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Abstract—We consider the problem of constructing pseudo-
random generators for read-once circuits. We give an explicit
construction of a pseudorandom generator for the class of
read-once constant depth circuits with unbounded fan-in AND,
OR, NOT and generalized modulo m gates, where m is an
arbitrary fixed constant. The seed length of our generator is
poly-logarithmic in the number of variables and the error.
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I. INTRODUCTION

The quest for circuit lower bounds originated in the 1980s
as a combinatorial approach to the P vs NP problem, and
has proved to be one the harder challenges in computa-
tional complexity. The term ’circuit lower bounds’ can be
interpreted in several ways. The weakest form is worst-
case hardness, where one needs to exhibit a function which
cannot be computed exactly by the given class of circuits.
A stronger notion is average-case hardness, where the
requirement is strengthened so that this function can not even
be approximated by the given class of circuits. The strongest
notion is that of exhibiting a pseudorandom generator for
the class of circuits. In many cases, average case hardness
can be used to construct pseudorandom generators [1], [2].
However, we note this is not always the case, in particular
when the class of circuits for which one can prove average
case hardness is (in a certain sense) too weak.

Formally, a pseudorandom generator (PRG for short)
for a class C of Boolean functions f : {0, 1}n →
{0, 1} is an explicit map G : {0, 1}s → {0, 1}n,
such that no function in C can distinguish a uniform
output of G from a uniform string in {0, 1}n. We say
G fools the class C with error ε if for any f ∈ C,∣∣Prx∈{0,1}n [f(x) = 1]− Pry∈{0,1}s [f(G(y)) = 1]

∣∣ ≤ ε.
The main challenge when constructing PRGs is to mini-

mize the seed length s and the error ε. We usually consider
a pseudorandom generator as good if its seed length is
logarithmic in n, since in such a case it can be derandomized
in polynomial time, by enumerating all possible seeds.
Pseudorandom generators have been a major object of study
in theoretical computer science for several decades, and have
found applications in the area of computational complexity,
cryptography, algorithms design and more. For more details,
we refer the reader to the excellent books [3], [4].

There is essentially just one general class of circuits where
strong average-case lower bounds are known: AC0, the class
of bounded-depth circuits with unbounded fan-in AND,OR
and NOT gates. This class represents parallel computation
with a bounded number of rounds, where basic computations
correspond to gates, and only trivial basic computations are
allowed (corresponding to AND,OR and NOT gates). A
sequence of works, culminating with the celebrated result
of Håstad [5], showed that AC0 circuits of sub-exponential
size cannot predict the parity of n bits with better than
exponentially small advantage. Nisan [1] used this average-
case hardness to construct pseudorandom generators against
AC0 with poly-logarithmic seed length.

Obviously, one would like to prove strong lower bounds
on more realistic models of parallel computation, where the
main challenge is to allow more general local computations,
for example, general symmetric gates. This amounts to
constant depth circuits with arbitrary symmetric gates; which
is known to also be equivalent to TC0, where arbitrary
threshold gates are allowed [6], [7]. Research on these prob-
lems has been extensive and lead to many ingenious ideas,
but no super-polynomial lower bounds for these classes
is known to date, and also no pseudorandom generator is
known.

Faced with this adversity, research has turned towards
studying more restricted models, with the goal of coming
up with new ideas for hard functions and pseudorandom
generators, and even more importantly, better proof tech-
niques. One line of research has been to allow arbitrary
constant depth, but limit the symmetric basic gates al-
lowed. This approach was essentially successful in only
one model of computation: ACC0[p], where in addition
to AND,OR,NOT gates also counting gates modulo p
are allowed. Razborov [8] and Smolensky [9] showed a
(weak form) of an average-case lower bound when p is
prime or prime power. Explicitly, they showed that such
circuits require exponential size to compute the sum of
the bits modulo q, where q is any fixed number co-prime
to p. In fact, they showed that such circuits cannot even
approximate the sum modulo q with very good accuracy.
However, these average-case lower bounds are too weak
to produce pseudorandom generators for ACC0[p], and this
remains an important open problem.



If one allows modular gates with non-prime modulus, then
all the previous techniques break down. While it is widely
believed that constant depth circuits with counting gates can-
not compute very simple functions (for example majority),
the best result to date is a relatively recent breakthrough
of Williams [10], who showed that such circuits cannot
compute all nondeterministic exponential time algorithms
(NEXP). Clearly, this state of affairs is far from optimal,
and in particular no average-case lower bounds or efficient
pseudorandom generators are known when general counting
gates are allowed.

A. Our results

In this work we restrict our attention to read-once circuits,
which is a limited model of computation where each gate in
the circuit has fan-out one. The study of read-once models
has been extensively studied in the context of branching
programs, but not as much in the context of circuits. Our
main result is an explicit pseudorandom generator which
fools read-once ACC0[m] circuits for any fixed m (not
necessarily prime).

We first define the model of computation exactly. A
Boolean circuit is represented by a directed acyclic graph;
the inputs are placed on the input nodes (nodes with in-
degree zero); the output on the output node (node with
out-degree zero); and basic gates are placed on non-input
nodes which define the function that the circuit computes.
A circuit is read-once if the out-degree of each node is at
most one. The depth of a circuit is the maximal length of a
path between inputs and output.

In our case, a read-once ACC0[m] circuit, where m ≥ 1
is a fixed integer, is a read-once circuit with several types
of basic gates: the standard AND,OR,NOT gates and
also MODm gates. A MODm gate computes some linear
combination of its inputs modulo m, and its output depends
only on the outcome of this linear combination in Zm
(in technical terms, these are commonly called generalized
MODm gates). That is, a function g : {0, 1}t → {0, 1} is a
MODm gate if g(x) = 1〈a,x〉 mod m∈A, where a ∈ Ztm is a
linear combination; 〈a, x〉 =

∑t
i=1 aixi is the inner product;

and A ⊆ Zm is an accepting set. When we need to specify
the linear combination and the accepting set, we denote this
by g = MODa,A

m .

Theorem 1 (Main theorem). Let m denote the modulus,
d the depth of a circuit, n the number of variables and
ε the required error. There exists an explicit generator
G : {0, 1}s → {0, 1}n where s = 2O(d2) · (m log n)O(d) ·
log(1/ε)O(1) such that the following holds. If C : {0, 1}n →
{0, 1} is a depth d read-once ACC0[m] circuit then∣∣∣∣ Pr

x∈{0,1}n
[C(x) = 1]− Pr

y∈{0,1}s
[C(G(y)) = 1]

∣∣∣∣ ≤ ε.

B. Related results

As we stated already, the study of read-once models is
common in the context of branching programs. A branching
program is a combinatorial model for an algorithm with
small space (memory) usage. The main question in this area
is the RL vs L problem, which asks whether randomization
help in computation in the context of small space algorithms.
This area has been very successful, and pseudorandom
generators with poly-logarithmic seed length are known for
small space branching programs [11], [12], [13], [14].

The relation to read-once circuits is simple. It is easy to
see that any read-once ACC0 circuit can be converted to
a read-once branching program which uses only a constant
amount of space, by evaluating the gates in a depth-first
search. Thus, one may hope to use the previous results
for small space branching programs in order to construct
pseudorandom generators for read-once circuits. The main
obstacle is that the pseudorandom generators for branching
programs mentioned above, crucially require the input bits
to be read in a prescribed known order; while a read-once
circuit may use the bits in any order. Thus, a more fitting
model for comparison is that of branching programs where
each bit is read once, but in an arbitrary and unknown order.
This more general problem was studied by [15] who gave a
pseudorandom generator whose seed length is cn for some
1/2 < c < 1. Note that this generator saves only a constant
factor in the amount of randomness required; contrast this
with the previous scenario, when the order of bits read is
known, where there exist explicit pseudorandom generators
with just poly-logarithmic seed length.

Some special cases of read-once ACC0[m] circuits were
studied in previous works. The works of [16], [17] studied
pseudorandom generators which fool the sum of random
bits modulo m; this corresponds to a read-once depth-one
ACC0[m] circuit with a single MODm gate. The work of
[18] studied read-once DNFs; this corresponds to a read-
once depth-two AC0 circuit. In both cases the authors gave
constructions with logarithmic seed length.

