (DVy) = 0. Moreover, for all three further studied methods, we
assume the special geometry residing in one-dimensional simplification getting y as a function

of dimensionless quantities: spatial coordinate z, time 7 and re-scaled diffusion coefficient p:

oy 0%y
= P =0, (1)
or ox

where z := 7, L is a characteristic length, 7 := ¢/T', T is a constant with some characteristic

value (e.g. time interval between two measurements), and p := D% .

The initial condition and Dirichlet boundary conditions are:
y(:L'aTO) = f(x)v T € [07 1]7 (2)

y(0,7) = g90(7), y(1,7) = g1(7), T =70 3)

!Confocal laser scanning microscopy (CLSM) allows the selection of a thin cross-section of the sample by
rejecting the information coming from the out-of-focus planes. However, the small energy level emitted by the
fluorophore and the amplification performed by the photon detector introduces a measurement noise.
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Parameter estimation, ill-posedness and error analysis

The inverse problem studied is to estimate the model parameter p* (generally a vector) from
time course of the signal y(z, ) observed at various time instants. The available data y(z,7)°
are noisy and 0 plays the role of a bound on the data noise (later on also the error variance o
will be introduced). Some methods based on FRAP data do not use all measured values of
y(x,7)%, hence we further define the observation operator G that evaluates y on certain space-
points i € {1,...,n} and time-points j € {1,...,m} where the experimental observations (also
referred to as the model output) are taken, i.e. G(y; ;) = 2(7;). Denoting by p = (p1,...,p,) the
parameter vector, the inverse problem can be formulated as a system of non-linear equations:

F(p)=2°, F=GoS. (4)

Here, I' = G o S represents the parameter-to-output map, defined as the concatenation of
the PDE solution operator S onto the solution vector y of the underlying system (1)-(3), i.e.
S(p) = yi; and the observation operator G. Due to noisy data and model imperfections, the
system (4) is replaced by a nonlinear least squares problem where || . || is an appropriate norm
for measuring the discrepancy between data and simulated output:

I2° = F(p) |[*~ min pxg (5)

The inverse problem (5) is ill-posed in the sense that its solution (in the least squares sense)
does not depend continuously on the data, i.e. noisy data as well as round-off errors may be
amplified by an arbitrarily large factor. In order to overcome these instabilities the following
regularization method is proposed:

)

12 = F(p) I” +a || p = po |*— min pp>o0 (6)

where the positive regularization parameter a enforces stable dependency of pg (the solution
to (6)) on the noisy data z° and py represents an a-priory guess subjected to the minimization.

The above described method of Tikhonov regularization [7] was studied in our paper [5], however

the error concepts were not treated there. In the next section we perform the error analysis for
0z

three FRAP methods exploiting properties of the sensitivity matrix y = ap L€ the Jacobian
matrix of the output, being evaluated at py.2 More precisely,
0z(Ti;p .
Xjk(po) = % ’p=P07 I<j<m, 1< k<q. (7)

The statistical model for the observation process is following: zg = 2(7j;p0) + €;. Moreover,

assuming Ele;] = 0, var(ej) = 08 < oo, cov(ej,ex) = 0 whenever j # k, we have E[z?] =

2(Tj3p0), Var(zﬁ) = ¢2. The solution to (6) obtained using data 2° is denoted as j and is used

in the calculation of error variance and ¢ x ¢ covariance matrix ¥y = cov(p;,p;), i.e., 03 is
approximated by 62 = mL_q|z5 — 2(p)|?, and Xq is approximated by S = 62 [X(ﬁ)Tx(ﬁ)]_
The standard errors of parameters p, used to quantify uncertainty in the estimation are

SEL(p) = 67/ XD x(B)je. 1<k <q. (8)

2Let see the first order Taylor approximation Az a xyAp relates the perturbation. Accordingly to [1], a param-
eter vector is defined as sensitivity identifiable if Az ~ xAp can be solved uniquely (in the local sense) for Ap.
Moreover, a sufficient condition for sensitivity identifiability is the nonsingularity of the Fisher information matrix
FIM = xTx (or equivalently det(XTx) # 0), i.e., one sees that parameter estimation depends inherently on the
condition number of FIM.
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The propagation of uncertainty from the observation process to the estimated parameter vector
is induced by € = (1,...,em)" in equation (for more details, see [1, 6]):

ppo+ [x(po) x(po)] " x(po)Te. 9)

3 Three FRAP methods: assessing uncertainty

C. W. Moulineaux et al., Nature (1997)

C.W. Moulineaux et al. [4] have measured one-dimensional bleaching profiles (with common
variance O'O) along the specimen long axis. Supposing both the infinite domain (r € R) and
initial Gaussian bleaching profile, i.e. y(r,to) = yo,0exp = 2 , then the solution y(r, t) of diffusion

Y0,070 exp ;27“ .
\/r02+8Dt ro=+8Dt
which was taken as the single observed data point z(t) at time ¢, and the Fisher information
matrix FIM = xTx (which collapses to a scalar for ¢ = 1), are given by:

0,070 = aZM(tj):| > & [ 40,070t ] 2
£ = 00 e, =S |20 : (10
ZM( ) /77‘02 T 8Dt M Z [ oD JZ:; (7‘02 + 8Dtj)3/2 ( )

J=1

equation (1) is y(r,t) = The tlme evolution of maximum depth y(0,?),

The weighted linear regression is used in | 1 to estimate diffusion coefficient D and accordingly
to (8) we quantify its standard error: SE(D) = oo/ FIM

J. Ellenberg et al., J. Cell Biol. (1997)

The Ellenberg et al. (1997) method [2] to calculate the diffusion coefficient D for stripe ROI
is based on the fluorescent signal integrated from the whole ROI (2D domain 2): frap(t) =
Joy(r,t)dS and is normalized as follows: frap(tg) = 0, frap(co) = 1. Assuming the bleach
is complete, there is no immobile fraction, the cell is uniform rectangle, the bleached strip is
perpendicular to the long direction, then plot of this so-called FRAP recovery curve against time
should give a saturation curve according to the formula: frap(t) = 1 — /(w?/(w? + 47 Dt)),
where w is the stripe width. Introducing the dimensionless variables 2L := w, p := DQO, T = t%

2
we have similarly as in (10), with reduced variance 0% = % (n is the number of observed data

points integrated into zg(7;) at each time instant 7;):

m 2
1 LT R
—l-— FIMg §j 2™ SE() = —2_. (11
25(7) T+ prr’ |0+ pry) 3/2] - SEO = pmn

FD approximation of PDE (1-3) & Tikhonov regularization based method [5]

As the analytical approach has several limitations (e.g. cell geometry restriction, full recovery is
required, bleach profile must be gaussian-like, etc.) we model the process by the Fickian diffusion
equation with realistic initial and boundary conditions instead, and the parameter estimation is
formulated as an ordinary least squares problem with (6) or without (5) regularization. By this
way the sequence of parameters pg,1 < k < ¢, is determined and the uncertainty assessment
based on ¢ x ¢ Fisher information matrix is led similarly as in above cases, see (7)—(9).
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4 Discussion

We have presented three methods for the estimation of diffusivity of fluorescent compounds based
on spatio-temporal FRAP measurement and the pertinent error analysis as well. The first two
methods, representing the state-of-the-art in FRAP measurement, are based on the curve fitting
to an analytical (closed form) models, and obviously need some unrealistic or hard-to-accomplish
conditions to be supposed. Our third method is based on finite difference approximation of PDE
describing the diffusion process (with the diffusion coefficient D as a parameter) and on the
minimization of an objective function evaluating both the disparity between the experimental
and simulated time-varying concentration profiles and the smoothness of the time evolution of D
as well. This latter approach naturally takes into account both the specimen geometry and time-
dependent Dirichlet boundary conditions. The uncertainty assessment is based on the sensitivity
matrix calculated either analytically (mainly in case of the curve fitting to an algebraic formula)
or numerically.® Furthermore, the error analysis provides the tool for discerning among different
methods.

Acknowledgement: This work was supported by the project “Jihoceské vyzkumné cent-
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resides in the first order ODE for the sensitivities dynamics, see [1]), let us remark that the evaluation of the
sensitivity matrix x(po) or FIM can be done during the optimization procedure (5) for free, because it is done
inside the UFO procedure [3].

3 Although the semi-analytical method for calculating sensitivities BZ(TJ):p) |p=po based on (1)-(3) exists (it
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Problem of identification of heat transfer coefficients

P. Salac

Technical University of Liberec

1 Introduction

This work concerns an identification of the heat coefficients between a cast, a mould, and an
environment. The goal of the identification is to find the flux density of modified mass coefficient
function of curing melt and the coefficient function of the heat-transfer between the mould and
the environment. The aim is to modify these coefficients to achieve the fixed given values at
n given points that were obtained as the mean values of measured courses of temperature by
Sensors.

Mathematical model is a strong idealization of a non-stationary periodical problem of the heat
conduction. We study the problem of the stationary conduction of the heat for mean values of
this periodical process.

The cost functional is defined as the squared L? norm of the difference between a given inter-
polation function and the calculated temperature.

We define a weak formulation of the state problem and formulate the problem of the identification
of the heat-transfer coefficient and the flux density of modified mass of the body coefficient.

2 Formulation of the problem

We assume the problem of steady heat conduction in the union of two regions 2 = Qg U ;. We
assume the existence of a heat source with given density ¢ in the inner region €2y and no heat
source in the region 2;. We divide the notion for a searched function 1, representing distribution
of temperature in the system, into the sum of two functions as

¥ =19+ U1,
where 9 _—
L Q; m 7 .
19@—{0 n 0\ 0 for i=0,1. (1)

Further we denote by ¥;|r, the trace of the solution J; on the boundary I'; if I'; is a boundary
of Q; for 7, j . We assume the steady heat conduction problem

—k,’oAﬁo =4q n QO 5 (2)
—klAﬁl =0 in Ql s (3)

where kg, k; are coefficients of thermal conductivity in the regions €y, € and ¢ € L?(Qq) is
the given function.

The heat-transfer through the boundary I'y (i. e. between the mould and the environment)
is modeled as a boundary condition of the third kind of the contact between a body and an
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Figure 1: Scheme of the mould and the cast.
environment (see [2]), thus
o
—kio = a(V1|r, —VE) on Iy, (4)

where 8% denotes the derivative according to the outward normal with respect to the region €2y,
a > 0 denotes the coefficient of the heat-transfer between the mould and the environment,
Y1|r, is a trace of ¥; on the boundary I'; of the region ©; and Jr > 0 a temperature of an
environment.

We use the transit condition for contact between two bodies, where one of them changes its
state of matter because of the influence of solidification (see [2]), to describe transfer of heat
through the boundary I'y between the cast and the mould. Thus

ko= —koo— = p on T, (5)
n n

where 6 >0, S € C (0)’1(F0) represents the flux density of modified mass of the body, a% denotes
the derivative according to the outward normal with respect to the region 2, resp. €.

We define the set of admissible functions as

U = { (a, B) € CONDy) x COY(Dy) ;5
(i. e. Lipschitz functions according to the length of relevant boundary),
0 <amn<a< Omax |O/| < Cl 5 0< ﬁmin < ﬁ < ﬁmax, |ﬁ/| < 02} s

where the function « represents the heat-transfer coefficient on the boundary I'y and 3 represents
the flux density of modified mass of the cast on the boundary I'y.

We define the operators
B 0%y O OO Oy O
En(vﬁ‘, V) = ko/gz()(E%—F@—y@_y—i_E&) dQ + (6)

0910y 0910y OV OY
+ kl/gh(al’ &E-I- 3y 8y+ 9% aZ>dQ,

Ev(d, a, ) = /F i |p, 0 dS | (1)

So(¢) = 01 /Q q dSY (8)

Coctaa, 5, 0) = [ avpvas+ [ puds., (9)
Fl 1—‘0
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to define the state problem based on the variational formulation of the heat transfer equation.
The State Problem:
We look for the function ¥ = 9(a, 3) € H'(Q) such that

En(d, ) + Ev(Y, o, ¥) = So(sh) + Coefo(a, B, ¥) Vo € H'(Q), (10)
where (o, ) € Ugf.

Theorem 1. (existence and uniqueness of the solution of the state problem)
The state problem (10) has a unique solution J(«, 3) for each (a, ) € deﬁ .

Proof. 1t is sufficient to verify the assumptions of the Lax-Milgram Theorem. O

We assume that the temperatures are given in the set of n points. This data can be obtained
from the measurements done in the mould during the production cycle as a mean of values
of periodic time dependent functions. We denote temperatures at the given points t(z;), for
i =1,...,n. We assume the existence of a function x € C(Q) such that x(z;) = ¢(z;) for
i=1,2,...,n (k can be an interpolation function obtained from the measured values).

S )

eZn ez

ez Fl
®Z3

[ P2}

_ © M

Figure 2: Scheme of the mould and the cast with the points of measurements.

We define the cost functional as

jZ(aﬂ B) = Hﬂ(a7 6) - ’KEH%,Q ) (11)
where J(c, () is the solution of the state problem (10).

Now we formulate the problem of identification :
We look for the optimal design (a*, 5*) € U;“dﬁ such that

THa*, 59 < THa, ) V(a, B) € U (12)

Theorem 2. (existence of solution of the identification problem)
The problem (12) has at least one solution.

Proof. We use Theorem 2.1. published in [1] page 29. O
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3 Conclusion

Presented contribution introduces some theoretical way how to estimate unknown values of
the coefficient of the flux density of modified mass coefficient function of curing melt and the
coefficient function of the heat-transfer between the mould and the environment. Both the
coefficients play an important role in calculating the temperature distribution in models of
technological process of casting into moulds. Unfortunately, there is no direct method to measure
these coefficients that increases the importance of the described identification problem.

Acknowledgement: The paper was supported by the project ESF, no. CZ.1.07/2.3.00/09.0155,
”Constitution and improvement of a team for demanding technical computations on parallel
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Weak solutions for a class of nonlinear
integrodifferential equations

1. Soukup

Faculty of Mathematics and Physics, Charles University in Prague

Introduction

Presented work investigates a system of evolutionary nonlinear partial integrodifferential equa-
tions in three dimensional space. In particular it studies the existence of a solution to the
system introduced in [1] with Dirichlet boundary condition and given initial condition. The
studied model represents so-called generalized integral Oldroyd-type model for incompressible
viscoelastic nonnewtonian fluids.

The main goal of this work is to give a deeper theoretical knowledge about the properties of
mentioned model, which is one of many models describing such fluids like blood (especially in
thin veins) or large variety of industrial materials. We feel obligated to emphasize that this
work is purely analytical and do not study given model from the perspective of physics or
mathematical modelling.

1 Mathematical formulation of the problem

We are looking for a couple (u, ) satisfying the following system of equations
t
Ju+uVu=—-Vr +divF(Vu) + / G(t —s)divH(Vu)ds + f,
0

divu =0,

in (0,7) x Q, where Q C R3 is a bounded domain with a sufficiently smooth boundary. We
consider the system of equations with Dirichlet boundary condition

u’aﬂ =0 in (07T)

and initial condition
u(0) = ug in Q.

The operators F' and H are generally nonlinear (usually power-like) and function H is a so-called
scalar kernel. Vector functions f and ug are given.

2 Current state of knowledge

This problem was first studied by T. Bérta in [1] and it is so far the first and the last research
paper studying given model in the precise form we described above. In particular, T. Barta
succesfully proved the existence of weak solutions under the assumption of p-power-like behaviour
of the nonlinearities /' and H, i.e. he assumed p-boundedness and p-lipschitz continuity of
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nonlinear operators F' and H and monotonicity of F', where by the index p we emphasize that
the mentioned properties were dependent on some parameter p. The main idea of the proof is
based on the ideas of Ladyzhenskaya she used in her studies of similar problem with the integral
term missing. She also assumed monotone and p-bounded nonlinearity F' (to demonstrate
properly the importance of parameter p, we present in what sense we understand mentioned p-
boundedness, i.e. F satisfies inequality || F(Vu)|, < C||Vul4™" for appropriate u). She showed
the existence of global solution for values of parameter p > & (see [3], [4], [5]). The results of
T. Barta also holds for the similar values of parameter p because of the same structure of proof.

The Results of Ladyzhenskaya were later extended to values p > 2 by Madlek, Necas and Ruzicka
(see [6]) under additional assumptions on F' and then by Wolf (see [7]) to p > 8/5 without
any additional assumptions. Moreover, just recently was the result of Wolf extended even for
p > 6/5 (see [2]) by Diening, Ruzicka and Wolf without additional assumptions on F.

Nevertheless, the model in the form we are investigating was studied only by T. Barta where
the existence of a weak solution was proven in three dimensional space with the assumption
p > 11/5 as we already mentioned.

In our work we focus on the result of Malek, Necas and Ruzicka and adopting their method we
aim to the same results for the integrodifferential model.

Thus, our main goal will be the improvement of Barta’s result using the method from Maélek,
Necas and Ruzicka. In particular we will try to obtain existence of weak solutions for p € [2, 1—51)
and regularity properties for higher values of the parameter p. As we mentioned, we will proceed
along the lines of [6]. The main difference compared to [6] is the presence of the integral term.

3 Scheme of the proof

We adopt the scheme of the proof from [6] and try to avoid the complications rising from the
presence of the integral term. The procedure consists of an approximation of the convective term
and an approximation of the potentials of nonlinearities F' and H using a quadratic function,
proving the existence of the approximative solution and then returning to the original problem
via regularity of the approximative solution and properties of the nonlinearities.
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1 Introduction

Our contribution is divided into two parts. In Part I, we focus on the theory of discretized
problems and suitable numerical methods. In Part II, see [2], we describe implementation of the
problem and illustrate it on model examples.

In Section 2, we formulate the primal and dual formulation of the problem. Further we summa-
rize relations among them and their solvability in dependence on the parameter of proportional
loading. In Section 3, we consider a finite element discretization of the problem. We extend
existence results for the primal formulation (in terms of displacements). We also describe a one-
to-one relation between the load parameter and the work of external forces. In Section 4, we
introduce a modified semi-smooth Newton method for solving the problem and present conver-
gence results.

2 Formulation of the problem

We consider 3D contact problem for two elastic-perfectly plastic bodies Q' Q? with bounded
contact zones I'!, T'2, frictionless contact boundary conditions, the Hencky model with the von
Mises plastic yield criterion and the small strain assumption. The bodies are fixed on T'}, T2
and subject to external forces which are proportionally increasing from 0 up to the so-called
limit load. We investigate the problem in dependence on the loading parameter A € [0, A]. For
more details, we refer [9, 5] or [6].

To formulate the problem, we introduce the following functional spaces:

S = {7’ = (15) 1 Q@ > RS | 7ijlqn € LA(QF) Vi, j=1,2,3, k= 1,2} , Q=0'uQ?
representing the stress and strain fields with the scalar product (7, e) = fQ 7 : e dz and the norm
llelle = v/ (Ce, e), where C represents the elasticity tensor for an isotropic material. Further

10k > 1 2
V={o] vlge € (H'@)", k=12 v=00onT}UT%}

representing the displacement fields with the energy norm |jv| := |le(v)||g, v € V. In V and
S, we define the convex sets of kinematically admissible displacement fields, plastically and
statically admissible stress fields, respectively:

K = {veV|pl,<0onTiul?},
P {TES]HT(x)Dﬂpgfyfor a. a. z €}

Ay = {reS[{r,e(v) > AL(v) Yve K}, L(v) = /QF-vd:E—I—/F g-vds
!
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where ||.||r denotes the Frobenius norm, 77 is the deviatoric part of 7, 4 > 0 represents the

initial yield stress and A > 0 is the above mentioned load parameter.

The dual and primal formulations of the problem in dependence on A > 0 read as follows [5, 9]:

(P)x minimize S(r) = %(C_lT, 7) on Ay NP,
(P)r minimize In(v) =¥(e(v)) — AL(v) on K.

Here the functional ¥ is convex, Fréchet differentiable and can be split into the volumetric and
deviatoric part, i.e. ¥(e) = Wy (tr(e))+¥p(e?) for any e = 2tr(e)I+e” € S. The functional ¥y
is quadratic while ¥p has only a linear growth:

dko, k1 >0: kg (HGHF — 1) < \I/D(e) < k‘lHeHF Ve € S. (1)

Due to this fact, the functional Jy is not coercive on V in general, and consequently solvability
of (P)y is not guaranteed. On the other hand, the functional S is quadratic. Therefore there
exists a unique solution to (P)} if and only if

AxNP#0Q. (2)

The verification of (2) however is not trivial. It is known that there exists the so-called limit
load A > 0 (possibly A = +00) such that (2) holds if and only if A € [0,A]. The way how to
find X for perfectly plastic problems with standard boundary conditions has been proposed in
[9]. Its possible numerical realization can be found in [1].

The following relationship between the dual and primal problems [9] holds:

inf 7\(v) = sup {-S(1)} VA>0, (3)
veK TEANNP

where we set sup{—S8(7)} = —oc if A\N P =0, i.e. if A > . This means that J, is bounded
from below if A < A, which enables us to investigate solvability of (P) on the larger space
BD(R) than V, see e.g. [9]. Notice that if A < A then one can prove coercivity of Jy on the
non-reflexive space LD(Q) = {v € LY(Q); &;;(v) € L' (Q)}.

If we assume that there exists a solution uy € V of (P)y, then oy = T'(e(uy)) solves (P)3, where
T is the Fréchet derivative of ¥ representing the stress-strain operator. It is well-known that
T can be defined by a projection on the convex set P. Due to this fact, 7" is also Lipschitz
continuous and monotone on V.

3 Notes to the discretized problem

The problem is discretized by the finite element method using piecewise linear continuous
approximations of the displacement field and piecewise constant approximations of the stress and
strain field. We do not investigate the influence of the domain, material and load approximation.

The primal and dual formulation of the discretized problem has the same structure as in Sec-

tion 2, only the spaces V', S are now finite-dimensional. Therefore the theoretical results from

Section 2 remain valid. For simplicity of notation, the primal and the dual formulation of
*

discretized problem will be denoted again by (P)y, and (P)3, respectively. Since V is now
finite-dimensional, we can also investigate solvability of (P)y. It holds:

i) Jy is coercive and the solution set to (P), is non-empty and bounded if and only if A < \.
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ii) (P)5 has a solution if and only if all solutions to (P)y, A < A, are uniformly bounded with
respect to A. In such a case the solution set to (P)5 is unbounded.

iii) For sufficiently small A > 0, (P), has a unique solution which also solves the corresponding
problem for elastic bodies.

It is typical in perfect plasticity to investigate a loading process up to the limit load represented
by A, which is not a priori known. So if we increase A\, we would like to known how far we are
from A. To do this, it could be useful to know the dependence of the work of external forces L
on A. It holds:

j) Let 0 < A1 < Ay < X and (P),, has a solution. Then L(uy,) < L(uy,) for any solution uy,
to (P, i=1,2.

4i) Let a > 0 be a given parameter. Then there exist: a unique A := A(a) < X and a solu-
tion uy to (P)x such that L(uy) = .

4ij) If a — +o0 then A(a) — .

ij) The function a — A(«) is linear for sufficiently small « (elastic branch).

Thus the parameter o representing the work of the external forces is more sensitive for controlling
the loading process than A. If the curve representing the relation between o and A is far from
the initial linear behavior, one can expect that A is close to A.

4 Modified semi-smooth Newton’s method for (P),

We propose a modified semi-smooth Newton method for the primal problem. The method is
modified by a damping coefficient to keep a decrease of the functional and by the regularized
tangential stiffness matrices to ensure a uniform positive definiteness. Although the method
is primarily formulated in displacements, the main convergence results are obtained for stress
fields.

Let us recall that the stress-strain operator 7T is potential, Lipschitz continuous and monotone.
Since V' is now finite dimensional, we can define a generalized derivative 07'(e) of 1" at any
e € S in the sense of Clark [3], and a function 7 so that T°(e) € 9T(e), e € S. Moreover it
is known that 7" and consequently T'(¢(.)) are strongly semi-smooth on the finite dimensional
spaces S and V, respectively [8]. It means that the following estimate holds for any v € V' and
any sufficiently small w € V:

T(e(v +w)) = T(e(v)) = T°(e(v + w))e(w) = O(|[[wl]|[*). (4)

Thus it is possible to use the semi-smooth Newton method [7]. On the other hand, it is not
guaranteed that T°(¢(.)) is positive definite in a vicinity of a solution to (P)) since T is only
monotone. For this reason we rather propose and use the regularized operator TV :=
(1 -=v)T°+vC, v € [0,1], instead of T°. It holds that

(T (e(v))e(w), e(w)) > vllJwll* Yv,w e V. ()

For Newton-like methods in optimization problems, an approximation of a non-quadratic func-
tional by a quadratic one is typical. In our case, the functional Jy contains the non-quadratic
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part W. Its value at a solution u) can be approximated by some u§ € K close to u) as follows:

W(e(un)) = U(e(u})) + (T(e(uh)), e(un — uf)) + %<T°’”(€(U'§))€(UA —uf),e(ux — k). (6)

The k-th step of the modified semismooth Newton is then defined by

T =l + it € K, (7)

where §u* € K}, minimizes the quadratic functional

Iak(0v) = %(T"’”(e(uli))ewv),6(5v)> — AL(6v) + (T(e(u})), £(0v)) (8)

on the convex set K := {6v € V | ov +u§ € K} and

ap = arg m(in} T (uh + adu®). (9)

ae(0,1
The algorithm is initiated by some u9\ € K. We also compute the corresponding stresses
ok = T(e(uf)). If v € (0,1], then the algorithm is well-defined and determines the descent
directions du*. The inner problem (8) is similar to the corresponding contact problem for elas-

tic bodies. Efficient numerical methods for such a problem will be discussed in Part II of our
contribution [2].

