
PExact = Exact Learning

Dmitry Gavinsky

Department of Computer Science

University of Calgary

Calgary, Alberta, Canada, T2N 1N4

e-mail: gavinsky@cpsc.ucalgary.ca

Avi Owshanko

Departments of Computer Science

Technion

Haifa, Israel, 32000

e-mail: avshash@cs.technion.ac.il

Abstract

The Probably Exact model (PExact) is a relaxation of the Exact model, introduced
in by Bshouty. In this paper, we show that the PExact model is equivalent to the Exact
model.

We also show that in the Exact model, the adversary (oracle) gains no additional
power from knowing the learners’ coin tosses a-priory.

1 Introduction

In this paper we examine the Probably Exact (PExact) model introduced by Bshouty in [5]
(called PEC there). This model lies between Valiant’s PAC model [12] and Angulin’s Exact
model [1].

We show that the PExact model is equivalent to the Exact model, thus extending the
results by Bshouty et. al. [8] who showed the PExact model is stronger than the PAC
model (under the assumption that one way functions exist), as well as that the deterministic
Exact model (where the learning algorithm is deterministic) is equivalent to the deterministic
PExact model.

The PExact model is a variant of the Exact model, in which each counterexample to an
equivalence query is drawn according to a distribution, rather than maliciously chosen. The
main advantage of the PExact model is that the teacher is not an adversary. For achieving
lower bounds in the Exact model, (like those given by Bshouty in [5]), we must consider a
malicious adversary with unbounded computational power that actively adapts its behavior.
On the other hand, in the PExact model the only role of the adversary is to choose a target
and a distribution. After that the learning algorithm starts learning without any additional
adversarial influence.

For removing randomness from the PExact model, we introduce a new variation of the
model introduced by Ben-David et. al. in [3]. We call this the Ordered Exact (OExact)
model. This model is similar to the PExact model, where instead of a distribution function
we have an ordered set. Each time the OExact oracle gets an equivalence query, it returns
the lowest indexed counterexample, instead of randomly or maliciously choosing one.

Another model we consider in this work is the random-PExact model, introduced by
Bshouty and Gavinsky [7]. The random-PExact model is a relaxation of the PExact model
that allows the learner to use random hypotheses. We will show that for every algorithm

1

A that uses some restricted random hypothesis for efficiently learning the concept class C
in the random-PExact model, there exists an algorithm ALG that efficiently learns C in the
Exact model.

In additional we show that the adversary does not gain any additional power by knowing
all coin tosses in advance. In other words, we show that offline-Exact learning = Exact
learning.

In [8] Bshouty et al. showed that Exact-learnable ⇒ PExact-learnable ⇒ PAC-learnable.
Based on Blum construction [4] they also showed that under the standard cryptographic as-
sumptions (that one-way functions exist), PExact-learnable 6= PAC-learnable. In [7], Bshouty
and Gavinsky showed that under polybit distributions, PExact-learnable = PAC-learnable.
In this work we will exploit the exponential probabilities to show that PExact-learnable ⇒
Exact-learnable.

Another model residing between the PAC model and the PExact model is the PAExact
model introduced by Bshouty et al. in [8]. The PAExact model is similar to the PExact
model, but allows the learner some exponentially small final error (as opposed to the exact
target identification required in PExact). Bshouty and Gavinsky [7] showed that PAExact-
learnable = PAC-learnable using boosting algorithms based on [11] and [10]. In [6], Bshouty
improves the error factor and gives a more simple algorithm for boosting process.

The following chart indicates relations between the models.

Exact PAExact

‖ ⇒
:

‖

PExact PAC

We note that this work represents results independently obtained by the authors. This
joint publication has evolved from a manuscript by Avi Owshanko; the other author’s original
manuscript [9] may be found at his web page.

2 Preliminaries

In the following we formally define the models we use. We will focus on exact learning of
concept classes. In this setting, there exists some learning algorithm A with the goal of
exactly identifying some target concept t out of the concept class C over a domain X. In
this paper we consider only finite and countable infinite domains X. The learner A has full
knowledge of the domain X and of the concept class C, but does not have any a-priory
knowledge about the target class t. As each concept t ∈ C is a subset of the domain X, we
will refer to it as a function t : X → {0, 1}.

For learning the target concept, the learner can ask some teacher (also referred to as an
oracle) several kinds of queries about the target. The teacher can be regarded as an adversary
with unlimited computational power and full knowledge of all that the learner knows. The
adversary must always answer queries honestly, though it may choose the worst (correct)
answer. If the adversary knows in advance all the learner’s coin tosses, we call the adversary
an offline adversary and call the model an offline-model.

