
October 16, 2008 19:49 WSPC/INSTRUCTION FILE masopust

International Journal of Foundations of Computer Science
c©World Scientific Publishing Company

On the Terminating Derivation Mode in Cooperating Distributed Grammar Systems
with Forbidding Components

Tomáš Masopust

Faculty of Information Technology, Brno University of Technology
Božetěchova 2, Brno 61266, Czech Republic

masopust@fit.vutbr.cz

Received (Day Month Year)
Accepted (Day Month Year)

Communicated by (xxxxxxxxxx)

This paper discusses the terminating derivation mode in cooperating distributed grammar systems
where components are forbidding grammars instead of context-free grammars. Such systems are called
forbidding cooperating distributed grammar systems, and it is demonstrated that the number of their
components can be reduced to two without changing the generative power and that these systems are
computationally complete. Without erasing productions, however, these systems are less powerful than
context-sensitive grammars.

Keywords: Cooperating distributed grammar systems; terminating derivation mode; forbidding gram-
mars; forbidding cooperating distributed grammar systems; generative power.

1991 Mathematics Subject Classification: 68Q42 and 68Q45

1. Introduction

In 1970, van der Walt [8] introduced and studied forbidding grammars as a special case of
random context grammars with appearance checking, where all permitting sets are empty.
Specifically, forbidding grammars are context-free grammars where a finite set of nonter-
minals (called a forbidding set) is associated to each production. Such a production is then
applicable if no symbol from the associated forbidding set occurs in the current sentential
form. It is well-known (see [1,6]) that the family of languages generated by forbidding
grammars is properly included in the family of recursively enumerable (even recursive)
languages and that the family of languages generated by λ -free forbidding grammars is
properly included in the family of languages generated by λ -free programmed grammars
with appearance checking (see [5]), which is properly included in the family of context-
sensitive languages. Finally, note that the question of whether λ -productions are important
for the generative power of forbidding grammars is a longstanding open problem in the
theory of regulated rewriting.

To get an alternative insight into this problem, this paper introduces and studies for-
bidding cooperating distributed (CD) grammar systems with and without λ -productions.
These systems consist of several cooperating components represented by forbidding gram-

1

October 16, 2008 19:49 WSPC/INSTRUCTION FILE masopust

2 Tomáš Masopust

mars that work in some prescribed derivation mode (see [2]). Specifically, in the terminating
derivation mode (t-mode), each component makes derivation steps as long as it can, and if
it cannot make a derivation step, another component works in the same way.

Although the problem of λ -productions is unsolved in case of forbidding grammars,
this paper demonstrates that λ -productions play an important role in forbidding CD gram-
mar systems. Specifically, with them, the family of languages generated by forbidding CD
grammar systems coincides with the family of recursively enumerable languages, while
without them, this family coincides with the family of languages generated by programmed
grammars (random context grammars) with appearance checking, which is properly in-
cluded in the family of context-sensitive languages. In addition, it is also well-known that
forbidding grammars are not as powerful as random context grammars with appearance
checking. Therefore, permitting sets (sets of nonterminals that have to appear in the cur-
rent sentential form so that the productions are applicable) are necessary for them to obtain
their full generative power. However, this paper demonstrates that forbidding CD grammar
systems (with only two components) are able to compensate the absence of permitting sets.

Finally, in [4], the generative power of a modification of forbidding CD grammar sys-
tems considering only occurrences of nonterminals to the left of the rewritten nonterminal
(so-called left-forbidding CD grammar systems) has been studied, and although the family
of languages generated by them without λ -productions is properly included in the family
of languages generated by them with λ -productions, the families of languages generated
by left-forbidding grammars with and without λ -productions both coincide with the fam-
ily of context-free languages. In fact, this is surprising in comparison with the common
context-free CD grammar systems, where λ -productions have no impact on the generated
language family. Specifically, it is well-known (see [2]) that regardless of λ -productions,
the family of languages generated by context-free CD grammar systems (considering the
t-mode) coincides either with the family of context-free languages (if they have no more
than two components), or with the family of ET0L languages (if they have three or more
components).