For any v € (0, 1], the following convergence results can be proven:

. ky _ >
kll)liloo I (uy) Inf Ia(v) VYA =0, (10)
o — oy VAE[0,)], o) solves (P)3, (11)

{u}}1 is bounded and its accumulation points solve (P)y for any A € [0,A). From (10) and (11),
we see that the algorithm generates a minimization sequence of [J and that convergence of
stresses occurs even if the primal problem does not have a unique solution, respectively.

For a wide class of the loads and A\ < A, one can intuitively assume that
Je:=€(\) >0:  (T°%e(uy))e(v),e(v)) > €||v]]|> YveV, (12)

where uy € K is a solution to (P)y and €(\) — 04 as A — +A.

If we accept this assumption then w) is the unique solution to (P), and the following convergence
results hold:

< (1 - €+(0ff5)u) lun — k]I, ¥v e (0,1],

lun — w (13)
= O(|[Jun — ui]I*), v=0
and
li = 1. 14
oo K (14)

Thus we get local quadratic convergence for v = 0 and local linear convergence for v € (0, 1].
However if the assumption (12) was true, we could expect that the inner problem (8) is ill-posed
for A — X and small v.
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5 Conclusion

In this contribution, we summarized and slightly extended the theoretical background to the
contact problem for elastic-perfectly plastic bodies. We proposed the modified semismooth New-
ton method and studied its convergence. Parallel implementation of the problem and numerical
examples are discussed in Part II of our contribution [2].

We have also investigated Uzawa’s method for the corresponding augmented Lagrangian problem
formulated in terms of displacement, strain and stress fields, see e.g. [4, 5, 6]. The comparison
of both methods can be found in Part II [2].
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1 Introduction

We combine the Multilevel BDDC (e.g. [2, 5]) with the adaptive selection of constraints[1, 3,
6] to obtain an implementation of the algorithm of Adaptive-Multilevel BDDC' [7, 8]. This
implementation is available as a part of the open-source parallel solver BDDCML.

2 Adaptive-multilevel BDDC

The goal of the Adaptive BDDC' [1, 3, 4, 6] is to improve the coarse problem of BDDC so that
the worst modes are eliminated from the space of admissible functions. This is achieved by
solving a set of local generalized eigenproblems, one for each pair of subdomains. As has been
shown in [4], this approach is able to significantly improve robustness of the BDDC method for
problems with certain numerical difficulties, such as problems with strongly varying material
coeflicients.

The Multilevel BDDC' (e.g. [2, 5]) aims at very large problems solved on large number of
subdomains and corresponding processors. For such problems, the coarse problem becomes so
large and/or fragmented, that factorization by a parallel direct method is not scalable or even
possible. The main idea of Multilevel BDDC' is to apply BDDC recursively to the arising coarse
problems, introducing an approximation on each level. Consequently, the condition number
worsens exponentially with each level [2].

The goal of the Adaptive-Multilevel BDDC' [7, 8] is to enjoy the advantages of both of these
approaches — the scalability of the multilevel approach and robustness of the Adaptive BDDC.

3 BDDCML package

The Adaptive-Multilevel BDDC' has been recently included into our parallel solver BDDCML?.
The BDDCML is a library for solving linear systems of algebraic equations in parallel. It is
written in Fortran 95 programming language and parallelized by MPI. The library can be linked
to users’ applications, typically finite element packages. One step of the BDDC method is used
as a preconditioner for the PCG method (for problems with symmetric positive definite matrix)
or for the BICGstab method (for symmetric indefinite or general non-symmetric matrices).

‘http://www.math.cas.cz/ sistek/software/bddcml . html
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4 Numerical example

The performance of the method is analysed on a benchmark problem of elasticity analysis of
a unit cube, which is loaded by its own weight and fixed at one vertical face. Nine stiff bars are
cutting horizontally through the cube. The Young’s modulus of the outer material £ is 10° times
smaller than that of the bars Ey, creating contrast in coefficients Eo/E; = 10°. In Fig. 1 (right),
the (magnified) deformed shape of the cube is shown. The cube is discretized using uniform
mesh of tri-linear finite elements and divided into an increasing number of subdomains. On the
first level, subdomains are cubic with constant H/h = 16 ratio (H is the characteristic size of
subdomains, h is the characteristic size of elements), see Fig. 1 left for an example of a division
into 64 subdomains. On higher levels, divisions into subdomains are created automatically inside
BDDCML by the METIS package, in general not preserving cubic shape of subdomains.

Z-displacement
E—A.Qe-22
-2e-6
-de-6

[-6e-6
-6.688e-6

Figure 1: Example of a division of the cube into 64 subdomains (left) and (magnified) deformed
shape for contrast Fy/E; = 10° coloured by vertical displacement (right). Reproduced from [8].

In Tabs. 1 and 2, we present results of a weak scaling test. The growing problem is solved on 8 to
32768 processors of the Cray XE6 supercomputer Hector (EPCC), with each core handling one
subdomain of the first level. In these tables, NV denotes the number of subdomains (and computer
cores), n denotes global problem size, nr represents the size of the reduced problem defined at
the interface I', ny is the number of faces in divisions on the levels (corresponding to number
of generalized eigenproblems solved in the adaptive approach), ‘its.” is the number of iterations
needed by the PCG method, and ‘cond.’ is the estimated condition number obtained from the
tridiagonal matrix generated in PCG. We report times needed by the set-up phase (‘set-up’),
by PCG iterations (‘PCG’) and their sum (‘solve’).

Results for the non-adaptive multilevel BDDC' approach in Table 1 confirm, that convergence
worsens with additional levels, as well as that the multilevel extension is capable of solving larger
problems than the two-level method (‘n/a’ in the tables). However, we can also observe, that
the non-adaptive method requires an extensive number of PCG iterations and this stage clearly
dominates the overall time of solution.

The time needed by the adaptive-multilevel BDDC' is very different. Most of it is spent by
the solution of the related eigenproblems (included into time of ‘set-up’). Since we keep the
number of computed eigenvectors constant (ten) for each pair of subdomains, the method is not
able to maintain a very low condition number after all these eigenvectors are used for generating
constraints. However, number of iterations is always significantly lower than in the non-adaptive
approach, and the method typically requires about one half of the computational time. While
this is an important saving of computational time, it is shown (for the two-level method) in [4],
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N ny it q time (sec)
¢=1(/2/3) " e ¢=1(/2/3) s cond. set-up PCG  solve
2 levels

8 0.1M 9.5k 12 582 236k 4.0 59.4 63.4
64 0.8M 0.1M 0.1k 1611 233k 4.7 171.9 176.6
512 6.4M 1.0M 1.3k 2195 240k 9.5 340.4 350.0
4096 50.9M  8.4M 11.5k n/a n/a n/a n/a n/a
3 levels
64/8 0.8M 0.1M 0.1k/18 2218 239k 4.7 234.1 238.8
512/64 6.4M 1.0M 1.3k/295 2830 250k 9.5 328.2 333.7
4096/512 50.9M  8.4M 11.5k/2930 4636 587k 19.3  1096.2 1115.5
32768/128 405.0M 69.1M 95.2k /664 6914 737k | 155.0 3820.8 3975.8
4 levels
512/64/8 6.4M 1.0M 1.3k/295/23 3771 729k 5.4 434.4 439.8
4096/512/64 | 50.9M  8.4M  11.5k/2930/380 | 8548 1860k | 9.3 1502.3 1511.6
32768/512/8 | 405.0M 69.1M  95.2k/2921/23 | 9532 2362k | 160.2 5096.6 5256.8

Table 1: Weak scaling for the cube problem with jump in coefficients Ey/E; = 10°, non-adaptive
multilevel BDDC. Reproduced from [8].

N ny . time (sec)
0=1(/2/3) " nr ¢=1(/2/3) its. cond. set-up PCG  solve
2 levels

8 0.1M 9.5k 12 119 1951 34.1 12.3 46.5
64 0.8M 0.1M 0.1k 76 102 96.0 8.1 104.1
512 6.4M 1.0M 1.3k 58 55 164.2 8.9 173.2
4096 509M  8.4M 11.5k n/a n/a n/a n/a n/a
3 levels
64/8 0.8M 0.1M 0.1k/18 457 48k 96.7 48.0 144.7
512/64 6.4M 1.0M 1.3k/295 82 0.1k 165.7 10.2 175.9
4096 /512 50.9M  8.4M 11.5k/2930 282 165k 238.7 74.1 312.9
32768/128 | 405.0M 69.1M 95.2k /664 270 24k 909.4 2976 1207.0
4 levels
512/64/S | 6.4M  LOM  13k/295/23 | 554 63k | 1695 683  273.7
4096/512/64 | 50.9M  8.4M  11.5k/2930/380 | 3392 671k 299.3 800.1 1099.4
32768/512/8 | 405.0M 69.1M  95.2k/2921/23 | 3762 10495k | 697.6 4925.1 5622.7

Table 2: Weak scaling for the cube problem with jump in coefficients Fy/E; = 10°, adaptive
multilevel BDDC. Reproduced from [8].

that the adaptive approach can solve even problems with contrasts such high, that they are not
solvable by the non-adaptive approach with arithmetic averages on all faces and edges.
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5 Conclusion

We have presented a recently developed parallel implementation of the Adaptive-Multilevel
BDDC algorithm. The approach combines advantages of the Adaptive BDDC for numerically
difficult problems and of multilevel BDDC for very large problems solved using many subdomains
and cores. The developed parallel solver is available as an open-source library BDDCML.
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On effective implementation of the non-penetration condition

for non-matching grids preserving scalability
of FETI based algorithms

O. Vlach, Z. Dostdl, T. Kozubek, T. Brzobohaty

VSB-Technical University of Ostrava

Mathematical models of contact include the inequalities which make the contact problems
strongly nonlinear. In spite of this, a number of interesting results have been obtained by
modifications of the methods that were known to be scalable for linear problems, in particular
of the FETI domain decomposition method introduced by Farhat and Roux for parallel solution
of linear problems. Using this approach, a body is partitioned into non-overlapping subdomains,
an elliptic problem with Neumann boundary conditions is defined for each subdomain, and in-
tersubdomain field continuity is enforced via Lagrange multipliers. The Lagrange multipliers
are evaluated by solving a relatively well conditioned dual problem of small size that may be
efficiently solved by a suitable variant of the conjugate gradient algorithm. Later Farhat, Man-
del, and Roux [1] introduced a “natural coarse problem” whose solution was implemented by
auxiliary projectors so that the resulting algorithm became scalable.

It has been soon observed that duality based domain decomposition methods may also be suc-
cessful for the solution of variational inequalities that describe equilibrium of a system of elastic
bodies in unilateral contact. Recently, we obtained the theoretical results that guarantee the
scalability also for contact problems, see [2, 3, 4, 5] .

The scalability results were originally proved for matching grids. In this case, the boolean
matrix B which imposes the “gluing” conditions and non-penetration conditions has nearly
orthogonal rows, which turns out to be a key ingredient of the proofs of optimality. By nearly
orthogonal we mean that the matrix B has singular values distributed in a given positive interval
that does not depend on the discretization parameter. For linear problems, B can be effectively
reduced to the matrix with orthogonal rows; this was used by Klawonn and Widlund to improve
the estimates of the rate of convergence. The orhogonalization of constraints that they use
comprises multiplication of constraints that is not admissible for inequalities that describe the
non-penetrations.

The point of this paper is to extend the results mentioned above to the contact problems with
non-matching grids which necessarily emerge, e.g., in the solution of transient contact problems
or in contact shape optimization. We want to get both good approximation and B with nearly
orthogonal rows. We consider both standard engineering approaches such as node to segment,
(see Wriggers [6]) or mortar elements (see Wohlmuth or Laursen [7, 8, 9]). We give simple
bounds on the singular values of the resulting matrix B and results of numerical experiments,
including both the academic examples and some problems of practical interest such as the ironing
eample in fig. 1. We conclude that the normalized orthogonal mortars proposed by Wohlmuth
can be used to approximate the non-penetration conditions in a way that complies with the
requirements of the FETI methods.

Acknowledgement: This paper has been supported by the I'T4Innovations Center of Excel-
lence project, reg. no. CZ.1.05/1.1.00/02.0070 supported by Operational Programme 'Research
and Development for Innovations’ funded by the Structural Funds of the European Union and
the budget of the Czech Republic and by the Ministry of Education of the Czech Republic under
contract No. MSM6198910027.
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Figure 1: Ironing with insets.
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Arbitrary accurate guaranteed bounds on homogenized
coefficients by FFT-based finite element method

J. Vondreje, J. Zeman, 1. Marek

Czech Technical University in Prague

FFT-based homogenization algorithm is a popular numerical method for evaluating an effective
(homogenized) matrix of periodic linear heterogeneous materials. Originally, FFT-based ho-
mogenization method was based on a solution of Lippmann-Schwinger type of integral equation
with the Green function derived from an auxiliary homogeneous problem. A numerical solution
proposed by Moulinec and Suquet in [1] is based on the Neumann series expansion corresponding
to a simple iteration procedure.

Zeman et al. in [2] proposed a discretization of Lippmann-Schwinger equation with trigonometric
collocation method by [3, 4] and showed that Moulinec-Suquet numerical algorithm correspond-
ing to the solution of linear system can be efficiently solved by Conjugate gradients (CG) in
spite of its non-symmetry, a requirement of CG to converge.

It [5, 6], it is shown that CG minimizes an energetic quadratic functional over a subspace relating
to a space of curl-free fields with zero mean. Numerically, this is ensured by a projection operator
deduced from Green function in Lippmann-Schwinger equation and effectively performed by Fast
Fourier Transform (FFT) algorithm.

Later in [5], it has been shown that the Lippmann-Schwinger equation is equivalent to a cor-
responding weak formulation in a sense that the solution coincide; it also eliminates a refer-
ence homogeneous constant, a parameter of Lippmann-Schwinger equation. Next, a Galerkin
approximation with numerical integration is proposed to reproduce Moulinec-Suquet algorithm;
trigonometric polynomials are taken as a finite-dimensional space. Moreover, a convergence of
approximate solutions to the solution of weak formulation is provided using a standard finite
element approach together with estimates stated in [4].

Arbitrary precise guaranteed bounds of homogenized matrix were introduced by Dvordk in
[7, 8] for a scalar problem and later independently by Wieckowski in [9] for linear elasticity.
This approach is also applicable for FFT-based homogenization [10]. We present a general
technique that allows effective calculations by the FFT algorithm and maintains the upper-
lower bound structure. Dual formulation is applied to obtain lower bounds — for odd number
of discretization points, the solution of dual formulation can be avoided. A general number of
discretization points leads to a more complicated theory in both discretization and numerical
treatment.

Acknowledgerr}ent: This work was supported by the Czech Science Foundation through
project No. GACR P105/12/0331.
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Multigrid methods for problems of mathematical
physics and multiphysics

J. Hron

Mathematical Institute, Charles University in Prague

Geometric multigrid is well established as an efficient and fast solution method for wide variety of
problems. In this tutorial, we discuss development in application of geometric multigrid methods
for solving linear and nonlinear systems arising from the finite element discretization of physical
problems, especially solving incompressible flows. Then we discuss extension and modification
of these methods to some systems describing multiphysics problems, such as bio-fluid dynamics
and coupled fluid-structure interaction.

The tutorial will cover these topics:

e Introduction to classical geometric multigrid method.
e Geometric multigrid for incompressible Navier-Stokes equation.
e Extension to coupled multiphysics problems in continuum mechanics.

e Discussion of recent development and perspectives of these methods.
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Vo o b3 i it oot s it i
& - S

Efficient Numerics for Boundary Integral Equations

Motto

Some people like FEM, because it is easy.
Some others like BEM, because it is difficult.

Prof. Ulrich Langer, MAFELAP 2006
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1d BEM

Fundamental solution

Representation theorem

For f € L2(0,1), x € (0,1):

y=0

1
:AAﬂwcmwww+hmmcw.Mo [u(y) G, )] .

Efficient Numerics for Boundary Integral Equations

Yet, another motto

If you can’t explain something simply, you don’t understand it deeply enough.

A. Einstein

1d BEM

Boundary value problem

1d BEM

Proof of the representation theorem

For x € (0,1), f € L*(0,1):

1 1
/f(y)G(w,y)sz / (—u"(y)) G(z,y) dy
0 Jo
=N

1
- [[Cwmcen s [ ) o

per parm/ u'(y) G (x, 1/] dy — (W () G(z,z) — '(0) G(x,0))
+/ u'(y) C.f/(l 1/) dy — (W'(1) G(z, 1)~ (z) G(z, x))

=u(z) + [u(y) Gf/(r..l/ﬂ”j +0 = [u(y) Gz, )l .

y=0,

W (ug.n) (x) =V (upo}) ()



1d BEM 1d BEM

Newton potential N
For f € L*(0,1)

Single—layer potential v

Denote the Neumann traces of u(z) by uf := —u/(0), u} := u'(1).
N(f(y))(a) = /7' 1) <2 4 %(y _ x)) dy + /] i) (2 _ {})@ _ 1)) dy The single-layer potential is the following function ,
0 B - e ’ ’ z ’ z !
ug, up)(z) = (2 — =) u —+= .
is an H'(0, 1)-function, which has the Dirichlet traces V(up, )] ( 2) to+ (2 * 2) “
: 1 y : 1 y By applying the Dirichlet traces to the latter, we introduce the single layer operator
N0 = [ 10 (2-8) an N0 = [ 10 (2+5) a VR R
0 2 0 2 B
as well as the Neumann traces V(up, up)(0)) _. Vi) = V- up) _ (2 3 [y
, L Py )~ o) =V w) =3 0) ()
NGO = N0 == [ fw)dn
0

By applying the Neumann traces to V, we introduce the adjoint double-layer operator

K R? - R?
Vg ) O\ _ L (b s oy (L gr) () — (L (0 —=3Y). [
(‘N/(u(’),u’l)’(l) =5\ ) ) = (G KD ) = (5T (g o)

1d BEM 1d BEM

Double-layer potential W Boundary (integral) equation(s)
Denote the Dirichlet traces of w(z) by ug := u(0), uy == u(1). Recall the representation formula: for f € L*(0,1) and « € (0,1):
ulw) = N(f)() + V (uo,ur) () = W (u, ) a).

W (ug, uy)(2) = *}Uo — lul By applying the Dirichlet and Neumann traces to the latter, we arrive at the following
2 2 boundary equations
By applying the Dirichlet trace to the latter we introduce the double layer operator

KR R? uo) _ (NN g () _ (_Lp k). ),
() 3 (5) = (o) (2) Eu@-E‘fﬁfﬁ?<>°>>+<§f9w§?:é> 3@5‘2@«

The double layer potential is the following function

. o ) N(fY () )%
- w
= (*51 + (7; Oz) ) . (u?) . From the first row we can deduce the Steklov—Poincaré operator S mapping the Dirich-
N hat the N W b which lead hel 2 L let traces to Neumann ones:
ote that the Neumann traces of W vanish, which leads to the hypersingular operator
D(up,w) = (0,0). e W) _yet (pyx ) (1) (N (1) () (VO]
' ' u 2 u N(f)(1) -1 1) \w N(f)(1)
[ S —
The second row is just the Newton Leibnitz formula: «/(1) —«/(0) = — 01 f= fol u”.

Efficient Numerics for Boundary Integral Equations Fundamental solution, representation formula

Outline Laplace equation with mixed boundary conditions
o 1d BEM Q C R? lipschitz domain, T := 92 =TpUTy, IpNTy =0
® 2d conventional BEM —Au(x) = 0, x €O CR?
pu(x) =ux) = g(x), x el
Fundamental solution, representation formula ;\’DUEL)): %Ex; _ l;]zix;, xe Fﬁ
— Potentials, mapping properties

— Boundary integral equations (BIE)
- (%;\lerkl‘n boundary elemen.t method (BEM) /*Au(y)v(y) dy = / Vuly) Voly)dy — /wu(y)vw(y) diy)
— Numerical quadrature of singular kernels Q 5} r

— Matlab pseudo code, examples /u,(y) (—=Lo(y)) dy = /Vu(y) Vuly)dy — /'yDu(y) woly)di(y)
o 3d fast parallel BEM Q Q T

et BEV ) (ot dy = [ outs) o)ty [ wut) ot~ [oaty) woty) )
— Parallel BEM : =0

o Conclusion, references

First and second Green’s identities



Fundamental solution, representation formula

Second Green’s identity
[ uts) (0 dy = [ uty) ooty dity) = [ puty) ety aiy)
Q r T

Fundamental solution

1
G(x,y) = 7§ln Ix —y| satisfies —AyG(x,y)=0dx(y) in the distributional sense

Representation formula (v(y) := G(x,y))

VxeQ: ulx)— / uly) wGix, ) dily) - / tu(y) 1y Gl ) dify)

‘We are left to calculate ypu on I'y and ynu on I'p

Efficient Numerics for Boundary Integral Equations

Outline

e 1d BEM
® 2d conventional BEM
— Fundamental solution, representation formula
— Potentials, mapping properties
— Boundary integral equations (BIE)
— Galerkin boundary element method (BEM)
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— Fast BEM
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Potentials, mapping properties

Adjoint double-layer potential
Since V' can be continuosly extended to V € £ (H'I/Q(F), Hl(ﬂ)). then also
woVerL (H’”Q(F), H"/Q(F)) .

For w € L>=(T") and smooth points x € I" it holds true that

~ 1
IV ()](x) = Fwx) + [K(w)(x),
where the latter is the adjoint double layer potential
o) = Jiy [ ) waGoe ) iy

=0y

It can be continuosly extended to

K'e £ (HR0), D))

Fundamental solution, representation formula

Representation formula

YxEeQ: u(x)= /F wu(y) wG(x,y)dl(y) - /F u(y) wyGx,y)di(y)

=V (nu) =W(ypu)

We are left to calculate ypu on I'y and ynu on I'p.

Potentials

. \N/('yNu) ...single-layer potential

© W(ypu) ...double layer potential

Potentials, mapping properties

Single-layer potential

Given w € LA(T"), x € Q, the single-layer potential is the following function:

P (wly))x) = / wly) Glx,y) dify) € H'(Q).

r
It is harmonic in Q

VreQ: —AV(w)(x)=0.
Operator V can be continuously extended to V € £ (HVA(r), HY(Q)). thus
Vi=poVecrL (H’W(F), HW(r)) .

Provided diam Q < 1, V' is H~"2(I")-clliptic.
For w € L®(T'), x € I we arrive at a weakly-singular integral

=0,

V(w))x) = lim /F IRCCALECR R

Potentials, mapping properties

Double-layer potential

Given v € L>(T'), x € €2, the double-layer potential is the following, harmonic in €2,
function:

[W(v(y))l(x) ::/Fl'(y)w_yG(x,y)dl(y) € H'(Q), YreQ: —AW(v)|(x)=0.
By continuous extension, W € L(HW(F),HI(Q)). thus yp o W €

L (HW(F), Hl/Z(F)). For v € L*>(I') and smooth points x € I' the following holds
true:

1
WV W) = 500 + K W)]x),
where the latter is the double layer potential (a conflict of notation)

w00 = Jig [ o) waGlxy) ).

It can be continuously extended to K € £ (Hl/z([‘), Hl/z(l")).



Potentials, mapping properties
Hypersingular operator
Since W can be continuously extended to W € £ (HY*(I'), H'(2)), then also
oW ecl (H‘/Q(F),H’I/Q(F)) .

Operator D := —vy o W is called the hypersingular operator. It is not defined in
terms of the Cauchy principal value. Rather, for v € C(I) it takes the form

D160 = = [(05) = o) 1y Gl y) ).

-

For u,v € C(I') piecewise cotinuously differentiable the integration by—parts results in

(D(),v)r = — /F Vx) T /F uly) 155Gl ) dify) difx)
dv i

(¥) G(x,y) di(y) dI(x).

Provided diam Q < 1, D is semi-elliptic on H'2(T).
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— Matlab pseudo-code, examples
© 3d fast parallel BEM
— Fast BEM
— Parallel BEM

o Conclusion, references

Boundary integral equations (BIE)

Representation formula

VxeQ: ux)= / aly) WG, ) dily) — / Tuly) 55 Gl ¥) dify)

=V (nu) =W(pu)

Boundary integral equations: weak form

Making use of the map. properties: Find u := ypu € HYA(T), t := yu € H™*(T):

(w,u) = (w, V(1)) + <u (é[ - K) (u)> Vw € H ()
(t,v) = <GI + K’) (t),v_'> + (D(u),v) Yoe HVYT)

Potentials, mapping properties
Summary

Single-layer potential, w € L>(T'):

Ve (), D), Vw)eo = i /r M) GOl

=0,

Double-layer potential, v € L>(T'):

Kerl (H1/2(r),H1/z(F)), [K(v)](x) = lim /F\Bk( )v(y) G, y) dify).

e

Adjoint double-layer potential, w € L>(I):

K el (H*1/2(F),H*l/2([‘)) s K (w)(x) = CIE& /1“\3( )w(y)'yx G(x,y)dl(y).

Hypersingular operator, u,v € C(I') piecewise continuously differentiable:

DeL (HI/Q(F),H’I/Z(F)) . (D(w),v)p = — r%(x) [v (%(y))] (x) di(x).