Paper organization: We start with some preliminaries
in Section II and then define our PRG formally in Section
III. We give an overview of the analysis in Section IV. The
detailed analysis follows in subsequent sections, with the
main result appearing in Section VII. For lack of space, we
omit many proofs.

II. DEFINITIONS AND PRELIMINARIES

Given two distributions µ and ν defined on a finite set
X , we denote the statistical distance between µ and ν by
dTV (µ, ν). For ε > 0, we say that µ and ν are ε-close if
dTV (µ, ν) ≤ ε. Given random variables Y and Z taking
values over the same finite set X , we define the statistical
distance between Y and Z to be the statistical distance
between their distributions. Also, for ε > 0 we say that
Y and Z are ε-close if their distributions are ε-close.



Definition 2 (Fooling). Let R be a fixed finite set and n ∈
N, ε > 0 be parameters. Given a function f : {0, 1}n → R
and a distribution µ over {0, 1}n. We say that µ ε-fools f
if the random variables f(Y ) and f(Z) are ε-close, where
Y is a uniformly distributed element of {0, 1}n and Z is
a random distribution drawn according to distribution µ.
Given a tuple of functions f = (f1, . . . , f`), we say that µ
ε-fools f if it fools the function F : {0, 1}n → R` defined
as F (a) = (f1(a), · · · , f`(a)). For a family of functions
F mapping {0, 1}n to R, we say that µ ε-fools F if µ
ε-fools f for each f ∈ F . Finally, given a function g :
{0, 1}n → C, we say that µ ε-fools g in expectation if∣∣EY∼{0,1}n [g(Y )]− EZ∼µ[g(Z)]

∣∣ ≤ ε.
Fact 3. Fix ε > 0. Let F : {0, 1}n → R where R is a finite
set and let g : R → C s.t. |g(a)| ≤ 1 for each a ∈ R. If a
distribution µ over {0, 1}n ε-fools f , then it (2ε)-fools g ◦f
in expectation.

Definition 4 (Pseudorandom Generators (PRGs)). Let R be
a fixed finite set and n ∈ N, ε > 0 be parameters. Fix a
family of functions F mapping {0, 1}n to R. A function
G : {0, 1}s → {0, 1}n is said to be an ε-Pseudorandom
Generator (PRG) for F if µG ε-fools F , where µG is the
distribution of the random variable G(Y ′), where Y ′ is
a uniformly random element of {0, 1}s. The quantity s is
called the seedlength of G.

Definition 5 (Almost k-wise indistinguishability). Fix a
finite set X and parameters t, k ∈ N and δ > 0. Given
two distributions µ, ν over the product set Xt, we say that
µ and ν are δ-close to k-wise indistinguishable, if for every
subset S ⊆ [t] of size at most k, the marginals µ |S and
ν |S are δ-close.

Quite often, we will show that to fool functions of a
certain form, it suffices to fool related functions that are
easier to analyze. We state a few such reductions below.
The proofs are omitted.

Fact 6. Let f : {0, 1}n → Zm and ω = e2πi/m. We define
ωf : {0, 1}n → C as follows: ωf (a) = ωf(a). Then, a
distribution µ ε-fools f iff µ ε′-fools the function ωα·f in
expectation for each α ∈ Zm, where ε′ = ε/2m.

Lemma 7. Let C1, . . . , Ck be arbitrary Boolean functions.
Then any distribution that ε-fools all functions of the form
∧(Cj : j ∈ S) for S ⊆ [k] also (3k · ε)-fools the tuple
(C1, . . . , Ck).

Lemma 8. Let C1, . . . , Ck be arbitrary functions taking
values in Zm. Then any distribution that ε-fools all functions
of the form

∑
i αi ·Ci for (α1, . . . , αk) ∈ Zkm also (mk/2 ·ε)-

fools the tuple (C1, . . . , Ck).

A. Deviation Inequalities
We need the following form of the Chernoff-Hoeffding

bound, which follows from [19, Theorem 1.2].

Fact 9. Let Z1, . . . , Zt be independent [0, 1]-valued random
variables and Z =

∑t
i=1 Zi. Assume that E[Z] = M . Then,

Pr[Z > M +A],Pr[Z < M −A] ≤ exp
{
− A2

2(M+A)

}
.

The following lemma was proved in [16].1

Lemma 10. Fix δ > 0 and k ∈ N s.t. k is even. Let
Y1, . . . , Yt be a collection of independent {0, 1}-valued
random variables and let Y ′1 , . . . , Y

′
t be a collection of

{0, 1}-valued random variables s.t. given any subset S ⊆ [t]
of size at most k, |E[

∏
i∈S Yi] − E[

∏
i∈S Y

′
i ]| ≤ δ. Let

Y =
∑t
i=1 Yi and Y ′ =

∑t
i=1 Y

′
i . Assume, moreover that

E[Y ] = M . Then, for any A > 0 we have, Pr[|Y ′ −M | ≥
A] ≤ 8

(
kM+k2

A2

)k/2
+ (t+M)kδ.

The above also implies similar bounds for [0, 1]-valued
random variables, the proof of which we omit.

Corollary 11. Fix δ > 0 and k ∈ N s.t. k is even.
Let Y1, . . . , Yt be a collection of independent [0, 1]-valued
random variables and let Y ′1 , . . . , Y

′
t be a collection of [0, 1]-

valued random variables s.t. given any subset S ⊆ [t]
of size at most k, |E[

∏
i∈S Yi] − E[

∏
i∈S Y

′
i ]| ≤ δ. Let

Y =
∑t
i=1 Yi and Y ′ =

∑t
i=1 Y

′
i . Assume, moreover, that

E[Y ] = M . Then, for any A > 0 we have, Pr[|Y ′ −M | ≥
A] ≤ 8

(
4(kM+k2)

A2

)k/2
+ (t+M)kδ + exp

{
− A2

8(M+2A)

}
.

B. The class of functions we will fool

The class of functions we consider are those computed
by a class of circuits defined on n boolean variables. These
circuits are made up of AND and MODm gates, where m
is some fixed constant. In general, a MODm gate applied
to inputs y1, . . . , yt accepts iff

∑t
i=1 αiyi ∈ A for some

fixed α1, . . . , αt ∈ Zm and A ⊆ Zm; we call such gates
Boolean MODm gates. We also consider MODm gates that
just output a Zm-linear combination of their inputs; such
gates are called Zm-valued MODm gates.

For any constant d ∈ N and n ∈ N, we denote by
Cd the class of read-once depth d-circuits made up of
alternating layers of AND and MODm gates where the
intermediate MODm gates in the circuit are boolean MODm

gates, and the output gate is either an AND gate or a Zm-
valued MODm gate. Thus, we allow the circuit to output
an arbitrary element of Zm. We allow the variables to be
negated at the input. Given an arbitrary read-once ACC00[m]
circuit C of depth d, there is a C ′ ∈ C2d s.t. any distribution
that ε-fools C ′ also ε-fools C (for any ε > 0).

Given C ∈ Cd, we say that a circuit C = ∧(C1, . . . , Ct)
if C is an AND of subcircuits C1, . . . , Ct. We also say that
C = MODm(C1, . . . , Ct) if C is a (boolean or Zm-valued)
MODm gate applied to subcircuits C1, . . . , Ct. For a ∈ Ztm,

1Strictly speaking, the proof in [16] also assumes that the marginal of
Yi is the same as that of Y ′

i for each i. However, it is easy to check that
their proof works in the above, more general, scenario.



we say C = MODa
m(C1, . . . , Ct) for a ∈ Ztm if C is a Zm-

valued MODm gate applied to C1, . . . , Ct with coefficients
a1, . . . , at; similarly, C = MODa,A

m (C1, . . . , Ct) for a ∈
Ztm and A ⊆ Zm if C is a boolean MODm gate applied to
C1, . . . , Ct with coefficients a1, . . . , at and accepting set A.

Given circuits C,C ′ ∈ Cd, we say that C ′ is a projection
of C if C ′ is obtained from C by possibly setting some
input variables to 0 or 1 and possibly negating some input
variables. Given circuits C,C ′ ∈ Cd, we call C ′ a modi-
fication of the circuit C if C ′ is obtained from C in the
following way: If C = ∧(C1, . . . , Ct), then C ′ = ∧(C ′i :
i ∈ S ⊆ [t]), where each C ′i is a projection of Ci. If
C = MODm(C1, . . . , Ct), then C ′ = MODm(C ′1, . . . , C

′
t),

where each C ′i is a projection of Ci, and the coefficients
corresponding to the output MODm-gates of C and C ′ can
be different.