2. Preliminaries

This paper assumes that the reader is familiar with formal language theory (see [7]). For
a set A, |A| denotes the cardinality of A. Let ⊆ and ⊂ denote the inclusion and the proper
inclusion, respectively. For an alphabet (finite nonempty set) V , V ∗ represents the free
monoid generated by V . The unit of V ∗ is denoted by λ . Set V + = V ∗ \{λ}. For w ∈ V ∗,
|w| denotes the length of w, and alph(w) denotes the set of all symbols occurring in w. Let
L (CF), L (ET 0L), L (CS), L (REC), and L (RE) denote the families of context-free,
ET0L, context-sensitive, recursive, and recursively enumerable languages, respectively.

A forbidding grammar (see [8]) is a quadruple G = (N,T,P,S), where N is the alphabet
of nonterminals, T is the alphabet of terminals such that N ∩ T = /0, V = N ∪ T , S ∈ N
is the start symbol, and P is a finite set of productions of the form (A → x,W), where
A ∈ N, x ∈ V ∗, and W ⊆ N. As usual, (A → x,W) ∈ P is said to be a λ -production if

October 16, 2008 19:49 WSPC/INSTRUCTION FILE masopust

On the Terminating Derivation Mode in CD Grammar Systems with Forbidding Components 3

x = λ . For u,v ∈ V ∗ and (A → x,W) ∈ P, uAv ⇒ uxv provided that alph(uAv)∩W = /0.a

Extend ⇒ to ⇒n, for n ≥ 0, ⇒+, and ⇒∗. The language generated by G is defined as
L(G) = {w ∈ T ∗ : S ⇒∗ w}. The family of languages generated by forbidding grammars
is denoted by L (F), or L (F− λ) if they are λ -free, i.e., they do not contain any λ -
productions.

A left-forbidding grammar (see [4]) is a quadruple G = (N,T,P,S), where N, T , V , P,
and S are defined as in a forbidding grammar. For u,v∈V ∗ and (A→ x,W)∈ P, uAv⇒ uxv
provided that alph(u)∩W = /0. Note that in comparison with the previous definition, only
the left context of A, u, is considered. Extend ⇒ to ⇒n, for n ≥ 0, ⇒+, and ⇒∗. The
language generated by G is defined as L(G) = {w∈ T ∗ : S⇒∗ w}. The family of languages
generated by left-forbidding grammars is denoted by L (LF), or L (LF− λ) if they are
λ -free.

A programmed grammar with appearance checking (introduced and studied in [5]) is
a quadruple G = (N,T,P,S), where N is the alphabet of nonterminals, T is the alphabet
of terminals such that N ∩T = /0, V = N ∪T , S ∈ N is the start symbol, and P is a finite
set of productions of the form (r.A → v,σ(r),ϕ(r)), where r is a label of the context-
free production A → v, i.e., A ∈ N and v ∈ V ∗, and σ(r),ϕ(r) ⊆ lab(P) are success and
failure fields, respectively, where lab(P) = {r : (r.A → v,σ(r),ϕ(r)) ∈ P} is the set of
all production labels. For (x,q),(y,r) ∈ V ∗× lab(P), (x,q)⇒ (y,r) provided that (q.A →
u,σ(q),ϕ(q)) ∈ P and

(1) either x = x1Ax2, y = x1ux2, and r ∈ σ(q), for some x1,x2 ∈V ∗,
(2) or A /∈ alph(x), y = x, and r ∈ ϕ(q).

Extend ⇒ to ⇒n, for n ≥ 0, ⇒+, and ⇒∗. The language generated by G is defined as
L(G) = {w ∈ T ∗ : (S,q)⇒∗ (w,r), for some q,r ∈ lab(P)}. The family of languages gen-
erated by programmed grammars with appearance checking is denoted by L (P,ac), or
L (P−λ ,ac) if they are λ -free.