Boundary integral equations (BIE)

Representation formula

VxeQ: ulx) - /F uly) G, y) dily) - /r (y) 1y Gl ¥) di(y)

=V (nu) =W(ypu)

Boundary integral equations
Applying vp and ~y, respectively, to the representation formula, the following holds
true at smooth points x € I'

u(x) = [Vinw)(x) + %’YDU(X) = [K(ww)](x)

) = ) + (K (a9 + (D]

Boundary integral equations (BIE)

Direct method for the Dirichlet problem
Given a lipschitz domain Q € R? and g € H'(T).
—Au(x) =0, xe€Q
u(x) = g(x), xel

The first BIE leads to: Find ¢ := yyu == 9% € H=V4(I'):

(w, V(1)) = <w, (%1 + A) (g)> vw € H-V(I).

By Riesz theorem, it is a well-posed problem, provided diam(2 < 1. The volume
solution reads as

vxeQ: ux) = [V(1)]x) - [W(g)x)



Boundary integral equations (BIE) Efficient Numerics for Boundary Integral Equations

Direct method for the Neumann problem Outline
Given a lipschitz domain Q € R? and h € H~"/3(T) such that (h,1) = 0. e 1d BEM
{ 7Adu(x) =0, x€Q © 2d conventional BEM
wx) = hx), xel — Fundamental solution, representation formula

The solution is unique up to a constant. The second BIE leads to a problem with — Potentials, mapping properties
operator D, which is semi-elliptic on H'/ (T), provided diam Q2 < 1. To regularize D
the problem is solved in the subspace H,},{Z(I‘) ={ve H1/2([‘) : (v,1) =0}

Find u, == ypu € HYA(I):

— Boundary integral equations (BIE)
— Galerkin boundary element method (BEM)
— Numerical quadrature of singular kernels

1
(D(uq),v) + altig, 1) (v, 1) = <(§I - K') (h), 1:> +afv, 1) Yoe HVYT), — Matlab pseudo—code, examples
where o > 0. The volume solution u := u, + ¢ is given by * 3d fast parallel BEM
— Fast BEM

Vx € Q: uy(x) = [‘N/(h)] (x) = [W(uqa)](x). ~ Parallel BEM

e Conclusion, references

Galerkin boundary element method (BEM) Galerkin boundary element method (BEM)
Galerkin method = orthogonal projection Céa’s lemma
Consider a Hilbert space H, a symmetric H-elliptic operator A € L(H, H*), and |lu—u"||gr < C inf u—2"| = Cdist(u, H")
= sheph !

b e H*. We look for v € H:

. - arbitrary " h.
Afw) = b, ie. Vo € H: (A(u),0) = (b,v). Proof. For arbitrary v" € V"

Aellip. ]

By Riesz theorem the problem is well-posed. lu—u"% < C—(A(u — ), u—u"
Consider now a vector subspace H" C H and look for the Galerkin approximation 1 A
u e 0" = C—(/l(u —ul),u) = (Au —u), u") — (A(u — u), ")
NS A Rt e S A
Vot e H': (A), oy = (b, "), A 0, see Py 20, see Py
which is well-posed as well. By substracting the equations the Galerkin approximation 4 b%u - L—"Hu —aul o [ — 1/"'“ "
u” turns out to be an orthogonal projection of u Ca
Vol e H": (A(u—u"),0") =0, tj. u" = Py(u).
Galerkin boundary element method (BEM) Galerkin boundary element method (BEM)
2d Galerkin BEM Single—layer matrix V

o Discretization: Decompose the polygonal boundary T into disjoint open segments Recall the 1-layer potential and the formula for w € L>(T):

D=ULS, SUS;=0forij. ver (H’”Q(F),Hl/z([“)) , V())x) = lin / wly) G(x, y) di(y).
€0+ J\B.(x
Sort, the segments as well as the end points in the anticlockwise order so that . A
Thus, for w(y), 2(x) € L§ ¢ H-(I):
Si={x(s) =%+ (xip1 — %) s: 0<s<1}, [Si|:=|xic1—xill, where x,41 = x;.
n n
o Approximate H~1/2(I") by L} consisting of piecewise constant functions (2(x),V(w(y))) = <Z 20i(x), V Z w;V;(y) > =z-V-w,
i—1 j=1
1 is
L= (W(x), . ), where W) = 4L €5 where
0 elsewhere :

(V);; = /s, /s, G(x,y)dl(y)dl(x), z:=(z1,...,2,), W:=(wr,...,wy).

o Approximate HY/%(T") by L consisting of continuous piecewise linear functions

L= (p1(x),...,0u(x)), where ¢; € C(T), gi(x)]s, = a;;x+b;j a gi(x;) = 5y



Galerkin boundary element method (BEM) Galerkin boundary element method (BEM)

Double-layer matrix K Adjoint double-layer matrix K’ = K’
Recall the 2-layer potetial and the formula for v € L>(T): Recall the adjoint 2-layer potential and the formula for w € L>(I'):
Kerl (HW(F),HW(F)), [K(v)](x) = lim / o(y) oy Glx, y) dify). KeL (H-1/2(F),H-1/‘1(r)), [K'(w)|(x) == lim / w(y) 1xG(x. y) diy).
=0 Jn\Be(x) =0+ Jr\B.(x)
Thus, for v(y) € LI ¢ H'*(I") and 2(x) € L} ¢ H'*(I): Thus, for w(y) € Li ¢ H-V(I') and v(x) € L} ¢ HY*(T):
(00, K (0(y) = <Zw (Zv,% )> K-v, (K (w(y)),v <K' (Zw/ Jy )‘Zw%(X)> —voKw
=1 i=1
where or
G
/ / iy (x y)dl(y)dl(x), z:=(z1,...,2,), V= (v1,...,0,), (K/)u / /T x,y)dl(y / / ei(x)-—(x,y) di(x) di(y) = (K);;-
8j-15; Si-1US; S Sj 8i-1US;
where Sy := S,.
Galerkin boundary element method (BEM) Galerkin boundary element method (BEM)
Hypersingular matrix D Mass matrix M
Recall the hypersingular operator and the formula for u,v € C(T') pew. cont. diff.: Yet, for w,t € H-/2() and u,v € HY(T) in BIE there are terms
Dec (i), oo [ G0 [v (Gm)] e . (w 100) = ) = [ w0 ) dl), xesp. (1(0),0) = (1) = [ 1) 00) )
T r r
Thus, for u(y), v(x) € LI ¢ HYA(I): Thus, for u € L} ¢ HY*(I'), w € Ll ¢ H™YA(I):
(D(w),v) = ( D { Y wipi(x) | .Y vigslx) ) =v-D-u, (w, I(w)) = <Zuﬂu(x) Z’HM;(X)> =w-M-u,
i=1 i=1 =1 J=1
where
where
do) —1/ISi)| j=i+1lor(i=nandj=1) (M), ::/ %(x)dl(x):{(\)&w ,71: 1,ho1-,7:1,+101- (i=1andj=n)
D=T".V.T, Tj,:= %9(): YIS =i s, elsewhere
elsewhere
Galerkin boundary element method (BEM) Galerkin boundary element method (BEM)
BIE: Galerkin formulation Dirichlet problem
Find u,t € R"™: Given a polygonal domain © C R? with diam Q < 1 and g € C(T).
V4t,(}M+K>Au:0 —Au(x) =0, xe€Q
2T u(x) = g(x), xel
(—%M n K) t+D-u=0 The Galerkin approximation of the first BIE leads to the linear system

V<t:(%M+K><g

where g; := g(x;). The Neumann datum is approximated by "(x) := 30" ;W;(x)
and for x €

Z /ny )iy Zg,/s § w(y)(;G(x y)di(y).



Galerkin boundary element method (BEM)

Neumann problem

Given a polygonal domain © C R? with diam Q < 1and h € C(T) such that (h, 1) =

—Au(x) =0, xeQ
2(x) = h(x), x€

The Galerkin approximation of the second BIE leads to the linear system
- 1
(D+a(M-1)-(M-1) )u(,: s

2
where h; = (x +x’“) The Dirichlet datum is approximated by u”(x)
S (0a)ipi(x) + ¢ and for x €

Z / (x,y)dl(y

T
M—K> ~h+aM” -1,

n

o [ e Gty iy [ Gy,
r

i=1 55.US;

Numerical quadrature of singular kernels
Three types of integrals
When evaluating the entries of V and K, we deal with the following integrals:

a) Identical segments — singularity in {x =y : x,y € S} eg.

|5V i
nydl )dl(x) = In(]S"| |s — t|) dt ds.

b) Segments with a common node — singularity at the node, e.g.
SIS 11
Joni= [ [ emmamae =B oo mssm sl aeas.
Sio1 S 00
¢) Disjoint segments — the kernel is a C™ function, e.g.

//nydl )dl(x) =

Si 8

\SHS

11
[ it tcr=ds = gl e
0 0

Numerical quadrature of singular kernels

a) Numerical quadrature over identical segments

The procedure can be generalized to fundamental solutions of other 2d PDE operators
having the siguhrit\ for x —y = 0. Parameterize S; and denote k(s —t) := G(x; +

(X1 = X)8, % + (Xip1 — X)t).
—|5i? / / (s—t)dtds

//nydl )dl(x
:—\S,V/ (/ k(z)dz+/ k(:)dz) ds
//3177]{ dzd5+//7~k' dzds+/(sk() (s—1)k(s—1))ds

+ hm zk(z) — hm zk(z

Substituting (s — 1) 7 := z, (s —1)dn =dz, and s := z, sdn = dz, respectively, in
the first and second integral, yields

1 1
/0 /0 ((s = D20k ((s — V) — s K (sm)) dpds.
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Numerical quadrature of singular kernels

a) Numerical quadrature over identical segments

Consider the parameterization S; := {x 1= x; + (X411 — X;)s :

0<s<1}
vi= [ f

G(x,y)dl(y)dl(x) = ‘S‘ //lnlSHs—t\ )dtds
ISil

2
o <1ﬂ\5n|+/0 /0 ln|s—t|dtds)

Let us substitute z := s — ¢ for ¢ in the latter integral, divide the integration domain
i singularity, and integrate by-parts:

// In|z|dzds = // 1 In(— dZ(]s+//1lnzdzds

= —/ / z—dz ds+/ (sns—(s—1)In(l —s)) ds+ lim zIn(—2) — lim z Inz
0 Js z 20 250,

0

_ sk _3
(V)i = =5 (s -3

thus

Numerical quadrature of singular kernels

a) Numerical quadrature over identical segments

If the kernel k(s — 1) :== G(x; + (Xiy1 — Xi) 8, X; + (Xip1 —
for s — t = 0, additionaly satisfies

zk(2)

x;)t), having the singularity

and zk'(z) continuous at 0,
then

a1 5]
= / / ((s — 120k ((s —1)n) — sznk’(sn)) dnds+/ (sk(s)—(s—1k(s—1))ds
o Jo 0

. . N
and we can employ e.g. a Gauss quadrature rule with the points f}E )

and weights
w k=1, N:

(V)i = wi- ((si““ - 1>255‘“ k’((&i‘”” -



Numerical quadrature of singular kernels

a) Numerical quadrature over identical segments

Observe a numerical exponential convergence of the Gauss quadrature (to be proven).
(VO — (V)
[(V)idl

rel. error := for k(z):= —@ In(|Si||2])
27 !

rel. chyba

Numerical quadrature of singular kernels

c) Numerical quadrature over disjoint segments

Consider S; N S; = (), parameterize S; := {x = x; + (X;+.
S ={y =x;+ (X —x))t:0<t <1}

//nydl ) dl(x) |SH

The kernel is a C™ function and the Gauss qudrature guarantees an exponential con-
vergence

1—X;)s:0<s<1}and

ow®™ (o e® N
(V)ij=w (k( i & ))“:1 WL
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1 1
/ [t 51, 1 e s
0 0

Numerical quadrature of singular kernels

b) Numerical quadrature over segments with a common node

Consider the parameterization S;_; = {x = X; + (%;-1 — X;) s
Si={y=xi+ X —x)t:0<t <1}

11
. __Isllsi I
Vi~ [ [emyaman - B 0/ 0/ G615 (e i ds.

Sic1 8;

10 < s < 1}and

The kernel k(s, ¢) has a singularity at the origin s = ¢ = 0. We replace it by decom-
posing the integration domain and the Duffy substitution 7 := s, 75 :=p

/01/0l dsdt = /01 /D[k'(s,t) {lSdt+-/()l /’bk (s,t)dtds = /l /T(k('r,p)Jrk(p,-r))dpdT
A

The resulting kernel is continuous and we can employ e.g. a Gauss quadrature

k(r, ™) + k(tn, 7)) dndr.

N

~w™ (g (ke 6V ™) + k(e e g)) | w,

k=1

(V)i

Numerical quadrature of singular kernels

Numerical quadrature for K

/ / ,
5j_1US;

a6 1 x=y)-nl)
dny o x =yl

Recall the matrix K
(x y) di(y) di(x),

where

a) The identical segments, e.g. ¢ = j, do not contribute, since

n(y) = 0.

b) In case of segments with a common node we employ the same technique as for V.

(x—y)-

¢) In case of disjoint segments we employ the same technique as for V.

Matlab pseudo—code, examples

function [V,K,D,M] = BEM2dLaplace(X € R*",N € N) — see a)

5(‘N"V) = 5(‘\") ®§(‘V), see meshgrid
V=K=M=T:=0
for i =

=(i,1])fori=n

n 18] —nr H
o= [S1(1/2,1/2), Tug, := (~1,1)/IS]
for j=1:mdo
if ¢ = j then
Vi =Si*(In|Si| - 3/2)
else
end if
end for
end for

V =V/(-21), K :=K/(-27),D =T?.V.T



Matlab pseudo—code, examples Matlab pseudo—code, examples

function [V,K,D,M] = BEM2dLaplace(X € R>",N € N) — see b) function [V,K,D,M] = BEM2dLaplace(X € R*",N € N) — see b), c)

if i = j then if e;Ne; # 0 then
else (K)i@p, —= [Sil15)] (a- ;) ((1 — &M )2)./F + (§(N)/2)~/Fz) ~wl)
e = (j,j+1),orej:=(j1)forj=n ) )
K)i@), —= ISi]1Sj|(a- 2)./F 2)./Fy) - w¥)
X e X By == ISl n) (€72 /F1+ (6 /2)./Fu) - w
7=y = yu S| =17l ny = ()2, = (7)0)/18i] ¢ Ze N~
K -
if e;Ne; # () then ~ ~ B B A= (a) 4 (7 )€ (N
Reorder e; and e; to € and €; such that (€;); = (€;); 1: 1 1 ih )
=X, — X em, b =X ), 7)('(5 )1 Ay = (a)y + (1:)26™) — (1), :
N il ) g N = AL 2+ A0 2 F =N, (V) = S S] w®) - F - w®)
v= (ah o €Y) 2+ (@)~ ()26 F = ()i Ar + ()2 As) /N
Fy= ( a) ¢l ) (a) )2 F = Iu(F,.*Fy) Kie) —= [S1]]81w™)- ((1 _ 5(N.N>),*F) W)
(V)i =8| |5]| —1+F-wi)/2 K, —= 15]15] wi) . (é(N.N)_*F) ™
end if end if

end if

Matlab pseudo—code, examples Matlab pseudo—code, examples

function [V, W € R”] = BEM2dLaplace_inner(X,N,t,u € R",P € R>*7) Dirichlet problem on the square © = (—1/4,1/4)?, g(x) = min;{|z;|}?,

. n =128
é(N’N) =M R¢eM, see meshgrid
V=W:-=
fori=1:ndo Ll
x:=P,; !
j=1:mdo
ej:=(j,j+ 1), ore;:=(j1) for j=n yi =X () y2:= X (e)),

2=y S =l ny )2 =(T)1)/ 151
a=x—y, A= () — (11677, Ay = (a)y — (7'])25 e
N=A."24 A2 F =N, V., += (t);]5] ]S w) - F - w®
F = ((nj)1 A1 + ()2 Ay) ./N
Wi == (Wi 151 155w - (1= €4).5F ) - wl

)

W., —= (W, 151155 W) (5<N,N ‘*F) G
end for
end for
V=V/(=21), W := W/(-2n)

Matlab pseudo—code, examples Matlab pseudo—code, examples

Neumann problem on the square Convection-reaction—diffusion equation

i —div (A - v/ . — 2
—Aulx) — K2u(x) = —Au(x), x € 0 C R - { div (A - Vu(x)) + 2b - Vu(x) + cu(x) = 0, xeQCR
b due Glx—y) = Hy (sllx=yl) u(x) = g(x), xel
mx) = —Gx), xel 4 T ) ) )
where A € R**? is positive definite, b € R* and ¢ € R satisfy

c+b-A'.b=0.

The fundamental solution reads as follows:

Fan

(&) B N e o
,,((( ))); G(z): 2m/m1 Vz- A1z,

where z .= x — y.

incident wave u™¢ total field u + u™
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Fast BEM

Admissible pairs of clusters (quadratic complexity)
min{diam C,, diam C,} < ndist(C,,C,), n e (0,1)

Stronger admissibility criterion (linear complexity)

min{diam C,, diam C,} <
2min {rad C;,rad C;) < 7 (\xc‘ —x%| —rad C, — rad Cy)
< dit(C, Gy,

where rad C' := max [x§ —xC].

Quad-tree of cluster pairs

{7, vt {, - - vm}) is the root. )
Leaves (C, D) are cither admissible or min{n®, n?} < nyp.
Nonleaves (C, D) has four sons (Cy, Dy), (C1, D2), (Ca, Dy), and (Cy, D5).

Fast BEM

Compression by singular value decomposition (SVD)

ri=rank A &
A= E o u; V,T =~ E o vlT =: Ay, where k < r,
i—1 -1

01> 09> ...0, >0 ... singular values,

(uy,...,u,) ...an orthogonal system of left singular vectors,
(vi,...,v;) ...an orthogonal system of right singular vectors.
SVD gives the best approximation in the spectral (operator) norm:

Ax=arg, i A =M.

The best compression, but worse than quadratic computational complexity O(mnr).

Fast BEM

Cluster geometric bisection

C={F ..., "/SC} ... cluster of elements from discretization {71,...,3u,} of I,
xC = ﬁ S EIXE .. cluster centroid, where x{' is the centroid of 75,
kL

CC =3 9 (x§ — x©) - (x§ — x)T ... cluster covariance matrix,
&

C

n® ... a dominant eigenvector of CC.

The cluster is cutted into two subclusters by the plane (x — x) - n® = 0 as follows:
Cy = g'yk eC : (xf —x%) -n’ > 0% ... first subcluster,

Cy={yeC : (x{ —x)-n® <0} ... second subcluster.

METIS could be an alternative.

L]

Fast BEM

Quad-tree of cluster pairs, H-matrices

‘CGCl

‘C1><C'z

Nonadmissible blocks assembled as full, admissible approximated by low—rank matrices.

Fast BEM

Asymptotically smooth functions

Assume (A);; = f(x;,y;), where x; € Cy, y; € Cy, C,, C, C RY

f:Cy x Cy — Ris asymptotically smooth if

Jer, 2> 039 <0Va € Ny : (95 f(x,y)], |95 (x,y)] < ewpllea)lx—y[*", p=la|.
Compression by Taylor expansion

Provided diam C,, < diam C,, deon < 1, choose yo € C, about which we expand f:

=

1 .
X€Cy €0y flxy) =3 1y = yo)oy xy0) + Ryfx.y),
where k=0
1 5 5 1 S|
[Ry(x.y)| = o [y = y0)oy f(x.3)|" < me = yol'erpl(c2)’|x = ¥|*
iam?
< (:1(17’11’M(listg(cr, C,) < ey(degn)tdist?!(C,, C,)) — 0 as p — o0.

2@t (C,, C)



Fast BEM

Function interpolation on a skeleton

Given distinct points xq,...,x, € C, and yy, .

frai(xy) =

(X, y)

where Vj :

0
{fk (%,y) + (X, yi) rr(xiy, yu)"
{f(X:y)

(X, ¥) = 1R(%, ¥i) Tk (X ¥i) T (X, Y)
[re(Xi, yir)| = (i, y;)| > 0. Then f(x,y) = fi(x,¥) +ri(x,y) and

L yr €0y,

(X3, Y)

k=1,
k>0

(X, y) =X, y;) =0 for j i<k VxeC, Vyedl,

Moreover, provided f asymptotically smooth, then

p-1

[rn, (%, ¥)| < 1 (cadn)” (1 +2) C, dist?(Cs, C)

with n, = ZZ;) (H'{’l) < cqp® and C, the Lagrange interpolation error on the skeleton.

Fast BEM

ACA algorithm (a simple version)

Given an admissible block A € C™*", n € (0, 1), and a relative precision & > 0.

Fast BEM

Adaptive cross approximation (ACA)

Ay A A
P, APL = (31 5P )~ (2 1 T84 ) =
[eX Cy <A21 Ay Ay Ay Ail A

g12

511
Ay

At (R 2

vl

The rank r := r(¢), where Ay e is adaptively controlled by ¢ as follows:

[lapsillz Vil <

which implies, provided ||Ry41|lr < n||Ry||F, that

e(l—
1+e¢

IRy
ATr

m=

<, where R .= A — A;.

k
7
D Adle. where Ag = 3w,

1

The pivots, stored in Pe,, Pc,, are chosen as to maximize |det gm with a wish to
minimize | Ry|| = || AL, — Ak (A}) "L AL.

Fast BEM

ACA algorithm: an example (R, := A)

0.431 0.354 0.582 0.417 0.582
ki=1,R:=0,C:=0,i:=1 _ 10491 0.396 0.674 0.449 | i1=1.51=38 1 0.674 e e y
repeat Ro =1 0,446 0.358 0553 0.413 r=(1}  0.582 | 0.583 (0.431,0.354,0.582,0417)
- . § - -
Vi (Ao v = vi— S vt % Note that vi = (Rl 0.380 0.328 0.557 0.372 0.557
(i} =1 0 0o 0 0 0
R:= RU/{i; —0.008 —0.014 0 —0.034 | i1=2 j1=4 1 —0.034
i = argmaxge [(va);l, vi = (vk)]’k1 Vi R, = 0014 0.003 0 —0.005 —HH:{M} 0032 | —0.005 (—0.008, —0.014, 0, —0.034)
[ , —0.033 —0. —0.027 —0.027
uy, = (A).j, W=, — Y (vi)jw % Note that uy, = (Ry). - 0.033 (? o1 0(] K 3 (') 00 !
C = CU{jr} B 0 0 00| it 1 0 X
i1 = argma;gp | ()] Ro= | G015 0005 00| e Zo3 | 015 | (~0-026,0.0004,0,0)
k=k+1 i —0.026 0.0004 0 0 —0.026
until [[ugqlf2 || Vil < = |[Aklpor R={1,....,m}or C={1,...,n} .
The algorithm can be easily adapted to the cases (vi);, = 0, vi = 0 and u; = 0. The relative error decays as follows: [[Ry|l2/[|All2 = 0.030,0.016,0.003 for k = 1,2,3
Fast BEM Fast BEM

An improved ACA for the Helmholtz equation: cube

Given the solution p(x) = "X/ (47|x — x,|) with & := 27151.6/340 and the
scaterrer placed at x, := (0.05,0.05,0.05).

An improved ACA for the Helmholtz equation: ball

Given the solution p(x) = "%/ (47]x — x,|) with & := 27151.6/340 and the
scaterrer placed at x; := (0.05,0.05, 0.05).

ACA (n:=04,e:=1077) Elem. ACA (n:=0.4,¢:=10"%) ACA (n:=04,e:=1075) Elem. ACA (n:=04,e:=10"%)
nodes/elements | error D GMRES |Tot. mem. | ecror D GMRES |Tot. mem. nodes/elements | error D GMRES Tot. mem. | error D GMRES Tot. mem.
22/40 0.099 100%/1s. 13iters./0s| 7MB | 0.099 O0s 13/0 3 MB 8/12 0538 | 100%/0s |Titers./0s 7 MB 0538 0s  7/0 8 MB
82/160 0.020  100/2 19/0 8§MB {0020 3 19/0 9 MB 26/48 0.186 | 100/0 21/0 7TMB 0186 1 21/0 8 MB
322/640 3.9¢-3  100/30 28/0 13MB [39e-3 34 28/1 23 MB 98/192 0.166 | 100/3 30/0 8§MB 0166 3 30/0 9MB
1282/2560  |8.7e-4  94/973 42/7 85MB | 1.0e-3 255 42/49 130 MB 386/768 0.035 | 100/43 37/1 16 MB | 0.037 45  37/3 29 MB
5122/10240 |2.7e-4 39/8095  60/70 484 MB |3.9e-4 1259  60/450 | 727 MB 1538/3072  9.3e-3| 91/1661 | 48/12 115 MB |0.015 282 48/87 165 MB
20482/40960 | 1.0e-4 12/42397  86/496 224 GB |23e4 5515 86/6662 | 2.93 GB 6146/12288 |3.5e-3|37/12134| 66/107 641 MB |4.6e-3 1236 66/729 918 MB
81922/163840 4.2e-4 25768 123/23877| 13.19 GB 24578/49152 |3.5e-3|12/60671| 92/738  2.81 GB |5.2e-3 5157 93/5060 3.90 GB




Fast BEM

An improved ACA for the Helmholtz equation: railway wheel
ACA(1074.0.4)
o D: 56%/272806s,
o K: 44%, 3121s,
o GMRES: 138iters./490s
Elem. ACA(107%,0.4)
o D: 78%/5732s,
o K: 7, 2658s,
o GMRES: 142iters./2524s

Parallel BEM

Parallel implementation on a shared memory system

processor 1 processor 2
master slave

Nonadm/adm Nonadm/adm Nonadm/adm

blocks 1 Dblocks 2 blocks N’

\

shared
Quad-tree

T~

=1  triangles

memory

nodes

Parallel BEM

The idea
N processes, N x N submatrices

o Each diagonal block with the related geometry data assigned to one process

= both memory and CPU balanced, since most nonadmissible blocks are dis-
tributed efficiently.

e Each geometrically closely related N —1 off-diagonal blocks assigned to one process
? memory balanced: Mem = O (W + \)—%)
7 CPU balanced
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Parallel BEM

Helmholtz, Dirich. u(x) := " |/(4x|x — x,|), k1= 2.8, x, = (2,2,2) on B,

compr. scheduling+assembling times of V, [s]
n er. of V., N:=2 N:=4 N:=8 N:=16 N :=32
40 [33e-1 100%  0+0 0+0 040 0+0 040
160 |1.2e-1 100% 0+1 0+1 0+1 0+1 0+1
640 [3.6e-2 100% 0410 0-+4 0+3 0+2 0+2
2560 [9.9e-3 100% 04142 0472 0+38 0+20 0+9

10240 [2.8¢-3  65% 66+1388 27+673  7+335 T+168 5+88
40960 |9.0e-4  26% 45243600 28041823 2334929
163840 |3.3e-4 8% 4011419892
(M(u—
(Mu,u)r

err. =

Towards parallel scalability: CPU = O (” 1‘{'7’ ”) , but Mem = O(N n log n).