In this paper we will focus on efficient learning under several models. Whenever we write
efficient learning of some target t with success probability δ, we mean that the learning

2

algorithm receives the answer “Equivalent” after time polynomial in sizeC(t), log(1/δ) and
b (the size of the longest answer that the teacher returns).

We now give the formal definitions of Exact learning [12], PExact learning [5] and a new
model we denote OExact (which is a variation over the model considered in [3]).

We say that a concept class C is learnable in some model if there exists some algorithm
A such that for every target t ∈ C, and each confidence level δ, A efficiently learns t with
the help of the teacher, with success probability greater than 1− δ. We say that a learner is
random if it uses coin tosses and deterministic otherwise.

In the Exact model, the learner A supplies the adversary with some hypothesis h (such
that h can be computed efficiently for every point x in X) and the adversary either says
“Equivalent”, or returns a counterexample, x ∈ X such that t(x) 6= h(x).

In the PExact (probably exact) model, the PExact teacher holds some probability distri-
bution D over X, as well as the target t ∈ C. Both the target and the distribution functions
are determined before the learning process starts and stay fixed for the duration of the learn-
ing process. The learner can supply the teacher with some hypothesis h and the teacher
either returns “Equivalent” (when PrD[h(x) 6= t(x)] = 0), or returns some counterexam-
ple x. The counterexample is randomly chosen, under the distribution D induced over all
erroneous points x ∈ X (that is h(x) 6= t(x)).

In the OExact (ordered exact) model, the OExact oracle holds some finite well ordered
set S ⊆ X. For each query of the algorithm A , the OExact oracle returns x ∈ S where x is
the smallest member of S such that h(x) 6= t(x). For every member x ∈ S, we let Ord(S, x)
denotes the number of elements in S that are smaller than x (for example, for x0 the smallest
member of S, Ord(S, x0) = 0).

For the PExact model, There exists some relaxed variation of the PExact model, denoted
random-PExact, introduced by Bshouty and Gavinsky [7]. In this setting, the algorithm
A may use a random hypothesis. A random hypothesis hr : X×R→ {0, 1} is a function such
that for every input x0 ∈ X it randomly uniformly chooses r0 ∈ R and returns hr0(x0). As
before, the teacher may either answer “Equivalent” (when ∀x ∈ X : PrD[hr(x) 6= t(x)] = 0)
or returns some counterexample x. For choosing the counterexample, the teacher keeps
randomly choosing points x in X according to the distribution D until the first point such
that hr(x) 6= t(x). For the Exact (OExact) model, the adversary returns some (the smallest)
point x ∈ X (x ∈ S) such that Pr[hr(x) 6= t(x)] > 0.

We will also use the following inequality:

Theorem 1 (Chernoff inequality) Let Y1, Y2, . . . , Yn be n independent random variables
such that for 1 ≤ i ≤ n, Pr[Yi = 1] = pi, where 0 < pi < 1. Then, for Y = Σn

i=1Yi, µ = E
[Y] = Σn

i=1pi, and 0 < λ ≤ 1,

Pr[Y < (1− λ)µ] < e−µλ2/2

3 The Learning Algorithm

In this section we introduce a scheme relying on majority vote to turn every algorithm A that
efficiently learns a concept class C in the PExact model into an algorithm ALG that can learn
C in the Exact model.

3

We will rely on the fact that you can fool most of the people some of the time, or some
of the people most of the time, but you can never fool most of the people most of the time.
Consider some algorithm A where for every target t ∈ C, there exists some bound T , such
that A makes no more than T mistakes with some probability p. When we run two copies
of A , the probability that both make mistakes on the same T points (in the same order) is
p2. When running k copies of A , the probability that all make mistakes on the same points
is pk. But this fact is not enough for building a new algorithm, because it is not enough for
us to know that there is a possible error, but we need to label every point correctly. Hence
we need to have that the number of points such that more than half the running copies of
A mislabel is bounded by some factor of T . We will prove that if A is an efficient PExact
algorithm, then there exists some such (efficient) bound T for every target t ∈ C, and that
the number of errors is no more than 4T .

Because the learner does not know the target t in advance, it must find this bound T
dynamically, using a standard doubling technique — each iteration doubling the allowable
mistakes number (and the number of copies of A) until successfully learning t. The full
algorithm can be viewed in figure 1

We start by showing that A is an efficient learning algorithm in the OExact model. That
way, we can remove the element of randomness that is inherent to the PExact model.