Let n≥ 2 be an integer. A cooperating distributed (CD) grammar system (see [2]) is a
construct Γ = (N,T,P1,P2, . . . ,Pn,S), where for i = 1, . . . ,n, each component (defined as)
Gi = (N,T,Pi,S) is a context-free grammar. We say that Γ is λ -free if all its components
are λ -free. For u,v ∈ V ∗ and 1 ≤ k ≤ n, let u ⇒k v denote a derivation step made by Gk.
Extend ⇒k to ⇒n

k , for n≥ 0, ⇒+
k , and ⇒∗

k . In addition, we define the relation u terminally
derives v in Gk, written as u ⇒t

k v, if u ⇒+
k v and there is no w ∈ V ∗ such that v ⇒k w.

The language generated by Γ in the terminating derivation mode (t-mode, for short) is
defined as L(Γ) = {w ∈ T ∗ : there exists ` ≥ 1 such that αi ⇒t

ki
αi+1, 1 ≤ ki ≤ n, for i =

1, . . . , `− 1, α1 = S, and α` = w}. The family of languages generated by CD grammar
systems with n components is denoted by L (CD,CF,n), or L (CD,CF−λ ,n) if they are

aIn the literature, the derivation is also defined as follows: uAv ⇒′ uxv if (A → x,W) ∈ P and alph(uv)∩W = /0.
However, these two definitions are equivalent: (⇒) Just remove all productions (A → x,W) ∈ P with A ∈ W
because they are not applicable in the definition from the paper. (⇐) Let N′ = {A′ : A ∈ N}, N ∩N′ = /0, and
G = (N ∪N′,T,P′,S) with P′ = {(A → A′, N′),(A′ → x,W) : (A → x,W) ∈ P}. Then, uAv ⇒′ uxv if and only if
uAv⇒ uA′v⇒ uxv.

October 16, 2008 19:49 WSPC/INSTRUCTION FILE masopust

4 Tomáš Masopust

λ -free. It is well-known (see [2]) that L (CD,CF,2) = L (CD,CF −λ ,2) = L (CF) and
that for n≥ 3, L (CD,CF,n) = L (CD,CF−λ ,n) = L (ET 0L).

Let n≥ 2. A left-forbidding cooperating distributed grammar system (see [4]) is a con-
struct Γ = (N,T,P1,P2, . . . ,Pn,S), where for i = 1, . . . ,n, each component Gi = (N,T,Pi,S)
is a left-forbidding grammar. The language generated by Γ in the t-mode is defined in
the same way as in the definition of CD grammar systems. The family of languages
generated by left-forbidding CD grammar systems with n components is denoted by
L (CD,LF,n), or L (CD,LF− λ ,n) if they are λ -free. It is shown in [4] that for n ≥ 2,
L (CD,LF,n) = L (CD,LF,2) and L (CD,LF− λ ,n) = L (CD,LF− λ ,2). Thus, define
L (CD,LF) = L (CD,LF,2) and L (CD,LF−λ) = L (CD,LF−λ ,2).

3. Definition

Let n≥ 2. A forbidding cooperating distributed grammar system is a construct

Γ = (N,T,P1,P2, . . . ,Pn,S) ,

where for i = 1, . . . ,n, each component Gi = (N,T,Pi,S) is a forbidding grammar. The
language generated by Γ in the t-mode is defined in the same way as in the definition of CD
grammar systems. The family of languages generated by forbidding CD grammar systems
with n components is denoted by L (CD,F,n), or L (CD,F−λ ,n) if they are λ -free.

4. Results

This section presents the main results of this paper. First, it demonstrates that the number
of components in forbidding CD grammar systems can be reduced to two without changing
the generative power. Then, it describes the generative power of these systems with respect
to whether λ -productions are allowed or not.

Theorem 1. L (CD,F−λ ,n) = L (CD,F−λ ,2) and L (CD,F,n) = L (CD,F,2), n≥ 3.

