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Abstract

The Hidden Subgroup Problem (HSP) has been widely studied in the context of quantum com-
puting and is known to be efficiently solvable for Abelian groups, yet appears to be difficult for many
non-Abelian ones. An efficient algorithm for the HSP over a group G runs in time polynomial in
n log |G|.

For any subgroup H of G, let N(H) denote the normalizer of H. Let Mg denote the inter-
section of all normalizers in G (i.e., Mg = Nu<gN(H)). Mg is always a subgroup of G and the
index [G : Mg] can be taken as a measure of “how non-Abelian” G is ([G : Mg] =1 for Abelian
groups). This measure was considered by Grigni, Schulman, Vazirani and Vazirani, who showed that
whenever [G : M¢] € exp(O(log'/? n)) the corresponding HSP can be solved efficiently (under certain
assumptions).

We show that whenever [G : M¢] € poly(n) the corresponding HSP can be solved efficiently, under
the same assumptions (actually, we solve a slightly more general case of the HSP and also show that
some assumptions may be relaxed).

1 Introduction

The Hidden Subgroup Problem (HSP) has been studied by several authors in the context of Quantum
Computing (e.g., see [B97], [EH99], [EHK99], [HRT00] and [GSVVO01]).

The problem is defined as follows. Suppose we are given a (quantum) oracle for a function f, defined
over a group G and satisfying the following: over the elements of each left coset of the hidden subgroup
H < @G, f is constant; on the other hand, f is distinct between elements of distinct cosets of H.

To solve the HSP means to construct a generating set for H (being provided with access to an oracle
computing f). A number of efficient quantum algorithms are known which explicitly solve problems
other than the HSP but at the same time may be viewed as algorithms for special cases of the HSP (e.g.,
see [S97], [S97a] and [K95]). On the other hand, Friedl, Ivanyos, Magniez, Santha and Sen [FIMSS03]
have shown a quantum solution to the HSP for some groups.

The HSP is known to be solvable on a quantum machine in the case of Abelian G. The known
quantum algorithm solving the HSP for such G is based on the Quantum Fourier Transform (QFT)
over G.!

! An efficient quantum solution to the HSP for Hamiltonian groups has been given by Hallgren, Russell and Ta-Shma
in [HRTO00]; in particular, they show that the QFT for such groups is tractable. Efficient circuits performing the QFT
for symmetric groups have been given by Beals [B97]. More recently, Moore, Rockmore and Russell [MRR03] have shown
that the QFT may be performed efficiently for some other groups.



As a possible extension of the Abelian case, Grigni, Schulman, Vazirani and Vazirani [GSVV01] give
a solution to the case of almost Abelian groups, defined as follows.? For any H < G we denote the
normalizer of H by:

def _
NH)= {geG|gHg ' =H}.
We define M to be the intersection of the normalizers:
def

Mg = () N(H).
H<G

Set a parameter kg:
ka = [G : M¢].

According to [GSVVO01], G is called almost Abelian if kg € exp(O(log'/? n)), for n = log |G|.
We extend the notation and say that any group G is kg-near-Hamiltonian (where kg is the corre-
sponding characteristic of G); in particular, G is (poly-) near-Hamiltonian if kg € poly(n). 3

1.1 Our results

We give an efficient quantum solution to the HSP for the case of near-Hamiltonian groups. Our final
algorithm solves even a more general case, when the hidden subgroup H satisfies: [G : HM¢] € poly(n).
The paper is organized as follows. In Section 3 we construct an algorithm which efficiently solves
the HSP for the case of near-Hamiltonian groups. Then in Section 4 we generalize our approach and
construct an algorithm which efficiently solves the case when [G : HMg] is polynomially bounded.

2 Notation and Assumptions

For the constructions of this paper, all the subgroups are represented by (arbitrary) generating sets.
We assume that under such representation subgroup membership can be efficiently tested for any group
element (this assumption is common in the context of the HSP).*

Let A, B be groups; we will use the notation A < B to express that A is a subgroup of B; by A < B
we will mean that A is normal in B. If S is a subset of the elements of the group B, by (S) we mean
the closure of S in B.

