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Abstract

We introduce a new type of cryptographic primitive that wdl eahiding fingerprinting
scheme A (quantum) fingerprinting scheme maps a binary string nften to d (qu)bits, typ-
ically d < n, such that given any string and a fingerprint oft, one can decide with high
accuracy whether = y. It is easy to see that a classical fingerprintcahat guarantees error
< € necessarily reveal3 (log H%) bits of information about. We call a schemkidingif it
revealso(min {n,log 1 }) bits; accordingly, no classical scheme is hiding.

We demonstrate that a hiding fingerprinting scheme existeigquantum world. We construct
two types of hiding fingerprinting schemes, both of them map{0, 1}" to O(log n) qubits and
guarantee one-sided error probability at migst©, for any fixede. The first type uses pure states
and “leaks” at mos©(1) bits; the second kind uses mixed states and “leaks” at inostbits —
here “leakage” is defined as accessible information abaustitingz: contained in its fingerprint.

Both our schemes are computationally efficient. In termsidinly properties, the mixed-
state scheme is optimal, as shown via a generic strategethaictsl / poly(n) bits from any
fingerprinting scheme 0@ (log n) qubits.

In the context of communication complexity our construstia@an be viewed as quantum
protocols for the equality problem in the models of one-wasnmunication and simultaneous
message passing that have communication@g@ig ) and offerhiding guaranteethat cannot
be matched by classical protocols of any cost.

1 Introduction

Cryptography is probably the area that benefits most frofacam classical computers by quantum
ones. Many cryptographic goals that can be achieved chlysionly if unproven computational
assumptions are made have unconditionally secure quamaiinations.

The famousguantum key distributioprotocol by Bennett and Brassard [BB84] is one example
where assuming thafuantum mechanics is valid enough to guarantee unconditional security of
a construction. It is a natural and interesting researchleno to find more examples of quantum
crypto-protocols with unconditional security guaranteBesides pleasing those of us who prefer to
keep their secrets for themselves, such examples mightrebeal light on the nature of differences
between quantum and classical information.

Informally speaking, the possibility to use quantum medatgim order to achieve unconditional
cryptographic security comes from the fact that, in genegalntum states are not “cloneable”
(cf. [WZ82]). Sometimes it can be very challenging to use firoperty alone (not making any com-
putational assumptions) in order to build a cryptographimitive; moreover, some very tempting
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goals are already known to be beyond the reach (cf. [May9%7i§.the quest of quantum cryptogra-
phy to understand which goals can be achieved in a universeenthe laws of quantum mechanics
are valid.

1.1 Fingerprints and their hiding properties

In this paper we give a new example of a quantum crypto-piimthat is not reproducible classically.
We call ithiding fingerprints Noticeably, hiding fingerprints are impossible clas$ycalen modulo
arbitrarily strong consistent assumptions.

In the context of this work the meaning of (classicligerprintsis as follows. Given a binary
string = of lengthn, we want to efficiently produce its “partial description” bybits, typically with
d < n, such that given only the description ofand anyy € {0,1}" one can test, with high
accuracy, whethet = y. This can be achieved classically, for example by using daemzed
mappingz — (s, hs(z)), wherehg is chosen at random from a 2-universal family of hash fumstio
(s identifiesh inside the family).

Quantum fingerprintiiave been introduced by Buhrman, Cleve, Watrous and de W@GWdwO01].
An n bits tod qubits quantum fingerprinting schensea mapping fronm-bit binary strings to density
matrices in2?-dimensional complex Hilbert space, such that wheris the fingerprint ofz then,
given p, andy, one can decide with high confidence whether y. Moreover, the construction
of [BCWdWO01] allowed testing whether = y given only the fingerprintg, andp,,, which was the
most important advantage of the quantum scheme over anipjgoskassical solution.

In this work we view quantum fingerprints as cryptographiengives. LetE be a quantum fin-
gerprinting scheme, we are asking the following questione®p,., how much classical information
aboutxz can be “extracted” from it? Formally, for any quantum measwnt?”, how large can be
the mutual information between a random variakile= z that is uniformly distributed ovef0,1}"
and the outcome af applied top,.? The supremum of that value is callig accessible information
of £. In the special case whefhis a classical scheme, its accessible information equalsititual
information betweernX and a fingerprint of that& produces.

We will say that a fingerprinting schemetislingif its accessible information is(min {n,log 1}),
wheree is the error probability of the scheme. This is the “cryptggric ingredient” that we add to
the otherwise known notion of fingerprintslo classical fingerprinting scheme can be hidiag we
see next.

Let acollision be the event when a fingerprint eleads its holder to the conclusion that % ",
even though the two strings are different. Denotezhythe maximum collision probability, taken
over all pairsx # y. Lete_ be the maximum probability over all’s that the fingerprint holder

declares it # 3", conditional upony = x. Denotes 2 nax {e4,e_}, this is the worst case error
probability of the fingerprinting scheme.

Let £, be a classical scheme that guarantees error at sndset us fixz and its fingerprirt,
and consider the situation when the holder of the fingerpomps through alk™ possible values of
y and makes his best (binary) guesses whethery. Let A contain those,’s where the guess was
“x = y". On the one hand, the expectation|df is at most2"” — 1) + 1; on the other hand; € A
with probability at least — ¢_. Therefore, at least
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bits are leaked aboutby its fingerprint in€.;,. Accordingly,&., is not hiding.

The same reasoning does not apply to the cageafitum fingerprinting schemeshere a binary
stringz € {0,1}" is mapped to a quantum statg, such that given any € {0, 1}" one can measure
pz, in order to decide with high accuracy whethet y. The argument fails because to make a guess
whetherz = y one may be required to perform a quantum measurement, ahdhsegsurements
can, in general, change the state of a quantum fingerprim irreversible way. Alternatively, one
can say that the “looping trick” cannot be used becaysis not necessarily cloneable.

From the practical point of view, hiding fingerprints sha#l bsed when there is a need to allow
a “semi-trusted” agent to recognize a string, but not toeskdth others the ability to recognize the
target. Putting it differently, hiding fingerprints allow tssue an “authorization” to perform certain
pattern recognition limited number of times.

1.2 Our results

We construct new quantum fingerprinting schemes that higenration about: in a way that cannot
be achieved classically. For any constanive construct two different schemes, both mapping
{0,1}" to O(logn) qubits and guaranteeing error probability at mbgt® whenz # y and no
error whenz = y. The first scheme uses pure states and guarantees leakihgnoseO(1) bits;
the second scheme uses mixed states and guarantees leBitngast1/n° bits. As follows from
the previous argument, these results introduce a new typgypfographic primitives that cannot be
achieved classically.

Similarly to [BCWdWO0L1], our pure-state scheme additiopalllows testing whethex = y,
given only the fingerprints of andy.

Our schemes are computationally efficient. Constructibesiselves are probabilistic: A descrip-
tion of a scheme includes polynomial number of random bitd,wsing uniformly chosen bits results
in a good construction with all but exponentially small pmbibity. This random string is part of the
definition of the scheme; in particular, it does not have tkégt in secret (e.g., the same random
string may be used by everybody without compromising sgguiThis is conceptually different from
the role of randomness in every nontrivial classical fingatmg scheme that inevitably depends on
the assumption that the random seed used to build a fingerpmot known to the adversary who
chooses the stringsandy.

The “hiding guarantees” of our mixed-state schemes arenapti To demonstrate that, we con-
struct a generic strategy for extracting information framitaary quantum fingerprints. This “no-go”
result remains valid for several weaker notions of fingetprg schemes than what we construct (e.g.,
for schemes with two-sided error; see Section 4 for more).

More formally, our main results are (cf. Theorems 3.13 ai: 4.

Theorem 1.1. For any constant there exist quantum fingerprinting schemes that

e mapn-bit strings to mixed states 6f(log n) qubits and whose error probability and accessible
information are both bounded hy/'n¢;

e mapn-bit strings to pure states @?(log n) qubits, whose error probability is bounded byn®
and accessible information @8(1).

20ur optimality argument can probably be tuned to show thatpome-state construction is also optimal, we have not
pursued that direction.



The schemes are computationally efficient and have oné-sidler withe_ = 0 (answers % # y”
are always true).

Any quantum fingerprinting scheme that ugesubits and guarantees error beloly2 — Q(1)
has accessible informaticr ©(4).