Parallel BEM

Finding optimal distributions by brute force fails
o N =2: 2 cases,
o N = 4: 34650 cases,

o N =8 4-10% cases.

number of cases = ((N ;Vl)N) . (<N ;\2) V) <2]i\>



Parallel BEM

Cyclic decomposition of undirected graphs
N:=3 N =7 N:=21

> B

It is equivalent to perfect difference sets [Singer, 1934]: decompositions available for
VIN-1) _plp—1)

2N 2 7
where p + 1 is a power of a prime number.

Parallel BEM

ACA for Laplace 1-layer matrix on a cube

compr. average memory [MBJ, CPU [s] per process
n v N:=1 N:=7 N:=31 N:=57T N:=73 N:=01

3072 215% | 160,8 148,1 170,0 1940 177,0 197,0
12288 13.1% | 267,59 163,7 1751 176,1  167,1 200, 1
49152 5.2% |884,367 263,51 201,10 194,8 1956 214, 5
196608 1.8% 705,226 353,53 274,32 254.25 280,25
786432 0.7% 999, 294 668, 172 599, 119 570, 110 535, 99
3145728 0.3%
ACA:p:=11,e:=10"%...,107° nyin := 10,...,60

Parallel scalability: CPU = O (W) ,Mem =0 (L{”” + #) .

Efficient Numerics for Boundary Integral Equations

Outline

e 1d BEM
® 2d conventional BEM
— Fundamental solution, representation formula
— Potentials, mapping properties
— Boundary integral equations (BIE)
— Galerkin boundary element method (BEM)
— Numerical quadrature of singular kernels
— Matlab pseudo-code, examples
© 3d fast parallel BEM
— Fast BEM
— Parallel BEM

e Conclusion, references

1911 MB, 596 s

Parallel BEM

The algorithm

1. Decomposition of the mesh into N submeshes (by Metis).

2. Assignment of O(v/ N ) submeshes to each processor, using the cyclic decomposition.

3. Parallel assembling of the N x N block matrix by means of a fast BEM.

Parallel BEM

Int. Laplace problem with Dir. datum u(x) := 1/|x—(2,2,2)] on Q := (0,1)?

#elems assemble time: CPU(V)/CPU(K) [s]
error, #CG memory [MB] per process: compression of V /compression of K [%]
N:=7 N =31 N =57 N =73 N =133
3072 11281 129/21 210/31 20.1/17
2.6e-2, 59 159:41/84 173:40/93 176:42/99 192:46,/100
12288 545:11/396 153:2/81 95:0/54 T7:2/75 47:0/30

13c2, 78 | 247:19/41  213:19/45  210:18/49  206:20/53  202:23/67
49152 | 2752:69/2200 810:13/474  GOL:6/280  446:8/202  241:7/176

6.5¢e-3, 102 | 803:8/16 347:8/17 291:8/19 277:8/20 258:9/25
196608 3171:83/2521 2122:45/1282 1885:39/1348  1016:31/790

3.3e-3, 129 1025:3/6 T17:3/7 646:3/7 529:3/8
786432 1247 5:161/4085

1.7e-3, 167 1885 MB:1/3

Conclusion, references

Area of use

o BEM reduces the problem to the boundary

o Fundamental solution is known for many 2d/3d PDEs, e.g., elasticity, acoustics,
clectromagnetism

® Recently also time domain BEM for parabolic and hyperbolic PDEs
© Problems in bounded as well as unbounded domains
e Natural coupling with FEM

e Cons: restricted to linear material laws, difficult implementation and theory



Conclusion, references
BEM references

o Bouchala, J., Uvod do BEM. SNA 2007.

o Sadowskd, M., Resen{ variacnich nerovnic pomoci hraniénich integrélnich rovnic.
Diplomové prace. VSB-TU Ostrava, 2005.

o Steinbach, O. and Rjasanow, S., The Fast Solution of Boundary Integral Equations.
Springer, 2007.

e Steinbach, O., Numerical Approximation Methods for Elliptic Boundary Value
Problems. Springer, 2008.

e Sauter, S. and Schwab, C., Boundary Element Methods. Springer, 2011.

o McLean, W., Strongly Elliptic Systems and Boundary Integral Equations. Cam-
bridge University Press, 2000.

e Hsiao, G.C. and Wendland, W.L., Boundary Integral Equations. Springer, 2008.

Conclusion, references
Our work

o Lukas, D., Postava, K., and Zivotsky, O., A shape optimization method for nonlin-
ear axisymmetric magnetostatics using a coupling of finite and boundary elements.
Math. Comp. 82, 2012.

e Lukds, D., Kovar, P., Kovarovd, T., and Merta, M., A Parallel Fast Boundary
Element Method Using Cyclic Graph Decompositions. Submitted to Numer. Al-
gorithms.

Outlook

e with M. Merta: parallel FMM BEM, SNA '13
e with L. Maly: primal BEM-based domain decomposition, SNA 13
o with A. Veit (ETH Ziirich) and M. Merta: parallel BEM for the wave equation

o with P. Kovér and M. Kravéenko: (sub)optimal noncyclic decompositions of graphs

Conclusion, references

Fast BEM references

o Bebendorf, M., Hierarchical Matrices: A Means to Efficient Solve Elliptic Boundary
Value Problems. LNCSE 63, Springer, 2008.

o Nishimura, N. and Liu, Y.J., The fast multipole boundary element method for
potential problems. EABE 30, 371-381, 2006.

o Greengard, L. and Rokhlin, V., A fast algorithm for particle simulations. J. Com-
put. Phys. 73, 1987.

o Hackbusch, W. and Nowak, Z.P., On the fast matrix multiplication in the boundary
clement method by panel clustering. Numer. Math. 54, 1989.



Algebraic multigrid, stochastic matrices and homogenization

1. Marek, I. Pultarovad

Faculty of Civil Engineering, Czech Technical University in Prague

Multilevel and multigrid methods have become rather popular in many areas of numerical math-
ematics, especially in numerical solution of discretized partial differential equations (PDEs).

Theory of multigrid methods for discretized elliptic PDEs is presently quite well developed
and understood. Multigrid schemes are successfully used also for the Helmholtz equation and
some related theoretical results are available. Nonsymmetric problems including Markov chains
have been solved by multigrid methods for several decades. Nevertheless, their theoretical
justifications are still rare.

In our presentation we use the name algebraic multigrid (AMG) in cases of a solution of symmet-
ric positive definite problems and the name iterative aggregation-disaggregation (IAD) method
in case of a Markov chain. These two approaches are formally close each to the other but of
course, due to the different areas of applicability, there are differences that have to be taken into
account.

The presentation consists of the following main issues.

e Basic definitions and properties of Markov chains, stochastic matrices, their stationary
probability distribution vectors and many related examples.

e Some areas of application of these problems.
e Difficulties that can be met during numerical computation.
e Basics of the IAD methods. Comparing them to the AMG methods.

e Theorems of convergence of the IAD methods. Emphasizing that different tools are needed
than for AMG. Counter-examples of propositions that could be desired.

e Broader connections. Positive cones. Semigroups of linear operators. Partial differential
operators as generators of semigroups of linear operators. A typical model problem Laplace
operators.

e Homogenization.
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More levels
@ Numerical examples
TAD metods TAD metods
Definitions B is primitive if B" > 0 for some n. Otherwise B is cyclic.
Definitions Definitions
cfinitions Vector of all ones e. Spectrum 6(M). Spectral radius p(M). ehmitions Let A»(B) = max{|A|; A € 6(B),A # 1}.
Stochastic matrix B: [B];s > 0and Y, [B];s = 1. B is primitive iff Ay(B) < 1. Then lim,,_.. B" = %e’. How fast?
Then ||B|; = 1 and thus p(B) < 1. Examples.
Stationary Stationary
IAD Since e’ B =T, e is left eigenvector of B, then 1 € 6(B) and p(B) = 1. IAD 0 0 1 0 07 0 02 02 02
. - . . . Bi=(10 0 |,B,=| 06 03 1 |,B3=( 01 0.1 01 |,
o Irreducible matrix B: there is no permutation matrix P that o 01 0 04 0 0 07 07 07
Helmholtz) B B Helmholtz)
NeD PBP" = ( o Bl ) . NeD 010 042 021 07 02 02 02
o 12 Tvo B=|0 0 1 |, B=[ 05 05 03 |,B=|o01 01 01
Vo Vo 1 00 0 028 0 07 07 0.7
levels In the following B will be irreducible. el
1 00 0.406 0357 0.21 02 02 02
Theorem. (Perron - Frobenius) N Bi=(0 1 0 |,B=| 0426 055 051 |.B=( 01 01 0.1
There exists a unique eigenvector & of B that Bi =% and ¢’ & = 1. 0 0 1 0.168 0.084 0.28 0.7 07 0.7
Vector & is positive, & > 0. Multiplicity of 1 in ¢(B) is one.
1 1 1
X is stationary probability (distribution) vector or Perron eigenvector of matrix B.
0 0 0
[A. Berman, R. J. Plemmons, Nonnegative Matrices in the Mathematical
Sciences, 1994; R. S. Varga, Matrix Iterative Analysis, 2000] T T T
TAD metods TAD metods Le[ B/% — )AC be
B B X X
Let P = k¢! and Z = B— P. Then <B” B )(x] )=(3] )
Definitions Definitions 2 o 2 2
1) P2 = P, thus P is projection; Then

I-Byy  —Bp k3 0
T7 _ () —
DeZ=0 ( —By I1-Byp )\ & 0
3)ZP=(B—P)P=BP—P?> =Bk’ —P=%" -P=P-P=0and PZ=0; and after elimination

Stationary Stationary

IAD 4) Eigenvalues of Z: Let Zu = Au. Then either A = 0 or e’ u = 0 (because IAD I-By, _By, 3 0
e'Z = 0). Then Pu = 0. Then Bu = (P+Z)u = Au. Thus A € 6(B). ( 0 I—By—Byy(I—By1) B )( % >=( 0 )

(SPD. Let Zu = u. Then e"u = 0, thus Pu = 0 and thus (P + Z)u = Bu = u. Then u is (SPD.

““f“”‘”““ Perron vector of B and this is the contradiction to e/ = 0. So that ““f“”‘”““

1\_\(\ i) o(Z)=0o(B)\ {1} U{0}. 1\_\(\ i) Then %, is the Perron vector of the stochastic complement of By, in B

levels levels

Y i 2 =By + By (I-Bip) "By

levels levels

We want to obtain an approximation to X. which is stochastic.

Letx¥ > 0, e7x% = 1 and use power method: X1 = Bxk Then Txk = 1 and Proof.
K2 =B —3) = (P+2)( —3) =Z(x* - 3). e (Bn+By(I—Bn) 'Ba) = ¢ Bn+e Bu(l—Bu) B
) . An(B) ! = " By+e (I-Bi)(I—Bn) 'Bi
The second largest eigenvalue of B is important, A (B) ! _ €T322 i ETBlz
T

= e .
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Localization of spectrum of B

Let |
() i= ymax{|[Blei—€))l1: i = 1.}

then [E. Seneta, 1984]
A2(B) < (B)

Examples.
0 0 1 0 07 0 02 02 02
Bi=1 0 0|, Bo=| 06 03 1 |, By=[ 01 01 0.1
01 0 04 0 0 0.7 07 0.7
wB)=1,  1(B)=07,  1(B;)=0,
M(B) =1, MAy(By)~05292, Ay(B3)=0
1 1 1
o 0 o
7*1 0 1 7*1 [ 1 7*1 o 1
Recommendation

If B symmetric then / — B positive semidefinite.
We solve here
(I-B)x=0.
We may also solve
Ax=Db,
where A is SPD.

This talk can be followed
with stochastic matrices and SPD problems in ones mind at the same time,
noticing the differences and similarities between A and I — B, e.g.

0 1/2 0 1/2 1 -1/2 0 —1/2
| 2 0o 1/2 0 | 12 1 —1/2 0
B= 0o 12 0 1/2 A=I-B= 0 —1/2 1 —1/2
/2 0 12 0 -1/2 0 -1/2 1
1) Student’s life
Where the student can be found?
He can be at the university (sy), in the library (s>), at U Berdnka (s3) ?
Matrix of transition probabilities among states s1,52,53
0.1 0 04
B=| 04 02 0
05 08 0.6
Let us have at the beginning a probability distribution vy, then after one hour
vy = Byy, after two hours v3 = By, etc.
1 0.1 0.21
Thus for example,vi = | 0 |,v,=Bvi=| 04 |,v3=Bw=| 0.12 |,
0.5 0.67
0.289 0.2701 0.2666 4/15
vg= | 0.108 |,vs=1] 0.1372 |,ve=| 0.1327 |,...,ve=| 2/15
0.603 0.5927 0.6007 9/15
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Comparison of the upper bounds [I. Ipsen, S. Kirkland, 2006]

7(822) < ©(B).

Let A SPD, Ax = b and
A Ap )
A=
( AL An
and the Schur complement S»; = A — A]TZAI’IIAI} Then (interlacing property)

Amin(A) < Amin(522) < Amax (822) < Amax (A)-

Proof.
T TAT 5—1
vI'Ay _ V]TAllvl +V§A22V2 +2v]TA12v2 ngzzvz _ vaAvy = vy AAT T Apvy
vy VTV| + v;vz ’ vgvz v{v2
First ”<” for v/ = ((7A71/2A T T
< = 1 Anpv)’vy)
third < for vl = (0,v])7.
Applications

In general, homogeneous discrete finite Markov chains. Stochastic processes with
discrete times 11, 5, ... and finite set of states {1,2,...,N}.

Probability of transition from the jth state to the ith state within any time interval
is constant and equal to Bj;.

Some applications:

1) Student’s life

2) Original motivation from economy

3) Google

4) Tandem queues

5) Genetic signal processing

2) Original motivation from economy

[H. A. Simon, A. Ando, Aggregation of variables in dynamic systems.
Econometrica, 1961]

“Government planners are interested in the effect of a subsidy to a basic industry,
say steel industry on the total effective demand in the economy.”

= Tracing through all interactions among the economics agents,

small number of groups and separating the short-run from long-run dynamics.

097 002 0  0.0002 0.1433

s | 00291 098 0 0.0002 | o2ms

“1 00009 0 096 0039 |° *T| 0325 |

0 0 004 096 0.3225
0.25 0.1984 0.1432 0.1444
| 02s oo, | 02028 | | 02113 | 000 | 02134
=1 025 |'BTYT| 02540 | = 03234 BTV 032n
0.25 0.2539 0.3222 03211

where § = B'%y and let B = RBS(¥) and Bz = Z and ynew = S(3)Z.
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3) Google

One of the ways how to evaluate the
reliability and popularity of web pages:

Applications

10°

according to links among them.
[ S. Brin, L. Page, et al., 1998; Stationary
C. Moler, The world largest IAD
computation, 2002]
(SPD.
Let Gj; > 0 mean that there is Helmholtz)
alink fromj to i. 05 1 15 2 25 00 NCD
nz = 2312669 ; nz = 4410
G huge and sparse. e o
Since G can be reducible, apply B := 0.85G +0.15ve”, where v > 0 and v = 1. —
levels
Perron vector of B is the PageRank vector. oo
A higher PageRank score of a page 2 R
means a higher popularity.
Spy-plots of Stanford web matrix o
- original and its small block;
- a block and its reordering.
0001 3000 0000 “%83007 30000 20000
nz=36283 nz = 36283
TAD metods
5) Genetic signal processing
Probabilistic Boolean networks (PBN), first in [S. A. Kauffman, 1969]
Boolean network contains n elements {xj,...,x,}, eachx; € {0,1},
and Boolean functions f; : {0,1}" — {0,1}. Solution
methods
Genes: every {x,...,x,} is a gene activity profile (GAP). Stationary
In case of n genes, transition matrix has 2" x 2" elements! IAD
Perturbations, e.g. Bjj := Bjj +pk, where p € (0,1) and k is the Hamming distance
of ith and jth GAPs. (SPD
Helmholtz)
Finding optimal intervention targets: the best gene to intervene in order to achieve el
the desired attractor (desired stable state). Mean first passage times. \T\\i\\
More
”What is the probability that gene A will be expressed in the long run?” levels
”What is the probability that genes B and C will both be expressed in the long
run?”’
Most studied genes - human cancer [I. Schmulevich, 2002; M. Brun et al., 2004;
W.-W. Xu et al., 2011].
Most cited (3459 refs) paper in Nature: Genome-wide association study of 14,000
cases of seven common diseases and 3,000 shared controls, Nature 447, (2007).
TAD metods
Stationary matrix iterative methods
Power method
Algorithm x**1 = B, for x0 > 0, e7x0 = 1.
Error A1 = 3k — 5 = ¥ — § = Bx* — By = Bk, Stationary
IAD
Denote the projection P = e and Z = B — P. Note that P> = ke’ ke’ = fel = P.
SPD.
‘mmmun/‘
a) B primitive: The sequence x* = BXx" converges to & for any x* > 0, e’ xg = 1 NCD
and the rate of convergence is at most p(Z). Two
levels
More

b) B cyclic: The sequence x* = B*x does not converge to % in general. The
eigenvalues of B of the magnitude one are of the form A = 2%/,

levels

We can take B = aB+ (1 — a)I, & € (0,1)and use it for the iterations.
The spectrum of B is evidently 6(B) = 1 — o+ o (B).

It is not known a priori which « is appropriate.
For sure we can always use B instead of B for iteration.

4) Tandem queues

System of servers connected in different ways.

For example, serial connection of two servers:
“rates of new clients coming : served at first server : served at second server =
=my:my:m3=10:11:10

Example of 6(B):
N =276
A (B)=1

fourth largest eigenvalue 0.9890

Solution methods

Basic solution methods

Let B irreducible and stochastic, N x N. Solve (I — B)x = 0.
Direct methods

Gauss elimination
Rankof I —BisN—1.

Substitute some row of / — B by e’ and the corresponding right hand element by 1.
Iterative methods

Krylov subspace methods
Conjugate gradient method for all extremal eigenvectors [Tanabe, 1985],
GMRES,

computed vectors can have negative elements during the computation.

Weak regular splitting
A is an M-matrix if A = cI — B, where ¢ > p(M).
A is a nonsingular M-matrix if A is M-matrix and nonsingular.

Inverse of a nonsingular M-matrix is positive, A~ > 0.

Let M, W be a weak regular splitting of I — B,
ie./-B=M—-WandM ' >0and W >0.

LetT=M"'W.

Then Tk =%and 7 > 0 and p(T) < 1.

It may happen that p(B) < 1 and p(T) = 1.

Thus 7' = aT + (1 — )/ is a good iteration matrix.

What is a suitable splitting? The choice of splitting is not straightforward:



1AD metods . 1AD metods
e Comparison theorems e

) . Block methods with overlap - Schwarz methods, additive and multiplicative
Let A be a nonsingular M-matrix, A = M| —N| = M, — N, two weak regular

splittings. . . . . .
O TEN, > Ny > 0 then Resln?tlonlmalnces corresponding to i-th group R;.
Algorithm is
k k
1> p(M;'Ny) > p(My'N) > 0. A =T e,
1 R where for multiplicative Schwarz method
Stationary b) If moreover, A" > 0 and N; > N, > 0, equality excluded, then Stationary
IAD IAD e Tip apT\—1p.
L p(MNy) > p(M; 'N2) > 0. T=T, (I—R,» (RiART) R,A)
I, Counter-example for singular M-matrices by L. Kaufman [1983]: T, and for additove Schwarz method
NCD NCD 14
- 1 -l2 -1/2 0 - T=1-0Y RI(RAR])'RA,  ©>1/p,
levels I_B— —1/2 1 0 -1/2 levels =
More |l -1/2 0 1 -1/2 | More X .
levels 0 12 —1)2 1 levels and vectors ¢ are appropriate residual vectors.
0 1/2 12 0 0 0 1/2 0 Choice of blocks - mostly according to strength of connections or to the nonzero
N — 0 0 0 12 d Ny = 00 O 1/2 pattern of diagonal blocks [T. Dayar, G. Noyan, 2011]
=lo o o 12 an 2=l oo 0o o |
0 0 0 0 00 O 0 Restricted additive Schwarz method [M. Benzi, V. Kuhlemann, 2011]. Special
. (M ordering suggested by A. Langville and C. D. Meyer, [2005, 2006]. Special
Tk"e“ Ny > Ny but (M 'Ny) =0 and (M, 'Np) = 1/9. methods - based on stochastic complement [C. D. Meyer, 1989].
Different cones are needed [I. Marek, D. Szyld, 2000].
TAD metods TAD metods
Iterative aggregation - disaggregation (IAD) methods
Stationary matrix iterations (or Krylov subspace method) + coarse correction - Matrix RBS(y) is stochastic and irreducible.
recursively repeated RBS(y) =
0 03 0 06 O 1/3 0
Building the coarse problem: 1100 0 09 0 0 0 0 2/3 0
. Reduction matrix R and prolongation matrix S(y) are = ( ) 0 07 07 03 0 0 2/6 |=
tationary Stationary 00 1 1 1
1w /3 0 2/12 IAD 0 0 01 01 1 0 3/6
01 0 02 0 O 0 1/6
1100 0 2/3 0 4/12
(SPD. R={ 0 0o 1 1 1) S(y) = 0 2/6 for y=| 2/12 |, @m 1/2 3/10
Helmholtz) 0 3/6 3/12 Helmholtz) = ( 1/2 7/10 ) .
NCD 0 ]/6 1/12 NCD
Two Two N
levels Note, S()‘) + RT. i levels e
More . More Main idea of IAD: i NS
levels Idenlily RS(y) =1, o o6 levels ,\ ‘///Y
\ 09 \ ‘- Ify=%, pRYS 09 —_‘>\'0'1' -
Projection P(y) := S(y)R = TS T TS ‘ R T s >
o7 =4 the eigenvector z of RBS(%)z =z 07’ 01 \
1/3 1/3 0 0 0 7 N ) 1 )
2/3 2/3 0 0 O \ isz=R%
= 0 0 2/6 2/6 2/6 e N -
and S(X)z =% !
0 0 3/6 3/6 3/6 @)
0 0 1/6 1/6 1/6 o
TAD metods TAD metods
IAD algorithm Some special two-level IAD methods
Koury-McAllister-Stewart method:
uy + vy =1, T corresponds to block Gauss-Seidel method
— IAD procedure (input B, y; output ) — Takahashi method:
IAD IAD
1. u steps of basic iteration y := THy modified block Gauss-Seidel m. with a coarse correction
(SPD. o . (SPD. (after recomputing of i-th part of x, it is normalized, ||x¥||; = [z]s, where z is the
Helmholtz) 2. if size(B) < T solve RBS(y)z=z,elz=1, Helmholtz) current solution of the coarse problem).
NCD NCD
- else IAD procedure (input RBS(y), Ry; output z) -
[\m ( \T\-\m Vantilborgh method:
More 3. sety:=S(y)z, More
levels Jevels modified Jacobi method with coarse correction

v steps of basic iteration y := T"y (individual parts of x* are obtained as Perron vectors of stochastic complement

matrices Sj; of Bj; in B, where B arises form B after aggregation of all blocks
except the j-th one nto a single state.

[W. J. Stewart, 1994]
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Convergence of the IAD methods

Let us distinguish local and global convergence.

a) B almost symmetric - local convergence (similar to AMG for SPD problems)

[H. De Sterck et al.]

b) B almost block diagonal (NCD) - global fast convergence
[P. Buchholz, T. Dayar, W. J. Stewart]

c) General B - several results

[I. Marek, P. Mayer, 1. Pultarovd]

AMG for Helmholtz equation
Consider
Au=f,

a discretization of the indefinite Helmholtz equation
—Au—kKu=f.

Fourier analysis:
eigenvalues of I — @D~ A (weighted Jacobi m.) are

cosjmh X 1
A=l-o(l—-———], j=1,....N, h=—.
' ( 1—%#) T
Fine grid - fast frequencies are eliminated from the error,
smoothed modes can be amplified !
Coarse grid - the problem becomes negative definite
Intermediate grid - several methods

E.g. [H. C. Elman, O. G. Ernst, D. P. O’Leary, 2001]

Sufficient conditions for global convergence with factor O(g) [W. L. Cao, W. J.
Stewart, 1985]

fori#j,i,j=1,...,p.
. There exists constant My > 0 such that ||%;|[; > M,i=1,2,...,p.

