Wayback Machine
«APR JUL OCT »
Previous capture 6 Next capture
«2011 2013 2014 »
35 captures
27 Feb 09 - 4 Apr 20
Close Help
MATHEMATICA BOHEMICA, Vol. 127, No. 2, pp. 131-138, 2002

Solvability problem for strong-nonlinear nondiagonal parabolic system

A. A. Arkhipova

A. A. Arkhipova, St. Petersburg State University, Department of Mathematics and Mechanics, Bibliotechnaya pl. 2, Stary Petergof, 198504, St. Petersburg, Russia, e-mail: arina@AA1101.spb.edu

Abstract: A class of $q$-nonlinear parabolic systems with a nondiagonal principal matrix and strong nonlinearities in the gradient is considered.We discuss the global in time solvability results of the classical initial boundary value problems in the case of two spatial variables. The systems with nonlinearities $q\in(1,2)$, $q=2$, $q>2$, are analyzed.

Keywords: boundary value problems, nonlinear parabolic systems, solvability

Classification (MSC 2000): 35K50, 35K45, 35K60


Full text available as PDF (smallest), as compressed PostScript (.ps.gz) or as raw PostScript (.ps).

Access to the full text of journal articles on this site is restricted to the subscribers of Myris Trade. To activate your access, please contact Myris Trade at myris@myris.cz.


[Previous Article] [Next Article] [Contents of This Number] [Contents of Mathematica Bohemica]
[Full text of the older issues of Mathematica Bohemica at EMIS]