1.2.1 Our approach

Similarly to [BCWdWO01], we base our fingerprinting schemesatassical error-correcting codes
and use their minimal distance guarantees to argue coestiiowever, for our schemes to be also
hiding we need to require more from the underlying classical codanély, we want the codewords
to be distributed “almost uniformly” in certain geometticense (cf. Lemma 3.9). To guarantee
this we definequasi-linear codeswhich can be viewed as a generalization of random lineaesod
(cf. Section 3.1).

It is very likely that some explicit classical code might bdie desired properties; even if that is
the case, we find it more convenient to use polynomial amofirdramlomness in order to keep our
construction simplet.

1.2.2 Communication complexity perspective

The notion of quantum fingerprints has been introduced inVig@/01] mainly in the context of
communication complexityrhe main conceptual contribution of the present work iséanquantum
fingerprints as a cryptographic primitive. Nevertheless,results can be interpreted in the language
of communication complexity, as follows.

The most common communication complexity scenario is theveimere two players, Alice and
Bob, receive two parts of input; andy, respectively. The players communicate in order to compute
the value of certain functiorf(z,y), trying to minimize the amount of communication. Various
models exist that define the constraints that Alice and Bale @ obey when they compufz, v).
Relevant to us are the following two:

e One-way communicatiois a model where Alice sends a single message to Bob, who has to
give an answer based on that message and his input

e Simultaneous Message Passing (SMPR) model involving a third participan# referee Here
both Alice and Bob send one message each to the referee, \sho e an answer based on
the received messagés.

In both the cases the players are computationally unliméaad thecostof a communication protocol
equals the total number of sent bits. Quantum analoguesahtidels can be defined, where players
send qubits and locally perform arbitrary unitary transfations.

One of the most basic communication problems correspontie tquality predicate, where the
goal of the players is to decide whether= y. In general, fingerprinting schemes can be naturally
viewed as solutions to the equality problem, as follows.

3Itis natural to view the error-correcting properties ofssigal codes as a sort of “pseudorandomness”. Then in arder t
guarantee hiding properties of our schemes we require ttheriying classical code to be pseudorandom in a much stronge
sense than just having large minimum distance, as captardteistatement of Lemma 3.9. The question whether those
pseudorandom properties can be granted by an expliciicéddgnde might be of independent interest.

“We consider the version of SMP without shared randomness.



In the model of SMP Alice and Bob both send the fingerprints of, respectivelgndy to the
referee. Then the referee performs the swap test that whwiya return “equal” ifz = y and would
have positive constant probability of returning “not edualz # y. Thus, he can answer whether
x = y with one-sided constant error.

This idea was used in [BCWdWO01] to get a quantum protocol st €glog n), which implied
exponential separation between the quantum and the @dhssisions of the SMP model (it had
been shown by Newman and Szegedy [NS96] that the classicedlerity isQ2(y/n)). Our pure-state
scheme can be used instead, to get a quantum protocol oasico$t. The benefit would be that
hiding properties of the scheme would make the protocolrse@uthe sense that an “eavesdropper”
can learnat mostO(1) bits of information about the inputz,y). Prior to our work this was not
known to be possible (unless shared randomness was aeailahich turned the equality problem
into trivial even classically). Note that the argument ofS6] can be modified to show that any
classical SMP protocol (even a very long one) for equalibkeat leasf2(/n) bits about the input.

In the model of one-way communicatioour mixed-state hiding fingerprinting scheme translates
trivially to a protocol of cosO (log n) that solves the equality problem with error at mbspoly and
leaks at most / poly bits about the input. On the other hand, our classical impiisg argument
implies that any classical protocol that solves the equalibblem with errors necessarily leaks
Q(log(1/¢)) bits about the input, and this is true for protocols of anyt.cos

1.2.3 Subsequent work

Soon after a preprint of this work had been circulated, Falayden and Sen [FHS11] came up with
an alternate construction of a mixed-state hiding fingatjpg scheme that has both advantages and
disadvantages in comparison to our constructions.

2 Preliminaries and more

Here we state only those technical lemmas that are relevattid first part of the paper (construction
and analysis of the new fingerprinting schemes). Lemmastitidie used only in the second part of
the paper (showing optimality of our schemes) will be staseslection 4.1.

We write exp(z) andsg(x) to denotee” and (—1)*, respectively. We writéog to denote the
natural logarithm andbg,, for the logarithm to the basz We denote = /—1 (to be distinguished
from the variable).

We letN = {1,2,...,} and[i] = {1,2,...,:7}. We often implicitly assume the natural corre-
spondence between the element$26f and those of0,1}". For any finite setd we letl/4 denote
the uniform probability distribution over the elementsAf

We useo to denote concatenation of strings. For any4dendz € A™ we will write x; to address

thes’th position ofz; more generallyy;, ;. def xj 0---omxy, for (iy,... i) € [n]*. For two strings

x andy of the same length, we will lety (z, y) def {i|z; # y;}| stand for the Hamming distance.
For D € N, we write I to denote the identity operator ov€”’. For aD x D matrix X,

we denote the trace norm of by || X||; = tr (\/W) and the operator norm of by || X| =

®The construction in [FHS11] has a stronger guarantee abakietl information than would be possible via accessible
information, but requires mixed states, as opposed to oilir fmixed- and pure-state constructions. The proof tectaiqu
of [FHS11] does not seem to apply to pure-state schemeshvanérequired for certain applications (e.g., in the cantex
of SMP communication).



max {|Xv| ||v] = 1}.

We will mostly use Dirac’s “bra-ket” notation for pure quam states, but sometimes we will
find it convenient to switch to the standard notation (e.gthlv and|v) will be used to denote the
same unit vector in a Hilbert space). We will be addressingethistates via their density matrices,
and forD € N denote byDen[D] the subset o< corresponding to density matrices.

2.1 Random variables and their concentration

The Hoeffding bound will be one of our basic tools, we will utsa the following form (Theorem 2.5
in [McD98])):

Lemma 2.1. (Hoeffding bound)Let the random variables(1, ..., X,, be mutually independent,
satisfyingE [X]; = p; anda; < X; < b; for some constants; andb; for all i. Then for anyt > 0,

Pr [‘ZXi—Zui Zt} < 2exp <Z(%—7§2&z)2>

The following lemma can be viewed as a generalization of tbeftding bound to the case of
random variables taking values@?®

Lemma 2.2. Let the random variables(y, .. ., X, take values inC and be mutually independent,
satisfyingE [X], = 0 and|X;| < ¢; for some constants; for all . Then for anyt > 0,

—$2
Pr X;| >t <dexp| —— | .
> =] p<4zwf>
Proof. By the Hoeffding bound (Lemma 2.1), for amy> 0

PrfR(Yx) 2], Pefa (1) 2] <20 (= ).

As|>" X;| > timplies that eitheR (> X;) > /t2/20r (> X;) > /t2/2, the result follows. W

The next statement will be very convenient for proving uppaunds on expected values of ran-
dom variables.

Lemma 2.3. Let f be a monotone non-decreasing function taking non-negataes, and let”
andY be random variables satisfyir@r {ff > y] > Pr [Y > y] for everyy such thatf(y) > 0. If

B [£(7)] < scthenk [£()] = BIf(Y)]

Proof. Let Z &' £(v') andZ &' £(¥). ThenZ > 0 and for every: > 0 it holds that
Pr [22 z} >Pr(Z > z].

Therefore,

E[Z]:/OOOPI'[Zzz]dzg/OOOPr [ZZz}dz:E[Z],

as required. |

5We viewC as a vector space isometriclk. For the general case of random variables taking values Euatidean
space there are known “dimension-independent” bounds. etluse one of those, instead we state Lemma 2.2 whose
proof is “dimension-dependent” but the final expression @garconvenient for our purposes.



Our next goal is to prove yet another generalization of theffdang bound. We will use a
modification of the standard method for proving such boundspely the “Bernstein’s trick”. The
next lemma is the main technical ingredient for that.

Lemma 2.4. LetY be arandom variable satisfyir@ [Y] = 0,Y > aandPr [Y > y| < fexp(—a(y—
a)) for all y > a and some constants < 0, 5 > 1 anda > 0. Then for everyx € (0,«/2] and
ce(0,2],

(%),

2
(g)"
202 h

E exp(hY)] < ¢ + exp —

<exp|c+

Proof. Denote byFE; the event thatY < b), wereb > a + % is a constant, and lef, be the
Boolean indicator of7;,. Then

E [exp(hY)] = E[I,, - exp(hY)] + E[(1 — L) - exp(hY)]. @y
LetY; be arandom variable distributed EsnoduloE;,. ThenE (1, - exp(hY)] < E [exp(hY7)],

E[Y1] < E[Y] =0,anda < Y; < b. A standard result from the theory of concentration bounds
(e.g., see Lemma 2.6 in [McD98]) implies that

E [exp(hY7)] < exp <@h2> .

