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Abstract

We propose and construct a quantum money scheme that allows verification through classical
communication with a bank. This is the first demonstration that a secure quantum money
scheme exists that does not require quantum communication for coin verification.

Our scheme is secure against adaptive adversaries – this property is not directly related to the
possibility of classical verification, nevertheless none of the earlier quantum money constructions
is known to possess it.

1 Introduction

In 1983 Wiesner [Wie83] proposed a new quantum cryptographic scheme, that later became known
as quantum money. Informally, a quantum coin is a unique object that can be created by a trusted
bank, then circulated among untrusted holders.1 A holder of a coin should be able to verify it, and
the verification must confirm that the coin is authentic if it has been circulated according to the
prescribed rules. On the other hand, if a holder wants to counterfeit a coin, that is, to create several
objects such that each of them would pass verification, he must fail in doing so with overwhelmingly
high probability.

Wiesner has demonstrated that quantum mechanics (as opposed to classical physics) allows
money schemes, and the basic principle that made such constructions possible was that of quantum
uncertainty. The principle states that there are properties of a quantum object that are known
to its “manufacturer” but cannot be learnt by an observer who measures the object; nevertheless,
those properties can be later “verified” by the manufacturer. Accordingly, a bank can prepare
objects with this kind of “secret properties” and let the holders use them as quantum coins – not
knowing the secrets, untrusted holders would not be able to forge counterfeits.

1.1 Prior work

In Wiesner’s original construction [Wie83, BBBW83] a coin had to be sent back to the bank in
order to get verified. This could be viewed as a possible drawback: a coin might get “stolen”, or
intentionally “ruined” by an adversary who had access to the communication channel between a
coin holder and the bank.

This problem has been addressed in a number of works. The approach taken by Aaron-
son [Aar09], Lutomirski et al. [LAF+10], Farhi et al. [FGH+10] and in the upcoming Aaronson
and Christiano [AC12] was to allow the holders to verify quantum coins locally, not having to

1The notation is still unset in this relatively new area of research. In particular, each coin in our construction will
have its own identification number, and some authors would call such items quantum banknotes, to emphasize the
uniqueness. Also, what we call a bank is sometimes addressed as a mint.



contact the bank. Clearly, in this situation an adversary can, given unlimited computational re-
sources, produce as many counterfeit coins as he wishes (being able to locally verify implies having
a complete description of all objects that would pass the verification, so coin forgery becomes an
achievable, albeit possibly computationally-expensive task). What is worse, the present state of
mathematical development only allows to conjecture that certain tasks are hard for a reasonably
powerful model of computation, and a major breakthrough would be required to argue that a
scheme of this type is secure, say, against an adversary who can use a Turing machine.

In a different line of research, Tokunaga, Okamoto and Imoto [TOI03] and Mosca and Ste-
bila [MS10] considered the problem of creating quantum money that can be used anonymously.2

In [TOI03] a coin holder introduces some local randomness into the state of a coin to obtain
anonymity. In [MS10] the construction allows multiple identical (but still resistant to counterfeit-
ing) instances of quantum coins. In both of these works quantum communication with a bank is
required in order to use the scheme ([MS10] discusses the hypothetical possibility of using compu-
tational hardness assumptions to allow local verification).

Relatively recently another limitation of all previously known quantum money schemes has been
noticed by Aaronson [Aar09] and by Lutomirski [Lut10]: An adversary can gain even more power
from interacting adaptively with the bank. No quantum money scheme was know to be resistant to
this type of attacks; in fact, [Lut10] has shown a very efficient adaptive attack against one version
of Wiesner’s scheme (which was unconditionally secure against non-adaptive adversaries).

1.2 Our results

In this work we propose to use classical communication with a bank in order to verify a quantum
coin. We construct such a scheme. This is the first demonstration that a secure quantum money
scheme exists that does not require quantum communication for coin verification.

Some advantages of our construction over the previously known ones are:

• Unlike the original scheme of Wiesner and the constructions of Mosca and Stebila, our con-
struction does not require quantum communication with a bank in order to verify a coin.

• We prove that our scheme is (unconditionally) secure; security arguments for schemes with
local verification require either unproved hardness assumptions or a major mathematical
breakthrough (complexity lower bounds). Moreover, to the best of our knowledge, no such
scheme has been shown to be secure under so-called “widely believed” unproved assumptions.3

• Unlike the schemes with local verification, our construction remains secure against computa-
tionally unlimited adversary who obeys the laws of quantum mechanics.

Besides offering possible practical advantages, the concept of quantum money with classical
verification gives rise to natural and attractive theoretical questions.

Another advantage of our construction is not directly related to the possibility of quantum
verification:

• Our scheme remains secure against an adversary who uses adaptive multi-round attacks; no
such scheme was known before.

2Note that locally verifiable coins can be viewed as a partial answer to this requirement: when the bank isn’t
involved in the verification procedure it cannot “trace” the transactions.

3It has happened that a proposed scheme was broken soon after its publication.
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Note that adaptive multi-round attacks are also conceivable in the case of money schemes with
quantum verification alone: an adversary can, for example, “split” a coin into two “fragments”,
send one of them to the bank and collect the response, and later use the remaining fragment in a
way that would depend on the bank’s response to the first fragment. Indeed, Lutomirski [Lut10]
has demonstrated a linear-time adaptive attack against one version of Wiesner’s scheme, which
was provably secure against non-adaptive adversaries. Before this work it was open whether any
quantum money scheme can be resistant to adaptive multi-round attacks.