Proof. Let n≥ 3 and let Γ = (N,T,P1,P2, . . . ,Pn,S) be a forbidding CD grammar system.
Construct Γ′ = (N′,T,P′1,P

′
2,S

′) so that N′ = N[]∪N〈〉, where N[] = {[A, i] : A ∈ N, 1≤ i≤
n}, N〈〉 = {〈A, i〉 : A ∈ N, 1≤ i≤ n}, P′1 contains

(1) (S′→ [S, i], /0), 1≤ i≤ n,
(2) (〈A, i〉 → [B, j], /0), for A,B ∈ N, 1≤ i, j ≤ n,

and P′2 contains

(3) ([B, j]→ 〈B, j〉, /0),
(4) (〈B, j〉 → h j(v),N[]∪h j(W)∪⋃

k 6= j hk(N)), for (B→ v,W) ∈ Pj,

where h j, 1 ≤ j ≤ n, is a homomorphism such that h j(a) = a, a ∈ T , and h j(A) = 〈A, j〉,
A ∈ N.

The basic idea is that P′1 chooses a component of Γ to simulate, say i, and P′2 simulates
a terminating derivation of this component.

October 16, 2008 19:49 WSPC/INSTRUCTION FILE masopust

On the Terminating Derivation Mode in CD Grammar Systems with Forbidding Components 5

To prove that L(Γ)⊆ L(Γ′), let

x1A1x2A2 . . .x`A` . . .xuAuxu+1 ⇒i x1A1x2A2 . . .x`v . . .xuAuxu+1

⇒t
i z1B1z2B2 . . .zu′Bu′zu′+1

for some u,u′ ≥ 1, where x j,zk ∈ T ∗, A j,Bk ∈ N, (A → v,W) ∈ Pi, and A` = A, for some
1≤ `≤ u. Assume that the component applied next in Γ is G j. Then, by a sequence of (sets
of) productions (3)u(4)+(2)u′ , we have

x1[A1, i]x2[A2, i] . . .x`[A`, i] . . .xu[Au, i]xu+1

⇒u
2 x1〈A1, i〉x2〈A2, i〉 . . .x`〈A`, i〉 . . .xu〈Au, i〉xu+1

⇒2 x1〈A1, i〉x2〈A2, i〉 . . .x`hi(v) . . .xu〈Au, i〉xu+1

...

⇒t
2 z1〈B1, i〉z2〈B2, i〉 . . .zu′〈Bu′ , i〉zu′+1

⇒u′
1 z1[B1, j]z2[B2, j] . . .zu′ [Bu′ , j]zu′+1

in Γ′. According to the t-mode, productions constructed in (4) are applied while there is
an applicable production of Γ to be simulated. Then, productions constructed in (2) are
applied, keeping the second parts of nonterminals equal, i.e., j. As S′ → [S, i], 1 ≤ i ≤ n,
and [S, i] is of the form described above, the proof proceeds by induction.

On the other hand, to prove that L(Γ′)⊆ L(Γ), let x1[A1, i1]x2[A2, i2] . . .xu[Au, iu]xu+1 be
a sentential form of Γ′, where xi ∈ T ∗, i = 1, . . . ,u+1, A j ∈ N, and 1≤ i j ≤ n, j = 1, . . . ,u.
We prove that i1 = i2 = · · · = iu and that Γ′ correctly simulates a terminating derivation
of Γ.

First, note that productions constructed in (4) are not applicable because there are non-
terminals from N[] in the sentential form. Therefore, only productions constructed in (3) are
applicable, i.e.,

x1[A1, i1]x2[A2, i2] . . .xu[Au, iu]xu+1 ⇒u x1〈A1, i1〉x2〈A2, i2〉 . . .xu〈Au, iu〉xu+1 .

