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Abstract

W? present a bounded-error quantum algorithm for evaluating MIN-MAX trees with
Nzt queries, where N is the size of the tree and where the allowable queries are
comparisons of the form [z; < xj]. This is close to tight, since there is a known quantum

lower bound of Q(N?2).

A MIN-MAX tree is a tree whose internal nodes are minimum and mazimum gates, at alter-
nating levels, and whose leaves are values from some underlying ordered set. The size N of
such a tree the number of its leaves, whose values are referred to as x1,...,xy. The value of a
MIN-MAX tree is the value of its root, a function of x4, ..., zy. In the input value query model,
queries explicitly access the values of the leaves. In the comparison query model, the values of
T1,...,xy are not directly accessible; rather, queries are comparisons of the form [z; < x;]. In
this latter model, the appropriate output is any j € {1,..., N} such that z; is the value of the
tree.

Note that, when the ordered set is {0, 1}, a MIN-MAX tree reduces to an AND-OR tree. This
implies that Barnum and Saks’s lower bound of Q(N2) [2] for the quantum query complexity
of AND-OR trees applies to MIN-MAX trees.

Recent results initiated by Farhi et al. have shown that quantum algorithms can evaluate
all AND-OR trees with order N2+°() queries 8, 5, 6, 1]. We show that these results carry over
to MIN-MAX trees in both the input value model and the comparison model.

Let W(N) be the query complexity for AND-OR trees of size N. We show that MIN-MAX
trees can be evaluated with O(W (N)log(N)) queries in both the input value model and the
comparison model. Our algorithm combines the results on AND-OR trees in Refs. [1, 6] with
the lemma below and Grover’s search algorithm [9].

Lemma 1 Let 7 be a MIN-MAX tree with inputs x1,s,...,xy. Let 7% be an AND-OR tree
with identical structure to T, but with AND and OR gates in place of MIN and MAX gates
(respectively), and with the k™ input assigned to 1 if and only if x;, > v. Then value(7") = 1
if and only if value(7) > v.
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Lemma 1 is easy to prove by induction. It implies that, if the underlying ordered set is
a numerical range of size N°)| then the tree can be evaluated in log(NN) stages by a simple
binary search. Each stage can be implemented with O(W (N)loglog(N)) queries, which reflects
the cost of evaluating an AND-OR tree amplified so that its error probability is O(1/log(N)).
The result is an O(W (N)log(N)loglog(N)) query algorithm.

A complication arises in performing such a binary search in the comparison model, where it
is not possible to directly compute the midpoint of an interval like [z;, z;]. Problems can also
arise in the input value model when the numerical range is too large: the binary search may
not converge in a logarithmic number of steps. For this reason, we avoid the standard binary
search approach where a midpoint is chosen as a pivot. Instead, we take a random input value
among those that that lie within a current interval as our pivot. What is noteworthy about
this simple approach is that it does not work efficiently in the classical case: given an interval
[z, ], finding an interior point is as hard as searching, which can cost Q(N) queries to do even
once [3]. In the setting of quantum algorithms, we can utilize Grover’s search algorithm [9, 4]
which costs O(v/N).

As an aside, we note that there is a classical reduction from MIN-MAX trees to AND-OR
trees that yields an O(N%™3) query algorithm for balanced MIN-MAX trees [10]. We can use
that reduction with an N3 query quantum algorithm for balanced AND-OR trees; however,
the resulting algorithm for MIN-MAX costs Q(N%58). Our alternate approach yields exponent
% + o(1) and is not restricted to balanced trees.

What follows is a description of our algorithm with the analysis of its error. For convenience,
let L and T be such that x;, < x; and z1 > z; for any j € {1,..., N} and let ¢ be a constant.

QUANTUM MIN-MAX TREE EVALUATION
1. Let v« L and § < T, and initialize the stack.

2. Repeat the following steps for clog(/N) iterations, then go to Step 3:

(a) Find a random pivot:

Call the quantum search subroutine to find a random pivot index j with z, < z; <
zs. If no value is found, go to Step 2(c).

(b) Refine the search:

Call the AND-OR tree subroutine to check if value(7) < z;. If so, let 6 « j;
otherwise, let v « j.

(c¢) Backtrack if out of range:

Call the AND-OR subroutine to check if z, < value(7) < x;. If so, push (v, ) onto
the stack. Otherwise, pop (7, d) off the stack. (If the stack is empty, let v «+ L and
d—T.

3. Return v as an index corresponding to the value of the MIN-MAX tree.

Clearly, the algorithm makes O(W (N)log(NN)) queries. We claim the following.

Theorem 1 The algorithm returns the value of the MIN-MAX tree with probability at least %



To prove Theorem 1, we must consider the progress made by the random choices of pivots
as well as the error probabilities of the subroutines for AND-OR and the searches (each errs
with constant probability).

To begin with, assume that the subroutines for AND-OR and search never err (thus, z, <
value(7) < x5 at all times). Under this assumption, the progress of the algorithm is determined
by how quickly the subinterval converges. Once no value in Step 2(a) is found the algorithm
has converged (with x., = value(7")) and can go to Step 3 and terminate (however it is harmless
to perform more iterations before doing this).

Let C(m) denote the expected number of iterations of the algorithm until it converges,
assuming that m of its inputs are within its current range.

Then, for m > 1, C(m) satisfies the recurrence

C(m)ﬁ% mz_ k) | +1. (1)
k=|m/2]

This can be seen by assuming that the pivot is uniformly selected among all m possible po-
sitions within the subinterval and that value(7) always lies in the larger side of the pivot.
It is straightforward to verify that the recurrence implies C(m) € O(log(m)). Therefore, the
expected number of iterations of Step 2 made by the algorithm before x., = value(7), under
the assumption that the subroutines never err, is O(log(N)). By the Markov bound, O(log(V))
iterations suffice to obtain error probability less than any particular constant.

We now consider the fact that the subroutines for AND-OR and searching can fail. First,
note that, by incurring a multiplicative factor of only O(loglog(N)), each call to the AND-OR
and search algorithm can be amplified so that its error probability is O(1/log(NN)). This results
in an O(W(N)log(N)loglog(N)) algorithm for MIN-MAX.

These amplification costs are not necessary in our algorithm, since it can cope with a
constant fraction of errors in subroutine calls. To see why this is so, let £ be the probability
that one or more subroutines err during one iteration of Step 2 of the algorithm. The algorithm
begins some O(log(NN)) steps away from reaching a good state—of the form (v/,0) such that
z, = value(7). Before reaching a good state, an “incorrect” step for the algorithm places
value(7") outside the search interval, and a “correct” step either narrows the search interval
or backtracks from a previous error. After reaching a good state, a “correct” step pushes a
pair of the form (v/,d) onto the stack and an “incorrect” step pops it off. In each iteration,
the algorithm takes a correct step with probability at least 1 — ¢ and an incorrect step with
probability at most €. Therefore, with all but exponentially small probability, the number of
correct steps minus the number of incorrect ones after clog(/V) iterations is at least §log(iV).
For suitably large ¢ this means that, with constant probability, when the algorithm terminates,
x, = value(7) (typically with many copies of pairs of the form (7, §) on the top of its stack).

Finally, we note that, in game-playing contexts, it is useful to determine optimal moves.
This corresponds to finding the subtree of a MIN-MAX tree that attains its value. If the leaf
values z1,...,xx are distinct, this is easily deduced from value(7"). Otherwise, one can use a
slightly modified version of the minimum/maximum finding algorithm in Ref. [7] to find the
appropriate subtree.
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