We now define the class of circuits we are going to fool.
Let n be a growing parameter and d, k ∈ N be constants. We
denote by Cd,k the set of all k-tuples of circuits (C1, . . . , Ck)
s.t. there is a circuit C ∈ Cd with the property that for each
j ∈ [k], Cj is a modification of C. Clearly, each tuple of
circuits (C1, . . . , Ck) gives us a tuple of functions mapping
{0, 1}n to {0, 1} or Zm.

We now state the more technical main result, which
implies Theorem 1.

Theorem 12. Fix constants k, d ∈ N. For any n ∈ N and
0 < ε ≤ 1/n, there is an explcit PRG Gd,k,ε : {0, 1}s →
{0, 1}n that ε-fools Cd,k with error at most ε and has
seedlength s = 2O(d2) · (km log n)O(d) · (log(1/ε))O(1).

C. The case d = 1

The proof of Theorem 12 is by induction on the depth d of
the circuits considered. The base case of the induction, d =
1, follows from the result of [16] stated below. (We could
also use an older result of Nisan [13] for the parameters that
we are interested in.)

Theorem 13. For any n ∈ N and ε > 0, there is an
explicit PRG G1 : {0, 1}s1 → {0, 1}n s.t. G1 ε-fools any
function f : {0, 1}n → Zm, where f(x) =

∑
i αixi, with

α1, . . . , αn ∈ Zm. Furthermore, the seedlength of G1 is
O(log n+ log(1/ε) log log(1/ε)).

It is not hard to see that the generator given by Theorem
13 in fact fools a small number of modifications of the same
circuit. If the top gate is a MODm gate it follows from
Lemma 8, and if the top gate is an AND gate it follows
from Lemma 7. We omit the detailed proof.

Corollary 14. Fix constant k ∈ N. For any n ∈ N and
0 < ε < 1/n, there is an explicit PRG G1,k,ε that ε-fools
C1,k with error at most ε. The seedlength of G1,k,ε is at
most (km)2 log n · (log(1/ε))2.

III. THE CONSTRUCTION OF THE PRG

In this section, we present the formal construction of the
PRG Gd,k,ε and analyze its seedlength. The construction
will be fully analyzed in Section VII.

The construction is inductive based on the depth d of the
circuits. We will define, by induction on d, a PRG Gd,k,ε
with seedlength at most 2100d

2

(km log n)10d(log(1/ε))2.
For the base case (d = 1), we use the PRG from Corollary
14. Clearly, G1,k,ε has the required seedlength.

Now, fix d > 1 and assume that for each constant k and
ε ≤ 1/n, we have defined the PRG Gd−1,k,ε (for every
k) with seedlength at most 2100(d−1)

2

(km log n)10(d−1) ·
(log(1/ε))2. Let δ = 1/nc

′(km)5 log(1/ε) where c′ = 106.
The PRG Gd,k,ε is obtained by combining the outputs of
several PRGs Gid,k,ε (i ∈ {0, . . . , log n}) which we now
define.

For i ∈ {0, . . . , log n}, the PRG Gid,k,ε uses as random
seed mutually independent strings y0, . . . , yi+1, where each
yj (j ∈ {0, . . . , i + 1}) is a seed to the PRG Gd−1,2k,δ .
Let a′j denote Gd−1,2k,δ(yj) for j ∈ {0, . . . , i + 1}.
Moreover, let I ⊆ [n] be the set whose characteristic
vector is

∧
1≤j≤i a

′
j (if i = 0, we assume I = [n]).

Then, Gid,k,ε(y0, . . . , yi+1) is defined to be z, where
z|I = a′0 and z|I = a′i+1. That is, we ensure that the
output of Gid,k,ε on the coordinates inside and outside I
are projections of outputs of the PRG Gd−1,2k,δ on the
independent random seeds y0, yi+1 to these coordinates.
Using the inductive hypothesis, we see that the seedlength
of Gd−1,2k,δ is at most 2100d

2−100d(2km log n)10d−10 ·
(log(1/δ))2 = O(2100d

2−100d210d(km log n)10d−10 ·
((km)5 log n log(1/ε))2) =
O(2100d

2

(km)10d(log n)10d−8(log(1/ε))2). Thus,
the seedlength of Gid,k,ε is at most (log n +

2) · O(2100d
2

(km)10d(log n)10d−8(log(1/ε))2) =
O(2100d

2

(km)10d(log n)10d−7(log(1/ε))2).
The PRG Gd,k,ε takes as input mutually

independent strings y′0, . . . , y
′
logn where for each

i ∈ {0, . . . , log n}, the string y′i is a seed to
Gid,k,ε. Then, we set Gd,k,ε(y

′
0, . . . , y

′
logn) to be⊕logn

i=0 Gid,k,ε(y
′
i). The seedlength of Gd,k,ε is at most

(log n + 1) · O(2100d
2

(km)10d(log n)10d−7(log(1/ε))2) ≤
2100d

2

(km log n)10d · (log(1/ε))2, and hence the seedlength
of Gd,k,ε still obeys the inductive claim.

IV. PROOF OVERVIEW

We now describe the main ideas that come into the proof
of Theorem 12. The proof is by an induction on the depth of
the circuit. Recall that we need to construct a pseudorandom
generator which fools a k-tuple of modifications of a read-
once circuit. For the sake of clearness, we first describe
our approach in the case of k = 1 which corresponds to a
single read-once circuit. We then explain how these ideas can
be expanded to allow for a few simultaneous modifications



of the same read-once circuit (which as stated already, is
needed for our inductive step). We will also hide the exact
dependency of the parameters on m in this proof overview.

Let C = g(C1(x1), . . . , Ct(xt)) be a read-once cir-
cuit, where g ∈ {∧,MODm}. Let us first consider the
(more interesting) case when g = MODm. Assume that
C(x) =

∑t
i=1 αiCi(x). By Fact 6, to fool C, it suffices

to fool the function ωα·C(x) = ω
∑
i ·

∑
i ααiCi(x) for each

α ∈ Zm. Fix an α ∈ Zm. Let F (x) denote ωαC(x) and let
C ′i(x), Fi(x) denote ααiCi(x), ωααiCi(x) respectively. We
define the weight of F to be wt(F ) :=

∑
i Var(Fi). A

simple but crucial observation we use is that when wt(F )
is large, then F is unbiased: more formally, |Ex[F (x)]| ≤
exp{−Ω(wt(F ))}.

Our PRG construction (and analysis) are naturally parti-
tioned into two parts depending whether wt(F ) is small (at
most c log(1/ε)) or large (at least c log(1/ε)), where c > 0
is an appropriately chosen constant. The generators for the
low-weight and high-weight cases are then combined to give
a single generator which handles both cases simultaneously.
This approach has been used successfully before in several
contexts, for example in [16], [17], [18], and is also instru-
mental in our work.

Low weight case: When the weight of C is small,
(at most c log(1/ε)), then we show that a PRG G′ for
depth d−1 (with somewhat smaller error δ) already ε-fools
C. Intuitively, this is because if F has low weight, then
there is a fixed z ∈ Ztm s.t. for most inputs x, the vector
(C ′1(x), . . . , C ′t(x)) is close to z in Hamming distance (at
distance O(log(1/ε))). We can use this to approximate F
by low-degree polynomials in the Fi (which are in turn low-
degree polynomials in C ′i). Now, since the generator G′ fools
ANDs of the C ′i, it also fools these low-degree polynomials
and hence the function F . The formal proof proceeds by
construction of sandwiching polynomials, similar to the
work of [20], [18].

High weight case: Assume now that wt(F ) is large (at
least c log(1/ε)). Note that in this case |E[F (x)]| � ε and
it is sufficient to show that this holds under the output of our
PRG as well. Moreover, also note that for any function F ′

such that wt(F ′) ≥ 2 log(1/ε) (say), |E[F ′(x)]| is ε-close
to |E[F (x)]|.

The idea is to show that if we randomly restrict F suitably,
then w.h.p. we obtain a function F ′ s.t. wt(F ′) is roughly a
large constant multiple of log(1/ε). We then fool F ′ (on the
unset input bits) using the PRG for the low-weight case. Our
final PRG construction is a derandomization of this random
restriction argument.