Lemma 2 If A learns every target t in C using less than T (t) steps, with the aid of a PExact
teacher with confidence greater than 0.95, then there exists an algorithm A′, (a copy of A),
that learns every target t in C using less than T (t) steps, with the aid of an OExact teacher
with confidence greater than 0.9.

Proof: In this proof we build for every well ordered set S and every target t ∈ C a step
probability function DS that will force the PExact oracle to behave the same as the OExact
oracle (with high probability).

We will run both algorithms A and A′ in parallel, where both use the same random
strings (when they are random algorithms). Let k be the size of S and let l denotes T (t). We
define the probability distribution DS as follows (recall that Ord(S, x) denotes the number
of elements in S that are smaller than x).

DS(x) =

{

0 x /∈ S
(40l+2)−Ord(S,x)

Σk
i=1(40l+2)−i x ∈ S

Consider the case that both A and A′ ask their teachers some equivalence query using the
same hypothesis h. Let x be the counterexample that the OExact teacher returns to A′.
By definition of the OExact model, x is the smallest counterexample in S. The probability
that the PExact teacher returns to A a counterexample y such that y 6= x (and Ord(S, y) >
Ord(S, x)) is less than

k
∑

j=Ord(S,x)+1

(40l + 2)−j

Σk
i=1(40l + 2)−i

<
2

40l + 2
·
(40l + 2)−Ord(S,x)

Σk
i=1(40l + 2)−i

=
DS(x)

20l + 1

Hence, the PExact oracle returns the lowest indexed counterexample x with probability
greater than 1− 1

20l .

4

ALG

1. Init k ← 4

2. Do

3. Init P ← Ø, count← 0

4. Let A ← {A∞,A∈, . . . ,A‖} [where each Ai is a copy of A]

5. Init each copy Ai in A.

6. While (count < k)

7. Run each copy Ai ∈ A until it asks an equivalence query,

terminates, or executed more than k/4 steps.

8. Remove from A all copies Ai that either terminated unsuccessfully

or executed more than k/4 steps.

9. If there exists some copy Ai ∈ A asking an equivalence query with

an hypothesis hi that is not consistent with P

10. Let (y, label(y), c) be a counterexample with the lowest index c.

11. Give (y, label(y)) as a counterexample to Ai

12. Jump back to step 7

13. End If

14. Let h = majority{h1, h2, . . . , hk}

[where hi is Ai’s hypothesis at this point].

15. Let x← EQ(h). If x = “Equivalent”, return h as the answer

else, Add (x, label(x), count) to P

16. Let count← count + 1

17. End While

18. Let k ← 2k

19. While the hypothesis h is not equivalent to the target.

Figure 1: The learning algorithm

5

We can conclude that the PExact and the OExact teachers return the same answer with
probability greater than 1− 1

20l , and the probability for l such consequent answers is greater
than

(

1−
1

20l

)l

≈ e−1/20 > 0.95.

Because both A and A′ hold the same random string, they will both behave the same (ask
the same queries) until the first time that the teachers give different answers. On the other
hand, A learns t using less than T (t) steps with confidence of 0.95. So we can conclude that
with confidence greater than 0.95 · 0.95 > 0.9, A′ learns t in the OExact model using less
than T (t) steps.

Our next step is to show that if A is an efficient OExact learning algorithm, then
ALG learns C in the Exact model.

Lemma 3 Let X be a finite domain. If A learns every class t in C using less than T (t) steps,
with the aid of an OExact teacher with confidence level greater than 0.9, then ALG learns
every t in C with the aid of an offline-exact teacher, with probability greater than 1− δ using
less than

O((log(1/δ) + T (t) log(|X|) + log(|C|))2)

steps.

Proof: Let l denotes T (t) and let m ≥ m0 = 20(ln(1/δ) + 4l ln(|X|) + ln(|C|)). Consider
running 3m copies of the learning algorithm A , over some given ordered set S of size 4l. We
shall calculate the probability that m of these copies need more than l steps to exact learn t.

Using Chernoff inequality (1), we have n = 3m, µ = 0.9 · 3m = 2.7m, and λ > 0.2:

Pr[Y < 2m] < e−2.7m·(0.2)2/2 < e−0.05m ≤
δ

|X|4l · |C|
. (1)

Next we define the following property:
property I: The probability that there exists some target t ∈ C and some ordered set S of
size 4l such that more than m copies of A will need more than l steps to learn t is less than
δ.