We denote by NHS(A) the “standard” (e.g., see [GSVVO01]) algorithm solving the normal HSP for
the group A. The routine NHS(A) has access to an oracle computing a function f, defined over the
elements of A. If the function assigns values according to a normal hidden subgroup H of A then
NHS(A) produces a generating set for H (by NHS(A) we will mean a generating set for (NHS(A))).
For successful execution of NHS(A) one has to be able to efficiently compute the QFT over A, as well
as to find a generating set for the intersection of the kernels of given representations of A.

For simplicity we assume that when a solution is not found by NHS(A) it returns a “failure” message.
(If the oracle answers according to some non-normal H, the algorithm either finds generators of some
subgroup of H or returns a “failure” message.) In fact, the known algorithm has exponentially low
probability to fail; however, since all our algorithms use NHS(A) as a subroutine at most polynomial

2Their algorithm requires efficient QFT over G, as well as some other conditions which we discuss later.

3A group is called Hamiltonian if it possesses only normal subgroups.

“In particular, Watrous in [WO01] shows that subgroup membership for solvable groups can be efficiently tested on a
quantum computer. On the other hand, membership testing for subgroups of symmetric groups is efficient on a classical
computer (see Luks [L93]).



number of times, our assumption of NHS(A) correctness is not held with only exponentially small
probability.

For a quotient group G/N the elements are the left cosets of N in G. For convenience we will use
the following shorthand notation: for any z C G/N,

de
Ug/n(z) =4 U t
te(x)

(note that Ug/n(z) < G).

3 HSP for Near-Hamiltonian Groups

In this section we solve the HSP for near-Hamiltonian groups (i.e., [G : M¢] € poly(n)).

It is shown in [GSVVO01] that M (as defined above) is a normal subgroup of G. Let us consider the
quotient group G/Mg.

Recall that our goal is to determine H. Since Mg is defined as the intersection of all the normalizers,

H <4 HMg. (1)

At the same time it holds that
HM¢g/Mg < G/Mg,

and if we could determine H Mg /Mg, that would give us a way to find HMg :

HMgz= U ¢
tEHMg/MG

and then to find H, since (1) means that
H = (NHS(HMg)).

We claim that given any z € G/Mjg, it is possible to check whether z € HMg /Mg, as follows. If
T € HMg/MG then
{({z}) < HMg/Mg,

and
HNUg/n;({7}) < Ug/m, ({7}) < HMg,
which follows from (1). An execution of NHS(Ug s ({7})) would return a generating set for
Hy=HNUg/n,({7})-
Moreover, since © = hMq for some h € H, it holds that h € Hy Nz, and therefore
Honz #0.

On the other hand, if x ¢ HM¢ /Mg then NHS(Ug/ar,({x})) would either fail or return a generating
set for

Ho = HNUgn, ({7})-

If the algorithm is successful, then
HoNnzCHNz =0,



and this allows to distinguish the two cases.

Our assumption is |G/Mg¢| € poly(n), therefore we can efficiently check (probabilistically, with ex-
ponentially small probability to err) for any Hy whether or not its intersection with a given coset z
of Mg is empty. Note that the nonempty intersections of a subgroup Hy with cosets of Mg are all of
the same size (since Mg is normal). Therefore, a random element taken from Hy has a probability not
smaller than 1/|G/Mg¢| to belong to the coset z, if HyNz # (. As we assume that membership testing
is efficient for subgroups of G, we can perform the whole test efficiently.

Based on this probabilistic check procedure, it is possible to efficiently construct H Mg /Mg and thus
to solve the HSP. The algorithm HS;(G) for finding H follows in Figure 1.