Consider now a random restriction, where we set each bit
of x to 0 with probability 1/2−p, to 1 with probability 1/2−
p, or keep it alive with probability p. It is not hard to see
that random restrictions decrease wt(F ) (since they decrease
the variance of each Fi), and hence there exists a probability
1/n < p < 1 for which the restricted circuit has on average

low weight (say, between c log(1/ε)/4 and c log(1/ε)/2).
We can even assume that p = 2−` for some 0 ≤ ` ≤ log(n).
Moreover, we can ensure that the weight falls in this range
with probability 1− ε by a Chernoff argument. Thus, if G′

is the generator for the low-weight case, it will fool F ′; and
since F ′ has weight above c log(1/ε)/4, it will have similar
distribution to that of C (for large enough c).

The main challenge is to how to derandomize the random
restriction argument. Assume first we know the correct value
of p. Let ρ be a random restriction. It will be useful to think
of ρ as composed from two parts: the set of live variables
I ∈ {0, 1}n, where Pr[Ii = 1] = p; and an assignment to
the variables a ∈ {0, 1}n which will be used for the fixed
variables. Let I ·x be defined as the coordinate-wise AND of
v and x. Then the value of x ∈ {0, 1}n under the restriction
ρ = (I, a) is given by

xρ = I · x+ (¬I) · a.

The function F under the restriction ρ is given by Fρ(x) =
F (xρ). Now, the average over restrictions ρ of the weight
of Fρ is

E
ρ
[wt(Fρ)] =

t∑
i=1

E
ρ
[Var((Fi)ρ)]

Crucially, the average variance of (Fi)ρ in the above formula
can be expressed as

E
ρ
[Var((Fi)ρ)] = E

(I,a)
[E
x

[(Fi)ρ(x)] · E
y
[(Fi)ρ(x)]]

= 1− E
x,y

[E
ρ
[(Fi)ρ(x) · (Fi)ρ(x)]]

Fix any x, y. We would like to replace the random choice of
I, a by a pseudorandom choice so that the above expression
remains the same. Assume for now I is fixed, and we just
wish to derandomize the choice of a. The key observation
is that to preserve Ea[(Fi)ρ(x) · (Fi)ρ(x)], we only need
to fool the output distribution of of two modifications of a
read-once circuit Ci of depth d − 1 (this is precisely why
we need to consider tuples of circuits in general). Thus,
we can use our generator for depth d − 1 and k = 2 to
generate a, without changing Eρ[Var(Fi)] by much. In order
to choose I pseudo-randomly, we write I = I1 ·. . .·I` where
I1, . . . , I` ∈ {0, 1}n are uniform, and replace each one by
an independent output of the same generator for depth d−1
and k = 2.

The above approach suffices if we only needed a pseu-
dorandom distribution which gives a suitable low weight on
average. However, to make the argument work we need the
stronger property that the weight is of the order of log(1/ε)
with probability 1−ε. This is achieved by a similar argument
which considers the joint distribution of the variance of a
small number of Fi, and is similar in spirit to concentration
bounds derived from bounded moments.



The above argument assumed that the correct probability
of restriction p = 2−` is known. We wish, however, to
construct a pseudorandom generator which would work for
any value of p. To do so, we construct a pseudorandom
generator for all choices of 0 ≤ ` ≤ log(n), each using
an independent seed, and the combine them together (by
xoring them) in order to create a single generator which
works for all values of p. This multiplies the seed length by
an additional log(n) factor for each level of the circuit.

This finishes the argument when the top-level gate g of C
is a MODm gate. When it is an AND gate, things are much
simpler. If C = ∧(C1, . . . , Ct) is read-once and wt(C) :=∑
i Var(Ci) is large, then it is easy to see that C almost

always takes the value 0. Hence, in this case, only the low-
weight case is relevant and this is handled analogously to
the low-weight MODm case.

V. LOW WEIGHT CASES

In this section, we prove a few results that will allow us
to show that the PRG Gd,k,ε from Section V-B fools low
weight functions. We first need a basic lemma.

A. A low weight lemma

For this section, fix a constant-sized set X . We will
consider functions defined on domain Xt where t is a
growing parameter. Given a distribution ν over a set X ,
we define V(ν) = 1 − maxx∈X ν(x). Let m1 denote |X|.
The following is easy to check.

Fact 15. Let X be a random variable taking values in Zm.
Then V(X) ≤ m2 ·Var(e

2πi
m ·X).

Let µ = µ1×µ2×· · ·×µt be a product distribution on Xt.
The lemma below states that if V(µ) is not too large, and µ′

is a distribution that is δ-close to k-wise indistinguishable
from µ for reasonably large k and small δ, then µ and µ′

are in fact statistically indistinguishable. Formally,

Lemma 16. Let F : Xt → C be s.t. |F (x1, . . . , xt)| ≤ 1
for all x1, . . . , xt. Assume the product distribution µ = µ1×
µ2 × · · · × µt satisfies

∑
iV(µi) ≤ c log(1/ε1) for some

c ≥ 1 and ε1 > 0. Let µ′ be any distribution on Xt s.t.
µ and µ′ are ε2-close to (c1 log 1

ε1
)-wise indistinguishable,

where ε2 = t−c1 log 1
ε1 , where c1 = 500m2

1c. Then we have
|Eµ′ [F ]− Eµ[F ]| ≤ ε1.

The proof of the above lemma is through a modification
of the standard sandwiching polynomials technique ([20],
[18]). We omit the proof in this extended abstract.

B. PRG for depth d− 1 fools low-weight circuits

We are ready to prove the following theorem, which deals
with the case when the output gate of the circuit we are
trying to fool is an AND. We state a more general result.
For lack of space, we omit the proof.

Theorem 17. For all p ∈ [t], let Cp =
MODβp

m (Cp,1, . . . , Cp,sp), where sp ∈ N, βp ∈ Zspm
and Cp,q

′s are arbitrary functions that depend on mutually
disjoint sets of variables. Let C = ∧(C1, . . . , Ct). For all
j ∈ [k], let Cj = ∧(Cjp : p ∈ Tj), where Tj ⊆ [t] and every
Cjp is a projection of Cp (that is, Cj is a projection of C).
Then for any ε > 0 and

δ =

(
εk lnm+2 ln t

t2k ·mk2

)10000

the following holds: If µ is a distribution that δ-fools
all tuples of the form (C̃1, . . . , C̃k), where each C̃j is a
modification of MODm(Cp,q : p ∈ [t], q ∈ [sp]), then µ also
ε-fools the tuple (C1, . . . , Ck).

When the output gate is MODm the analysis is more com-
plicated, and we will have to treat separately the low-weight
and the high-weight cases. The following is a statement for
the (simpler) low-weight case.

Theorem 18. For all p ∈ [t], let Cp = ∧(Cp,1, . . . , Cp,sp),
where sp ∈ N and Cp,q

′s are arbitrary functions that
depend on mutually disjoint sets of variables. Let C =
MODm(C1, . . . , Ct). For all j ∈ [k], let Tj ⊆ [t]; for every
p ∈ Tj , let Cjp be a projection of Cp. For all p ∈ [t], let

fp =
∑
j:Tj3p

βjp · Cjp,

where βjp ∈ Zm. Then for any ε > 0, c ≥ 1 and δ =

ε800cm
4(k+log t) the following holds: If

t∑
p=1

Var(e
2πi
m fp) ≤ c log(1/ε)

and µ is a distribution that δ-fools all tuples of the form
(C̃1, . . . , C̃k), where each C̃j is a projection of ∧(Cp,q :
p ∈ [t], q ∈ [sp]), then µ also ε-fools in expectation the
function e

2πi
m

∑t
p=1 fp .

Proof: We will derive a chain of sufficient conditions
to guarantee ε-fooling in expectation of e

2πi
m

∑t
p=1 fp .

Let the input distribution be uniform, and view fp
′s as

random variables taking values in Zm. Then by Fact 15,∑t
p=1 V(fp) ≤ cm2 log(1/ε), and Lemma 16 implies that

for ε1 = t−500cm
4 log 1

ε and w = 500cm4 log 1
ε it holds that

any distribution that ε1-fools any tuple (fp : p ∈ U) for U ⊆
[t], |U | ≤ w, must also ε-fool in expectation e

2πi
m

∑t
p=1 fp .