Now, productions constructed in (4) are applicable only if i1 = i2 = · · ·= iu. (If there are k, l
such that ik 6= il , the derivation continues by productions from P′1 rewriting these nontermi-
nals by productions constructed in (2) changing the second parts of nonterminals.) Thus,
assume that they are equal. Then, productions constructed in (4) simulate the productions
from Pi1 , i.e.,

x1〈A1, i1〉x2〈A2, i1〉 . . .xu〈Au, i1〉xu+1

⇒t
2 x′1〈A′1, i1〉x′2〈A′2, i1〉 . . .x′u′〈A′u′ , i1〉xu′+1 ,

for some u′ ≥ 1, where x′i ∈ T ∗, i = 1, . . . ,u′ + 1, and A′j ∈ N, j = 1, . . . ,u′. Then, only
productions from P′1 constructed in (2) are applicable. Therefore,

x′1〈A′1, i1〉x′2〈A′2, i1〉 . . .x′u′〈A′u′ , i1〉xu′+1

⇒t
1 x′1[A

′
1, j1]x′2[A

′
2, j2] . . .x′u′ [A

′
u′ , ju′]xu′+1 ,

1≤ jk ≤ n, k = 1, . . . ,u′.

October 16, 2008 19:49 WSPC/INSTRUCTION FILE masopust

6 Tomáš Masopust

In Γ, x1A1x2A2 . . .xnAnxn+1 ⇒t x′1A′1x′2A′2 . . .x′nA′nxn′+1 by the corresponding produc-
tions from Pi1 . As any derivation starts by a production constructed in (1) of the form
S′ → [S, i], 1 ≤ i ≤ n, and [S, i] is of the form considered above, the proof proceeds by
induction.

As the number of components has no effect on the generative power of forbidding CD
grammar systems, we establish the following definitions.

Definition 2. Define L (CD,F) = L (CD,F,2) and L (CD,F−λ) = L (CD,F−λ ,2).

To prove the other results, note that it is well-known that L (P,ac) = L (RE) (see [5]),
and it is not hard to construct (by standard techniques) a Turing machine accepting a lan-
guage from L (CD,F). Therefore, the following lemma is obvious.

Lemma 3. L (CD,F)⊆L (P,ac).

Analogously, it is not hard to show that L (CD,F−λ) ⊆ L (CS). Moreover, the fol-
lowing lemma demonstrates that this inclusion is proper, which is surprising in comparison
with λ -free left-forbidding CD grammar systems that generate the whole family of context-
sensitive languages (cf. [4]).

Lemma 4. L (CD,F−λ)⊆L (P−λ ,ac).

Proof. Let L∈L (CD,F−λ) and let Γ = (N,T,P1,P2,S) be a λ -free forbidding CD gram-
mar system such that L(Γ) = L. Let G = (N,T,P,S′) be a programmed grammar with ap-
pearance checking, where P is constructed, starting from an empty set, as follows. Assume
that all productions of Γ are labeled by different labels, i.e., for z ∈ {1,2}, set mz = |Pz| and
lab(Pz) = {z′1,z

′
2, . . . ,z

′
mz}. Set `(z) = {` : (`.A→ x, /0) ∈ Pz}.

(1) For (`.A→ x,W) ∈ Pz, W = {X1,X2, . . . ,Xs}, s≥ 1,

• add (pi.Xi → Xi, /0,{pi+1}) to P, pi is a new label, for i = 1, . . . ,s, ps+1 = `,
• add (`.A→ x,{cz}, /0) to P, where cz is a special symbol defined in 3(ii) below,
• set `(z) = `(z)∪{p1}.

(2) Add (s.S′→ S, `(1)∪ `(2), /0) to P, where s is a new label.

(3) Let Mz = {zi : (z′i.Ai → xi,Wi) ∈ Pz} be a set of new labels and assume that Wi =
{Xi,1,Xi,2, . . . ,Xi,si}.

• For i = 1, . . . ,mz and j = 1, . . . ,si,

(i) let zi, j be new labels,
(ii) set cz = z1,1, where z1,1 = z1 if s1 = 0 (i.e., W1 = /0),

(iii) add (zi, j.Xi, j → Xi, j,{zi+1,1},{zi, j+1}) to P, zi,si+1 = zi, zmz+1,1 = `(r), r 6= z,
and if si = 0, then zi,1 = zi.