Let Y5> be a random variable satisfyif@r [Y; > y] = Bexp(—a(y — a)) for all y > b. Then
Lemma 2.3 implies that

E[(1— 1) - exp(hY)] < BI(1 - ) exp(hYs)] = /b " exp(hy) - Baexp(—aly — a)) dy

< fa /boo exp((h — a)(y —a)) dy < Ba /:O exp(—%(y —a))dy.

From (1),
—a)? 0 «
Bloxp()] < exp (PS50 ) 4 0 [ expl- - )y
—a 2 «
= exp <(Z)T)h2> +20 exp(—E(b —a)).

This holds for every > a + 22 therefore

/2

E [exp(hY)] < min {eXp (%fﬂ) + 24 exp(—%b')) ’ V> }

Letc € (0,2] be any, and choogé = 2 log 22. Then23 exp(— %) = c and

)

202

12

b
E [exp(hY)] < exp <§h2> +c=exp p? | +e,



which is the first inequality stated in the lemma. Finally,

2 2 2
<log %) <log %) <log %)
C+€Xp Thz S (1+C)eXp Thz Sexp c—+ Thz s
aslog(l+c¢) < cfore > 0. [ |

We are ready to prove a new concentration bound that can heedias a “less demanding”
analogue of the Hoeffding bound.

Theorem 2.5. Let the random variableX, . .., X,, be mutually independent, satisfyilg X ], = u
X; > aandPr [X; > z] < fexp(—a(x — a)) for all x > a, i € [n] and some constants < 0,

a>0andg > 1. LetS d:dZX,- for i € [n]. Then for every € (0, -L],
nt?a?

— N2

244 (log )

Proof. By Lemma 2.4, for any: € (0, «/2] andc € (0, 2]

1
r[—Snz,u—Ft} <exp | —
n

()

E [exp (h(Sp — np)) HE exp (M(X; — p))] <exp | nc+ 57

By Markov’s inequality,

n (log %)2}12 o

Pr[S, > nu+ nt] < exp(—hnt) E [exp (h(S, — nu))] < exp | nc+ 507

nt

Let 5 )
def t“o def ta

0= —"""
122 <log ﬁ)

Fromta < 1 , it holds that0 < ¢y < 1 and0 < hy < «/2. Thus we may substitute = hy and
¢ = ¢y, still satlsfylng the requirements of Lemma 2.4. So,

nt2a?
2 (1og 22’
Oga

2
It can be seehthatta < 1 ands > 1imply ¢y < t2a2/4 (log %) , and therefore

1
r[—Snz,u—l—t] <exp | ney —
n

nt2a?

1 nco
r| =S, >p+t Sexp(—T)zeXp I ——Y
n 244 (log 2 )

Letz £t and f(z, 8) oef 00/% , then modulaz € (0, 7] and > 1 itis always true thafj—g < 0. Let
4(log ==
)

def

f'(x) € f(a,1), then > 0 and thereforef (z, 5) < f(%,1) <

8



as required. |

2.2 e-nets for pure states

In our proof we will need a “continuous analogue” of the unmund: Namely, for everyp € N
we want to have some sufficiently lar@é such that if certain everft(v) holds with probability at
mosts for any fixed vectow € CP, then with probability at least — 7'6 there is naw’ € C” such
that F(v') holds. Of course, in general that is not possible for infidibenains likeC”; however,
the situation can be helped if there exists a “relaxed” versif £ that we denote by.’, such that if
E(v) holds andd(v, w) < e, whered(-,-) is a measure of distance between vector€thande is
sufficiently small, ther®’ (w) must also hold.

Fix ¢ and letW, = {wy,...,wr} be afinite set of vectors froi”, such that for every ¢ C”
there exists some; € W, satisfyingd(v, w;) < e (such sets are commonly calleehety. Assume
that for any fixedv € CP the probability that”’ (v) holds is at mosé. Then, by the union bound, the
probability thatE’(w) holds for somew € W. is at mostT’s. Now, if F(v) holds for somey € CP?,
then E'(w) holds for at least one € ., as the set contains an element at distance at mmiosin
v. Therefore, the probability tha(v) holds for somes € CP is at mostT's.

The notion of distance between vectors can be formalizedainyndifferent ways, depending on
the nature off andE’. The following definition serves our future goals.

Definition 1. Fore > 0, we call a setVf C CP of unit vectors are-net for the set of pure states
in CP with respect to the trace distandggfor every unit vectortu) € CP there exist$v) € M, such
that|[lu)u| — [vXvl]l, <e.

The following lemma is a slight improvement over Lemma [If4ldLSWO04] and Lemma 4 of
[BHL T05], where the upper bound on the size of theet was(5/<)?".

Lemma 2.6. For every0 < ¢ < 2, there exists am-net for the set of pure states @" with respect
to the trace distance whose size is at mdgt )P,

The proof of the lemma is given in the appendix.

3 New quantum fingerprinting schemes and their properties

We will use the standard way to construct a (pure-state) tguafingerprinting scheme based on a
classical error-correcting code. Namely, given a cétfgom n to 2¢ bits, we will define, for every

a € {0,1}", its fingerprint ond qubits via|u,) = 2(1% > icppa) 58(bi) [i), whereb = (by, ..., bya) =
C(a).

It would be very convenient for us to use a purely random adpleowever we cannot afford that
as we want our construction to be computationally efficiént.the other hand, we can get an efficient
construction by using a random line@r however it turns out that such code would not be “random
enough” for our needs (we need more randomness to guardrgea scheme is hiding). So, we
define a new type of classical codes that still admit efficeamtoding but contain more randomness
than random linear codés.

8Note that in the context of quantum fingerprinting there isneed to ever decode the underlying classical code, in
particular using a random linear code would be computalipri@asible, despite the fact that no efficient decoding is
known for such codes.



3.1 Random quasi-linear codes

In the following definition we us@? to denote the codewords’ length in order to make the notation
more consistent throughout the paper.

One of the core ingredients of our constructions willch&si-linear codeshat can be viewed,
informally, as the bit-wise xor of aarbitrary codeapplied to the first: bits of an input with dinear
codeapplied to the lastn — r) bits, for some parameter

Definition 2. Letr,n,d € N, r < n < 2% An (n,r,2%)-quasi-linear cod€ is represented by an
24-tuple of (n — r)-bit vectors(cy, . . . , coa) and &"-tuple of2?-bit vectors(dy, . .. , dyr). For every

a € {0,1}" we denote:(! d:e"ah,mﬂ«, a? d:e"a|r+1,m7n, and define

C(a) Cﬁfdau) @ <<Ci,a(2)>)2d )

=1
whered denotes bit-wiseor.

For the rest of the paper we will write!) andz(®) to address, respectively|; . andz|. 41 .,
whenn, r andx € {0,1}" are clear from the context.

Obviously,C(a) can be computed efficiently whene O(logn) andd € O(log(n)). We call a
quasi-linear code (uniformly) random if bothy, . . ., coa) @and(dy, . . . , dor) are selected uniformly at
random. We will denote this distribution Y% and writeC' ~ U¢ to say thaiC' is chosen uniformly
at random (the values of the parameters andd will be clear from the context). Note that efficient
description of such code is possible as long @O (logn) andd € O(log(n)).

As random objects, quasi-linear codes have higher enttogiylinear ones, and this will be one
of the main reasons for using them in our constructions: teoto guarantee hiding properties of
our schemes we will need “more randomness” than linear cool@sin.

Denoteye &' max {|di (C(a1), C(az)) — 29-!| | a1 # az}. The following property of ran-
dom quasi-linear codes can be viewed as a generalizatidre ofdtion of minimal distance.

Lemma 3.1. For everyt > 0, Proy,. [yo > t] < 2exp (n +7r— 22%2)
Proof. Define A¢ d:ef {C’(al) D C(ag) | a] # ag}. Observe thatl¢ = B; ® By U By U By, where
@ is element-wiseB; = {d4, ® dq, | a1,a2 € {0,1}" ;a1 # ao} and

By = {({cixa1 ® ag));=] | ar,a2 € {0,1}" " sa1 # az} = {({ci,a))i{ | 0#£ae{0,1}"7"}.