The reasoning behind this claim is as follows. Assume that all 3m copies of A have a
sequence of random bits. We let the adversary know these random bits and look for some
target t ∈ C and some ordered set S that will cause more than m copies to fail. The number
of possible target concepts t ∈ C is |C| and the number of possible ordered sets is less than
|X|4l. On the other hand, the probability for some set to cause more than m copies to fail
for some target t is less than δ

|X|4l·|C|
by (1). Hence the probability for the existence of such

a bad target t and ordered set S is less than

δ

|X|4l · |C|
· |X|4l · |C| = δ.

and property I holds.
We now consider ALG ’s main loop (steps 6-17 in figure 1) when 6m0 ≥ k ≥ 3m0

(ALG reaches this loop after after O(k2) steps, unless it already received the answer “Equiv-
alent”). Assume that ALG receives 4l counterexamples in this loop (recall that 4l < k).

6

Note that this set of counterexamples defines an ordered set S of size 4l (we order the coun-
terexamples chronologically). Because each such counterexample is given to at least half the
currently running copies of A , at least m copies of A received at least l counterexamples
(or executed more than k/4 > l steps). But property I states that there exists such a set of
counterexamples with probability smaller than δ.

So we conclude that with probability greater than 1−δ, ALG learns t in the Exact model
when 6m0 ≥ k, where the number of steps is bounded by

O(m2
0) = O((log(1/δ) + T (t) log(|X|) + log(|C|))2).

Our next step is to remove the size of the domain X and the concept class C from the
complexity analysis.

Lemma 4 If A learns every class t in C using less than T (t) steps, with the aid of an OExact
teacher with confidence level greater than 0.9, then ALG learns every t in C with the aid of
an offline-exact teacher, with probability greater than 1− δ using less than

O((log(1/δ) + T (t)(size(t) + b))2)

steps, where b is the size of the longest counterexample that the teacher returns.

Proof: For some set Q, we let Qb denotes all members of Q that are represented by no more
than b bits. By definition, |Qb| < 2b+1. By lemma 3, there exists some constant c, such that
for every finite domain X, ALG learns every t in C with the aid of an offline-exact teacher
with probability greater than 1− δ using less than c · (log(1/δ) + T (t) log(|X|) + log(|C|))2

steps.
Let us consider the case that the longest counterexample b, or the size of the target t

(sizeC(t)) is at least 2i and less than 2i+1. We let d denotes 2i. So we have that d < size(t)+b.
Applying lemma 3, we get that ALG learns t with probability greater than 1 − δ/d, using
less than

c · (log(1/δ) + T (t) log(|X|) + log(|C|))2

< c · (log(1/δ) + T (t) log(d) + log(d))2

= c · (log(1/δ) + (T (t) + 1)(size(t) + b))2

steps. Hence, the probability to find some d = 2i such that ALG will be forced to use more
than c · (poly(size(t)) · log2(d/δ) · 16d4) steps is less than:

1−

∞
∏

i=1

(1−
δ

2i
) ≤

∞
∑

i=1

(
δ

2i
) ≤ δ

and the lemma holds.
At this point we can conclude that:

Theorem 5 PExact = offline-Exact learning.

7

Proof: This theorem immediately follows from lemmas 2 and 4. In lemma 2 we showed that
every algorithm A that efficiently learns the class C in the PExact model with probability
greater than 0.95 also efficiently learns C in the OExact model with probability greater than
0.9. In lemma 4 we showed that if A efficiently learns C in the OExact model with probability
greater than 0.9, the algorithm ALG efficiently learns C in the offline-Exact model with any
needed confidence level 1 − δ. On the other hand, Bshouty et. al. [8] already showed that
Exact⇒ PExact. Hence the theorem holds.

An additional interesting result following immediately from theorem 5 is:

Corollary 6 Exact = offline-Exact learning.

4 Handling the Random Model

We now show that if A is an efficient algorithm for learning C in the random-PExact model
and if A follows some constraints, then ALG learns C in the Exact model. Namely, we will
show that if we can efficiently determine for every hypothesis hr that A produces and for
every x ∈ X whether 0 < E[hr(x)] < 1 or not, then if A learns C in the random-PExact
model, ALG learns C in the Exact model. As in the previous section, we start by showing
that random-PExact = OExact.

Lemma 7 If A efficiently learns C in the random-PExact model with probability greater than
0.95, then A efficiently learns C in the OExact model with probability greater than 0.9.

Proof: This proof is similar to that of Lemma 2. For every target t ∈ C and every order
S ∈ X we build a step distribution function that will force the random-PExact oracle to
behave in the same way as the OExact oracle.