• For i = 1, . . . ,mz−1, add (zi.Ai → Ai, `(z),{zi+1,1}) to P.
• Add (zmz .Amz → Amz , `(z), `(r)), r 6= z.

October 16, 2008 19:49 WSPC/INSTRUCTION FILE masopust

On the Terminating Derivation Mode in CD Grammar Systems with Forbidding Components 7

To prove that L(G) ⊆ L(Γ), consider the sequences of productions constructed in (1),
(2), and (3). Clearly, the production constructed in (2) starts the derivation, and after that
it is never applied again. Then, a production from `(z), z ∈ {1,2} is applied, i.e., either
one of the productions with empty forbidding sets, or the first production of a sequence of
productions constructed in (1). Such a sequence of productions is of the form p1 p2 . . . ps`,
where (`.A→ x,{X1, . . . ,Xs})∈ Pz, and it verifies that there is no symbol from {X1, . . . ,Xs}
in the current sentential form. If there is such a symbol in the current sentential form, say
Xi, then the derivation is blocked because the success field of production pi is empty and the
derivation cannot continue (to replace Xi with a terminal string). Thus, assume that there is
no such symbol in the current sentential form. Then, ` is applied, i.e., A is replaced with x.
As there is no symbol from {X1, . . . ,Xs} in the sentential form, Γ applies `, too.

The derivation in G now continues by production cz, which is the first production of
one of the two sequences of productions constructed in (3). By this sequence, the grammar
looks for an applicable production so that for (A→ x,W)∈Pz, G tries to replace all symbols
from W by themselves one by one. If it fails for all these symbols, then it tries to replace
A with itself. If it succeeds, the production is applicable; otherwise, the production is not
applicable. If it finds an applicable production, the derivation continues in the simulation
of a production from Pz (see (1)); otherwise, there is no applicable production in Pz, and
the grammar starts to simulate a production from the other component. The proof then
proceeds by induction.

The inclusion L(Γ)⊆ L(G) is proved analogously.

Lemma 5. L(G)∈L (CD,F) for any programmed grammar G with appearance checking.

Proof. Let G = (N,T,P,S) be a programmed grammar with appearance checking and let
n = |P|. Without loss of generality, assume that lab(P) = {1, . . . ,n}. Let

Γ = (N′,T,P0,P1,1,P1,2,P1,3,P2,1,P2,2,P2,3, . . . ,Pn,1,Pn,2,Pn,3,S′)

be a forbidding CD grammar system defined as follows.

N′ = N∪{S′} ∪ {[X ,a], [X , i,a] : X ⊆ lab(P), 1≤ i≤ n, a ∈V ∪{λ}}
∪ {〈u〉,〈X ,u〉 : (i.A→ u,σ(i),ϕ(i)) ∈ P, X ⊆ lab(P)} ,

P0 contains

(1) (S′→ [Z,S], /0), where Z = {i ∈ lab(P) : (i.S→ v,σ(i),ϕ(i)) ∈ P},
(2) (〈u〉 → u, /0), for 〈u〉 ∈ N′,
(3) (〈X ,a1a2 . . .ak〉 → [X ,a1]a2 . . .ak, /0), for 〈X ,a1 . . .ak〉 ∈ N′, where ai ∈V , i = 1, . . . ,k,
(4) (〈X ,λ 〉 → [X ,λ], /0), for 〈X ,λ 〉 ∈ N′,
(5) ([X , i,a]→ [X ,a], /0), for [X , i,a] ∈ N′, and
(6) ([X ,a]→ a, N′ \{[X ,a]}), for [X ,a] ∈ N′, a ∈ T ∪{λ}.