From the definition of fp
′s, the latter is also guaranteed by

ε1-fooling of the tuples (Cjp : p ∈ U, j ∈ [k]).
Now we apply Lemma 7, concluding that for ε2 =

ε1/3
kw, any distribution that ε2-fools all functions of the

form ∧(Cjp : (p, j) ∈ S) for S ⊆ U × [k] ⊆ [t] × [k] also
ε-fools in expectation e

2πi
m

∑t
p=1 fp .

Note that any function like ∧(Cjp : (p, j) ∈ S) for S ⊆
[t] × [k] can be written as ∧(C̃j : j ∈ [k]), where each



C̃j is a projection of ∧(Cp,q : p ∈ [t], q ∈ [sp]). Hence,
any distribution that ε2-fools the tuples (C̃1, . . . , C̃k) must
ε-fools in expectation e

2πi
m

∑t
p=1 fp . The result follows by

setting ε2 := δ.

VI. THE HIGH-WEIGHT CASE

A. Random restrictions

Definition 19 (Restrictions). A restriction on the set of
variables X = {x1, . . . , xn} is a pair ρ = (I, w), where
I, w ∈ {0, 1}n. We will think of I as a subset of X . The
set of all restrictions on the set of variables X is denoted
R(X). A random restriction is a distribution R over the set
R(X).

Given a restriction ρ = (I, a) over the set X , we define
the function f |ρ as follows. Given b ∈ {0, 1}n, define input
bρ ∈ {0, 1}n so that for each i ∈ [n], bρi = bi if i ∈ I and
ai otherwise. Given function f : {0, 1}n → A, for any set
A, we define f |ρ : {0, 1}n → A so that for any b ∈ {0, 1}n,
f |ρ(b) := f(bρ). We point out that in the literature, f |ρ
is often thought of as a function defined on the variables
{xi | i ∈ I} only: our definition is somewhat different, and
this will help in some technical matters later on.

Fixing parameter r ∈ [0, 1], we define the random restric-
tion Rr as follows. To sample ρ ∼ Rr, we pick I ∈ {0, 1}n
by set each Ii = 1 independently with probability r and 0
with probability 1 − r; independently, we pick a ∈ {0, 1}n
uniformly at random; the random restriction sampled is
ρ = (I, a).

Fix a function F : {0, 1}n → C. We need to understand
the behavior of the variance of F |ρ where ρ ∼ Rr.
The following lemma essentially follows from the proof of
[21, Lemma 6]. For background on Fourier Analysis over
{0, 1}n, we refer the reader to Ryan O’Donnell’s lecture
notes [22].

Lemma 20. Fix r ∈ [0, 1] and F : {0, 1}n → C. We have
Eρ∼Rr [Var(F |ρ)] =

∑
∅6=S⊆[n] |F̂ (S)|2(1− (1− r)|S|).

B. The high-weight lemma

In this section, we prove an integral lemma in the proof of
the main theorem in Section VII. We will assume the follow-
ing notation throughout the rest of this section. Say we have
(C1, . . . , Ck) ∈ Cd,k s.t. each Cj (j ∈ [k]) is a modification
of a circuit C ∈ Cd where C = MODm(C1, . . . , Ct). For
each p ∈ [t], let Cp = ∧(Cp,q : q ∈ [sp]), where sp ∈ N.
Similarly, for each j ∈ [k], let Cj = MODm(Cj1 , . . . , C

j
t )

and for each p ∈ [t], Cjp = ∧(Cjp,q : q ∈ [sp]).
For a fixed choice of α1, . . . , αk ∈ Zm define f :=∑k
j=1 αjC

j . Since Cj = MODm(Cj1 , . . . , C
j
t ), we may

write Cj =
∑t
p=1 γ

j
pC

j
p for γj1, . . . , γ

j
t ∈ Zm. Substituting

in the definition of f above and reordering summations,
we see that f =

∑t
p=1

∑k
j=1 β

j
pC

j
p for some βjp ∈ Zm

where j ∈ [k] and p ∈ [t]. Define, for each p ∈ [t], define
fp : {0, 1}n → Zm by fp =

∑k
j=1 β

j
pC

j
p . Note that the

functions fp depend on pairwise disjoint sets of variables.
Finally, fix an α ∈ Zm and consider F = ωα

∑
p fp . Let Fp

(p ∈ [t]) denote the function ωα·fp .

Lemma 21. Assume we have (C1, . . . , Ck) ∈ Cd,k and
fp, Fp (p ∈ [t]) and f, F as above. Furthermore, say that
wt(F ) ≥ c log(1/ε2), where c = 1000. Also, assume that
for any k ∈ N and δ > 0, the PRG Gd−1,k,δ δ-fools Cd−1,k.
Then, there is an i ∈ [log n] s.t. for each a ∈ {0, 1}n,
the PRG Gid,k,ε ε2-fools F (x ⊕ a) in expectation, where
ε2 = ε/2mk/2+1.

Proof: We first note that when wt(F ) is quite large,
|Eb[F (b)]| is small, where b is chosen uniformly at random.
This follows from the following claim, whose proof is
omitted.

Claim 22. Assume we have a function G : {0, 1}n → C s.t.
G =

∑s
p=1Gp, where Gp = ωgp amd gp : {0, 1}n → Zm

for p ∈ [s]. Moreover, assume that for p1 6= p2, the functions
gp1 and gp2 depend on disjoint sets of variables. Then, we
have |Eb[G(b)]| ≤ e−

1
2 (

∑
p Var(Gp)).

Fix a ∈ {0, 1}n. For any function H defined on {0, 1}n,
we denote by Ha the function H(x⊕ a). Note that for any
a ∈ {0, 1}n, we have wt(F a(x)) =

∑
p∈[t] Var(F ap (x)) =∑

p∈[t] Var(Fp) = wt(F ) ≥ c log(1/ε2). In particular,
Claim 22 implies that for every a ∈ {0, 1}n, |Eb[F a(b]| ≤
e−

1
2

∑
p∈[t] Var(Fp) = e−wt(F )/2 < ε2/2. Recall that we need

to show that for some i ∈ [log n], we need to show that
Gid,k,ε ε2-fools F a in expectation for every a ∈ {0, 1}n.
Since Claim 22 tells us that |E[F a(x)]| ≤ ε2/2, to show
that Gid,k,ε ε2-fools the function F a(x) in expectation, it
suffices to show that for a random input seed y′i to PRG
Gid,k,ε, |Ey′i [F

a(Gid,k,ε(y
′
i))]| ≤ ε2/2.

We therefore try to prove the above. Recall the defi-
nition of Gid,k,ε: the seed y′i of Gi consists of indepen-
dent seeds y0, . . . , yi+1 for PRG Gd−1,2k,δ , where δ =

1/nc
′(km)5 log(1/ε) and c′ is a constant. For j ∈ [i+1]∪{0},

let a′j denote Gd−1,2k,δ(yj) and let I ⊆ [n] be the set whose
characteristic vector is a′1 ∧ · · · ∧ a′i. The output of the PRG
Gid,k,ε(y

′
i) = z where z|I = a′0 and z|I = a′i+2.

We will take a slightly different view of Gid,2k,δ .
Given a0, . . . , ai ∈ {0, 1}n, we define the restriction
ρ(a0, . . . , ai) ∈ R(X) as follows: let J ∈ {0, 1}n be
a1 ∧ · · · ∧ ai; we define ρ(a0, . . . , ai) to be (J, a0). It is
easy to check that for any input seed y′i to PRG Gid,k,ε and
any function f defined on {0, 1}n, we have f(Gid,k,ε(y

′
i)) =

f |ρ′i(a
′
i+1), where ρ′i = ρ(a′0, . . . , a

′
i) and a′0, . . . , a

′
i+1 are

as defined above. Note that ρ′i and a′i+1 are independent.
Hence, we need to prove that |Eρ′i,a′i+1

[F a|ρ′i(a
′
i+1)]| ≤

ε2/2. (∗)
We will prove (∗) in two steps: first, we show that there is

an i ∈ [log n] such that w.h.p. over the choice of ρ′ as above,
the quantity

∑
p Var(F ap |ρ′) is a large, but constant, multiple



of log(1/ε2); we then argue that if this occurs, then the left
hand side of (∗) is very small. The first of these statements
is captured in the following lemma, which is proved in the
next section.