Let k be the size of S and assume that that A needs l = poly(size(t)) Consider running
A for l steps in the OExact model until A executes l steps (or terminates successfully). Let
hi

r denotes A’s hypothesis after the i’s step. Because the number of steps is bounded by l,
there exists some 0 < λ < 1 such that for all members x ∈ S and all steps 0 ≤ i ≤ l,

(E[hi
r(x)] = 0) ∨ (E[hi

r(x)] = 1) ∨ (λ < E[hi
r(x)] < 1− λ).

Using this value λ, We define the probability distribution DS as follows

DS(x) =







0 x /∈ S
(

λ
40l+2

)Ord(S,x)
· 1

Σk
i=1(

λ
40l+2)

i x ∈ S

For every x member of S , We let Y (x) ⊂ S denotes all members of S larger than x in the
order S. By definition of DS , we have

DS(x) >
λ

20l + 1
· Σy∈Y (x)DS(y).

From this point on, the proof is similar to that of Lemma 2. The probability to receive the
smallest possible x as the counterexample in the random-PExact model under the probability
distribution DS is (at least) 1

20l+1 , and the probability that the random-PExact oracle behaves

8

the same as the OExact oracle for all l steps is greater than 0.95. So we conclude that A learns
C in the OExact model with probability greater than 0.9.

After we showed that random-PExact = OExact, we can apply the same proofs as in the
previous section to receive the following result:

Theorem 8 If A efficiently learns C in the random-PExact model, and if for every hypothesis
hr that A holds and every x ∈ X we can (efficiently) determine whether 0 < E[hr(x)] < 1 or
not, then ALG efficiently learns C in the Exact model.

Proof: The proof is similar to that of the theorem 5. We can still emulate the way that the
OExact oracle behaves, because for every hypothesis hr and every x ∈ X we can efficiently
determine whether 0 < E[hr(x)] < 1 or not. When hr can assign x both values, we can give
x as a counterexample. Otherwise, we can choose any random string r (for example all bits
are zero) and calculate the value of hr(x). Also note that if x is a counterexample for ALG ,
then at least half of the running copies of A can receive x as a counterexample. So we can
use both lemmas 2 and 4. The rest of the proof is similar.

5 Conclusions and Open Problems

In this paper we showed that PExact = Exact learning, thus allowing the use of a model
without an adaptive adversary, in order to prove computational lower bounds. We also
showed that a limited version of random-PExact is equivalent to that of the Exact model.
An interesting question left open is whether the random-PExact is strictly stronger than the
Exact model or not (assuming that P 6= NP).

The second result we gave is that even when the adversary knows all the learner’s coin
tosses in advance (the offline-Exact model), it does not gain any additional computational
power. This results also holds when the learner has the help of a membership oracle, but it
is not known whether this still holds when the membership oracle is limited, such as in [2].

References

[1] D. Angluin. Queries and concept learning. Machine Learning, 75(4):319-342, 1988.

[2] D. Angluin and D. Slonim. (1994). Randomly Fallible Teachers: Learning Monotone
DNF with an Incomplete Membership Oracle. Machine Learning, 14:7-26.

[3] Shai Ben-David, Eyal Kushilevitz, Yishay Mansour. Online Learning versus Offline
Learning. Machine Learning 29(1): 45-63, 1997.

[4] A. Blum. Separating distribution-free and mistake-bound learning models over the
boolean domain. SIAM Journal on Computing 23(5), pp. 990-1000, 1994.

[5] N. H. Bshouty. Exact learning of formulas in parallel. Machine Learning 26, pp. 25-41,
1997.

[6] N. H. Bshouty. A Booster for the PAExact Model.

9

[7] N. H. Bshouty, D. Gavinsky. PAC = PAExact and other Equivalent Models in Learning.
Proceedings of the 43th Annual Symposium on Foundations of Computer Science, pp.
167-176, 2002.

[8] N. H. Bshouty, J. Jackson, C. Tamon. Exploring learnability between exact and PAC.
Proceedings of the 15th Annual Conference on Computational Learning Theory, 2002.

[9] D. Gavinsky. Exact = PExact. 2004.
http://pages.cpsc.ucalgary.ca/∼gavinsky/papers/papers.html

[10] Y. Mansour and D. McAllester, Boosting using Branching Programs, Proceedings of the
13th Annual Conference on Computational Learning Theory, pp. 220-224, 2000.

[11] R. E. Schapire, The strength of weak learnability, Machine Learning, 5(2) pp. 197-227,
1990.

[12] L. G. Valiant. (1984) A theory of the learnable. communications of the ACM, 27:1134-
1142.

10