(75 4)

and there exists constant Ma > 0 such that || (1 — H;) ~!||» < M, for

i=12,....p.
(70 %)

and there exists constant M3 > 0 such that [|(1 — K) ||, < M3e~!.

But:
Hard to estimate.
For ||E||; = 1 the method can diverge.

W

. Each block Bj; is similar to

4. Bis similar to

. B has block structure, for diagonal blocks ||B;;||, = O(1) and ||B;j||, = O(€)
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AMG for SPD problems
Algebraic multigrid (AMG) for symmetric positive definite (SPD) problems
Ax=b

Let R and R are reduction and prolongation matrices.

The coarse problem RARTz = Rr, where r is the current residual.

The iteration matrix is M = (I — T")(I — RT (RART)~'RA), where
T is symmetric, commutes with A and p(7) < 1,

R is any matrix for which RART is invertible, we have
p(M)<1.

Advantageous choice of R: according to strongly connected elements.

Then rows of R represent low frequency vectors.

[A. Brandt, Algebraic multigrid theory: The symmetric case, 1983]

IAD for NCD problems

Nearly completely reducible (NCD) Markov chains.
Convergence estimate according to Stewart’s book [1994].

[T. Dayar, W. J. Stewar, SIAM, 1996]:

“If B is a sum of a block diagonal matrix and E, where € := ||E|| < 1

X €& ... &
B— e X €
e € X

then the error is reduced by € in every cycle of the Koury-McAllister-Stewart,
Takahashi and Vantilborgh methods.”

More precisely:

Two level IAD for general stochastic matrices

[J. Mandel, B. Sekerka, 1983; 1. Marek, P. Mayer, 1998, 2003; U. Krieger, 1995]

Recall B= P+ Z, P = e, aggregation groups, R and S(y), e.g.

N 3/7 0 3/13
R=( 00 1 ), Sy)=1| 4/7 0 for y=| 4/13
0 1 6/13

Convention: elements in groups always consecutively numbered.
Error propagation matrices - derivation:
No eigenvalue of RZS(y) is equal to one. Proof:
RZS(y)u=u
then e’u = 0 then PS(y)u = 0 then

R(Z+P)S(y)u=u

and thus u is the Perron vector of an irreducible stochastic matrix RBS(y) and thus

eTu # 0, which is a contradiction.
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Having x* and starting with the coarse problem RBS(x¥)z =z, e’z = 1:

RBS(X)z = z
R(Z+P)S(): = z
RZS(X¥)z+ RRe"S(¥)z = 2
RZS(*)z:+Rx = z

Rt = (I-RzS(¥))z
(I-RzS(")'Rx = =

Then

S(hz = SN (I —RzS(F)) 'Ry

Sahz = (I-S(*)RZ)7'S(F)R:
S(*)z (- P(Z) 7 P(H)z,
where P(x) := S(x*)R is a projection. Then
Hog = HVI-PEN)Z) T PR -2
Mg = TEYI-P)Z) T PR -TV (- P(H)Z) %,
Hog = VI pN)Z) (PR -1z,
Moz = THYI-PNZ) 7 (1 - PR (K %)

Some convergence criteria

Let T=Band p+v = 1, so that J(%) = B(I — P(*)Z) (I — P(%)), basic iteration

by one step of power method.

Theorem. If at least one of the following options holds for B

1) one row is positive,

2) one column is positive;

3) the diagonal is positive;

4) stochastic complements of all diagonal blocks are primitive matrices,
then p(J(%)) < 1 (local convergence).

[1) Mandel, Sekerka, 1983; 2)-3) Marek, Pultarova, 2006; 4) Pultarovd, 2008]

Counter-example.

12 0 1/2
B=| 12 0 12 |,
0 1 0

groups G| = {1}, G, = {2,3}. Divergence, p(J(%)) = 1.

Two levels, but more steps of basic iteration

Divergence in general:

Let Cy,, N = 2n, be a permutation (cyclic) matrix represented, for example for
n = 6, by a directed path

1-3-5-27-9—-11-12—-10-8—-6—4—-2—1.

Theorem. Consider B = Cy,. Suppose 2n aggregation groups, each containing
two elements. Let T = Cy4,, and pt + Vv = n. Then

pU®) >n.

Theorem. Consider B = Cy4,,. Suppose 2n aggregation groups, each containing
two elements. Let 4 + v = n and let 7" correspond to the block-Jacobi iteration
matrix with 2 x 2 blocks. Then

pPU®) Zn.
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Thus the error propagation matrix is
I =T (1= PR Z) 7 (1= P(Y)).
In case of convergence, the asymptotic error propagation matrix is

J(&) =T (I - P(®)2)7 (1 - P(%)).

Then
pU()) <1

would mean global convergence (it is not feasible!), and

pPU®) <1

means local convergence.

Nevertheless, the Perron vector is a fixed point of all general IAD algorithms.
It is proved that the fixed point is unique - only for some special types of the IAD
methods.

Note that

e Only one step of basic iteration is allowed.
e Only T = B is allowed. Power method.
e Only local convergence is obtained.

Thus not so much efficient, not robust.

Theorem. Let 7 =B and u+v = 1. Let
a) m<Nand Gy ={1},..., Gp={m}, Gpy1 = {m—+1,... N}, and
b) the stochastic complement to Bg,,,, be a primitive matrix.

Then p(J(x*)) < 1 (global convergence).

[Ipsen, Kirkland, 2006].

More steps again, but better ordering
Ordering according to strong connections.

Let Cy be defined by [CyJit14 = 1. [Cy]1 v = 1 and [Cy];j = O otherwise, e.g.
00 0 1

- 1 0 0O

G=10 100

00 1 0

Theorem. [P., 2009] For any N there exists a choice of the aggregation groups
and p1 4 v such that limsupy ., p(J (%)) =2. |

0
Example. B = Cgqp, THTY = BN/2-1, o
20 groups, each containing 30 elements. 1

Spectrum (thick dots) of the error matrix J(&).
(Three thin circles help to recognize a location of the eigenvalues.)

1s 1 05 0 o0s 1 15 2

Again, divergence in general, even in local sense.
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Even better ordering (if possible) ...
fast convergence

Theorem. Let the block rows of the basic iteration matrix 7' be rank one matrices.

Then the IAD method yields the exact solution after the second cycle.
[I. Marek, P. Mayer, 1998]

Example. Let

/5 0 1/5
B=| 4/5 0 4/5
0 1 0

groups Gy = {1,2}, G, = {3}, let T =B.
The parts of x! are already parallel to the corresponding parts of £. Then =%

Indeed, p(J(3)) = 0.

1/9

4/9

More than two levels, L > 2

Theorem. [P, 2012] Let L = 3, Wy, + Vi > 1, m = 1,2. Let T commute with B.
The error in n 4 1-th cycle is

O _r=J () (" —%),

where
1 pal k
Iy = (1) (1-P2) (= Pa) ¥ (TP (T=D)+1-Ps)
k=0
+V27I(P2T)k(1—P2))T“‘,
k=0
where

P =S(")1S(¥")2RoRy

where Ry and S(y); maps vectors from level k into level k — 1 and vice versa,
respectively.

Some consequences

Previous two theorems == local convergence is not preserved

1. if we use L+ 1 levels instead of L levels;
2. if we use L levels instead of L+ 1 levels;

3. if we change i and Vg, but the sum py + Vi remains the same.
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Numerical

examples

Fourier analysis

Fourier analysis enables quantitative estimates and optimal choice of parameters.
B must have some structure.

First results for B cyclic. B = Cy, where [Cy];1,; =1 and [Cy]; y = 1.

Theorem. [P, 2012] Let N = 100, B = Cy, (thent =¢/N). T = aB+ (1 —a)l,
#G; = 2. Then spectrum of the error propagation matrix J(%) is
o(J(®) ={0,v0,v1,-.. . vu-1}s
where vy =
1 ((1 _ e2nki/N) (1 o ae—ZWki/N)u 4 (1 +ez;zki/N) (] o ae—zxki/N)“) )

1 141

k) 0 1 E o 1 o o 1
Example. 7= aB+ (1 —a)l,a =0.8 and u + v € {1,2,3,4}. Spectra of J(%).
(The solid lines represent reference unit cycles.)

Theorem. [P, 2012] Let L > 2 and w,, = v;, = 1 for all levels up to the coarsest
one,m=1,2,...,L—1. Let T commute with B.
The error in n + 1-th cycle is

X = () (- R),
where
L-1 =
I = TP =P2) ™" Y (Pr—Prs) My
k= k=1
L=2 m m
+7 Y, [T®T) Y (Pe—Piy )My 1,
m=1k=2 k=1
where My =T and
k
My = (T+ Y, TP}(T—1))T,
Jj=2

fork=1,2,...,L—2.

Numerical example I. - Tandem queue

Serial connection of two servers.
Left: 6(B), N =276

A(B)=1 o9
fourth largest eigenvalue 0.9890 ,
Right: 6(Bnew), W

Buew = 0B+ (1—a)l
a=0.7

22(Bnew) = 0.9923

Table: Number of cycles and times for achieving the accuracy 1076,

N | #G; | powerm. | cycles | time | IAD | cycles time
36 2 - - 24 | 0,02

4 - - 29 | 0,02

528 2 - - 25 | 0,68
4 - - 30 | 038

2080 2 - - 25 | 22,96
4 - - 28 | 10,78
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Numerical example II. - Genetics

Matrix of transitions of genes (with a perturbation 10-%), N = 1200.

Left: original B ¥
Middle: reordered B $&:
Right: o(B)

0 500 1000 0 500 1000

Table: Number of cycl%zs:e{?xoa solution times for c"ﬂ):tzlﬂ‘l)ﬁng the accuracy 1076,

steps of basicit., 7=0.8B4+0.2] | 1 2 3 4 5 6
time 82 | 285 |36 (82|37 |49
cycles 25 83 10 | 22 9 12

Fourier analysis: “Three steps of basic iteration are best (among{1,...,4} for
o = 0.8 in the iteration matrix T = ol + (I—a)r:
H=1 u=

u=3
1

Spectra
of J’s o« 0 o
for B cyclic:
) 0 1 o 0 1

Recent papers and topics:

Adaptive smoothed aggregation multigrid for nonsymmetric problems (for Markov
chains; with application to web ranking):

M. Brezina, H. De Sterck, T. A. Manteuffel, S. F. McCormick, K. Miller,

Q. Nguyen, J. Pearson, J. Ruge, G. Sanders

Multilevel methods for Kronecker-based Markovian representations:
P. Buchholz, T. Dayar

Algebraic analysis of two-grid methods: The nonsymmetric case:
Y. Notay

Some open questions:

More criteria of convergence of the IAD methods, for more levels.
Special IAD methods for genes.

Fourier analysis of the IAD with larger groups, more levels, ....

Main question: Does local convergence always imply global convergence?

1AD metods
Numerical example II. - Genetics, cont.
Fourier analysis says:
In case of one step of basic iteration in every cycle, & = 1/2 is best.
In case of two steps of basic iteration in every cycle, o = 1/3 is best.
Stationary Tablﬁe: Two steps of basic iteration. Number of cycles and times for achieving the accuracy
IAD 107°.
o= 0.1 02 [ 03|04 (0506|077 08]| 09
‘H\’h‘"m » time 210 | 108 | 74 | 56 | 43 | 3.6 | 49 | 82 | 184
— cycles | 61 33 22 |17 | 13 | 11 | 15 | 25 56
Two
levels
More Table: Three steps of basic iteration. Number of cycles and times for achieving the
levels accuracy 1076,
Rperica o= 01 [ 02 [03]04]05[06] 07 [ 08 [09
) time 116 | 658 | 44 | 3.8 | 58 | 8.6 | 149 | 283 -
cycles | 34 19 13 | 11 | 17 | 25 43 83 -




Stochastic Finite Element Methods

(an “incomplete” introduction)

Essentially, all models are wrong, but some are useful.

Bedfich ik
edfich Sousedi George E. P. Box

University of Southern California, Los Angeles CA

parts are based on joint work with Roger G. Ghanem (USC) and Eric T. Phipps (Sandia)

SNA'13 conference, in honor of Professor lvo Marek, January 2013
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Why stochastic models: uncertainty is everyWhere _

Many applications (physical, biological, social, economic, etc.) are - forecasting financial markets (economic factors, human behavior, ...)
affected by a relatively large amount of uncertainty. - modeling of wildfires (fuel, weather, ...),
As a result, mathematical models of these processes should - reliability of smart energy grids,

account for uncertainty development of renewable energy technologies,

Accounting for uncertainty in processes governed by partial

' : ' Y vulnerability analysis of water and power supplies,
differential equations can involve

complex biological networks,
random coefficients,
random right-hand side (forcing terms),
random boundary conditions, initial conditions - design and licensing of nuclear reactors,
random geometry, i.e., random boundary shapes

climate change,

etc.

B. Sousedik Stochastic Finite Element Methods SNA’13, Jan. 2013 3 /111 B. Sousedik Stochastic Finite Element Methods SNA’13, Jan. 2013 4 /111

Reasons for uncertainty (image courtesy of Roger Ghanem)

available data are incomplete (incomplete description of parameters)
- observable, but too difficult or costly to measure
Example: media properties in oil reservoirs or aquifers
not observable/predictable
Example: rainfall, wind shear e Sacton

not all scales in the data and/or solution can or should be resolved
(there might be small, uresolved scales in the model that act as a kind
of background noise ,i.e., macrobehavior from the microstructure).

it is too difficult (perhaps imposible) or costly to do so in a

computational simulation

Example: effect molecular scale (vibrations), turbulence

- some scales may not be of interest
Example: surface roughness, hourly stock prices

T Y

B. Sousedik Stochastic Finite Element Methods SNA'13, Jan. 2013 5 /111 B. Sousedik Stochastic Finite Element Methods SNA'13, Jan. 2013 6 /111



Guidance in modeling Types of uncertainties

Stochastic models give quantitative information about uncertainty.

L In practice it is necessary to address the following types of uncertainties:
Uncertainty is not a property of a system.

It is a property of knowledge we have about that system. + Aleatoric - random, due to the intrinsic variability in the system
Example: turbulent fluctuations of a flow field around an airplane
wing, permeability in an aquifer, etc.

— such variability is inherent and irreducible

Knowledge evolves, and uncertainty should evolve accordingly.
Question: evolution of vocabulary, or grammar, or both?

If uncertainty reflects ignorance, then models of uncertainty should

reflect on ignorance, on its sources and ways to manage it. Epistemic - due to incomplete knowledge

Example: mechanical properties of materials, etc.
— can be reduced by experiments, improving measuring devices, etc.

B. Sousedik Stochastic Finite Element Methods SNA'13, Jan. 2013 7 /111 B. Sousedik Stochastic Finite Element Methods SNA'13, Jan. 2013 8 /111

Modelling noise (1) Modelling noise (2)

Random parameters - input data depend on a finite! number of

White noise - input data vary randomly and independently from one
random parameters

point of the domain to another and from one time instant to another
- uncertainty is described in terms of uncorrelated random fields
Examples: surface roughness, porosity, thermal fluctuations

- each parameter may vary independently according to its own given
probability density

. . - alternately, the parameters may vary according to a given joint
Colored noise - input data vary randomly from one point of the probability density

physical domain to another and from one time instant to another
according to a given (spatial/temporal) correlation structure
- uncertainty is described in terms of correlated random fields
Examples: bone densities, rainfall amounts, permeabilities within
subsurface layers

Examples: homogeneous material properties, e.g, Young's modulus,
Poisson’s ratio, inflow mass, ...

"What we really mean is that the number of parameters is not only finite, but
independent of the spatial/temporal discretization; this is not possible for the
approximation of white noise for which the number of parameters increases as the grid
sizes decrease

B. Sousedik Stochastic Finite Element Methods SNA’13, Jan. 2013 9 /111 B. Sousedik Stochastic Finite Element Methods SNA’13, Jan. 2013 10 /111

Uncertainty Quantification (UQ) uantity of interest

Uncertainty Quantification (UQ) attempts to quantitatively assess the

impact of input uncertainties on simulation outputs: Often, solutions of the PDEs are not the primary output

quantity of interest (Qol).
> svstem 2>

uncertain inputs uncertain outputs Quantities obtained by post-processing solutions of the PDE

are often of interest
We are interested in systems governed by partial differential equations: i
postprocessing
|::> system |:> of the solution |:>
of the PDE
= =

uncertain inputs uncertain solution uncertain inputs uncertain solution uncertain Qol
of the PDE of the PDE

- of course, the system may have deterministic inputs as well.

- the solution of the partial differential equation defines the mapping from
the input variables to the output variables

B. Sousedik Stochastic Finite Element Methods SNA'13, Jan. 2013 11 / 111 B. Sousedik Stochastic Finite Element Methods SNA'13, Jan. 2013 12 /111



A realization of

ndom syste

A realization of the random system is determined by:
specifying a specific set of input variables
and then
using the PDE to determine the corresponding output variables.

- thus, a realization is a solution of a deterministic problem.

One is never interested in individual realizations of solutions of the PDE

or of the quantities of interest.
- one is interested in determining statistical information about the
quantities of interest, given statistical information about the inputs.

B. Sousedik Stochastic Finite Element Methods SNA'13, Jan. 2013
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Suppose we have N random parameters {y,,}n’\’:1

- we use the abbreviation ¥ = {y1,y2,...,yn}

- each y, could be distributed independently? according to its probability
density function (pdf) pn(yn) defined in a (possibly infinite) interval I

- alternately, the parameters could be distributed according to a joint pdf
p(¥1,...,yn) that is a mapping from an N—dimensional set I into the real
numbers

- independently distributed parameters are the special case for which

N
P(}’lww)/N):Hpn(y,,) and T=M oMLY -y

n=1

2Without proper justification and sometimes incorrectly, it is almost always assumed
that the parameters are independent; based on empirical evidence, sometimes this is a
justifiable assumption if the parameters are “"knobs” case, but for correlated random
fields, it is justifiable only for the (spherical) Gaussian case. In general, independence is
a simplifying assumption that is involveed for the sake of convenience, e.g., because of a
lack of knowledge.
B. Sousedik Stochastic Finite Element Methods SNA'13, Jan. 2013 14 / 111

Realization = a solution u(x, t, y) of a PDE for a specific choice
y= {y,,},’y:1 for the random parameters
- again, there is no interest in individual realizations
One may be interested in statistics of solutions of the PDE
+ average or expected value

(s, ) = Elutx. )] = [l .7)0(7) 47
Culx, t; X' t') = E(u(x, t;-) — u(x, t)) (u(x', t';) —a(x', t'))]
= /(”(% t,7) = a(x, 1) (u(x', ¢, ¥) = a(x', ")) p(¥7) dy

Jr

« variance Cy(x, t;x, t)
higher moments

B. Sousedik Stochastic Finite Element Methods SNA’13, Jan. 2013

Examples (Qol): the space-time average of u,

I(5) = /: /D u(x, t; 7) ddt

if u denotes a velocity field, then
J(t;Y):/ u(x, t;¥) - u(x, t; ¥) dx
D

is proportional to the kinetic energy

15 / 111

Again, one is not interested in the values of these quantities for specific

choices of the parameters y,

one is interested in their statistics.

B. Sousedik Stochastic Finite Element Methods SNA'13, Jan. 2013
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One may instead be interested in statistics of spatial/temporal integrals
of the solution of the PDE

for any fixed y,

J(t;?):/DF(u;Y)dX or J(X;Y):/ttlF(u;Y)dt

IG) = '/: /D Fu: 7) dct

where F(+;+) is given, D is a spatial domain, and (to, t1) is a time
interval.

quantities defined with respect to integrals over boundary segments
also often occur in practice

B. Sousedik Stochastic Finite Element Methods SNA’13, Jan. 2013 16 / 111

Example: expected value of the kinetic energy
E [/ u(x, t;¥) - u(x, t; ¥) dx
D
— [ w69 st 7)ot ey

Thus, quantities of interest of this common type
involve integrals over the parameter space 3
Example: for some G(-), integrals to the type

[ 6ttt pt)ay orpossibly [ 6 (ulx. i7)ix. 2. (7) 47
r r

3An important class of quantities of interest that arises in, e.g., reliability studies, but
that we do not have time to consider involves integrals over a subset of I'; in particular,
we have

[ xaG(uliew) a7 = | G(uxi7)ots) a.
u
where, for some given wug

1, ifu(xy) > wo e -
Xup = { 0. otherwise and Ty, = {y €T such thatu(x;y) > uo}

B. Sousedik Stochastic Finite Element Methods SNA'13, Jan. 2013 18 /111



Quadrature rules for stochastic integrals

Ideally, one wants to determine an approximation of the pdf for the

quantity of interest, i.e., Integrals of the type
G (u(x, t;y y)dy
more than just a few statistical moments r (ulx, ;7)) p(y) dy
of some output quantity cannot, in general, be evaluated exactly.

Thus, these integrals are approximated using a quadrature rule

the quantity of interest is a pdf o

one way (but not the only way) to construct the approximate pdf is to /r G (u(x, t;¥)) p(¥) dy = Z wq G (u(x, t;Yq)) p(Vq)
compute many statistical moments of the output quantity 9=1
so, again we are faced with evaluating stochastic integrals for some choice of
quadrature weights {Wq}ff:l (real numbers)

quadrature points {yq}ff:l (points in the parameter domain I')

B. Sousedik Stochastic Finite Element Methods SNA'13, Jan. 2013 19 / 111 B. Sousedik Stochastic Finite Element Methods SNA'13, Jan. 2013 20 /111

Big problem

Alternately, sometimes the probability density function is used in the
determination of the quadrature points and weights so that instead one

ends up with the approximation In practice, one usually does not know much about the statistics of the
input variables
Q . . .
/ G (u(x, ;7)) p(¥) d ~ Z wqG (u(x, t; 7)) © oneis lucky if one know§ a range of value's, e.g., maximum or
r p minimum values, for an input parameter (in which case one after

assumes that the parameter is uniformly distributed over that range),

if one is luckier, one knows the mean and variance for the input

Monte-Carlo integration - the simplest rule parameter (in which case one often assumes that the parameter is

randomly select @ points in I according to the pdf p(¥) normally distributed),
- evaluate the integrand at each of the sample points - of course, one may be completely wrong in assuming such simple
average the values so obtained , i.e., for all ¢, wg = 1/Q probability distributions for a parameter.