Lemma 23. Let Fp (p ∈ [t]) be as defined above. For
i ∈ [log n], let R be the random restriction that samples
the outputs a′0, . . . , a

′
i of the PRG Gd−1,2k,δ on indepen-

dent random seeds and outputs ρ′i = ρ(a′0, . . . , a
′
i), where

δ ≤ 1/n10 log(1/ε2). Then, there exists an i ∈ [log n] such
that for any a ∈ {0, 1}n, Prρ′i∼R[

∑
p∈[t] Var(F ap |ρ′i) 6∈

[250 log(1/ε2), 2000 log(1/ε2)]] ≤ ε22.

Call a restriction ρ′ regular if
∑
p∈[t] Var(F ap |ρ′) ∈

[250 log(1/ε2), 2000 log(1/ε2)]. Fix any regular ρ′. We will
show that |Ea′i+1

[F a|ρ′(a′i+1)]| is small. Thus, we know,
by Claim 22, that for a uniformly random b ∈ {0, 1}n,
|Eb[F a|ρ′(b)]| ≤ e−

1
2 (

∑
p Var(Fap |ρ′ )) < ε22.

Consider the tuple (C1,a|ρ′ , . . . , Ck,a|ρ′) where
Cj,a(x) = Cj(x ⊕ a). Since each Cj,a|ρ′ is a
modification of the circuit Ca|ρ′ ∈ Cd, we see that
(C1,a|ρ′ , . . . , Ck,a|ρ′) ∈ Cd,k. Hence, by applying
Theorem 18, we see that Gid−1,2k,δ ε2/8-fools the
tuple (C1,a|ρ′ , . . . , Ck,a|ρ′) and hence, by Fact 3, we see
that Gd−1,2k,δ ε2/4-fools F a|ρ′ in expectation as well. In
particular, since a′i+1 is the output of the PRG Gd−1,2k,δ
on a random seed, we see that

| E
a′i+1

[F a|ρ′(a′i+1)]| ≤ |E
b
[F a|ρ′(b)]|+ε2/4 ≤ ε22+ε2/4 (1)

where the second inequality is a consequence of the regu-
larity of ρ′. Now, we are ready to prove (∗). Fix i as guar-
anteed by Lemma 23. We have |Eρ′i,a′i+1

[F a|ρ′i(a
′
i+1)]| ≤

Prρ′i [ρ
′
i not regular]+Eρ′i,a′i+1

[F a|ρ′i(a
′
i+1) | ρ′i regular] ≤

ε22+ε22+ε2/4 ≤ ε2/2 where the first inequality follows from
the choice of i as given by Lemma 23 and using (1). This
concludes the proof of (∗) and hence the proof of Lemma
21.

C. Constructing pseudorandom restrictions: Proof of
Lemma 23

Say i ∈ [log n] and let r = 1/2i. In this section, we will
assume that ρ ∼ Rr is sampled in the following equivalent
way: we choose a0, . . . , ai ∈ {0, 1}n independently and
uniformly at random, and set ρ = ρ(a0, . . . , ai). Define the
random restriction R′r as follows: for each j ∈ [i] ∪ {0},
sample a′i ∼ µi and set the sampled restriction ρ′ to
be ρ(a′0, . . . , a

′
i), where for j ∈ [i] ∪ {0}, the strings

a′j are chosen to be the output of Gd−1,2k,δ on mutually
independent random seeds, where δ ≤ 1/n10 log(1/ε2).

We now restate Lemma 23 in an equivalent manner using
the above notation.

Lemma 23 (Restated from Section VI-B). There exists an

i ∈ [log n] such that for r = 1/2i and any a ∈ {0, 1}n,

Pr
ρ′∼R′

r

[
∑
p∈[t]

Var(F ap |ρ′) 6∈ [250, 2000] · log(1/ε2)] ≤ ε22

We prove this lemma in two steps. To show that there
exists an r = 1/2i s.t. R′r has the property stated in the
lemma, we first show that the above property holds for the
somewhat similar random restriction Rr for some such r.
We then use this to argue that for the same r, R′r continues
to have this property. The first step follows as a corollary to
Lemma 20.

Corollary 24. Let Fp (p ∈ [t]) be as defined in the statement
of Lemma 21. Then, there exists an i ∈ [log n] s.t. for r =
1/2i and any a ∈ {0, 1}n

E
ρ∼Rr

[
∑
p∈[t]

Var(F ap |ρ)] ∈ [500, 1000] · log(1/ε2)

Pr
ρ∼Rr

[
∑
p∈[t]

Var(F ap |ρ) 6∈ [250, 2000] · log(1/ε2)] ≤ ε22

Proof Sketch: Initially, assume a = 0. For i ∈ [log n],
let vi denote Eρ∼R1/2i

[
∑
p∈[t] Var(Fp|ρ)]. By Lemma 20,

it directly follows that for each i < log n, we have
vi ≥ vi+1 ≥ vi/2. Thus, for some i, vi lies in the required
range. The second claim, regarding the concentration of∑
p∈[t] Var(Fp|ρ) follows from a standard application of

the Chernoff bound. The same argument works for any
a ∈ {0, 1}n since |F̂ ap (S)| = |F̂p(S)|.

We now argue that a concentration bound similar to that
in Corollary 24 holds for the restriction R′r for the same
r = 1/2i, which is, in particular, independent of the choice
of a. We will show this by showing that for ρ ∼ Rr and
ρ′ ∼ R′r, the random variables (Var(F ap |ρ) : p ∈ [t]) and
(Var(F ap |ρ′) : p ∈ [t]) satisfy the assumptions of Corollary
11, which allows to conclude a concentration bound for∑
p Var(F ap |ρ′). Though the argument below works for any

a ∈ {0, 1}n, but for simplicity of notation, we assume a = 0.
In order to show that Corollary 11 is applicable, we need
the following lemma.

Lemma 25. Fix any i ∈ [log n]. Then, for any
S ⊆ [t] s.t. |S| ≤ ` = 4 log(1/ε2), we have∣∣∣Eρ∼Rr [∏p∈S Var(Fp|ρ)]− Eρ′∼R′

r
[
∏
p∈S Var(Fp|ρ′)]

∣∣∣ ≤
δ′, where δ′ = δ ·

(
1
ε2

)O(1)

.

The following technical statement captures most of the
content of the above lemma.

Lemma 26. Fix any i ∈ [log n]. Then, for any S ⊆ [t] s.t.
|S| ≤ ` = 4 log(1/ε2), we have |Eρ∼Rr [

∏
p∈S E[(Fp|ρ)] ·

E[(Fp|ρ)]] − Eρ′∼R′
r
[
∏
p∈S E[(Fp|ρ′)] · E[(Fp|ρ′)]]| ≤ δ′,

where δ′ = δ ·
(

1
ε2

)O(1)

and Fp|ρ represents the complex
conjugate of the function Fp|ρ.



Assuming Lemma 26, let the proof of Lemma 25 is
immediate. We omit the details.

Lemma 25 straightaway gives us the main result of this
section, Lemma 23.

Proof sketch of Lemma 23: We will use the de-
viation inequality from Corollary 11. By Corollary 24,
there exists an i ∈ [log n] s.t. Eρ∼Rr [

∑
p∈[t] Var(Fp|ρ)] =

M ∈ [500 log(1/ε2), 1000 log(1/ε2)], where r = 1/2i.
Fix this r. Note that for ρ ∼ Rr, the random variables
Var(Fp|ρ) (p ∈ [t]) are independent random variables
taking values in [0, 1]. Now consider ρ′ ∼ R′r. By Lemma
25, for every S ⊆ [t] s.t. |S| ≤ 4 log(1/ε2), we have∣∣∣Eρ∼Rr [∏p∈S Var(Fp|ρ)]− Eρ′∼R′

r
[
∏
p∈S Var(Fp|ρ′)]

∣∣∣ ≤
δ′, where δ′ = δ · (1/ε2)O(1).