Direct counting reveals thatlo| < 2"+,
It is easy to see that for every # aq the stringC(a;) & C(az) is chosen uniformly at random
from {0, 1}2d whenC' ~ Uq. By the Hoeffding bound (Lemma 2.1), for every 0

—2t?
_9d-1| 5 4| < =
CEEC HdH (C(ay1),C(ag)) —2 ‘ > t} < 2exp < 5d ) ,
and the union bound implies the statement of the lemma. |

10



3.2 Pure-state scheme

For the rest of the paper we assume that O(log n) and that- € O(logn).
First, we define and analyze our fingerprinting scheme thes psire states. Afterwords (Sec-
tion 3.3) we will consider a mixed-state scheme that can e&etd as a generalization.

Definition 3. LetC' be an(n, r, 2)-quasi-linear code, we denote 8§,
scheme. Every € {0,1}" is mapped to

ua) = a7 O se(bi)li)
]

ie[24

the following fingerprinting

whereb = (b1, ..., bya) = C(a). We call|u,) thefingerprintof a.

Given |u,,) and anyas € {0,1}", in order to check whether; = ay one should measure
luq,) W.r.t. the projective measuremefilP,,, Iya — P, }, whereP,, = |uq,Xuq,|. If the outcome
corresponds t@,, then ‘a; = ay” shall be returned, otherwise the guess shoulddae# as”.

Note that the transformation — |u,) can be computed efficiently as long é%a) is easy
to compute for every:;, and that the required projective measurement can be petbefficiently
becausel € O(log(n)) and|u,,) is known.

It can be seen that our construction closely resembles thig@NdWO01], but uses random
qguasi-linear codes. A random linear code was enough to gatichfingerprinting scheme; however,
it turned out that in order to argue hiding properties we Beesbmething that could be viewed as a
“more global uniformity” than just the minimal distance w@é@ment, as formalized in the statement
of Lemma 3.9. We had to put more entropy into the definitionwsfades in order to be able to show
that the desired property is likely to hold.

Intuitively, the fingerprints corresponding to differemegmages should be nearly orthogonal.
This is formalized by the following lemma.

Lemma 3.2. For {|u,) | a € {0,1}"} defined over a randomly chosém, r, 2¢)-quasi-linear code”,
for anyé > 0 it holds thatmax {|(u,, [uq,)| | a1 # a2} < § with probability at leastl — 2 exp(n +
r— 522d_1).

Proof.
1 dyr (b1, b 2
ot = 0| 3 s o+ ) = PG < 2

i€[29]
whereb; = C(a;) andby = C'(az2). By Lemma 3.1,

2v¢ 20d—1

EACE S _

01:50[261 _5]<2exp<n+r -2 >,

as required. |

Now let us see that¢ s likely to be a valid fingerprinting scheme.

pure

Lemma 3.3. For £, defined over a randomly chosén, r, 2¢)-quasi-linear codeC, it holds that
e_ = 0 always and that < & with probability at leastl — 2exp (n +r — 2¢715), for any§ > 0.
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Proof. Clearly, whena; = a5 the answer is always correct, i.e., = 0. When, on the other hand,
a1 # ay the probability of the wrong answer j§u,, |u,,)|*, and therefore by Lemma 3.2, < §
with probability at least — 2 exp(n 4 r — 2¢714), as required. [ |

Our next goal is to show thétpm,e defined over a randomly chosen quasi-linear a@ds hiding
with high probability. This will be done in stages

Let us denote for every € {0,1}": pa = |ua>(ua| o,
def

o(a) = (0] gl [v).

We will see later (Lemma 3.8) that for almost all choices(ofwe have)” o/, = I,s, and
thereforeu, (a) is a probability distribution oves € {0,1}" for every fixed unit vector. Intuitively,
this distribution corresponds to the “view abatitof a holder ofp, who has measured it and got the
outcomejv)v|. Therefore, if originallya was chosen uniformly then some sort of distance between
pw @ndUo 1y~ should tell us how much has been learnt aboas a result of the measurement.

The following technical statement is the key part of our uggmind on the accessible information
for £¢

pure*

1 %t od—n, and for arbitraryy € C2*,

Lemma 3.4. Letv € C2” be a unit vector and € {0, 1}" be fixed, and assume thgf,,, is defined
over an(n, r, 2¢)-quasi-linear code”, then

23

B [max {0, puo(ao) log (2" pw(ao))}] < o

In the view of the intuition expressed above, it shouldn’sbeprising that we want to prove this
kind of statement. Indeed, Ji, is a probability distribution ther}_, 1, (a)log (2" 1, (ao)) is the
relative entropy betweem, andifyg ;;».

Proof. Let
we & Z sg <<a(2), Ci> ® dau),-) vi|
i€[24]

then,uv(aO) =

].ZI‘ |:Nv(a0) > 2i:| Prw® > {] = - 7g2d~z,{{ . HZ Bivi| > \/7} < 4exp< 4 > (2)

where the inequality follows from Lemma 2.2 and the fact thgt = 1.
Define g(x) ® max {0,z log(z)} and leti be a random variable whose distribution satisfies
Pr[ji > t] = dexp(—t/4) £ f(t) for t > 8log 2. Then

< 5 B 192" (a0))] < o Blo()

where the first inequality follows from the definition gf-) and the second one is by Lemma 2.3
(whose requirements are implied by (2) asisldefinition).

E [max {0, 1, (ao) log (2" py(ao)) ]

Finally,
_ > df o0
Eg()] = xlog(z) | ——— | dx = exp(log x + loglog x — x/4) dx < 23,
8log 2 dx 8log 2
as required. |
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At this point we suspend our analysis&}fm and turn to a mixed-state schei@ig. . Analysis
of £¢

Core Will be resumed and merged with that&f,, in Section 3.4.

3.3 Mixed-state scheme

To define our mixed-state scheme we introduce another pé&ame N U {0}, such that” is the
rank of every fingerprint (i.e5 = 0 corresponds to a pure-state scheme). It will always be asgum
often implicitly, thatd > k andr > k (the second assumption is probably less obvious, we need it
for technical reasons). Recall thatlenotes concatenation of strings.

Definition 4. Let C' be an(n + k,r, 2d)—quasi—linear code, wheié > k andr > k. We denote by
£C. the following fingerprinting scheme. For every= {0, 1}"+k we let

1 .
|uz) = 242 Z sg(bi) |4) ,

i€[24]

whereb = (by,...,bya) = C(x). Everya € {0,1}" is mapped to

1
Pa = 2_k Z |uioa><uioa| .
ie{0,1}"
We callp, thefingerprintof a.
Givenp,, and anyay € {0,1}", in order to check whether; = ay one should measure,,
w.r.t. the POVM measuremefF,,, I,. — P,,}, whereP,, is the projection to the subspaceRﬁd

that is spanned bi(uio@ ‘ i € {0, 1}’“}. If the outcome corresponds i, then ‘a; = ay” shall be
returned, otherwise the guess should g+ a”.

Note that whert = 0 the above definition givespcm, and the notions ofu,) andp, coincide

with those considered in Section 3.2. To construgtthe holder ofa tosses ~ U{OJ};C, produces
|uioa Xuioa| @and then erasess The measurementP,, I,« — P, } can also be performed efficiently (as
any explicit measurement @n(log n) qubits), the simplest way to do so is to represent the measure
ment as a projection 2 (recall thatd € O(log(n))) and perform that, using an auxiliary space
of dimension2¢.
To see that‘%x is a valid fingerprinting scheme with high probability, wellwise Lemma 3.2

together with the following technical lemma.

Lemma 3.5. For 0 < i < 2", let M be any mapping from antuple of unit vectors iR2 to a
unit vector inR2". Then for anys € {0,1}"", § > 0, and {|u,) | @ € {0,1}"} defined over a
randomly choserfn, r,2¢)-quasi-linear codeC, it holds that|(M (ugos, - - - , U(i—1)0s)|Uies)| < 0
with probability at leastl — 2 exp(—§22¢1).