HS(G)
1. set: T=90
2. for each z € G/Mg do
3 set: U = Ug/n, ({z})
4 if NHS(U) is successful then
5. if (NHS(U)) Nz # 0 then
6 set: T =T U {z}
7. end-for
8. return NHS(Uicrt)

Figure 1: Algorithm HS;(G) for solving the HSP for a near-Hamiltonian group G.

This algorithm uses the conditions in lines 4 and 5 in order to determine whether the given z belongs
to HM¢ /Mg, the correctness of such verification follows from the previous discussion.

3.1 Assumptions

In order to construct HS;(G) we have made some assumptions (similar to those made in [GSVV01]):

1. We assume that for any U = Ug/p, ({2}) (where z € G/Mg), we can efficiently execute NHS(U);
in particular, this means to be able to efficiently perform the corresponding Quantum Fourier
Transform QFT(U) and to find a generating set for the intersection of the kernels of given repre-
sentations of U.

2. We assume that we can efficiently iterate through all x € G/Mg.

The latter assumption may be removed easily; the algorithm given in Section 4 solves a more general
case of the HSP and does not iterate through G/Mg.

4 Finding the Hidden Subgroup H, When [G : H M| € poly(n)

Denote by d an upper bound on [G : HM¢| (which is polynomial in n).

Since [G : HM¢g] = [G/M¢g : HMg/Mg¢], by picking a random element from G/Mg we would get
with probability at least 1/d an element from HM¢/Mq. We know that during the execution of HS; it
holds that T' C G/M¢g and

(T) < HMg/Mg;



as long as (T') # HM¢ /Mg, a random element from G/M¢ comes from (HM¢q /M) \ (T') with proba-
bility at least 1/2d (since [HM¢q /Mg : (T')] > 2).

In other words, as long as (T') # HM¢/Mg, an element uniformly at random chosen from G/Mg
belongs to HM¢g /Mg and, being added to T', extends (7') with probability at least 1/2d. Since every
such extension of (T') at least doubles its size, it may happen at most n times before (T') = HM¢g/Mg.

Applying a Chernoff bound, we see that 4ndIn(1/§) mutually independent uniform random samplings
from G/Mg suffice in order to ensure the success probability of at least 1 — 4. The algorithm (denoted
by HS2(G,d,?)) is given in Figure 2.

HS»(G,d, )

1. set:T=90

2.  set: n=1log|G|

3. repeat 4ndln(1/6) times
4 draw uniformly: z € G/Mg
5. set: U = Ug/n ({7})
6. if NHS(U) is successful then
7 if (NHS(U)) Nz # 0 then
8 set: T =T U{z}
9. end-repeat
0

10.  return NHS(Ug/n,(T))

Figure 2: Algorithm HS2(G,d,d) for solving the HSP with probability at least 1 —¢ when
[G:HMg] <d.

One technical difficulty arises in this case: how can we check for a given Mg’s coset x, whether its
intersection with

Hy = (NHS(U))

is nonempty? (In HS; we used the fact that |G/M¢| € poly(n) in order to perform this check; this
assumption is no longer valid.)

In general, the problem of Coset Intersection is often considered hard. However, in our case z is a
coset of the normal subgroup Mq. Denoting x = aM¢, we establish the following:

HoﬂaM(;7é@ <
dheHy: h€aMg <
JheHy: ale Mgh™! «—
al € MgHy <~

a € HyMg.

The fact that Mg is normal means that HyMg is a subgroup, and therefore we may construct a
generating set for HyMg by taking the union of the (known) generating sets for Hy and for Mg.?

So, the condition check in line 7 of HS» may be performed efficiently and the whole algorithm is
efficient.

°In general a “pointwise product” of two non-normal subgroups is not a subgroup; the union of two generating sets
generates the closure of the subgroups’ product.



4.1 Assumptions

In order to construct HS2(G,d,§) we have made only the assumption that for any U = Ug/n, ({z})
(where z € G/Mg), we can efficiently execute NHS(U).
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