Hence, we see that the random variables Var(Fp|ρ)
(p ∈ [t]) and Var(Fp|ρ′) (p ∈ [t]) satisfy the hypotheses of
Corollary 11 with k = 4 log(1/ε2). Thus, by Corollary 11,
we see that Prρ′∼R′

r
[|
∑
p∈[t] Var(Fp|ρ′)−M | > M/2] < ε22

for our parameters k,M, and δ. This finishes the proof.
Proof of Lemma 26: We assume w.l.o.g. that S = [`′]

for some `′ ≤ `. For now, we will keep δ′ a parameter and
fix δ′ = δ ·

(
1
ε2

)c1
for a large constant c1 later on in the

proof.
We first introduce a larger family of random restric-

tions Rj (j ∈ {0, . . . , i}) as follows. We pick a0, . . . , ai
independently and uniformly at random from {0, 1}n
and a′0, . . . , a

′
i independently s.t. a′j ∼ µj where the

distributions µj are as defined above. Then, for j ∈
{0, . . . , i + 1}, to sample ρ ∼ Rj , we simply output
ρ(a0, . . . , ai−j , a

′
i−j+1, . . . , a

′
i). In particular, R0 = Rr and

Ri+1 = R′r. Thus, restating the claim of the lemma, we
need to show that |Eρ∼R0

[
∏
p∈[`′] E[(Fp|ρ)] · E[(Fp|ρ)]] −

Eρ′∼Ri+1 [
∏
p∈[`′] E[(Fp|ρ′)] · E[(Fp|ρ′)]]| ≤ δ′.

We will now simplify the above statement in a sequence
of steps. By a simple hybrid argument, it suffices to show
that for each j ≤ i, |Eρ∼Rj [

∏
p∈[`′] E[(Fp|ρ)] ·E[(Fp|ρ)]]−

Eρ′∼Rj+1 [
∏
p∈[`′] E[(Fp|ρ′)] · E[(Fp|ρ′)]]| ≤ δ′′ (∗)

for any δ′′ s.t. δ′′ ≤ δ′/(log n + 1). In particular, we
choose δ′′ = δ′ · ε2 which is at most δ′/(log n + 1) since
ε2 ≤ 1/n.

We therefore try to prove (∗). Recall that
ρ = ρ(a0, . . . , ai−j , a

′
i−j+1, . . . , a

′
i) and ρ′ =

ρ(a0, . . . , ai−j−1, a
′
i−j , . . . , a

′
i). Fix any particular

choice of a0, . . . , ai−j−1, a
′
i−j+1, . . . , a

′
i and let R′j and

R′j+1 are the distributions Rj and Rj+1 conditioned
on this fixing. It suffices to show for each such
fixing that |Eρ∼R′

j
[
∏
p∈[`′] E[(Fp|ρ)] · E[(Fp|ρ)]] −

Eρ′∼R′
j+1

[
∏
p∈[`′] E[(Fp|ρ′)] · E[(Fp|ρ′)]]| ≤ δ′′. (†)

We therefore try to prove (†). Now, since
Vbl(Fp) ∩ Vbl(Fp′) = ∅ for any distinct p, p′,
we see that

∏
p∈[`′] E[Fp|ρ] = E[

∏
p∈[`′] Fp|ρ] for

any restriction ρ and similarly,
∏
p∈[`′] E[Fp|ρ] =

E[
∏
p∈[`′] Fp|ρ]. Thus, we have

∏
p∈[`′] E[Fp|ρ] ·

E[Fp|ρ] = E[
∏
p∈[`′](Fp|ρ)] E[

∏
p∈[`′](Fp|ρ)] =

Eb′,b′′ [
∏
p∈[`′] Fp|ρ(b′) · Fp|ρ(b′′)], where b′, b′′ are

chosen independently and uniformly at random from
{0, 1}n. Substituting into (†) and changing the order
of the expectations, we see that it suffices to show
that |Eb′,b′′ [Eρ∼R′

j
[
∏
p∈[`′] Fp|ρ(b′) · Fp|ρ(b′′)] −

Eρ′∼R′
j+1

[
∏
p∈[`′] Fp|ρ(b′) · Fp|ρ(b′′)]]| ≤ δ′′.

By the triangle inequality, to show the above, it
suffices to show that for any fixed b′, b′′ ∈ {0, 1}n,
we have |Eρ∼R′

j
[
∏
p∈[`′] Fp|ρ(b′) · Fp|ρ(b′′)] −

Eρ′∼R′
j+1

[
∏
p∈[`′] Fp|ρ(b′) · Fp|ρ(b′′)]| ≤ δ′′. (‡)

Since we have conditioned on a choice of
a1, . . . , ai−j−1, a

′
i−j+1, . . . , a

′
i, ρ is a function of just

ai−j and ρ′ is a function of just a′i−j . Let G denote∏
p∈[`′] Fp|ρ(b′) · Fp|ρ(b′′). We think of G as a function

applied to the random string ai−j , and to show (‡), we need
to show that µi−j δ′′-fools G in expectation. Let us now
analyze the structure of the statistical test G and show that
to δ′′-fool G it suffices to fool Cd−1,2k with comparable
error.

Say ρ = ρ(a1, . . . , ai−j−1, y, a
′
i−j+1, . . . , a

′
i) for some

y ∈ {0, 1}n. Consider Fp|ρ(b′) for any p ∈ [t] as a function
of y. We analyze the complexity of this function. Note that
Fp = ωfp and hence Fp|ρ(b′) = ωfp|ρ(b

′). Moreover, for
any y ∈ {0, 1}n, fp|ρ(b′) = fp(z), where z is defined as
follows:
• If j = i, then for each s ∈ [n], zs = b′s if a′1,s = · · · =
a′i,s = 1 and zs = ys otherwise.

• If j < i, then for each s ∈ [n],

zs =


a0,s if ∃j′ s.t. 0 < j′ < j and aj′,s = 0,
a0,s if ∃j′ s.t. j < j′ ≤ i and a′j′,s = 0,
a0,s if a0,s = b′s,
ys if b′s = 1 and a0,s = 0,
¬ys if b′s = 0 and a0,s = 1.

Thus, we see that fp|ρ(b′), when considered as a function
of y, is simply a projection of the function fp. Thus
fp|ρ(b′) =

∑
j,p β

j
pC̃

j
p where C̃jp is a projection of Cjp ,

and hence of Cp, for each j ∈ [k] and p ∈ [`′]. Similarly,
Fp|ρ(b′′) = ω−fp|ρ(b

′′) and fp|ρ(b′′) =
∑
j,p β

j
p

˜̃Cjp , where
˜̃Cjp is a projection of Cjp , and hence of Cp, for any j ∈ [k]
and p ∈ [`′].

As a result, using Fact 3, we see that to δ′′-fool G, it
suffices to (δ′′/2)-fool (C̃jp,

˜̃Cjp : j ∈ [k], p ∈ [`′]). However,
to fool this tuple, by Lemma 7, it suffices to δ′′′-fool all
functions of the form

∧
(j,p)∈U C̃

j
p ∧

∧
(j,p)∈V

˜̃Cjp for all
U, V ⊆ [k]× [`′]; here, δ′′′ = δ′′/(2 ·3k`′) = δ′′ · (ε2)O(1) =
δ′ · (ε2)O(1).

Fix any U, V ⊆ [k] × [`′] and consider the func-
tion C̃ =

∧
(j,p)∈U C̃

j
p ∧

∧
(j,p)∈V

˜̃Cjp . Since for each
j and p, we have Cjp = ∧(Cjp,q : q ∈ [sp]), we



have C̃ =
∧

(j,p)∈U
∧
q∈[sp] C̃

j
p,q ∧

∧
(j,p)∈V

∧
q∈[sp]

˜̃Cjp,q =∧
j∈[k]

(∧
p∈Uj

∧
q∈[sp] C̃

j
p,q ∧

∧
p∈Vj

∧
q∈[sp]

˜̃Cjp,q

)
where

for each j and p, C̃jp,q and ˜̃Cjp,q are projections of Cjp,q
and hence of Cp,q , and Uj = {p ∈ [`′] | (j, p) ∈ U} and
Vj = {p ∈ [`′] | (j, p) ∈ V }.

Clearly, to fool the circuit C̃, it suffices to fool the 2k-
tuple (

∧
p∈Uj ,q∈[sp] C̃

j
p,q,
∧
p∈Vj ,q∈[sp] C̃

j
p,q : j ∈ [k]).