Proof. Note that by the construction of quasi-linear codes,;) is a uniformly random element of

{27925, By |k) | Br, ..., Boa € {—1,1}}, even if conditioned upon def M (tgos, - - -, U(i—1)os)-
So,

fér H<M(u003, . ,u(i_l)os)|uios>‘ < 5] = Iér kz[;d} Bev| < 2925 >1— 2eXp(_2d—152)’
€

where the inequality follows from the Hoeffding bound (Leméh1) and the fact thgw|| = 1. H
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Let us see thaf ¢, is likely to be a valid fingerprinting scheme.

miz

Lemma 3.6. For £, defined over a randomly chosén + k, r, 2¢)-quasi-linear codeC, it holds
thate _ = 0 with certainty and:, < § with probability higher thanl — 3 exp(n+7 -+ k — §22¢-4-T7),
foranyd > 0.

Proof. Clearly, wheru; = a5 the answer is always correct, i.e., = 0.

When, on the other hand,; # a2, the probability of the wrong answer is(F,,p,, ). Let
Py, E Y 0.1)* tiasUfag,: We Will see that, with high probability oveF ~ U, bothtr(P,, pa, )
and|tr((Py, — P,,)pa,)| are small.

tr (P(;,Qpal) = Z tr (uioazu;‘kompal) é Qk(g%? (3)
ie{0,1}*

wheredq def max{‘u:’;lum| | T, # wg}.

Observe that’, = .. (0,1}+ Viv;, Where; 's are “orthonormalized;., 's”, as follows

/ def . /def * . def / /
Vg = V0 = Ugoay; Vi = Wioay — E ViV Ujoay; Vi = Ui/ ‘fuz|

7<i
def
LetA; = v; — Ujoas » then
i—1
Al < [utioay —vi| + [vi =] < 22 |V thioas | < kafx{‘v;um?‘}’
=0

and ) )
|tr((Pa2 - Pag)/’al)‘ < HPa2 - PaQH
< Z H (ui°a2 + Ai)(u;‘koaz + A;k) - (uioazu:oag) H
ie{0,1}*

< 3.9k A} < 3. 2% “Uioas | L.
<3 2 (3 3.7 {ejuea)

(4)

Now we apply Lemma 3.5, wher®! is the mapping that, according to our orthonormalization
process, map@ukm)izo tov;. For fixedas and;j < ¢, the lemma guarantees that22~ is

less thany /2 with probability at least — 2 exp(—3§22¢-%*=3 /9). By the union bound, the right-hand
side of (4) is less than/2 with probability at leastt — 22% exp(—4§22¢-4-3/9) > 1 — exp(2k —
§22¢-4=7) " Another application of the union bound implies that the sdruolds for everyu, with
probability higher thar — exp(n + 2k — §22¢-4%=T7),

By Lemma 3.2, it holds that the right-hand side of (3) is lds=mnty/2 (i.e., 2’%5% < 6/2) with
probability at least — 2 exp(n +r + k — §2¢7%). Thereforetr(P,, pa, ) < 0 for everya; # as with
probability higher tharl — 3exp(n + r + k — §22¢=%%=7), as required. [ |

*
Uj Ujoas

Our next step is a statement analogous to Lemma 3.4 that applgt to£ €, . As before, we let
o, = 27" p, and i, (a) = (v] pl |v) for arbitraryv € C2”.
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Lemma 3.7. Letv € C2” be a unit vector and & {0,1}" be fixed, and assume théf’, is defined
over an(n + k, r, 2¢)-quasi-linear code”, where2* € w(logn) andd € O(log(n)). Then

n 1
B, {0, o) o (o)) < 0o )
for everyA > 0.

We will follow in the footsteps of our proof of Lemma 3.4, hovee we will have to use somewhat
“heavier” concentration tools.

Proof. For everyj € {0,1}, let
2
u o def
wv(]) = Z 59 (<$(2)>Ci> @dm(l)i) Uil
i€[24]

wherez = j o a. Thenu,(ag) = ﬁ Zje{o’l}k wio (7).
For everyy,

E [w()]= E
cle " BrBpa~ Uy |45

Zﬁiﬁj%‘%‘] = Jlof* =1

andE [u,(ap)] = 1/2™. Moreover, as we've seen in the proof of Lemma 3.4, from Ler@2aand
from ||v|| = 1 it follows that that for every > 0, Pr [wi0(j) > t] < 4exp(—t/4). Therefore, by
Theorem 2.5 it holds that

1+t —2k¢2 def
Pr [Mv(ao) 2 —n ] < exp <—2> = f(t)
¢ 2 3904 (log 18)
for 0 < t < 4/7. Besides, it holds thdt < wao(j) < 2%

As before, we defing(z) % max {0,z log(z)} and leti be a new random variable that will re-
placep, (ap) in further analysis. We define the distributionjoby demanding thaPr [z > 1+ ¢] =
f(t)for0 <t < 4/7andPr [ = 2?] = f(4/7). The requirements of Lemma 2.3 are satisfied by
g(+), p andfi, and therefore

B [maax {0, o (a0) log (2" (00))}] < 5 Blo(i)

By the definition,
4)7
E[g(&)] :/0 (1+ z)log(1 + z) (—%) dx 4 2% - f(4)7).

Clearly, f(4/7) € exp (—(2%)) and(1 +z) log(1+ ) (—%) < 2Fg? f (). For every\ > 0 there
existsA, > 0, such thatf (z) < exp (—A4,2¥2*™) for 0 < = < 4/7. So,

E[9(n)] < /0°° 2" 27 exp <—A>\2kx2+)‘> dz + exp (d + logd — Q<2k>>

2k 3
: (2+ X) (Ax28) 7% N <2+A> +exp(d = Q(zk))’
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wherel'(a) def o 2! exp(—x) d is the Gamma-function. Therefore 2F € w(log n) and every

A >0,
1
Elg(@)] <O\ —7—F |
l9(n)] < (2;@(24))
as required. |

3.4 Further security analysis of€¢ and £¢

pure mix

Based on Lemmas 3.4 and 3.7, we continue our analysﬁ;ﬁpj and&¢,.. From this point on and

unless stated otherwise, we view the former as a specialotdlse latter, corresponding to= 0.
First, as promised earlier, we prove that for almost all gliasar codes”, we havey , pl, = I,a.

Lemma 3.8. If C is an (n + k,r,2%)-quasi-linear code such that the vectars ..., c,. are all
distinct, theny__ p, = L. In particular, if an(n + k, r, 2¢)-quasi-linear code” is chosen uniformly
at random, thery_,, pl, = I, with probability at leastl — 22d+r—n-k,

Proof. If ¢, ..., cya are all distinct, then
D=2 Y ua)ug|
a ze{0,1}"+k

= 27" NN "sg ((dyw )i @ (dym))g) | D seler @ ¢, @) | [id] = La,

(1) 4, z(2)

wherez( € {0,1}", 2® € {0,1}"*", andi, j € [24].
Now let C' ~ Uc. For any fixed distinct and j, ¢; equalsc; with probability or—n—k_ By the
union bound, the probability that al]'s are distinct is at least

2d
1— <2> . 2r—n—k < 22d+r—n—k7

as desired. [ |

Next we will argue thad . o 1y~ 1v(a) log (2" 11v(a)) is unlikely to be large wheld' ~ Uc.
Technically, the following statement is the reason why wedhall the randomness present in quasi-
linear codes in order to argue hiding properties of our s@sem

Lemma 3.9. Letv € C2’ be a unit vector and assume thatis a uniformly random(n + k,r,2%)-
guasi-linear code, then for evefy> 0

2
Iér Z po(a)log (2" py(a)) > o + 0| < exp (n — or—k—2d (é) ) :

ae{0,1}"

whereq < 23, anday, € O(1/281/2=Y) for 2% € w(logn) and anyA > 0.
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Proof. We will use concentration bounds in conjunction with the mgaarantees of Lemmas 3.4
and 3.7.
Define new random variables

ji(a) & max {0, 1, () log (2"pu(a)) },

then0 < ji(a) < 2%7"d. From Lemmas 3.4 and 3.7 we know thgt [ji(a)] < 23/2" for k = 0 and
every\ > 0, andEc [ji(a)] € O(1/27++1/2=) for 28 € w(logn).
We want to bound the probability that , fi(a) > 6. Lett gt k, assume w.l.g. that> 0 and

define
4= {jei | je 0.1}

for everyi € {0,1}""". Observe that for every, € {0,1}" the random value{c*(a))aeAi0 are

distributed identically and independently whéh ~ U, and the same is true f rﬂ(a)>a€Ai0-
Therefore the Hoeffding bound (Lemma 2.1) can be appliesijitiag in

~ 2",&0 _|_5 _2t+152
Z fala) > ot ] < 2exp (72%(12 ,

I[’]r
(lGAiO

wherepy def Ec [1(a)]. Therefore, from the union bound:

2
Z fla) > ag + ({I < 2" lexp (—2’"_k_2d <g> ) ,

ae{0,1}"

Pr
U

as required. |

As we discussed before, } .o 1y po(a)log (271, (a)) is small for a fixedv, which means
that, informally, a holder op, who has measured it and got the outcomév| has not learnt much
abouta.