For (i.A→ u,σ(i),ϕ(i)) ∈ P, i = 1, . . . ,n, set

Pi,1 = {([Z,a]→ [ϕ(i),a],{A, [Z,A]}) : Z ⊆ lab(P), a ∈V ∪{λ}, i ∈ Z} ,

Pi,2 contains

October 16, 2008 19:49 WSPC/INSTRUCTION FILE masopust

8 Tomáš Masopust

(7) ([Z,a]→ [Z,a], /0), for [Z,a] ∈ N′, i /∈ Z,
(8) ([Z,a]→ [σ(i), i,a], /0), for [Z,a] ∈ N′, i ∈ Z,
(9) (A→ 〈u〉,{〈v〉,〈Z,v〉, [Z,a] ∈ N′ : v ∈V ∗, Z ⊆ lab(P), a ∈V ∪{λ}}),

(10) ([σ(i), i,a]→ [σ(i), i,a],{〈u〉}),
(11) ([X , j,a]→ [X , j,a], /0), for [X , j,a] ∈ N′, j 6= i,

and

Pi,3 = {([Z,A]→ 〈σ(i),u〉, /0) : Z ⊆ lab(P), i ∈ Z} .

The first nonterminal of each sentential form, [X ,a] or [X , i,a], contains the set of labels
of all productions that are applicable in the current sentential form in G. Each of the sets
Pi,1 simulates an application of (i.A → u,σ(i),ϕ(i)) ∈ P if there is no A in the current
sentential form. Therefore, the derivation continues by a production from ϕ(i). On the
other hand, each of the sets Pi,2 and Pi,3 simulates an application of i if there is A in the
current sentential form.

The system simulates an application of i in Pi,2 so that if i ∈ Z, then [Z,a] is replaced
with [σ(i), i,a]. (If i /∈ Z, then it replaces [Z,a] with itself for ever, see (7).) Now, A → u
has to be simulated by replacing A with 〈u〉; otherwise, it replaces [σ(i), i,a] with itself for
ever, see (10). Thus, assume that A → 〈u〉 has been applied. Then, the current component
is blocked, and another component is chosen to continue. If Pj,2 for j 6= i is chosen, then
it never stops replacing [σ(i), i,a] with itself, see (11). Clearly, as there is no nonterminal
of the form [X ,a] in the current sentential form, neither Pk,1 nor Pk,3 are applicable for any
k. Therefore, P0 has to be chosen in which 〈u〉 is replaced with u, [σ(i), i,a] with [σ(i),a],
and if there is no nonterminal except for [σ(i),a] with a being a terminal or λ , then it is
replaced with a as well.

In Pi,3, the system simulates the derivation step replacing the first nonterminal of the
sentential form, say [Z′,A], with, say, 〈Z,u〉. Then, P0 continues the derivation by replacing
〈Z,u〉 with [Z,u1]u2 . . .u|u|, where ui ∈ V , i = 1, . . . , |u|, see (3) and (4). The proof then
proceeds by induction.

Finally, the lemma follows from Theorem 1.

Corollary 6. L(G) ∈L (CD,F−λ) for any λ -free programmed grammar G with appear-
ance checking.

Proof. This follows from the proof of the previous lemma so that all productions con-
structed in (4) are removed, and no second component of any nonterminal of the form
[Z,a] or 〈Z,a〉 is allowed to be λ . This is correct because there is no λ -production in G
and if the system replaces the first nonterminal of the sentential form, a nonterminal of the
form 〈Z,u〉 is obtained, where u 6= λ . Then, P0 continues the derivation by replacing 〈Z,u〉
with [Z,u1]u2 . . .u|u|, where ui ∈V , i = 1, . . . , |u|, |u| ≥ 1.

Corollary 7. L (P,ac)⊆L (CD,F) and L (P−λ ,ac)⊆L (CD,F−λ).

Proof. It follows from Lemma 5 and Corollary 6, respectively.

October 16, 2008 19:49 WSPC/INSTRUCTION FILE masopust

On the Terminating Derivation Mode in CD Grammar Systems with Forbidding Components 9

As a result, we have the following theorem. For a proof of the proper inclusion see [5].

Theorem 8.