Since each of the circuits in the tuple are modifications of
the depth-d− 1 circuit C ′ =

∧
p∈[`′],q∈[sp] Cp,q , we see that

to show that µi−j δ′′-fools G in expectation, it suffices to
show that µi−j δ′′′-fools Cd−1,2k. However, by the choice
of µi−j , we know that µi−j δ-fools Cd−1,2k. Hence, we are
done as long as δ ≤ δ′′′ = δ′ · (ε2)O(1), which is true if δ′

is chosen to be δ ·
(

1
ε2

)c
for a large enough constant c > 0.

This ends the proof of the lemma.

VII. MAIN PROOF

In this section, we prove Theorem 12, which implies
Theorem 1.

Proof of Theorem 12: We present here the proof of
the above theorem using the results from Sections V-B and
VI-B. Throughout, we assume w.l.o.g. that log(1/ε) and
log n are integers and also that ε < 1/n. (If ε > 1/n, we
may set ε = 1/n and this does not affect the parameters of
our PRG significantly.)

We now analyze the above construction. For a fixed a ∈
{0, 1}n and function f defined on {0, 1}n, we use f(x⊕a)
to denote the function that on input b ∈ {0, 1}n outputs
f(b⊕ a). Fix i ∈ {0, . . . , log n} and η > 0. Given function
g1 : {0, 1}n → R, where R is a finite set, we say that i is η-
good for g1 if Gid,k,ε η-fools g1(x⊕a) for each a ∈ {0, 1}n.
Similarly, if g2 : {0, 1}n → C, we say that i is η-good
for g2 if Gid,k,ε η-fools g2(x ⊕ a) in expectation for each
a ∈ {0, 1}n. The proof is omitted.

Claim 27. Assume g1 : {0, 1}n → R where R is a finite set
and g2 : {0, 1}n → C. Then, for any η > 0, we have the
following: If there is an i ∈ {0, . . . , log n} that is η-good for
g1, then Gd,k,ε η-fools g1. If there is an i ∈ {0, . . . , log n}
that is η-good for g2, then Gd,k,ε η-fools g2 in expectation.

We now show that the above claim allows us to show that
Gd,k,ε ε-fools Cd,k and complete the proof of the induction
step. Let (C1, . . . , Ck) ∈ Cd,k. Then, there is a circuit C ∈
Cd s.t. for each j ∈ [k], Cj is a modification of C. We
proceed by case analysis based on the output gate of C,
which is either an AND gate or a Zm-valued MODm gate.
AND case: We first consider the case when the output

gate of C is an AND gate. In this case, we show that
0 is ε-good for (C1, . . . , Ck), which by Claim 27, would
prove what we wanted. Thus, we need to show that G0

d,k,ε

ε-fools (C1(x ⊕ a), . . . , Ck(x ⊕ a)) for any a ∈ {0, 1}n.
The following claim that follows from Theorem 17 in

Section V-B (via noting that t ≤ n, since C is read-once),
straightaway implies this for a = 0.

Claim 28. If µ is any distribution that δ-fools Cd−1,k for
δ = 1/nc

′(km)5 log(1/ε), then µ ε-fools (C1, . . . , Ck) where
Cj (j ∈ [k]) is a modification of C ∈ Cd, where the output
gate of C is an AND gate.

Let us now see that Claim 28 in fact works for any a ∈
{0, 1}n. Fix a ∈ {0, 1}n and define C̃j = Cj(x ⊕ a) for
j ∈ [k]. Note that C̃j is a modification of the circuit C̃ =
C(x⊕a) that lies in Cd. Claim 28 implies that G0

d,k,ε ε-fools
(C̃1, . . . , C̃k) as well. This shows that 0 is in fact ε-good
for (C1, . . . , Ck).
MODm case: We now consider the case when the output

gate of C is a Zm-valued MODm gate. In this case, we
assume that C = MODm(C1, . . . , Ct) for each p ∈ [t].
Since Cj (j ∈ [k]) is a modification of C, we have Cj =
MODm(Cj1 , . . . , C

j
t ), where Cjp is a projection of Cp for

each p ∈ [t].
In order to show that Gd,k,ε ε-fools (C1, . . . , Ck), we

use Lemma 8. By Lemma 8, it suffices to show that Gd,k,ε
ε1-fools f =

∑k
j=1 αjC

j for any α1, . . . , αk ∈ Zm and
ε1 = ε/mk/2. Since Cj = MODm(Cj1 , . . . , C

j
t ), we may

write Cj =
∑t
p=1 γ

j
pC

j
p for γj1, . . . , γ

j
p ∈ Zm. Substituting

in the definition of f above and reordering summations, we
see that f =

∑t
p=1

∑k
j=1 β

j
pC

j
p for some βjp ∈ Zm where

j ∈ [k] and p ∈ [t]. Define, for each p ∈ [t], the function
fp : {0, 1}n → Zm as follows: fp =

∑k
j=1 β

j
pC

j
p . Note

that the functions fp depend on pairwise disjoint sets of
variables.

By Fact 6, to show that Gd,k,ε ε1-fools f =
∑
p fp, it

suffices to show that for each α ∈ Zm, Gd,k,ε ε2-fools the
function ωα·

∑t
p=1 fp in expectation, where ε2 = ε1/2m =

ε/2mk/2+1. Fix an α and consider F = ωα
∑
p fp . Let Fp

(p ∈ [t]) denote the function ωα·fp . By Claim 27, to show
that Gk,d,ε ε2-fools F in expectation, it suffices to show that
there is some i ∈ {0, . . . , log n} that is ε2-good for F . We
show this below.

First, we need the notion of the weight of the function
F (denoted wt(F )) which is defined as follows: wt(F ) =∑t
p=1 Var(Fp). Note that for any a ∈ {0, 1}n, we have

wt(F (x ⊕ a)) = wt(F (x ⊕ a)). We proceed to show that
there is some i that is ε2-good for F using one of two
separate arguments, based on the value of wt(F ).

Low weight case: The first case is when wt(F ) is some-
what small. Consider the case when wt(F ) ≤ c log(1/ε2),
where c = 1000. In this case, we proceed as in the case of
the AND gate and show that 0 is ε2-good for F . We use
the following claim, which readily follows from the above
discussion and Theorem 18, proved in Section V-B.

Claim 29. Assume we have (C1, . . . , Ck) ∈ Cd,k as above,
and assume F is obtained from (C1, . . . , Ck) also as above.
Furthermore, say that wt(F ) ≤ c log(1/ε2). Then any



distribution that δ′-fools Cd−1,k must also ε2-fool F in
expectation, where δ′ = 1/nc

′km4 log 1
ε2 .

Since G0
d,k,ε fools Cd−1,k with error at most

1/nc
′(km)5 log(1/ε) < δ′ where δ′ is as in the statement of

the above lemma, we straightaway know that for a = 0,
G0
d,k,ε ε2-fools F (x ⊕ a). However, as in the case of the

AND gate, we show that the above lemma actually applies
to F (x⊕ a) for all a ∈ {0, 1}n. Fix any a ∈ {0, 1}n. Then
F (x⊕ a) = ωα

∑
p fp(x⊕a) where fp =

∑k
j=1 β

j
pC

j
p(x⊕ a).

Let C̃j = Cj(x ⊕ a) for j ∈ [k] and F̃ = F (x ⊕ a).
Note that for each j ∈ [k], C̃j is a modification of the
circuit C̃ = C(x ⊕ a) that lies in Cd and moreover, F̃ is
obtained from (C̃1, . . . , C̃k) in the same way that F is
obtained from (C1, . . . , Ck). Finally, note that wt(F̃ ) =∑
p Var(fp(x⊕a)) =

∑
p Var(fp) = wt(F ) < c log(1/ε2).

Thus, applying Claim 29 to (C̃1, . . . , C̃k) and F̃ , we see
that G0

d,k,ε ε2-fools F̃ . Since a ∈ {0, 1}n was arbitrary, we
have shown that 0 is in fact ε2-good for F . This finishes
the proof in the case that wt(F ) ≤ c log(1/ε2).

High weight case: We now consider the case when
wt(F ) is somewhat high. Specifically, assume that wt(F ) ≥
c log(1/ε2). We handled this case entirely in Section VI-B.
By Lemma 21, it directly follows that there is an i s.t. i is
ε2-good for F . This concludes the inductive step.
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