Our next step will be to argue that, with high probabilly, ¢ 1 13~ t(a) log (2" 1y (a)) is small

for every pure stat@) € c2’, According to the same intuition (which will be formalizedos), that
would imply that no outcome of a measuremenpggxists that can “tell much about.
First we claim that the functiofv)v| — 3= (g 1y fv(a)log (2" 1y (a)) has a good continuity

property (called the “almost Lipschitz continuity”) in @dto discretize “every pure stafe) ¢ c2
in the above argument.

Lemma 3.10. LetC be an(n + k, r, 24)-quasi-linear code, such that, pl, = I,.. Let0 < ¢ < 2/e
and|v) and|w) be unit vectors irC2" such that]||vXv| — [wXw|||; < e. Then,

2
o(a)l wla)l < 29 1glog =
Zu ) log(2 Zu ) og(2" fuy(a))| < 2 'elog =

Proof. Fix anya and we will prove i, (a) log (2", (a)) —p (@) log (2"~ (a))| < 29" Lelog(2/e).
Without loss of generality, we can assume thafa) < p,,(a). Then,

pw(@) = pio(@) = 277" tr (pa(Jw)w| — [vXv])) < 257" [[oXv] — [w)w]]|, <297 e,

17



Therefore,

Nw(a) log(2n_dﬂw(a)) — Ko (a) log(2n_dﬂv (CL))
= (@) Log (2"~ (@) — pro(0) 10g (2"~ prus (a)) + prv (@) log (2"~ pius (@) — puu(a) log(2" ™ o (a)
)

= (p(a) = po(a)) og(2" (@) + pu(a) log (1 + W) '

Note that(sr,(a) — pru(a)) log(2" s (a)) < 0 andu(a)log(1 + (s (a) — p(a))/m(a)) > 0.
Therefore,

1o (a) 1og (2"~ o (@) — puw(a) log(2" ™t (a))|

o ey - Pwl@) — prula)

(hw (@) = po(a)) 1og (2" s (@) + po(a) 1 g<1+ ) >
X{ a))log(2 Nw(a))ﬂuv(a) log (1 * Nv(a) >}
axc { a)) log(2"~(juw(a) — p(a))), po(a) - MCZU—W}

Smax{2d " 1610?; , 207" 15}

- 2d‘”‘lalog2.

£

By the triangle inequality, we have

Zuv ) log(2" Zuw ) log (2" p(a))| <

The left-hand side can be rewritten as

Zuv ) log(2" Zuw ) log (2" s (a))
a)log(2" i (a Zuw ) 1og (2" (a)) + (Z po(a) — Zuw(a)> log 2~¢

Zuv ) log (2" (a Zuw )1og(2" s (a)) |,

which completes the proof. |

2
2d_1slog —.
€

We are ready to see that with high probabili}y, 1,,(a) log (2" 1, (a)) is small for everyv).

Lemma 3.11. Let C be a uniformly randontn + k, r, 2¢)-quasi-linear code. Lef > 0 satisfy that
e?/25/4 < 2. Then,

%r J|v) : Z ty(a)log (2" py(a)) > ag + 5:|

ae{0,1}"

d+1 22445 k—2d [ O ?
r—
<exp [ 27" log 257 +n—2 <2d>
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whereqy, is as in Lemma 3.9.

Proof. Lete = 272973¢252. By the assumption, we have< 2/e. Then we have

2 el ed 20+2 o5 1§
9d-loype 2 = 90 @0 g2t~ 90 20
OB T Y T Ty Sy e T

where the inequality follows fromt log(1/x) < 1/e. By Lemma 2.6, there exists amet M for the
set of2?-dimensional states with respect to the trace distancesizith

d+1
4 92d+5\ 2
=) (o)

Suppose that the quasi-linear cadés such that there exists a unit vectosuch that

2d+1

Z ty(a)log (2" py(a)) > ag + 6.
ae{0,1}"

Letw € M be a unit vector satisfyingjjv)v| — [w)w|||, < e. By Lemma 3.10,
n n d—1 2 0
> mw(@)1og(P (@) = Y pw(a)log(2pu(a) — 27 elog = > ag + 5.
ae{0,1}" ae{0,1}"

This implies that

l:ér o) : e{zozl}n wy(a)log (2" py(a)) > ag + 0

0
< : w " YR
<Pr|3w)eM e{zo:u”# () log (2" tw(a)) > an + 5

By Lemma 3.9 and union bound, the right-hand side is at most

—k—2d Y ? d+1 22d § —k—2d d ?
. — T P < — r -
|M|-exp [ n —2 <2 > exp | 297" log 357 +n—-2 <2 > ,

as required. |

It remains to be seen that small valuesydfu, (a) log (2", (a)) for all [v) € C2* indeed imply
good hiding properties of the corresponding fingerprinsngeme.

Lemma 3.12. Let C' be an(n + k,r,2%)-quasi-linear code such thaty, ..., c, are all distinct.
If a € {0,1}" is chosen uniformly at random, then the accessible infaonaif the ensemblg, ) is
at most

max Y jula) log (2'p(a).
[v) ac{0,1}"
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Proof. We follow a similar path to that used in a proof in Section 2f2.eung [Leu09]. Since
the accessible information can be always achieved by a@askPOVM, letM = {«; |v;jXvj|};
be a rank-one POVM achieving the accessible informatiorgre/v;) is a pure stateg; > 0 and
Zj a; = 24, If Ais the random variable representing the choice ahd.J is the random variable
representing the measurement result of the state uvidenen

Tace = H(J) = H(J | A)

Iya Ioa 1
=- Z%‘ (vj] id |vj) log(evj (v % [03)) + 5n > a; (v5] pa v;) log (e (vj] pa |v;))

a’j
Qa; 1 1
=- Z 51108 57 + 50 > a; (v5] pa |vj) log a; + o > (5] pav;) log (vj] pa v;)
a’j a7j
1
= —Z log Z logaj + o > (5] pa|v;) og (vj] pa v;)

a?j

=dlog2+ Zaj (vj pa |vj) log (v;] pa |v;)
a7j

1 B _
=dlog2+ o > ;2" (5] pf, [vy) 1og(2"™* {vj o [v5))
a7j

where the inequality follows from the convexity argumeitte(iconvex combination is at most the
maximum). |

Lemmas 3.3, 3.6, 3.8, 3.11 and 3.12 imply the following tkeeur
Theorem 3.13. For any constant there exist quantum fingerprinting schemes that

e mapmn-bit strings to mixed states ovér(log n) qubits and whose error probability and acces-
sible information are both bounded kyn*;

e mapn-bit strings to pure states ovep(logn) qubits, whose error probability is bounded by
1/n¢ and accessible information 3(1).

The schemes are computationally efficient and have oné-gider withe_ = 0 (answers r # y”
are always true).

Proof. Letk = [4clgn],d = [(18c + 1)1gn] andr = [(60c + 3)Ign], and letEC.  be the mixed-
state fingerprinting scheme defined over a randomly ch@sen k, r, 2¢)-quasi-linear cod€'. By
Lemma 3.6, the probability that, > 1/n° vanishes ag — oc.

The probability that”' violates the condition of Lemma 3.8 is negligible, so we assthe oppo-
site, and that allows us to use Lemma 3.12. Applying Lemma ®ith § = 1/(2n¢) to Lemma 3.12
and noting thaty, € O(1/2%/3) C o(1/n°), we obtain that the accessible information is at most
1/nc.

Choosingk = 0 and adjustingl andr accordingly gives the desired result ﬁ;f

ure*
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Note that only polynomial amount of randomness is requiredrder to describe any of our
fingerprinting schemes. Moreover, a random string may bdighda openly without compromising
the hiding guarantees of the schemes.