This leads to the need to solve stochastic model calibration problem.
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Model calibration Colored noise: correlated random fields

Model calibration is the task of determining statistical information about - We now consider correlated random fields 7(x, t; w)

the inputs of a system, given statistical information about the outputs + at each point x in a spatial domain D and at each instant t in a time
interval [to, t1], the value of 1) is determined by a random variable w
whose values are drawn from a given probability distribution

- however, unlike the white noise case, the covariance function of the

© e.g., one can use experimental observations to determine the
statistical information about the outputs

in particular, one wants to identify the probability density function random field 7(x, t;w) does not reduce to delta function
(pdf) of the input variables - In rare cases, a formula for the random field is “known"
Of course, the system still maps the input to the outputs - again, we cannot sample the random field at every spatial and temporal
point

* thus, determining the input pdf is an inverse problem « on the other hand, unlike the white noise case, the fact that the

random field is correlated implies that one can find a discrete
updated approximation to the random field for which the number of degrees of

- several ways to do the update, e.g., Bayesian, maximum likelihood, ... freedom can be-thought of as fixed, i.e., independent of the spatial and
temporal grid sizes

usually involves an iteration in which guesses for the input pdf are

B. Sousedik Stochastic Finite Element Methods SNA'13, Jan. 2013 23 /111 B. Sousedik Stochastic Finite Element Methods SNA'13, Jan. 2013 24 /111



More often, only the
mean  ju,(x, t)
and
covariance function  covy(x, t; x', '0)
are known for points x, x’ in D and time instants t, t’ in [to, t1]
in this case, we do not have a formula for 7(x, t; w)
- thus, we cannot evaluate 7(x, t;w) when we need to
- for example, if n(x, t;w) is a coefficient or a forcing function in a PDE,
then to determine an approximate realization of the PDE we need to
evaluate 7(x, t;w) for a specific choice of w and at specific points x
and specific instants of time t used in the discretized PDE

Examples of covariance functions

cov(x, t; X', t') = e =X/ L=|t=t |/ T

and
cov(x, t: X/7 t/) _ e—|x—x/|2/L2,\t—t/‘2/Tz
where L is the correlation length and T is the correlation time
large L, T = long-range order
« small L, T = short-range order

Note that the covariance functions are symmetric and positive

B. Sousedik Stochastic Finite Element Methods SNA'13, Jan. 2013

B. Sousedik Stochastic Finite Element Methods SNA'13, Jan. 2013

25 / 111

So, we have two cases:
- (more common:) only the mean and covariance are known
- we would like to find a simple formula depending on only a few
parameters whose mean and covariance function are approximately the
same as the given mean and covariance function

- (rare:) random field is given as a formula, but we want to
approximate it

- we would like to approximate it using few random parameters, certainly
with a number of parameters that is independent of the spatial and
temporal grid sizes

- of course, this case can be turned into the first case by determining the
mean and covariance function of the given random field (this may or
may not be a good idea)
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The Karhunen—Loéve expansion

Given the mean p,)(x) and covariance covy,(x, x’) of a random field 7(x,w),
determine the eigenpairs {\,, vy(x)}72; from the eigenvalue problem

/ covy(x, x") v(x') dx’ = Av(x)
D

often in practice, an approximate version of this problem is solved,
e.g., using a finite element method

due to the symmetry of covy (-, -), the eigenvalues A, are real and the
eigenfunctions v,(x) can be chosen to be real and orthonormal, i.e.,

/1,7 Va(X)Vm(Xx) dx = Omn

due to positivity of 7(x; w), the eigenvalues are all positive
without loss of generality, they may be ordered in non-increasing order
A=A >
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Among the known ways for doing these tasks, we will focus on perhaps
the most popular

the Karhunen—Loéve (KL) expansion of a random field n(x, t; w)

Given the mean and covariance of a random field 7n(x, t;w)
the KL expansion provides a simple formula that
can be used whenever one needs a value 7(x, t; w)

- to keep things simple, we discuss KL expansions

for the case of spatially-dependent random fields
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Then, the random field 1(x; w) admits the KL expansion*

n(x;w) = py(x) + Z \/Zv,,(x) Ya(w),
n=1

where {Y,(w)}%2; are centered and uncorrelated random variables, i.e.,
E(Ya(w)) =0 E(Yp(w)Ym(w)) =0

that inherit the probability structure of the random field n(x;w)

e.g., if n(x;w) is a Gaussian random field, then the Y}'s are all
Gaussian random variables

“Let’s see the next slide.
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To see this, let's suppose

oo

n(xiw) = pin(x) + D anba(x)yn(w)

n=1

where
/D ba()b () 0 = S, E(vo) =0, E(ynyw) = S

. . . . The usefulness of the KL expansion results from the fact that
i.e., {bn(-)}2, is a set of orthonormal functions and {yn(:)}52; is a set of uncorrelated random

variables; we then have that R . R
the eigenvalues {\,}7° decay as n increases

E X; ) — g (x x'5) = pn(x =°°°° n,.,/anbn/X,]Enn/=m%anan/
() = () (') = () ;nzzla 20 bnlo)ou (B Gm) ;a () - how fast they decay depends on the smoothness of the covariance

function cov,(x,x’) and on the correlation length L
so that

covy(x,x") = Zaﬁbn(x)bn(x’)
=)

then, we have that
oo
/ covy(x, x" )by (x")dx' = Zagbn(x)/ bn(x" )by (x')dx' = ai/ N, (x)
D o D

so that indeed {a2, by(x)}22; are the eigenpairs, i.e., we recover the KL expansion
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envalue decay vs. correlation Iength The decay of the eigenvalues implies that truncated KL expansions

N
(3 w) = () + DV Aava(x) Ya(w)

can be accurate approximations to the exact expansion

0 8 H
ot

- if one wishes for the relative error to be less than a prescribed
o tolerance 9, i.e., if one wants

02 0012 —_ 2
; R I =P _

. = e =
o T .
one should choose N to be the smallest integer such that
0 N
L=05 L =0.05 > A 3 An
n=N+1 . n=1
212 ——— < or, equivalently, = >1-§
cov(x, x') = g2e T/ S An S An
n=1 n=1
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One important issue is the well posedness of the PDE when using a KL
representation of random fields
Although the Y}'s are uncorrelated, in general they are not - suppose the coefficient a(x;w) of an elliptic PDE is a random field
independent - it cannot be a Gaussian random field since then it would admit
in fact, they are independent if and only if they are (spherical) negative values, which is not allowable
Gaussian - one way to get around this is to let, with apmi, > 0,
however, every random field can, in principle, be written as a function )
of a Gaussian random field a(x; w) = amin + 105)

- the inverse of the cumulative probability density of the given field ) . . . .
where 7(x;w) is a Gaussian random field with given mean and

so that, in this way, we only have to deal with Gaussian random -
covariance

variables
- then, using a truncated KL expansion for 7(x;w) we have that

Dealing with independent random variables can have important

practical consequences a(x; W) = amin + 0+ VA () Vo)

where {Y,(w)}¥_; are Gaussian random variables
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PDE’s with random inputs depending on random parameters

One or more Ideally, we would know the probability density function (PDF)
input functions,

e.g., coefficients, forcing terms, initial data, etc. in a PDE
depend on a finite number of random parameters,

for each parameter
as has already been mentioned, in practice, we know very little about
" ] d alo d g g the statistics of input parameters
the input function could also depend on space and time .
P P P however, we will assume that we know the PDFs for all the random
- the random parameters o?ould come from a Karhunen-Loéve expansion input parameters
of a correlated random field
+ the random parameters could appear naturally in the definition of
input function, e.g., the Young's modulus or a diffusivity coefficient
could be random
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. . A brief overview of erical methods for stochastic PDEs
The well-posedness of the PDE for all possible values of the parameters is

a very important (and sometimes ignored) consideration o
yump ( & ) Stochastic finite element methods (SFEMs)

for the simple elliptic PDE = methods for which spatial discretization is effected using finite
element methods

V- (a(x;y1,...,yn)Vu) =f(x), inD
Stochastic Galerkin methods (SGMs)

we must have, for some 0 < amin < amax, = methods for which probabilistic discretization is also
effected using a Galerkin method
amin < a(x;y1,...,yn) < amax Vx€DandVyerl - polynomial chaos and generalized polynomial chaos are SGMs
+ we will also consider other SGMs
+ this could place a constraint on how one chooses the PDF for the - Stochastic sampling methods (SSMs)
parameters == points in the parameter domain I' are sampled,
- for example, if we have then used as inputs for PDE, and then ensemble averages of output
quantities of interest are computed
a(x;y)=ao+y « Monte-Carlo finite element methods are the simplest SSMs
+ stochastic collocation methods (SCMs) are also SSMs
where ag > 0, we cannot choose y to be Gaussian random parameter - the sampling points are the quadrature points corresponding

to some quadrature rule
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Spaces used in numerical methods for stochastic PDEs Let u(x;y? € X x Z denote the solution ;)f the SPDE
- often X is the Sobolev space such as Hg(D)

- generally Z = L](T) is the space of functions of N variables
whose g—th power is integrable wrt the joint PDF (the weight fction) p(-),
i.e., those functions g()) for which

Let D € RY denote a spatial domain with boundary 9D /|g()7)|qp()7) dy <
- d =1,2,3 denotes the spatial dimension r
« x € D denotes the spatial variable

Let I € RV denote a parameter domain - q is chosen according to how many statistical moments
N denotes the number of parameters one wants to have well defined
© ¥=(0n1,...,yn) €T denotes the random parameter vector - the most common choice is g = 2 so that up to

- note that we have a finite number of parameters {y,}N ;

but they can take on values anywhere in the Euclidean domain . the second moments are well defined

if {y1,...,yn} are independent and if Ly, (I,) denotes the space of
functions that have integrable g—th powers wrt the PDF p,(y»),
we have that

M= M)el (ke L] (Ty)
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- It is entirely natural to treat a function u(x; y) of d spatial variables
and of N random parameters as a function of d + N variables

- We will assume here that all methods use the same approach to effect
discretization wrt the spatial variables
(we focus on finite element methods — stochastic FEM) Representation of random variables using polynomial chaos
+ We assume that [ is a parameter box
- without loss of generality, I' can be taken to be a hypercube in RV
« for parameters with unbounded PDFs, I' can be of infinite extent
- if the parameters are constrained, I need not be so simple,
e.g., if y; and y, are independent except that we require that
y2 + y2 <1, then T would be the unit circle
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Probability spaces and random variables One dimensional polynomial chaos expansion

- Let (Q2, F,P) be a probability space
« §is an event space

P
« Fis a o—algebra on Q u= Z ukk(€)
+ P is a probability measure k=0

Consider:

- Random variables are functions X : Q — R with a measure
corresponding to their image: - u: random variable (RV) represented with 1D PCE
- if X7I(A) € F, then define p(A) = P(X™*(A)). - uk: PC coefficients (deterministic)
+ p(x) = du/dx; the density of the random variable X (with respect to

the Lebesgue measure on R). * 1k: 1D Hermite polynomial of order k

- Expectation: (f) = [fdu = [fp(x)dx - & Gaussian RV
- Let £:Q— RV such that for i = 1,..., N each & : Q — R, be a set A random quantity is represented with an expansion consisting of
of random variables functions of random variable multiplied with deterministic coefficients
© F(€): o—algebra generated by the set ¢ of random variables + Set of deterministic PC coefficients fully describes RV
L2(Q, F(€),P): Hilbert space of real-valued random variables defined - Separates randomness from deterministic dimensions

on (Q, F(§),P) with finite second moments
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One-dimensional Hermite polynomials Example of one-dimensional polynomials: pdf plots

(Note: this is probabilistics’, not physicists’, definition)
Yo(§) = 1,
k22 4" e
d}k(g) = (*1) € d7§"e , k=1,2,...

V(€)= & () =€-1, y¥3(§) =8 -3¢

u=0540.2¢1(&) + 0.1¢2(¢)

The Hermite polynomials form an orthogonal basis over [—o0, 0o] with . /\\\ : /\
respect to the inner product \\\ . \\

00 5 : \ \\\

i) = [ weuewle) dg =55 (42) ; \ | \
where w(x) is the weight function N / \
1 2
_ —£%/2
w() = \/72?6 7, Hermite pol. Legendre pol.

Note that w(¢) is the density of a standard normal random variable.
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Multidimensional Hermite polynomials Multidimensional inner products — orhogonality

The multidimensional Hermite polynomial W;(¢1,...,&,) is a tensor
product of the 1D Hermite polynomials, with a suitable multi-index
= (af.ab,...,a}), wy) = [ [u@uEu@wE). . wie) dade...dé,
and n n
_ ] . — 8. (w2
Wil6a,- o 6) = [] vy 60). B E@az“k)%(&ﬁ =% {¥i)
k=1 =
For example, 2D Hermite polynomials: where, w(€) = e _e /2
i p v; such that
0 0 1 o o
111 & 2
u= uV, = (Vu) = u (W) = ui(V;
> |1 252 ;)kk ();M k) = ui{V7)
3 2 | &-1 (v
4 2 &162 = U= <\|12>
512 |&-1 i
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Multidimensional polynomial chaos expansion (1) Multidimensional polynomial chaos expansion (2)

Consider: . Arv. u(w)in L2(Q, F(€),P) can be described by a PC expansion in
u(w) = Z BV(E(W),s - En(w)) terms of: the infinite-dimensional i.i.d. Gaussian basis £ = {&j(w)}io;

u(w) = aolo+ Y &M (& ()

=1

Qiviy r2(§¢1 (UJ) 612 (w))

- u: Random Variable (RV) represented with multidimensional PCE
- ug: PC coefficients (deterministic)
+ Wy Multidimensional Hermite polynomials up to order p
+ & Gaussian RV
- n: Dimensionality of stochastic space +
© P+ 1: Number of PC terms: P+ 1= (':,Tlﬁ)!
The number of stochastic dimensions represents the number of
independent inputs, degrees of freedom that affect the random variable u

+
L
Mg

I
-
S

I
-

HMS
HM8

Z 11/213 5!1(("]) glz(w) 513( ))

where ', is the Polynomial Chaos of order p, [, =1, and

- E.g., one stochastic dimension per uncertain model parameter 1.7 oP 1T
Tp(Gis-en ) = (—1)Peat E———e2t'¢

- Contributions from each uncertain input can be identified Oy ... 35:‘,,
- Compact representation of random variable and its dependencies
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Notes on the PC construction A more compact notation

+ The Polynomial Chaoses are by construction orthogonal with respect

to the Gaussian probability measure - An L? random variable u(x, t,w) can be described by a PC expansion
+ They are thus identical with the corresponding multidimensional n terms O.f: .
Hermite polynomials - Hermite polynomials Wy, k =1,...,00
) ) - the associated infinite-dimensional Gaussian basis {&;(w)}io;
- The first four PCs are given by - spectral mode strengths ug(x,t), k =1,...,00
- 1 + Truncated to finite dimension n and order p, the PC expansion for u
0= is written as
&) = & P
M2(&is8a) = &b — Oiix ulx b w) = ; X )Vi(E(w))
M3(8i: €0, 8) = &néindis — Endinis — €ndinis — Ei0inin (nip)
where £(w) = {€&1(w), ..., &a(w)}, and P +1 = THAE

[R. G. Ghanem, and P. D. Spanos, 1991]
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Generalized Polynomial Chaos (gPC) Postprocessing/Analysis

PC type | Domain Density w(§) Polynomial | Free parameters
Gauss | (—o00,00) %e’é Hermite none
uniform | [-1,1] 1 Legendre none
Gamma [0, 00) % Laguerre a>-1 - Moments
Beta [-1,1] % Jacobi a>-1,>-1 - Plotting PDFs of RVs represented with PCEs

© When is a PCE accurate enough?
Inner product: (1;v;) f Pi(€)v;(§)w(€) d€
+ Wiener-Askey scheme provides a hierarchy of possible continuous PC
bases, see Xiu and Karniadakis, SISC, 2002.
Input parameter domain often dictates the most convenient choice of
PC
Polynomial functions can also be tailored to be orthogonal w.r.t.
chosen, arbitrary, density
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Moments of RVs described with PCEs Plotting PDFs of RVs correponding to PCEs

P
= ukVi(€) P
;’ . u= wVi(é)
Expectation: (u) = ug k=0

- Variance: o2 - Analytical formula for PDF(u) exists
0?2 = < u— (u))2> . IrTvolves polynomial root finding, and is hard to generalize to multi.
dim.
2 .
p - PCE is cheap to sample
= Z ukVi(§) + Brute-force sampling and bin samples into histogram
k=1 + Use Kernel Density Estimation (KDE) to get smoother PDF with fewer
P P samples u;
= (D0 wuvi(Qvi(©)
iyt PDF(u N e
P P P
2 . .
— ujuk f)\uk(f) — Z u? \Uk(f) K is the kernel, h is the bandwidth
k=1 j=1 k=1
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Comparison of histograms and KDE How do | know my PCE has converged?

KDE ... Kernel Density Estimation

(source: Wikipedia)

© ©

S o - Approximation error in PCE is topic of a lot of research
5 s - Often, rules of thumb:
3 2 g 2 : -
R 5o + Higher order PC coefficients should decay
‘% § + Increase order until results no longer change
8 g 8 g - Not always fail-proof, ...

S S

8 | 8

s l— LT, I T s

5 0 5 10
x X

Bandwidth h needs to be chosen carefully to avoid over smoothing
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Propagation of uncertain inputs represented with PCEs Non-intrusive spectral stochastic UQ formulation

Let Oy = {50)};\11 C T be a set of prescribed nodes in the random space,
where Oy = 01 x -+ x 0 and M is the total number of nodes

- Collocation approaches (reproduced from Babugka et al., SIAM Review (2010))

= Non-intrusive: Match PCE to random variable at chosen sample points
- Galerkin projection approaches project uncertain quantity onto space
covered by PC basis functions
- Relying on orthogonality of basis functions

ey

<ulUk>
(wi)

ug = k:O,...,P

- Intrusive: project governing equations

- Residual orthogonal to space of basis functions Solve a governing (deterministic) equation for each u(x; &Y))

and interpolate

M .
u(x;€) = > ulx; D) L(€)
Jj=1
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Intrusive spectral stochastic UQ formulation Galerkin projection on V;(¢&)

P P P
- Sample ODE with parameter : di (Z uk(t)\lik(g)> = Z)\p\llp Z ug(t)Vg4(8)
t k=0 p=0 q=0
du
E = \u P duk(t) P
Z o V(&) = Z /\p“q(t)wp(ﬁ)wq(ﬁ)
- Let X be uncertain; introduce & ~ A(0,1). k=0 p=0g=
- Express A and u using PCEs in &: du(t P&
3 0y, 6w, (e 0D Aog()VH(OVe(E)ViE)
P P k=0 p=0g=0
A= AWk(€), u(t) =) u(t)Wk(€) duk(t) P P
k=0 k=0 Z (Wk(Qvi(€)) DD Aoug(B) (Wp(E)Wa(E)Wi(€))
- Substitute in ODE and apply a Galerkin projection on W;(§), k=0 p:O q:o
dug(t
O I ) SEWHCIAR
p=0q=0
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Resulting spectral ODE system Example of c;j

n=4 ... stochastic dimension
p=4 ... order of the polynomial expansion of u
+ (P + 1)-dimensional ODE system Py ... order of the polynomial expansion of the coefficient A
dUk Z Z _ [ 0
C,Jk)\u_, kfo,...,P,
i—0 j=0 N N

where Cijk = <\U,\UJ‘Uk>/<\U‘2(>
- The tensor cjj can be evaluated once and stored for any given PC
order and dimension

- This tensor is sparse, i.e., many elements are zero
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Example of c;j Example of c;j

n=4 ... stochastic dimension
p =4 ... order of the polynomial expansion of u
px ... order of the polynomial expansion of the coefficient A
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Challenges for PCE-based Uncertainty Quantification

Representing input variables with arbitrary distributions

+ Systems with high-dimensional uncertainty

- Systems with long time horizon / oscillatory behavior
Nonlinearities in governing equations for intrusive UQ
Physical constraints in uncertain quantities

+ Systems with non-smooth behavior - discontinuities

+ Systems with inherent stochasticity

Various approaches have been developed to tackle these challenges ...
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Random fields

A random field (RF) a(w, x) is defined on a probability space (2, F,P)
and indexed by a deterministic domain D:
¢ aset of RVs indexed by x € D: for every x € D, a(-,x) isa RV on Q.

¢ a function-valued RV: for every w € Q, a(w, ) is a realization of the
RF in the domain D.

Mean
300 =EBl (0 = [ a(w)dP().
and variance
Var [3] (x) = E [(3)"] (x)

as a function of x with fluctuation (noise) part a(w,x) = a—a.

Often only second order information (mean and covariance) are known. |
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n=4 ... stochastic dimension
p =4 ... order of the polynomial expansion of u
px ... order of the polynomial expansion of the coefficient A
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An example problem

Consider the following example problem

-V-(a(x)Vu(x))=f(x) inD
u(x)=0 on dD,

)

where a(x) is the permeability, f (x) is the source and v (x) is the solution.

What if the input data is random?

We get a stochastic problem

-V (a(w,x) Vu(w,x)) = f (w,x) inQxD,
u(w,x)=0 onQxaD,

where a(w, x), f (w,x) and u(w, x) are now random fields.

Challenge: Instead of just the mean-value solution u (xp) we would like
also to know E [u] (x), Var [u] (x0) or even P[u(w,x0) > uo].
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Assumption: finite dimensional “noise”

Assume random fields (RFs) a(w, x), f(w, x) depends on finite number of
random variables (RVs) Y(w) = [Y1(w), ..., Yn(w)] : @ — RV :

ay (w,x) =a(Y (w),x), fv(w,x)=F(Y(w),x)

Motivation: piecewise constant material properties

Let {D,,}NN=1 be a partition of the spatial domain D
then define ay (w,x) = XM, 0;Y; (w) xp; ()-

Procedure: co—dimensional random field suitably truncated

+ the interaction between points is described by a covariance function,
2
e.g. Covlal = (x1,%) = E[3(-x1)3 (- x)] = o?exp (—M)

Expand a in a Karhunen-Loeve expansion and retain the first N terms,
denoted ay, to capture most of the variability.
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Properties of the covariance function Karhunen-Loéeve expansion

a Fourier-type series based on the spectral expansion of covariance func.
Let a(w, x) be a RF with continuous covariance C, : D x D — R
- C, is symmetric, i.e., C, (x1, %) = C,(x2,x1), Vxi,x2€ D

a(w,x)=3a(x)+ Z \/xbn (%) Y (w),
n=1

- C, is non-negative definite, i.e., vTC,(x,x)v >0, Vv,x.

Define the associated linear covariance operator Tg, : L2 (D) — L2(D) by and (An, by (x)) are eigenpairs of Te,; Yy (w) are centered and

uncorrelated RVs:
[Te.f] () = / Co(x1, %) F (0) dsa,  VF € 12(D).
Jo E[Y,] =0, Cov[Yn, Ym] =E[YnYm] = Onm:
Then Te,f € C°(D), Vf € L2(D), C, = T, is injective and but not necessarily independent.
Tc, is compact, symmetric and non-negative definite: We truncate the series
- it has a countable sequence of real eigenvalues {\,} CR;, A — 0

N
- corresponding eigenfunctions {b, (x)} are L2 (D) —orthonormal a(w,x)~ay(w,x) =3+ Z Vb (X) Yo ().
n=1

Rate of decay depends on the smoothness of C, and the corr. length_L..
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Parametrization of random fields Approximating a stochastic PDE

Consider a random vector Y(w) = [Y1(w), ..., Yn(w)] : @ — RN and

define: - Given a description of ay (Y (w), x) and ev. of fy (Y (w),x),
we would like to find upy (Y1 (w),..., Yy (w),x) such that
“Th=Ys(Q)CRand =N, c RV - image of the random
vector Y () L(ay)uy =1fy inD as.
© p:T = Ry with p € L*°(T) as a joint PDF of Y(w),
ie., ify €T, and p(y) =ML pn (va) for all n,y, € T, then Quantities of interest (Qol)

Our goal of predicting the statistical behavior of a physical system often
P[ZeycT]= /P(Y) dy, requires the approximation of multi-dimensional statistical Qol, e.g:
¥
which is a transformation of the measure P defined on Q to RV. E[u] (x) = / u(y,x)p(y)dy, whereyel" andxeD
r

Remark: curse of dimensionality when N is large
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An application to a linear elliptic SPDE Stochastic FEM: Stochastic Sampling Methods

Strong formulation: Remark: The spatial discretization using finite element methods (FEM).

find u (y, x) such that

Stochastic Sampling Methods (SSMs):
—V - (a(y,x) Vu(y,x)) = f(y,x) forae xeD, randoms samples in I of PDE inputs are used to compute ensemble

u(y,x) =0 o e, @ A, averages of statistical Qols, e.g., Monte-Carlo FEM - non-intrusive

pros:

wherey € T ¢ RN and x € D

- allow reusability of deterministic codes

Next, define V, = L;z) (N H: (D) - the convergence rate is independent of the regularity of the solution u
Weak formulation: - (and dimension with MC methods)
find u € V, such that Vv € V,, cons:
- do not yield fully discrete approximations
E {/D a(y,x) Vu(y,x) - Vv (y,x) dX] =E {/D f(y,x) v (y,x) dx - slow conv. rates do not exploit the possible regularity of the solution
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Stochastic FEM:

Stochastic Polynomial Approximation

Observation: The analyticity of the solution u (y, x) wrt each random
direction y, suggests the use of (multivariate) polynomial approximation.

Approximate the response u (y, -) by multi-variate global polynomials. The
numer. solution should converge quickly since the solution is analytic in y.

Stochastic polynomial approximation:

¢ Stochastic Collocation Methods (SCMs):
probabilistic discretization is effected by collocating the FE solution
on a particular set of points and then connecting the realizations with
a suitable interpolating basis (Lagrangean) - non-intrusive

¢ Stochastic Galerkin Methods (SGMs):
probabilistic discretization is effected by a spectral Galerkin projection
onto, e.g., an Lf)forthogonal basis (Wiener or polynomial chaos) -

intrusive

B. Sousedik
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Approximating spaces

¢ Let Tp be a triangulation of D and W}, (D) C W (D) contains cont.
piecewise polynomials defined in 7, Assume J = dim [W}, (D)] and
{9j (x)}f:1 C W, is a FE basis for the deterministic domain

© Let p=(p1,.--

with p € N and define:

Multivariate polynomial space

,pn) be a multi-index, J (p) € NV a multi-index set,

Pap) (1) = span{ peaylr, with p € J(p)} c L5 (D

Assume M = dim [Pz (1)] and {¢x}; form a basis for
P7(p) (), e.g. multivariate Legendre, Hermite, Lagrange, etc.

B. Sousedik
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(Hermite) Orthogonal polynomials The Askey scheme: different PDFs and orthogonal polynomials

The Ll%forthogonal basis was originally developed to approximate
white noise processes with Gaussian measure [Wiener, 1938].

Let { Hm } :

pn=0

defined in Lgn () that are orthonormal wrt the Gaussian PDF p,, (ys)

be the set of univariate Hermite polynomials (deg. < P)

Identical construction for other orthogonal bases — generalized PC (gPC).
Example: uniform RVs — Legendre polynomial basis, etc.

distribution polynomial type support
foreachn=1,..., N: .
Normal Hermite (=00, 00)
() - Uniform Legendre [-1,1]
/ Hp,” (yn) Hr,” (¥n) pa (Yn) d¥n = Opurs  Pnyn €40, P} Beta Jacobi [-1,1]
Fn .
Gamma Generalized Laguerre [0, 00)
The multivariate L2 (I") —orthogonal Hermite basis is defined as a Exponential Laguerre [0, 00)
tensor-product of univariate polynomials with p € 7 (P):
Ho (v) = ML HSD (), st p(y) = Mpn (vm)
where p(y) is the Gaussian joint-PDF.
B. Sousedik Stochastic Finite Element Methods SNA’13, Jan. 2013 81 /111 B. Sousedik Stochastic Finite Element Methods SNA’13, Jan. 2013 82 /111

Fully discrete approximation Iterative solvers: motivation

We would like to find up € Py (') @ Wi (D) such that Iterative solution and preconditioning of systems of linear equations,

with a typical block structure given as:
M

J M
up (9, %) = D i ()i (y) = Dk () Uk (y),  uk (x) € Wy (D)

Jj=1 k=1 k=1

To compute the fully discrete approximation using SFEMs requires the
resolution of the coefficients uy which can be accomplished via:

 non-intrusive methods by de-coupling the above expression and
solving a M systems of size J — Stochastic Collocation Methods w0
pros: de-coupling
cons: possibility of integration and interpolation errors (aliasing).
+ intrusive methods by solving the fully coupled JM x JM system
— Stochastic Galerkin Methods 7n
pros: optimality of Galerkin projections
cons: Implementation - requires development of new solvers.