(1) L (CD,F) = L (RE),
(2) L (CD,F−λ) = L (P−λ ,ac)⊂L (CS).

5. Conclusion

This section summarizes the results and open problems concerning forbidding CD grammar
systems working in the terminating derivation mode (see Fig. 1).

(1) L (F)⊂L (REC)⊂L (CD,F) = L (RE).
(2) L (P−λ ,ac) 6⊆L (F).
(3) L (ET 0L)⊂L (F−λ)⊂L (CD,F−λ) = L (P−λ ,ac)⊂L (CS).
(4) L (LF−λ) = L (LF) = L (CF).
(5) L (CD,LF) = L (RE).
(6) L (CD,LF−λ) = L (CS).

L (RE) = L (CD,F) = L (CD,LF)

L (REC)

L (CS) = L (CD,LF−λ)

L (F)
L (P−λ ,ac) = L (CD,F−λ)

L (F−λ)

L (ET0L) = L (CD,CF,3)

L (CF) = L (LF−λ) = L (CD,CF,2)

Fig. 1. A hierarchy of language families. If two families are connected by a line (an arrow), then the upper family
includes (includes properly) the lower family. If two families are not connected, then they are not necessarily
incomparable. If two families are connected by a dashed arrow, then the inclusion indicated by the arrow cannot
hold.

October 16, 2008 19:49 WSPC/INSTRUCTION FILE masopust

10 Tomáš Masopust

Results (1)–(3) (except for the equalities proved in this paper) are taken from [1] and [6].
Results (4)–(6) are proved in [4].

Open Problems

(1) Is L (F−λ)⊂L (F)?
(2) Is L (F)⊆L (CS)?
(3) Even more, is L (F)⊆L (P−λ ,ac)?

Note that it is known that the emptiness problem for L (F) is decidable and that L (F)
is closed under intersection with regular languages (see [1] and the references therein).
Furthermore, for X ∈ {L (P−λ ,ac),L (CS)}, every recursively enumerable language is
the homomorphic image of a language in X . Then, by Theorem 3(b) in [3], X \L (F) 6= /0.

Finally, it is well-known (see [2]) that the family of languages generated by CD gram-
mar systems with context-free components (considering the t-mode) coincides either with
the family of context-free languages (if they have no more than two components), or with
the family of ET0L languages (if they have three or more components). Therefore, it is
surprising that although

L (CF) = L (LF−λ)⊂L (F−λ),

it holds that for any n≥ 2,

L (CD,CF,n)⊂L (CD,F−λ)⊂L (CD,LF−λ) .

Acknowledgments

This work was supported by the Czech Ministry of Education under the Research Plan No.
MSM 0021630528. The author thanks both referees for their helpful suggestions improving
the presentation of this paper.

References
[1] H. Bordihn and H. Fernau. Accepting grammars and systems. Technical Report 9/94, Universitat

Karlsruhe, Fakultat fur Informatik, 1994.
[2] E. Csuhaj-Varjú, J. Dassow, J. Kelemen, and Gh. Păun. Grammar Systems: A Grammatical Ap-

proach to Distribution and Cooperation. Gordon and Breach Science Publishers, Topics in Com-
puter Mathematics 5, Yverdon, 1994.

[3] F. Hinz and J. Dassow. An undecidability result for regular languages and its application to
regulated rewriting. EATCS Bulletin, 38:168–173, 1989.

[4] A. Meduna, T. Masopust, and F. Goldefus. Left-forbidding cooperating distributed grammar
systems. Submitted.

[5] D. J. Rosenkrantz. Programmed grammars and classes of formal languages. J. ACM, 16(1):107–
131, 1969.

[6] G. Rozenberg and A. Salomaa, editors. Handbook of Formal Languages, volume 1–3. Springer-
Verlag, Berlin, 1997.

[7] A. Salomaa. Formal languages. Academic Press, New York, 1973.
[8] A. P. J. van der Walt. Random context grammars. In Proceedings of the Symposium on Formal

Languages. 1970.