Mixed-state schemes can be viewed as a natural genematizdtpure-state ones. Our mixed-state
construction achieves much better hiding guarantees¢ifottowing section we argue its optimality),
but even the pure-state one already reaches beyond thationi of classical schemes, where we've
seen (cf. Section 1.1) th&(log(1/¢)) bits are leaked by any scheme with error at nzost

4 Optimality of our schemes

In this part we construct a generic strategy for extractirigrimation from arbitrary quantum finger-
prints. For anyD € N we give a strategy that retrieves at leaspoly (D) bits of information about
x from a (w.l.g., mixed-state) fingerprint afoverlog D qubits.

We note that the following “no-go” argument remains valid $ome weaker versions of finger-
printing than what is guaranteed by Theorem 3.13, namely:

e schemes with two-sided error;

e schemes that only work in average w.r.t. “balanced unifomput distribution (i.e.(z,y) ~
(Ua +Up)/2, whereA = {(z,z)} andB = {(z,y) |z # y}).

To extract classical information about unknown- U 13~ from its fingerprintp(z) € CPxD,
we apply top(x) a complete projective measurement
Py E{Jo)ol [v eV},
whereV is a uniformly chosen random orthonormal basis @#.° We will see that the mutual
information between the outcome Bf; andx is at leastl/ poly (D).

4.1 Technical preliminaries

Optimality of our scheme from Section 3 will follow from seeétechnical lemmas that we state
next.

It is well known that the “distinguishability” of two arbdry quantum states; ando, is deter-
mined by their trace distandler; — o2||; . Informally speaking, we will show that randomly chosen
complete projective measurement distinguishes betweando, only poly (D) times less efficiently
than a best distinguishing measurement

LetU/ denote the uniform distribution of unit vectors@. The following is a well-known fact
abouti/P.

Claim4.1. Samplingv ~ UP can be realized via the following algorithm:

1 Independently sample., ... uP andu}, ..., uP from the standard normal distributidv(0, 1).

: . \D
2 Letv d:e’:u/ ||u|| whereu def (uﬁ + ul 'i) -
‘]:

The idea of using randomly chosen projective measuremewtsler to prove a lower bound on accessible information
has appeared in [JRW94]. However, our setting and the aeays different.
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Proof. The density function of. is spherically symmetric. |

We need several technical lemmas. First, let us see thagiigé of the projection of a randomly
chosen vector ~ UP to any subspace cannot be “too concentrated”:

Lemmad4.2.LetA C [D],1 < |A| < D. Then for some; € Q(W) andn, € Q(m),
r Z el n| = ne.
o M i€A

It is easy to see (by linearity of expectation and the fact tha= 1) thatE, [Z A W‘?] =
|A| /D, and therefore the above statement can be viewed as comybame concentration bounds.

Proof. In the notation of Claim 4.1,

waz%‘ﬂ — Pr Z| <1- ’A‘

icA | igA
- 12

>iea |V > |A| + De

_ZigA\vi’2 ~ D—A[-

[ Siea(wh)® + (])*) _ |A|+De

| Yiga((wn)? + (u))?) — DAl -

>Pr[Y' >2|A|+2De| -Pr[Y~ < 2D —2|A| — 2De],

Pr

kulD

(5)

wherey + &' ZieA((M)2 + (u)?),y- E def ZZ.M((M)2 + (u})?), and the inequality follows from
Y™ andY ~ being mutually independent.
We analyze the behavior &f ™ andY ~. Let “®” stand for either 4" or “ —". The distribution

of Y@ is known asy?.,, wherek™ ®©y |Al andk™ oD -2 | Al; its density function is

1 ©
Vo) = k2L (k0 /2) ¥ <_§> =

(cf. [JKB94]). One can see that[Y©] = k© andE [(Y@)Z] — k9% 1 2k© (thus, Var [Y©] = 2k©).

For 4© % 510 log(k®) + 20, let YV% be distributed ag® moduloY® < ~©. The density

function Ova% is
o _ aet(z) ifz<A®
Vre (=) {O else

for a0 gef 1/Pr[Y® <~%]. Then

KO > E [YV%} = a0 (k;@ - /OO 2®(z) dx> > (O ¢©
'Y®
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and

(O]

2 (o]
E [(Y,Y%) } — a0 <k:®2 + 2k —/ 22 (z) d:n) > k9% 4 2k — (O,
ol

where

ef [ 1 >
¢ d:f/{ 22O (z) dar < W(k@ﬁ) /y@ exp <—§) dz (6)

(the inequality follows frome? - exp(—a/2)z*"/2~1 < exp(—z/4), as guaranteed by our choice of
7®). In particular(® < 1 andVar [Y.%] > 2k© — ¢ > k® and

E [ YV% —E [Yv%} ] > Var [YV%}/’)/@ > k© /4%, (7)
Denote:
] a0 #'p vz -]
Wy =B YR |V = 1) a7 EPr|ve > |
u® % g [YA{% Yﬁ/% < ,u@] q® e p, {Y,Y% < ,u@}
Then

qSus +qZn = p®,
a7 (13 = %) + 42 (u° = p2) = A®,
¢ +q°=1,
which implies
65 (13 = p®) == (n° = p2) = A%/2. (8)
Clearly,0 < Y,Y% < ~© implies that

q“p
7@

O]
Pr [V 2 g~ 6] > U7 and Pr[v <p2 4] >

for every > 0. Choosings = (uT — 1*)/2 gives

af (pT—pt) _ At

Pr [Y,Yt > (ut +/¢)/2] >
and similarly, viag = (1~ — p”)/2 one obtains
A

Pr [le < (/f +u:)/2} > —.

On the other hand, (8) implies thﬁf‘i —pt > At/2anduy~ — u~ > A~ /2. Therefore, from
(7):

ot e KT s ot AT AT Kt
Pr Y-y > kT —( +2’Y—+]ZPT[YW+ZH +A /2]24’Y—+2W’

and similarly,

Pr[YV_Sk‘_—k—} > K 5
2~ 4=
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From (6) it is obvious thaf* < 47%, and therefore, by the definition Mj :

1 1 kT
+ L + + . o

Pr{Y 22|A|—|—47+}>Pr[Y >k +47+]24’Y+2.

By the definition ofy” ~ and the obvious fact thatr Y~ <~7]>1/2
_ 1 _ _ _ kT k—
Pr|Y™ <2D -2|A| - — zPr[Y S’y]-PrY <kmT ——|> 5
Observe that— > W and% > m for large enoughD. Together with (5) this
implies
1 1

P >

UNJ ; ‘ 88D2 logD] ~ 83232 - D2%(log D)*’
as required. |

Denote byl4yasthe uniform distribution of orthonormal bases@? (i.e., the Haar measure). For
p € Den[D], we will write Py, (p) to denote the distribution of the outcome Bf (p) when
V'~ Upas We will implicitly identify an outcome ofPy.,..(p) With the corresponding unit vector
inCP.

We need yet another “anti-concentration” statement, iitme to say that the outcomes Bf-4,..(p)
cannot be too concentrated for any fixed

Lemma 4.3. Let B be a subset of unit vectors i@”, such that/f’(B) > . Then for anyp €

Den|[D],
o4
Pr vEB|>—
v~ Py g, o(P) | ] 256
Intuitively, by choosingpe adversarially one can selectively “hide” some unit vector€” from
Py ,,(p). However, only those's are hidden well that are almost orthogonal to all spectai-c
ponents ofp, and that cannot happen to too marly simultaneously; in particular, B is sufficiently
large then it is impossible to efficiently avoid all its elem®

Proof. Observe that the distributictt? is the same a#y . (Ip/D), and its density function is
constant on the support (unit vectorsif?’) — denote it byy. Then by linearity, for any the density
function of Py y4,.(p) IS

p(v) £ 60~ D - (v]plv) .
def

For§ = /64, let us bound from above the value of

Pr [¢,(v) <0 - o] = EgKUIPl@ < 6/D]. (9)

UNMD

The expectation ofv|p|v) is 1/D, and therefore the value is maximized whehas rank one (i
is a mixture that makes the value @f|p|v) more concentrated). On the other hand, for every fixed
ug andv ~ UP, the distribution of (ug|v)| only depends ofg| (and not on the “direction” ofig).
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Therefore, in order to bound (9), we can assume w.l.g.ghat|ug)ug|, whereug = (1,0,...,0).
That is,

Pr [0,(v) <4-¢o] < Pr [[v'] < \/3/D].

v~M1D

wherev! is the first coordinate of.
By Claim 4.1 we have:

o 10 < VA7D] = P [lu'|/ul < VF7D] < P [Ju'| < 2057 + P Jul? > 2|

We know that||u|> ~ x3,, and therefore its expectation ¥D and Pr [Hqu > 4D/s} < g/2
by Markov inequality. We also know th&t(u') ~ N(0, 1), and thereforéPr [|u1| < 2\/5/5] <
2y/d/e = /4. We conclude thaPr,, ,» [Pp(v) <6 - o] < 3e/4.