0 0 30 a0 0 w0 7

(a) block sparse matrix

20

block dense matrix

(b)
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Let D C RY, d = 2,3, and let (Q, F, 1) be a complete probability space.

We would like to find a function u(x,w) : D x Q — R satisfying a.s.

Model problem and its discretization
-V - (k(x,w) Vu(x,w))

u(x,w)

f(x) in DxQ
0 on 0D x Q

Block sparse matrices:

+ Structure of the global stochastic Galerkin matrix

- Hierarchical Schur complement preconditioner Note: V denotes the differentiation with respect to the spatial variables

- Numerical experiments (uniform random field) Here k (x,w) is a random scalar field such that

Block dense matrices: _
u(weQ:0<kmin§k(x,w)§kma>< VXED):I
- Variant of the preconditioner for block dense matrices

- Numerical experiments (lognormal random field) Next, let us introduce

U=H; (D)@ L2(Q), lully=4/E [/D\vufdx}
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Model problem: variational formulation Model problem: stochastic finite element discretization

In the weak formulation we would like to solve Finite element discretization yields
M N
ueU: a(uv)=(f,v) YveU
’ Y chiijin:fh k=0,...,M,
where j=0 i=0

where cjj = E [£i9)j1)k] or more generally cjj = E [1);1)j1]. Defining

a(u,v):]E[/Dk(x,w) Vu~Vvdx], <f,v):]E[/vadx] "
KUK =" cipK;

We assume that k has a Karhunen-Logve (KL) expansion

i=0

N the global system can be written as

k(xw)=> k()& W) &=1 &~U[01 i>0 K00 KO ... K (0.M) w0 f
i=0
further assuming &; (w) to be i.i.d. random variables. We consider : :
K(kvk) Uy = fk
M ) . .
u= ) uhj(€o,---.&n)- B ) :
; S K(MO) je(M1) K (M,M) upm fu
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Matrix hierarchy Matrix hierarchy: two points of view

, hierarchical ...
... Schur complement preconditioner ... Gauss-Seidel preconditioner
FANAN (hS) (hGS)
100 A, | B, D, ]
B,
150 G Dl E] D1 F1
B,
200
C D, E, D, 5

250

E] e D G D, E, D,

N =4, P =4 — 350 blocks N =4, P =7 — 2010 blocks
N ... stochastic dimension

P ... order of the polynomial expansion
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Matrix hierarchy (towards the Schur complement preconditioner) Idea of the preconditioner

Let us write the global problem as By block LU decomposition
A B Iy BD™! S0 / 0
Apup = fi _| A A
pee [C D] [o Ib Ho DHD*lc /D}

where the matrix has a recursive structure . .
where S = A— BD~1C is the Schur complement with respect to D.

A1 B
A= [ é[l D‘; } , (=P,... 1 Inverting
_ _ AB] [ la o0][st o I —BD!
« £ ... corresponding to the /—th degree stoch. polynom. expansion cC D |l -pc Ip 0o D! 0 Io
- block Dy is block diagonal for all £
The mean-value problem is Idea of the preconditioner:
Aoto = fo 1. replace st by A1

2. use this block inverse throughout the hierarchy of the global matrix
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Idea of the preconditioner: matrix hierarchy Hierarchical Schur complement preconditioner

In the action of the preconditioner we would like to approximate The preconditioner Mp : rp — up is defined as follows:
fort="P,...1,
Apup = fp split the residual as r; = [rf’l7 rf]
written as compute the pre-correction as
P-1 P-1
Ap_1 Bp up _ fP 8r-1= r871 — B[Dilf’Z
Cp D P £F ¢ e
P P up P .
b if £>1, set r,_1 = gp_1, else solve Agug = go.
Y end
A=l Ia 0 A;ll 0 Ia _BPD;:l for(=1,...P,
P 7D,§1CP Ip 0 D;l 0 Ip compute the post-correction, i.e., set uﬁ’l = uy_1, solve
0_p-1(_ ~ -1
and replace inverse of S = A — BD~1C by inverse only of A as up =Dy (ré Ceuy )
ST =AY (=P—1,...,1 and concatenate up = [uf’l, ué].
If £ < P, set uf, ;= u.
end
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Implementation Block count: in the action of the Schur complement preconditioner

N ... stochastic dimension, P ... order of polynomial expansion
(one is changing, the other one is set to four)

The main computational work is in the application of D[l, {=P,...

’ NorP | np Ngp | Nm  Ngs
Note: 1 13 5 8 9
55 15 40 29
155 35 | 120 69
350 70 | 280 139
686 126 | 560 251
1218 210 | 1008 419
2010 330 | 1680 659
3135 495 | 2640 989

+ all Dy are block diagonal matrices
- each block of Dy has the size of the underlying deterministic problem

- the blocks are closely related to Ay = Ko (the mean-value problem).

Idea:
Replace the exact solves of Dy with iterative block solves
(independent inner Krylov iterations, using a preconditioner My &~ Ay).

O~NOOCA WN

np ... total number of blocks
Ngp - .. number of diagonal blocks
Npy, ... number of block matrix-vector multiplications
ngs ... number of its block diagonal solves
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Numerical results: increasing the stochastic dimension

Poisson’s eq. in [0, 1]2, 10 x 10 finite elements, uniform r.f., CoV = 50%,

Numerical results: increasing the polynomial degree

Poisson’s eq. in [0, 1]2, 10 x 10 finite elements, uniform r.f., CoV = 50%,

N ... stochastic dimension, P... order of polynom. expansion (P = 4), N ... stochastic dimension (N = 4), P... order of polynom. expansion,
mb ...mean-based, bGS ...block Gauss-Seidel, hS ...hierarchical Schur prec., mb ...mean-based, bGS ...block Gauss-Seidel, hS ...hierarchical Schur prec.,
setup mb bGS hS setup mb bGS hS

N ndof | iter K iter K iter K P ndof | iter K iter K iter K

1 605 12 2.0127 | 5 1.0507 | 5 1.0465 1 605 9 16391 | 5 10626 | 5 1.0624

2 1815 | 15 27340| 6 11279 | 6 1.1236 2 1815 | 13 22379 | 6 11117 | 6 1.1109

3 4235 | 16 29995 | 7 11693 | 6 1.1514 3 4235 | 15 28122 | 7 11658 | 6 1.1559

4 8470 | 17 33413 | 7 12131 | 7 1.2028 4 8470 | 17 3.3413 | 7 12131 | 7 1.2028

5 15,246 | 18 3.5891 7 1.2447 7 1.2434 5 15,246 | 18 37824 | 7 1.2538 7 1.2426

6 25410 | 18 3.6349| 7 12501 | 7  1.2559 6 25410 | 19 4.1534| 8 1.2921 | 7 1.2798

7 39930 | 19 40993 | 8 13202 | 7 1.3146 7 39930 | 20 4.4708 | 8 13219 | 7 1.3125

8 59,805 | 19 4.0597 | 8 1.3198| 7 1.3182 8 59895 | 20 4.7371| 8 1.3472 | 7 1.3398

ndof ... degrees of freedom of the global stochastic Galerkin matrix,
iter ... CG iterations (tol 1078), k... cond. number estimate.
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ndof ... degrees of freedom of the global stochastic Galerkin matrix,
jter ... CG iterations (tol 1078), k... cond. number estimate.
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Numerical results: increasing the Coefficient of Variation

Numerical results: decreasing the mesh size

Poisson’s equation in [0, 1]2, 10 x 10 elements, uniform random field,
N... stoch. dim., P... order of polynom. expansion (N = P = 4),
mb ...mean-based, bGS ...block Gauss-Seidel, hS ...hierarchical Schur prec.,

Poisson’s equation in [0,1]%, 10 x 10 elements, uniform random field,
N... stoch. dim., P... order of polynom. expansion (N = P = 4),
mb ...mean-based, bGS ...block Gauss-Seidel, hS ...hierarchical Schur prec.,

setup mb bGS hS setup mb bGS hS
CoV (%) | iter & fter il iter il h  ndof | iter K iter K iter K

15 g 1-29‘132 i 18883 i 18823 /6 2520 | 16 32484 | 7 12022 | 6 1.1790
25 M 321 e o 1/10 8470 | 17 33413 | 7 12131| 7 12028
32 o 2-1808 2 1-0773 g 1-0662 1/15 17920 | 17 33145 | 7 12063 | 7  1.2047

gl L B 1/20 30870 | 17 33463 | 7 12110 | 7 12032
o el o e 1/25 47320 | 17 33473 | 7 12112| 7 12032
55 9 39523| 8 12048| 7 12830 1/30 67270 | 17 33100 | 7 12070 | 7 1.2054

CoV = /o ... the Coefficient of Variation (%), ndof ... size of the global stochastic Galerkin matrix.

ndof ... size of the global stochastic Galerkin matrix is 8470.
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Structure of the matrix (block dense case) Stiffness matrices: decay of norm(Kj)

Plots: norm(K;) and cU%) = 37, cji - norm (K;), where cj = E [9h49].

structure of the matrix

Q: structure of the preconditioner?

1

n

w

™
!

M M My
KUK =3 "cuKi  MAT-VEC: vy = > Y ciueKiugi
i=0 k=0 i=0

CoV = 150%

CoV =50%

Theory (Matthies & Keese, 2005): My >> M.
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Modification 1: truncated preconditioners Modification 2: approximate preconditioners

Idea: in the action of the preconditioner, replace the MAT-VEC operation Idea: approximate the solves with submatrices Dy by diagonal block solves.
M My Y
Vi) = ZZ CiikKiugy by v = Z Z ciikKitky, Schur complement preconditioner approximate Gauss-Seidel prec.

k=0 i=0 k=0 ieM; (ahGS)

. adaptively selected subset of indexes from the set {0, 1,...
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Numerical results: increasing the stochastic dimension Numerical results: increasing the polynomial degree

full vs. approximate preconditioners (no truncation yet) full vs. approximate preconditioners (no truncation yet)

Poisson’s eq., [0, 1]2, 10 x 10 finite elements, lognormal r.f., CoV = 100%, Poisson’s eq., [0, 1]2, 10 x 10 finite elements, lognormal r.f., CoV = 100%,

N... stoch. dim., P... order of polynom. expansion (P = 4, P, = 2P), N... stoch. dim. (N =4), P... order of polynom. expansion, Py = 2P,
setup mb hS ahS bGS ahGS setup mb hS ahS bGS ahGS
N iter K iter K iter K iter K iter K P iter K iter K iter K iter K iter K

1 48 2876 | 15 3.40| 15 340 | 15 342 | 15 3.42 1 15 3.50 7 139 11 176 8 139 8 131
2 61 37.16 | 16 3.62| 27 806 | 17 375| 16 3.45 2 28 895 | 10 193] 16 304 | 12 197 | 11 176
3 62 38.07| 16 3.76| 31 10.77 | 17 3.74| 18 435 3 44 2004 | 13 280| 24 6.09 | 15 287 | 14 258
4 66 4365 | 16 4.17| 38 1528 | 19 429 | 19 474 4 66 43.65| 16 4.17| 38 1528 | 19 429 | 19 474

ndof ... degrees of freedom of the global stochastic Galerkin matrix, ndof ... degrees of freedom of the global stochastic Galerkin matrix,
iter ... CG iterations (tol 1078), k... cond. number estimate. jter ... CG iterations (tol 1078), k... cond. number estimate.
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Numerical results: increasing the Coefficient of Variation Numerical results: decreasing the mesh size

Poisson’s equation in [0, 1]2, 10 x 10 elements, uniform random field,
N... stoch. dim., P... order of polynom. expansion (N = P = 4),

Poisson's eq., [0, 1]2, 10 x 10 finite elements, lognormal r.f., CoV = 100%, mb ... mean-based, hS....hierarchicaI Schur prec., . . .
N... stoch. dim., P... order of polynom. expan. (N = P =4, P, =2P) bGS ...block Gauss-Seidel, ahGS ...approximate hierarchical Gauss-Seidel,

full vs. approximate preconditioners (no truncation yet)

o S 3hS bG5S 2hGS setup . mb . hS . bGS ‘ ahGS

CoV | iter K iter K | iter K iter K | iter K h ndof | iter K fter K |iter K _|iter k&
25 16 304 7 118 8 1.25 7 118 6 112 1/5 2520 | 59 4062 | 15 3.84 | 18 399 | 19 401
50 29 9.36 10 1.78 | 14 245 11 177 | 10 1.62 1/10 8470 66 43.65| 16 417 | 19 429 | 19 474
75 | 46 2221 | 13 285 | 23 6.0l | 15 282 | 14 269 1/15 17920 | 68 4442 | 16 424 | 19 438 | 20 4.72
100 | 66 43.65 | 16 417 | 38 1528 | 19 429 19 474 1/20 30870 | 69 44.89 | 17 425 | 19 437 | 20 4.78
15 | 103 10707 | 21 685 | 84 7773 | 2 77| 3 17a 1/25 47320\ 69 4494 17 420| 20 440 20 481

: : : : : 1/30 67270 | 71 4511 | 17 426 | 19 437 | 20 4.75

CoV (%) ... the Coefficient of Variation,

dof ... size of the global stochastic Galerki trix.
ndof ... size of the global stochastic Galerkin matrix is 8470. ndo Size of the global stochastic Taalerkin matrix
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Numerical results: truncation of the MAT-VEC Numerical results: adaptive truncation of the MAT-VEC

N... stoch. dim., P... order of polynom. expansion (N = P = 4, P, = 2P).

Drop matrices corresponding to higher order expansion of the coefficient than /;. N... stoch. dim., P... order of polynom. expansion (N = P = 4, P\ = 2P).

Adaptively drop matrices for which max;(cjix) - norm(K;) < 7.

setup [ hS [ ahS [ bGS [ ahGS setup [ hS [ bGS [ ahGS
b Me+1  nz(cp) [ iter k| iter k| iter k| iter K T Nagapt  nz(cij) | iter n | iter k| iter K
CoV =25% (mb: ijter=16 K =3.24) CoV = 25% mb: jter =16 K = 3.23556

0 1 70 16 3.20 16 3.19 16 3.19 16 3.19 1071 5 345 10 1.63 10 1.57 10 1.57
1 5 350 8 1.27 8 1.33 7 1.23 7 1.23 10° 13 877 7 1.20 7 1.18 6 1.12
2 15 1210 7 121 8 1.25 7 1.20 6 1.17 1071 32 2057 7 1.18 7 1.17 6 1.12
4 70 4980 7 1.18 8 1.25 7 1.18 6 1.12 0 495 12585 7 1.18 7 1.18 6 1.12
8 495 12585 7 1.18 8 1.25 7 1.18 6 1.12 CoV = 150% mb: jter =103 k = 107.067

CoV =150% (mb: iter =103 & = 107.07) 1072 10 336 66 50.2 70 50.68 | 70 50.68
0 1 70 71 6144 | 89 90.18 | 89 90.18 | 89 90.18 10! 55 2450 30 10.89 | 29 9.49 25 6.95
1 5 350 51 29.92 | 59 39.66 | 57 36.85| 57 36.85 10° 171 6338 23 7.00 27 7.98 32 11.48
2 15 1210 51 30.18 | 60 4206 | 46 2426 | 50 27.53 107t 313 9714 22 6.86 26 7.74 35 1354
4 70 4980 32 12.05 | 58 38.08 | 28 9.42 34 13.86 0 495 12585 21 6.85 26 7.75 35 1374
8 495 12585 21 6.85 84 77.73 | 26 7.75 35 13.74
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Conclusion

A methodology of hierarchical preconditioning (Schur and Gauss-Seidel):
¢ approximation using the diagonal block solves
¢ truncation of the MAT-VEC operations

Advantages:

neither the matrix, nor the preconditioner need to be formed explicitly
- the ingredients include only

¢ the stiffness matrices from the polynomial chaos expansion
¢ a good preconditioner My for the mean-value deterministic problem

- allows an obvious parallel implementation

+ can be written as a “wrapper” around existing deterministic code
(for the corresponding mean-value problem); and thus

minimally intrusive
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| Space mesh Linear and nonlinear solvers Time step C

Outline

Introduction

A steady linear problem: space mesh adaptation

- Potential and flux reconstructions

A guaranteed a posteriori error estimate

+ Local efficiency

- Application and numerical results

A steady nonlinear problem: stopping the linear and
nonlinear solvers

- A guaranteed a posteriori error estimate

- Stopping criteria and efficiency

+ Application and numerical results

An unsteady nonlinear problem: time step adaptation
A guaranteed a posteriori error estimate
- Application and numerical results
Conclusions and future directions

Martin Vohralik Adaptivita pro linearni, nelinearni a ¢aso-prostorové fesice
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Iterative solvers and space and time steps choice

| Space mesh Linear and nonlinear solvers Time step C
Numerical approximation of a nonlinear, unsteady
PDE

Exact and approximate solution

- let u be the weak solution of A(u) = f, A nonlinear,
unsteady partial differential equation (PDE) on Q x (0, T)

- let up, be its approximate numerical solution,
Anr(Unr) = Fhr
Solution algorithm
- introduce a temporal mesh of (0, T) givenby t",0 < n< N
- introduce a spatial mesh 7,7 of Q on each t”
- on each t, solve a system of nonlinear algebraic
equations AQ(uf) = Ff

Martin Vohralik Adaptivita pro linearni, nelinearni a ¢aso-prostorové fesice

lterative linearization of AJ(u;) = F/ on each "
- Apk=Tynk — FPET discrete iterative linearization
(Newton, fixed-point)
* loopin k
- when do we stop?
Iterative algebraic solver on each t" and for each k
- Apk=Tynk — FPET s g linear algebraic system
- we only solve it inexactly by some iterative algebraic
solver: loop in /
- when do we stop?
Temporal mesh
- choice of the discrete times 17
Spatial mesh

- choice of the meshes 7,'? =

Adaptivita pro linearni, nelinearni a ¢aso-prostorové fesice
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Previous results

| Space mesh Linear and nonlinear solvers Time step C

Optimal solution strategy

Optimal solution strategy
- give a guaranteed and robust upper bound on the overall
error ||U — Unr|lax(o, 1), @s tight as possible

- distinguish the algebraic, linearization, temporal, and
spatial error components

- stop the iterative solvers whenever the corresponding
errors do not affect the overall error significantly

- refine/derefine adaptively the time and space meshes
and equilibrate the space and time errors
Benefits
- optimal computable overall error bound
- important computational savings
- improvement of approximation precision -
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Steady problems
- Babu$ka and Rheinboldt (1978), introduction of a posteriori
estimates

- Ladeveze and Leguillon (1983), equilibrated fluxes
estimates (equality of Prager and Synge (1947))

- Verflrth (1996), residual-based estimates
- Ainsworth (2005), nonconforming methods

Unsteady problems

- Bieterman and Babuska (1982), introduction
- Verfirth (2003), efficiency, robustness with respect to the
final time
- Makridakis and Nochetto (2003), elliptic reconstructio’n
V12577
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Previous results

Nonlinear problems

Han (1994), general framework
+ Verfurth (1994), residual estimates
Stopping criteria
- engineering literature, since 1950’s
Becker, Johnson, and Rannacher (1995), multigrid st. crit.
- Arioli (2000’s), general linear solver st. crit.

+ Chaillou and Suri (2006, 2007), distinguishing
discretization and linearization errors
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Reconstructions  Estimate Efficiency Appl. & num. res

Example: elastic string

Elastic string with displacement u and weight f

-

b
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Example: underground water flow

:

Q

Underground with a water well of f > 0 and pressure head u
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Model diffusion problem

| Space mesh Linear and nonlinear solvers Time step C

Model diffusion problem
LetQ c R9 d > 1. Find u: Q — R such that
-V (KVu) =f in Q,
u=20 on 09,
where
- K:Q — R4 s a diffusion tensor,
f: Q — Ris a source term.

Formin 1D
LetQ =]a,b[, a< b. Let k :]a, b[— R and f :]a, b|— R be two
given functions. Find v :]a. b[— R such that
~(ku') =,
u(a) = u(b) = 0.
Weak formulation
Find v € V := Hl(Q) such that

Reconstructions Estimate ~ Efficiency Appl. & num. res.

(KVu,Vv) = (f,v)

Martin Vohralik

vve V.
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Example: heat flow

| Space mesh Linear and nonlinear solvers Time step C

O [ o
N
A room with a heater of f > 0 and temperature u
Martin Vohralik

Properties of the exact solution

Solution u (displacement,
temperature, pressure ...) is
continuous

u" in 1D) is not necessarily
continuous

Martin Vohralik
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Solution gradient Vu (derivative
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Properties of the exact solution

Solution u is continuous Flux t := —KVu (or —ku’ in 1D)
is continuous
—
za—
Martin Vohralik Adaptivita pro linearni, nelinearni a aso-prostorové fesice
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Potential and flux reconstructions

Potential reconstruction Flux reconstruction
-
It mthenais
&z’ua/-
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Estimators

nonconformity estimator
nne k= [V (Un = sh)llk

- evaluates the departure of u, from V
- constraintu e V

flux estimator
mr,k = [|VUn + tallk

- evaluates the departure of Vujp from H(div, Q)
- constitutive law t = —Vu and constraint t € H(div, Q)

residual estimator
hk
Rk = = Vetallk

- strong form of the PDE evaluated for the flux ty

o -
+ equilibrium V-t = f [ —
&zua/—
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Approximate solution and approximate flux

Approximate solution up, is not Approximate flux —KVuy,
necessarily continuous (—ku) is not necessarily
CONtINUOUS 7 s
zea—
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A posteriori error estimate for —V-(Vu) = f (K =1)

Assumption A (Equilibrated flux reconstruction)

There exists an equilibrated flux reconstruction t, e H(div,Q)s.t.
(V'ih,1)K:(f,1)K VK€7714
Assumption B (Potential reconstruction)
There exists a potential reconstruction s, € V.

Theorem (A guaranteed a posteriori error estimate)

Let
u € V be the weak solution,

upe V(Tn):={veL?(Q), vk € H'(K)VK e Tp} be arbitrary,

Assumptions A and B hold.
Then
IV(u—=unl® < D (e +mrk)®+ D nkex
KeTh KeTh
where 1g k, v K, Inc,k are fully computable from up, tp, sp. pemos
T — —
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Assumptions for efficiency
Assumption C (Technical assumption)
Let Ty, be shape-regular and uy, f, and t;, pw polynomials.
Assumption D (Potential reconstruction)
Let the potential reconstruction sy, be a piecewise polynomial
constructed from up, by local averaging.
Assumption E (Approximation property — flux reconstruction)
For all K € Tp, there holds
TIF,K S T, Tyes
where
1/2 1/2
M= . Melf +Aulk s+ > hell[Vunl-nel
K'eZk ecen
1/2
+9 > he ' Iunll3
ecey | .
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Local efficiency
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Theorem (Local efficiency)

Let {[up],1)e = O for all faces e of the mesh Tp. Then, under
Assumptions C to E,

e,k + ek ek S V(U — up)

Ty

for all K € Tp.
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Application

| Space mesh Linear and nonlinear solvers Time step C

Discretization methods

conforming finite elements
nonconforming finite elements
discontinuous Galerkin method
various finite volumes

mixed finite elements

Application

specification of the potential reconstruction s, and flux
reconstruction t,

Sp = up in conforming methods (FE, VCFV) = nnexk =0
tn = —KVuy in flux-conforming methods (CCFV, MFE) =
ek =0

verification of Assumptions A to E

-

&Zﬂ, ,,,,,,,, \Frovensiics
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Estimated and actual errors, effectivity index

Energy error

Actual error and estimator and

10 114
—e—error uniform —=—effectivity ind. uniform|
—=—estimate uniform 5 1121 —
10° —#—res. est. uniform || B
—A—dif. flux est. uniform > 11 -
2
2 81081 4
10 3 %
5 1.061 B
13
107 B gLoar 7
2
I 1.021- B
o ! !
10 plv i v L
10 10* i 10° 10° 10° 10* 10° 10° 10"
Number of vertices Number of vertices

Effectivity index
its components

-

122

Adaptivita pro linearni, nelinearni a ¢aso-prostorové fesice

Martin Vohralik

| Space mesh Linear and nonlinear solvers Time step C
Summary for —V-(Vu) = f
Summary
guaranteed upper bound:

1/2
IV(u—un)| < 9§ >k
KeTh
local efficiency:
nk SIVU—un)ls,  VYKETh

close to asymptotic exactness:

1/2
{ZKeTh 77;2<} N
V(u—un)ll
robustness: the three previous properties hold
independently of the parameters of the problem and of
their variation (size of Q, shape of Q, regularity of u, local
refinement of 7j, sizes hy) s
small evaluation cost of 7k
Martin Vohralik
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Numerics: finite elements in 1D

Model problem
—u" = 7Psin(mx)
u =0 in0,1

in (0,1),

Exact solution
u(x) = sin(mx)

-

&Zﬂ, ,,,,,,,, \Fravensiics
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Numerics: cell-centered finite volumes
diffusion equation

-V(KVu)=0 in Q=(-1,1)x(-1,1)

discontinuous and inhomogeneous K, two cases:

5,=100

5,5 51 5,=100 s

1 1

analytical solution: singularity at the origin
u(r,9)|o, = r*(ajsin(ad) + b;cos(ab))

(r,0) polar coordinates in Q
aj, b constants depending on Q;
- a regularity of the solution

-
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Analytical solutions

Martin Vohralik
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Reconstructions Estimate Efficiency Appl. & num. res.
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Approximate solution and the corresponding
adaptively refined mesh, case 2

Martin Vohralik
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Effectivity indices in uniformly/adaptively refined

e T T T T T ficiency uniform 4= T —=— efficiency uniform
155 -4 - efficiency adapt. 38— -4 - efficiency adapt.
— .
AN B 36,
' 341 -
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5 14 4 5. 7
g \ 228 -
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\ 22— -
sy — 2 -
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2
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Reconstructions Estimate Efficiency Appl. & num. res.

Error distribution on an adaptively refined mesh,
case 1

0.025

0.02

0.015

0.01

0.005

Estimated error distribution Exact error distribution

-

&Zw ........ \Fatvensiics
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Estimated and actual errors in uniformly/adaptively
refined meshes

10" 10—
E e~ error uniform £ e~ error uniform
E —=— estimate uniform £ —=— estimate uniform
r -4 - error adapt. E -4 - error adapt.
[ -4 - estimate adapt r -4 - estimate adapt.
10° e L 1
s 1 5,
s T 1 8" E
g * 1z 1
w N - w 4
107 R + E ]
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10° 10° 10 10° 10° ? 10 10°
Number of triangles Number of triangles
Case 1 Case 2

-
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Inexact Newton method

Estimate  Stoping criteria & efficiency Appl. & num. res.

System of nonlinear algebraic equations
Nonlinear operator A:RN — RN, vector F e RN: find U € RN s.t.
AWU)=F

Algorithm (Inexact linearization)

¢ Choose initial vector U°. Set k = 1.

o Uk = matrix A" and vector F*: find U” s.t.

Ak_1 Uk ~ Fk_1‘
Set UK® .= Uk-1 and | := 1.
< Do 1 algebraic solver step = U"' s.t. (R® algebraic res.)
A&k—1ij,i — Fk—1 _ Rk’i.

< Convergence? OK = UX .= UN. KO= i:= i+ 1, back
to 3.2.

* Convergence? OK = finish. KO = k := k + 1, back to 2.

Martin Vohralik Adaptivita pro linearni, nelinearni a ¢aso-prostorové fesice
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Context and questions

Estimate Stoping criteria & efficiency ~ Appl. & num. res.

Approximate solution
- approximate solution U/ does not solve A(U*') = F
Numerical method

- underlying numerical method: the vector U% is associated
with a (piecewise polynomial) approximation uf"

Partial differential equation
- underlying PDE, v its weak solution: A(u) = f

Question (Stopping criteria)
What is a good stopping criterion for the nonlinear solver?
What is a good stopping criterion for the linear solver?

Question (Error)

+ How big is the error ||u u’;'i || on Newton step k and
algebraic solver step i, how is it distributed? —

——
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Approximate solution and error measure
Approximate solution

: u’h‘" e V(Th) ¢ V, u,’;’i not necessarily in V
V(Tp) i={v € LP(Q), v|x € W'P(K) VK € Tp}
Error measure

TuUy: = sup  (o(uVu)—o (Ul VUE), Vo) + Tunc(ul)
PeVi[IVellp=1
1/q
ki - ki
Tunc(up') == Z Z he ||[u - Up'Tlde
KeTh ecék

- weak difference of the fluxes (dual norm of the residual) +
nonconformity (computable jump term)

- there holds .7,(u}") = 0 if and only if u = v

- physical relevance: strong difference of the fluxes +
nonconformity

Tu(up") < TP(R’) = [l (0. Vu) — o (U Vur) g + Tuneldp), ..
ultp u \Yp h h Ja ”&i}
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Distinguishing error components

Assumption B (Discretization, linearization, and algebraic

errors)

There exist fluxes d' 157 al" ¢ [L9(Q)]9 such that
() d¥ + 15" +al =t
(i) as the linear solver converges, ||a',§" lg = 0;

(ii) as the nonlinear solver converges, ||Iﬁ”||q — 0.
Comments
- d%": discretization flux reconstruction

. If‘;’: linearization error flux reconstruction

: a’,§”: algebraic error flux reconstruction

Martin Vohralik Adaptivita pro linearni, nelinearni a ¢aso-prostorové fesice
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Quasi-linear elliptic problem

Quasi-linear elliptic problem
Vo(u,Vu) =f in Q,
u=20 on 0Q
- quasi-linear diffusion problem
o(v,§) =A(v)§
- Leray-Lions problem
o(v,€) =A(§)¢
T p>1,q:= 55, fel9(Q)
Example
p-Laplacian: Leray-Lions setting with A(¢) = |£[P—21
Nonlinear operator A: V/ := W, ”(Q) — V'
(A(u), v)vr,v = (o(u,Vu),Vv)
Weak formulation
Find u € V such that

v(v,€) € R x RY

ve e RY

Au) = fin V/

Martin Vohralik
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A posteriori error estimate
Assumption A (Total flux reconstruction)
There exists a flux reconstruction t;’i € H9(div, Q) and an
algebraic remainder pZ” € L9(Q2) such that
VA =y — o,
with the data approximation f, s.t. (fo, 1)k = (f, 1)k VK € Tp.

Theorem (A guaranteed a posteriori error estimate)

Let
+ u € V be the weak solution,

0 u,ﬁ'i € V(Tp) be arbitrary,
- Assumption A hold.
Then there holds
ju(u,l;'i) S ﬁkJ»
where 7! is fully computable from u,’j’i , tg'i , and pﬁ’i .

- —
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Estimate distinguishing error components

Theorem (Estimate distinguishing different error components)
Let

- u €V be the weak solution,

: u,'j" € V(Tn) be arbitrary,

- Assumptions A and B hold.
Then there holds

ki ki . ki ki ki ki ki K, i
jll(uh ) <= Mdisc + Thin + //ulg + Trem + 7]quad + Toge:

Martin Vohralik Adaptivita pro linearni, nelinearni a ¢aso-prostorové fesice
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Estimators

discretization estimator

Estimate Stoping criteria & efficiency Appl. & num. res

ki 1 — ki K,i
ndislc,K =2 |[Fy +dy|

1— ki
K+ Z he qH'[Uh'I]l”g.e

ecly
linearization estimator . Py
Mink = " llg.kc
algebraic estimator . Y
U‘llg.K = ‘ah ‘Q»K

algebraic remainder fstimator .
Jo J
nrem,K = hQ”ph Hq,K
quadrature estimator
[ ki 7oy _ gk
nquad,K = HU(Uh , VUy ) [ Hq,K
data oscillation estimator
i .
nosc,K = CP,PhK”f - thqu
1/q
. i
’r/{(” = Z (’r/"';()q
KeTh
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Assumption for efficiency

Estimate Stoping criteria & efficiency Appl. & num. res.

Assumption C (Approximation property)
For all K € Tp, there holds

—k,i K, i K, i K, i
”C"hl +d, l”q,K N 7];1,%;( + Wosc,;yw

where
Ki . Fhl S hol
Mg, =9 O Wl + Ve d e+ Y helllay nelllde
K'eTg eee‘;’
1
1-qr kipqg |
+ Z he " [[up lg.e
eclk
-
It mthenais
za—
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Local efficiency

Estimate  Stoping criteria & efficiency Appl. & num. res.

Theorem (Local efficiency)

Let the mesh Ty, be shape-regular and let the local stopping
criteria hold. Then, under Assumption C,

ki ki ki ki
77disc,K + nlin,K + nalg,K + 771'em,K
up K,i K, i ki
5 JU,‘IK(uh ) + nquad,‘IK + nosc,iK
for all K € Tp.

robustness and local efficiency for an upper bound on the
dual norm

-
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Stopping criteria

Estimate Stoping criteria & efficiency  Appl. & num. res.

Global stopping criteria
stop whenever:

ki ki ki ki
Trem < “Yrem max{ndis@ Min > Matg >
ki ki ki
”AIg < Yalg ma><~{ Tadisc> Thin }7

ki

i < inTlgae
Vrem» Valg, Yin = 0.1
Local stopping criteria
stop whenever:

ki ki ki K,i K
nrem,K < TYrem,K max{”diqu’nlin,K’7]alg7K} 7K € 777"
ki ~ [, ki K.i T ~

Nalg,k < Yalg.K max {7 i Mhin K VK € Th,

ki

. K,i e
Min,K = MNin, K gise. K VK € Th

Yrem,K > Valg,K > Vin,K == 0.1
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Global efficiency

Estimate Stoping criteria & efficiency Appl. & num. res.

Theorem (Global efficiency)

Let the mesh T, be shape-regular and let the global stopping
criteria hold. Recall that Ju(uf™") < n*'. Then, under
Assumption C,

ki ki ki ki
0" S Tu(Up") + Ngiaa + Toses

where < means up to a constant independent of o and q.

robustness with respect to the nonlinearity thanks to the
choice of the dual norm as error measure
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Algebraic error flux reconstruction and algebraic
remainder

Construction of a}” and '
- On linearization step k and algebraic step i, we have
Ak=Tyki — pk=1 _ gk
Do v additional steps of the algebraic solver, yielding
Ak_1 Uk,/ b Fk—1 _ Hk,/ } v
Construct the function ;" from the algebraic residual
vector R*/*" (lifting into appropriate discrete space).
Suppose we can obtain discretization and linearization flux
reconstructions dZ”’ If,” on each algebraic step. Then set
a:‘/ - (dﬁ./—z/ + Ii(]./—w) - (d};./ + |:‘/).
v chosen adaptively so that nrker’n K or nrke,; are small enough.
Independent of the algebraic solver. &z
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Nonconforming finite elements for the p-Laplacian

Discretization
Find v, € Vj, such that

(a-(Vuh),Vvh) = (fh7 Vh) Vv € Vh.
o(Vup) = [Vup/P-2Vup
Vj, the Crouzeix—Raviart space
° fh = rlof

- leads to the system of nonlinear algebraic equations

AU) =

Martin Vohralik Adaptivita pro linearni, nelinearni a caso-prostorové fesice
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Algebraic solution

Estimate Stoping criteria & efficiency Appl. & num. res.

Algebralc solution
Find uh € Vj, such that

(N (VUET), Vie) = (Fayhe) — RET Ve e &

- algebraic residual vector R%/ = {R’g”}eeg;'m
- discrete system

Ak 1uk Fk 1 Rk,i

b
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Verification of the assumptions — upper bound

Lemma (Assumptions A and B)
Assumptions A and B hold.

Comments

. Ha;’in_KHO as the linear solver converges by definition.
K,i
: th

q.k — 0 as the nonlinear solver converges by the
construction of I,

* Both (dj’ + 1) and dj;” belong to RTNo(S) =
al’ € RTNy(Sp) and t5' € RTNg(Sp).
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Linearization

Estimate Stoping criteria & efficiency Appl. & num. res.

Linearization
Find uf € Vj such that

(X (Vu), Vibe) = (fa,0e) Ve € &M
- Ul € V, yields the initial vector U°
- fixed-point linearization
o) = VU TP

- Newton linearization
o () = VU PR+ (p—2)[ VTPt
(VU @ vk - vuk)
- leads to the system of linear algebraic equations

Fk=1 -
[/
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Flux reconstructions

Estimate Stoping criteria & efficiency Appl. & num. res.

— . ki | phoi
Definition (Construction of (d;" + I;;"))
For all K € Tp,
f
(b = e+ M e -Y g ‘(x Xl

ectk

where, RE" .= (fn, e) — (o 1(VUE), Vibe) Ve e &M

Definition (Construction of d’;")

For all K € Tp, .
i . ki falk =
dy'lic = = (VU)K + 5 (x = Xk) e%; diD | (X — Xk )|k
- . K
where B’ = (fo,10e) — (0(Vup'), Vi) Ve e &

Definition (Construction of E’;‘i)

Set @}’ := o(Vuy"). Consequently, 1., , = 0 for all K & Tp.
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Verification of the assumptions — efficiency

Lemma (Assumption C)
Assumption C holds.
Comments

- d¥ close to o(Vul)

- approximation properties of Raviart—-Thomas—Nédélec
spaces
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Discontinuous Galerkin for the quasi-linear diffusion

Discretization
Find vy € Vi :=Pm(Th), m > 1, such that, for all v, € Vj,,

(o(Un, Vup), Vi) = > {({o(tn, Vup)}-ne, [Val)e

ecéy

+ O A(Un)VVa}ne, [unl)e} + D (Geh ' [unl. [val)e = (£, Vi)

ecéy

© 0e{-1,0,1}
© @e = ||AllL=(r)Xer Xe large enough
* leads to the system of nonlinear algebraic equations

AU)=F
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Algebraic solution

Algebraic solution
Find u,f'/ € V}, such that

(ak71 (Uk'iv vuﬁ”‘)# va,/) - Z {<{{0k71 (U;;Jv vu}’;’i)}'n& I[wK,j]l)e

ecty

+ O AR (uf ) Ve e, [up et + > (aehs Tyl ¥k D)e

ecéy

= (f,vK)) — R’

-+ algebraic residual vector K = { R/} ke, jecy
- discrete system

Ak—1 Uk — Fk—1 _ Rk,i
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Verification of the assumptions — upper bound

Definition (Construction of fp, Fﬁ.i)

Set f, := Nf and o == IKIN(gr (U WUy,

Lemma (Assumptions A and B)
Assumptions A and B hold.
Comments
. Haf,”'Hq,KHO as the linear solver converges by definition.
. Hlj‘;"Hq)K—m as the nonlinear solver converges by the
construction of I,
* Both (dj’ + 1) and djf’ belong to RTN,(75) =
al’ € RTN,(75) and t<' € RTN/(75).
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Linearization

Linearization
Find uf € V} such that, for all K € 75 and all
jeCk = 11,....dimPn(K))},

(@7 (U, V), Vorg) = Y _{{e" " (U, Vup) e, vk D)e
ecéy
+OA T (Uh) Vi i} ne, [ugle )+ (@ehs 'TURD [k De=(f, vk ,)-
ecéy
- Ul € Vj yields the initial vector U°
- fixed-point linearization o*~ (v, &) := A(uf~")¢
- Newton linearization
(v, &) == A(ufNE + (v — U)o AU VUET,
AT(v) = A(ug") + oAUy (v - ug )
- leads to the system of linear algebraic equations
Ak71 Uk _ FK71

Martin Vohralik
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Flux reconstructions

Definition (Construction of (d%' +15) € RTN(Tp), / :== m—1/m)
Forall K € Tpand all e € &,
(A1) Ne,qr)e = (—fo" (U, Vi) B-ne-+aehs [ul'].Gnle,
(i + 15 e = (" (U, VU, ek

+03 welA (U )rpne, [up e

ecéy
for all g, € Py(€) and all ry € [P;_¢(K)]“.

Definition (Construction of d/ € RTN(73), / := m—1 or | := m)
Forall K € 7o and all e € &,

(i ne, an)e = (—{o (U VUi ) pne + Gehg [uf'], anle,
(@i ek i=—(o (U VU, o)k +0 Y we(A(Uf Jen g, [uf e,

ecéy
for all g, € Py(€) and all r, € [P;_4(K)]“. e
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Verification of the assumptions — efficiency

Lemma (Assumption C)
Assumption C holds.

Comments
: dﬁ’[ close to Eﬁ"
+ approximation properties of Raviart-Thomas—Nédélec
spaces
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Summary Numerical experiment |

Discretization methods

conforming finite elements Model problem

nonconforming finite elements - p-Laplacian
d|sFont|qu9us Galerkin v.(Wulp_ng) ¢ in Q.
various finite volumes U=u ondQ

mixed finite elements
weak solution (used to impose the Dirichlet BC)

Linearizations
fixed point 1 2 2\ 2 1 =
_ _p— 1 1 p— p—1(1\P-
P U(Xy}’)*—T((X—E) +(y—§)) +T(§)
Newton
Linear solvers tested values p = 1.5and 10
) ) nonconforming finite elements
independent of the linear solver 9
...all Assumptions A to C verified 4 7 e e
p 2L —
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Analytical and approximate solutions Error and estimators as a function of CG iterations,
p = 10, 6th level mesh, 6th Newton step.

0.04 0.4
w 10 10 — T
0.02 o3
107 [ B «
g oz | e | P asscagnl
. N [ ] b e
004 o wilb o
00 S e e e P
Newton inexact Newton ad. inexact Newton
Casep=15 Case p=10
- -
L S formais Fnavemsis
&z’ua/- ZLa—
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Error and estimators as a function of Newton Error and estimators, p = 10

iterations, p = 10, 6th level mesh

. : -
\\\— o 4 177 N ] L
e T e e R e e A SR B ] e
e ) e oo Newton inexact Newton ad. inexact Newton
Newton inexact Newton ad. inexact Newton
. .
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Effectivity indices, p = 10

Estimate Stoping criteria & efficiency Appl. & num. res.

5.
i S,
Newton inexact Newton ad. inexact Newton
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Newton and algebraic iterations, p = 10

—r
|4 adapt. e

et ——r

|4 adapt. e |~ agapt inex.

L
raic sotver teraons.
L

Number of Newton eraions
Tt

|

L
s

L
“Total number o iget
k

3 0
Refnement evel

10
Newton teraion

: 2 3 0
o Refnement evel
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Error distribution, p = 10

oz B
S 0.7 N7 I
- Hegwl |

Estimated error distribution Exact error distribution

-

&Zw ........ \Fatvensiics
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Error and estimators as a function of CG iterations,
p = 1.5, 6th level mesh, 1st Newton step.

Newton it. / refinement alg. it. / Newton step  alg. it. / refinement

-

&zw ........ \Frovensiics
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Error and estimators as a function of Newton
iterations, p = 1.5, 6th level mesh

I L
0 100 150 200 750 300 30 400 450 500 550 2
Newton eraion Newton eraion

inexact Newton ad. inexact Newton
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Error and estimators, p = 1.5
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Effectivity indices, p=1.5
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Newton and algebraic iterations, p = 1.5

10 10 10 10 10 10 10 10 Fnementesel

Newton it. / refinement

10 10 10"
Number of faces Numberof faces Number of faces

Newton inexact Newton ad. inexact Newton
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Numerical experiment

Estimate ~Stoping criteria & efficiency Appl. & num. res.

Model problem

p-Laplacian

. u

Estimated error distribution

V-([VulP2vu) = f
u=1u

in Q,
on 09

weak solution (used to impose the Dirichlet BC)
u(r,6) = rs sin(61)

p = 4, L-shape domain, singularity in the origin
(Carstensen and Klose (2003))
nonconforming finite elements

-

122
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Estimated and actual errors and the effectivity index
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10 T 10 :
—s=ermoripun g —=effectivity ind. up un. e anergy oot uniorn
. g fuxestun|  $ effectiviy ind. low un. -4 -energy error adapiive
e 3 nonc. est, u 2 - - effectivity ind. up ad.
—4—iin. est. un E effectiviy ind. ow ad.
102 J|+alo.estun H
——osc. st 2 4
i - -ertor up ad. s g i s
g | A e aa| B g
s +~nonc. est. ad. s 2
300 | e 3
e - -alg.est. ad. S5 4 E
- -os6. oot ad H i
0k B H
(. i
Wk 1 i -
> A aa
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Error distribution on an adaptively refined mesh

; B 3 3
o Refinement evel

alg. it. / refinement
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Exact error distribution

-
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Energy error and overall performance

42288

Total number of algebraic solver fterations
8888
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Two-phase flow in porous media

Estimate Application and numerical results

Two-phase flow in porous media

Ot(¢8a) + V-Uqy = Qa,
—Aa(Sw)K(VPa + pagVZ) = Uq,
Sht+Sw=1,
Po— Pw = Pe(Sw)

a € {n,w},
a € {n,w},

Mathematical issues
coupled system
unsteady, nonlinear
elliptic—parabolic degenerate type
dominant advection
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Local estimators

Estimate  Application and numerical results

spatial estimators
k(0 =1 > (125 —va(el s sUh )k
ac{n,w}
+ hie/lq = O (oSl — V-ulil)?
+ (IKOw(s™e) + An(sxﬁ,;))wp(paf,;, ST — B k(1))
2
+ (IKV(a(sih) = ) k(1)

temporal estimators

K, K, ki k, K,i
Mt o) = Va (LS, SPED (D) =Va (Pl sTED( Ik @ € {n,w}
linearization estimators
K, K,
nlrlanIu = H(r\,hIHK OzE{l’l,W}
algebraic estimators
K, ki 7 e s
Mk = 175k o€ {nw} 77
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Cell-centered finite volume scheme

Cell-centered finite volume scheme
Forall1 < n <N, look for s ,.p" , such that

w,h>

s7 e — sty
W, W, -
oK+ D Fuee(ShmPan) =0
ey EED
sn K sn 1
_¢77‘K| + Z Faeer whapwh) =
exxr EER

where the fluxes are given by

- (S k) + M8y k) | Pkt — Pk
Fw,eKKr(S@,tha,h) = - > ~— K| Xk — XK’,l lexk|
_ (8D k) + Aa(S] k1)
Foer (Skps P p) = — %\K\
" Py ki + 7Sy ki) — (PG x + 7(SG k),

XK — Xxcr| lrl'ﬁﬁ/—
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Two-phase flow in porous media

Estimate Application and numerical results

Theorem (A posteriori error estimate distinguishing the error

components)
Let

n be the time step,
k be the linearization step,
i be the algebraic solver step,

with the approximations (sys!, p'!). Then
K, K, 3 K, K,
l(Sw = ST, Pw = P10 4 mile” 4 e mlel.

Error components

nkl: spatial discretization

n{lnk’. temporal discretization
7/1m . : linearization
Walg '+ algebraic solver

Martin Vohralik Adaptivita pro linearni, nelinearni a ¢aso-prostorové fesice

| Space mesh Linear and nonlinear solvers Time step C

Global estimators

Estimate  Application and numerical results

Global estimators

1
2
K,
=38 [ 3 eioray
b KeTy
1
2
k, k,
=3 / S ikl ()2t
ae{n,w} In KeTy
1
n,k,i n.k,i
nlm Z Z (nlm Ka ’
acf{nw}  KeTy
3
n.k,i n.k,i 2
Tt Z Z (Matg i )
ac{n,w} KeT!
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Linearization and algebraic solution

L|near|zatl|<on stfp k and algebraic step /
nK, =nK,

Estimate  Application and numerical results

Couple s/, b, such that

Snk/

w,K wK 1 nk,f =n,Kk,i n,K,i
¢————|K[ + Z weKK/ Sy Pyp) =Rk,

ek €ER

UN .

w,K wK 1 nk,i =nK,iy _ n,K,i
- |K‘+ Z “eKK’ wh7pw,h __RI1K7

exx €ER

where the linearized fluxes are given by

k—1 nkl =nk.,iy . nk—1 —nk—1
Fovene (Swn' Py’ ) =Foeqa(Syn +Pun )
6Fa e
KK/ nk—1 —=nk—1 nk,i  nk—1
+ Z "y (Swh Pyn ) (Sym — Sum
Me{K, K’} Sw,
OF a6, (87K Bk B0k
6[_) Iy w,h FPw.h p %M
Me{K,K'}y % za/—
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Fluxes reconstructions and pressure postprocessing Water saturation/water pressure evolution
Fluxes reconstructions
(A7 M e =Fon (Suh' Bk,
(@5 1500 e =Fis o, (ST IR,

nk,i . gnkitv nk,i+v n.k,i n.k,i e N i l
a,y =doy I = dyy 1) : - I

Phase pressures postprocessing

Piecewise constant p" ki postprocessed to piecewise
quadratic p)’y ko
ATV (0 ) = d3 e

k, k
Qh/(XK) - :Z:Kl7

“Mn(SURKV (R 1) = A,

n K,i n.k,i nki -~
By (Xk) = m(sy) + Py e
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Estimators/meshes evolution Estimators and stopping criteria

jEesit ot H
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z %, Z 10" H - temporal
Wil il —4—linearization
= e 10 || = aigebric
_ | | spatial 3 ——
| == inearzaon 1
—+—algebraic
10°! o | I Y T S S S Y R
o w0 a0 w0 T 1200 100 1600 1 2 3 4 5 6 1 8 9 10 u
ShRes teration Newton fteration
Estimators in function of Estimators in function of
GMRes iterations Newton iterations
i
I
&’z
Martin Vohralik Adaptivita pro linearni, nelinearni a ¢aso-prostorové fesice Martin Vohralik Adaptivita pro linearni, nelinearni a ¢aso-prostorové fesice
| Space mesh Linear and nonlinear solvers Time step C Estimate  Application and numerical results | Space mesh Linear and nonlinear solvers Time step C Estimate  Application and numerical results
GMRes relative residual/Newton iterations GMRes iterations
. x10° .
= 1 N 4
£ H < 5 oL i
H £, J 8 5
8 s 4 €151 R
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il vesseq 4 os i
107 I I I I | | | I I I I I ? ? I I I
05 1 15 2 25 3 35 4 05 1 15 2 25 3 35 4 15 2 25 0 05 1 15 2 25 3 35 4
Time/Newton step e Time x10° Time/Newton step x10° Time x10°
GMRes relative residual Newton iterations Per time and Newton step Cumulated

Martin Vohralik Adaptivita pro linearni, nelinearni a ¢aso-prostorové fesice Martin Vohralik Adaptivita pro linearni, nelinearni a ¢aso-prostorové fesice



| Space mesh Linear and nonlinear solvers Time step C

Conclusions

Entire adaptivity
- only a necessary number of algebraic solver iterations
on each linearization step
- only a necessary number of linearization iterations

- “smart online decisions”: algebraic step / linearization
step / space mesh refinement / time step modification

- important computational savings
+ guaranteed and robust error upper bound via a posteriori
estimates
Future directions

- other coupled nonlinear systems
- convergence and optimality
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