Let B’ &' {v € B|¢,(v) > ¢o}, then it necessarily holds thet” (B’) > /4. By the defini-
tion of B/,

Pr  [veB|>s5-U’B)> be_ =
VP ity P) - 256’

and the result follows. |
The next lemma will be the core of our optimality argument.

Lemma 4.4. Let 01,09,p € Den[D], satisfying|oc; —o2|[1 = ¢ > 0. Then for some& ¢

prien)
Pr [(vlorfv) > (1+€) (vloav)] € Q((Dlog D)™).

v~ Py g, (P)

Proof. To prove the statement, we will first consider the simpleecabeny ~ ulD, then see what
happens when ~ Py ,.(p).

def
Leto’ € oy — 09, then

Pr [(v|o1]v) > (1 + &) (v|oz|v)] = Pr [<U|O‘l"u> > £<v|02|v>] >Pr [(v!a"v> > ﬁ].

va/{lD

! D = + d_Gf . _ d_ef .
Leto’ = > .7, e; |u;Xu;| be a spectral decompositiod,” = {i|e; > 0} andA~ = {i|e; < 0},
then for every

v~M1D

Py, o) € = e | e >

=Pr Z ei |(ui|v)|? > €+ Z —€ (uiv>2] (10)

LicAt iceA~

>Pr | ) eil(ulv))?> ¢+ E [Z e,-<u,-v>2”,

~D
licAT U | eat
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where the inequality follows frony_ e; = 0 and the fact that the random valugs, - e; | (u;|v)|* and
S 4 —ei|(ui]v)|? are anti-correlated when~ UP.

Observe thad _ |e;| = d, and SOy 4+ ; = §/2. ASE, [\(um]?] = 1/D for any unit vectorn
and the right-hand side of (10) is symmetric w.r.t. any ugitatation of the vectorgu; },

Pr [<v‘a’|v> > S] > Pr

va/{lD

> el >5+2‘;]- (11)

€At

From Lemma 4.2, for somg, < Q(m 1OgD> andns € Q(W)

UNZ/{D

Z |v'] 771] 2 M2

€At

By the linearity of expectation,

> e o 30 L2

€At €At

_ 0 |Afl+mD _ 5 om
=2D  [Af| T 2D 2D’

Therefore, for some < Q(D;I ) andns € Q(W),

From (11),Pr, ;» [(v]o’|v) > &] > ns.
Applying Lemma 4.3 to the sdtv € CP | (v|o’|v) > &, |v|| = 1}, we conclude that

(n3)* 1
~Fog (5) [(vlo’[v) 2 €] 2 525 eQ((DlogD)20>’

and the result follows. [ |

4.2 Optimality statement

The following theorem concludes our optimality argument.

Theorem 4.5. Let® = {¢(z) |z € {0,1}"} C Den|[D] be a quantum fingerprinting scheme that
guarantees error below/2 — €(1). Then® leaksQ (D7) bits of information.
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The theorem implies that any quantum fingerprinting schemae leaks? bits aboutz requires
Q(log(1/¢)) qubits, and therefore our mixed-state construction ofi8e@.3 (cf. Theorem 3.13) is
optimal. Note that while our constructions of fingerprigtischemes guarantee one-sided error, the
above theorem remains valid also for schemes with two-sédext. Moreover, Theorem 4.5 theorem
still holds for schemes that only work on average under thensad uniform input distribution.

Proof. We will show that for any®, a measuremen®,, chosen at random w.r.¥V. ~ Upasis likely
to have the following propertyThe outcome af(¢(X)) has mutual informatio2 (D7) with the
random variableX ~ U 137

AssumeX = z. Letp def E.c{0,1)" [¢(7)]. Callaunitvectow € CP xg-e-goodif (v|p(zg)|v) >
(1+4¢) (v|p|v), wheres > 0.

The error guarantee of the theorem implies thatzo) — pl[1 € ©(1) (as long as. > 0), and
therefore by Lemma 4.4,

Pr  [viszg-¢-good € Q((Dlog D)%) (12)

UNPVNLIbaS(p)
for some¢ € Q(1/D3log D).
For any unit vectow € CP, let A, be the set of ali:'s, such that is z-¢-good. Let

def def

= Pr XeA and = Pr X e Al
Po X~ Ufo1yn [ o] p1 X~ U{o1yn [ 0]
v~ Py gy, (P) v~ Py g (A(X))

By the definition ofzy-c-good we know thap; > (1 + &) - po.

Note thatp; is the “actual” probability of certain event (namely, € A,), andpg is what that
probability would have been if the outcome Bf 4, (¢(X)) did not depend oX. Based on the
inequality between the two probabilities, we want to shoat thhe outcome of the measurement is
well-correlatedwith the value ofX. For that we use a lower bound g, as guaranteed by (12).

Now assume that the underlying distributions are- U 13» andv ~ Py <y, (#(X)).

_n D1 —n 1=
H|X|v| < —p1-lo <2"-—>—1— -lo (2"- >,
[ | } P1 - 1089 20 ( p1) - logy 1—po
as follows from the fact that the maximum entropy of a diseistribution over a domain of given
size is attained when the distribution is uniform (so, in tiglt-hand side we consider the situation
when X is uniform both modulo X € A,” and modulo X ¢ A,”). Then

1_
H [X|v] < n—p;log, <]£> — (1 —p1)log, ( p1> =n—dgr (Do||D1),
Po 1 —po

whereD; is the distribution ovef0, 1} that assigns weighi; to the outcome “0”. By the Pinsker’s
inequality,

2
| Do — D1}

dir, (Dol||D1) > 5

= 2(p1 — po)* > 2(épo)® € Q(D™H),

and therefore
H[X]-H [X[v] € (D).

Sincew is the outcome of a measurement performed on a fingerprikt tie result follows. B
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A Proof of Lemma 2.6

Let us repeat the lemma:

Lemma 2.6For every0 < ¢ < 2, there exists as-net for the set of pure states @” with respect to
the trace distance whose size is at mast)2(P’~1,

To prove the lemma we use the following lemma that has beésadsia [JRW94], where it was
attributed to [Syk74].

Lemma A.1. ([JRW94]) Let {|e1),...,|ep)} be an orthonormal basis of”. Let|u) € CP
be a random unit vector chosen according to the unitarilyaiant probability distribution on the
unit sphere inC”. Let X; = |{e;|u)|?> fori = 1,...,D. Then, the range of th&-tuple X =
(X1,...,Xp) is equal to the probability simplex

i=1

D
AD—I = {(ml,...,xp): le = 1, ZT; > 0 (VZ)},

and the probability distribution ok is uniform onAp_;.

Corollary A.2. Let|w) € CP be a fixed unit vector. Choose a unit vectey € C” randomly as in
LemmaA.1. ThePr [|(u|w)[* > z] = (1 —2)P~!for0 <z < 1.

Proof of Lemma 2.6The lemma can be proved by the packing argument in the samastssmma .4
of [HLSWO04] and Lemma 4 of [BHIE05]. The difference is that we apply the packing argument di-
rectly on the set of pure states by using Corollary A.2, mdtef applying the packing argument on
the Euclidean spade?” as an intermediate step.

Let M be a maximal subset dffv) € CP: |lv|| = 1} such that every pair of distinct vec-
tors|u),|v) € M satisfy|||uXu| — |[vXv|||; > €. By the maximality ofM, M is ane-net for the
set of pure states ift” with respect to the trace distance. For e&aghc M, consider the open
ball B, 5(|u)) = {|w) € CP: |Jw| = 1A |JuXu| — [w)w|||, < e/2}. First fix |u) € M. Then, if
we pick a unit vectofz) uniformly at random, we have

Pr [|r) € Bepp(ju)] = Pr [[|[uful - |=)a]l| < 5]

_pr {Humy? . (2)2] = (Z)Q(D_l),

by Corollary A.2. By the condition of\/, the [M| open ballsB, /5(|u)) (Ju) € M) are disjoint.
Therefore,

g\ 2(D-1)
12Prfve |J Bep(lu)| = Y Prlle) € Bl = M) (5)
|luye M |uye M
which implies|M| < (4/{—:)2([)_1). Bemmaz6
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