We call our quantum money scheme Q. In order to verify a Q-coin a holder has to contact the
bank via a classical communication channel and perform quantum measurements, as directed by
the bank, then report the outcomes. In the end the bank either confirms that the coin is valid or
rejects it.

Our construction has the following specific properties:

• The coins are exponentially hard to counterfeit (cf. Theorem 5.1 and Corollary 5.2).

• The classical communication channel used for verification can be unencrypted : e.g., both the
bank and the coin holder can broadcast their messages, without compromising security of the
scheme.

• Our scheme remains secure against an adversary who uses adaptive “attempted verifications”
in order to collect information about a coin. Exponentially many such attempts have to be
made before one has non-negligible chances to counterfeit a coin.

• The database of the bank is static, and therefore many de-centralized “verification branches”
can exist that do not have to communicate with one another.

• The number of verifications that a Q-coin can go through is limited – the number of qubits
required to store a coin is polynomial in the number of validity tests via classical communi-
cation that the coin can go through during its circulation period (after that it would have to
be replaced by the bank). We show that this dependency is optimal (cf. Theorem 6.1).

1.3 Related work

Using a different approach, Aaronson and Christiano in the upcoming [AC12] will construct a
scheme that uses quantum communication with a bank for verification (like Wiesner’s original
scheme) and is resistant against adaptive multi-round attacks.

Very recently some of the ideas proposed in this work have been further developed by Pastawski
et al. [PYJ+11] and by Molina et al. [MVW12].

2 Who needs quantum money?

The first quantum money scheme was proposed by Wiesner more than 30 years ago (several years
before [Wie83] was published). Nevertheless, there seems to remain some confusion about the
advantages that quantum money has over possible classical constructions. Below we reproduce a
typical “classical money” proposal, then discuss the advantages of Wiesner’s scheme, then further
advantages of our construction.

Note that here we are not comparing our scheme to the previously known ones (that was the
subject of Section 1.2). Instead, this part (informally) addresses the question posed by its title.
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2.1 A classical proposal

Let every coin issued by the bank contain a secret string s, known only to the bank and to the
current coin holder. When a coin holder Alice wants to pass her coin to a new coin holder Bob,
they run the following protocol:

• Alice sends to the bank the string s and tells the bank that she wants to pass the coin to
Bob.

• The bank checks that s is a valid secret string (if not then a forgery attempt has been
detected), then erases s from the list of valid strings and adds to the list a newly generated
secret string s′.

• The bank sends s′ to Bob; henceforth, Bob holds the coin.

2.2 Advantages of Wiesner’s scheme

• The bank’s database can be static (for the classical scheme to be secure, it is crucial that a
new secret string is issued each time a coin is passed along).

• Interaction with the bank does not require 3-party authentication (for the classical scheme
to be secure, the bank has to make sure that the only recipient of the newly generated secret
string is the party named by Alice in the first round).

2.3 Advantages of our scheme

• All the benefits of Wiesner’s construction listed above.

• The communication channel can be classical and not encrypted. Moreover, all the messages
(both ways) can be openly broadcast.

• In the classical scheme, as well as in Wiesner’s scheme, an intruder who pretends to be the
bank can steal a valid coin from its fair holder who wants to verify it. Our scheme shields
against that.

3 Notation and preliminaries

For a ∈ N we denote [a]
def
= {1, . . . , a}. Denote by Ia the identity matrix of rank a. For any finite

A we denote by UA the uniform distribution over the elements of A.
We will use concentration bounds extensively in our proofs.

Theorem 3.1. (Chernoff bound) Let X1, . . . ,Xn be mutually independent random variables taking
values in [0, 1], such that E [Xi] = µ for all i ∈ [n]. Then for any λ > 0,

Pr




∑

i∈[n]

Xi ≥ (1 + λ)µn


 ≤ e

−nλ2µ
2+λ ,

and

Pr




∑

i∈[n]

Xi ≤ (1 − λ)µn


 ≤ e

−nλ2µ
2 .
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We also need a generalization, originally proved by Panconesi and Srinivasan [PS97]. The
following version of it is due to Impagliazzo and Kabanets [IK10].

Theorem 3.2. (Generalized Chernoff bound) Let X1, . . . ,Xn be Boolean random variables, such
that for some δ and every S ⊆ [n] it holds that Pr [∧i∈SXi = 1] ≤ δ|S|. Then

Pr




∑

i∈[n]

Xi ≥ (1 + λ)δn


 ≤ e−2nλ2δ2

.

Corollary 3.3. Let X1, . . . ,Xn be Boolean random variables, such that for all i ∈ [n] and any
event C that only depends on {Xj |j 6= i} it holds that Pr

[
Xi = 1

∣∣C
]
≤ δ. Then

Pr




∑

i∈[n]

Xi ≥ (1 + λ)δn


 ≤ e−2nλ2δ2

.

Proof. For every S ⊆ [n],

Pr
[
∧i∈[|S|]XSi = 1

]
=

∏

i∈[|S|]

Pr
[
XSi = 1

∣∣XS1 = · · · = XSi−1 = 1
]
≤ δ|S|,

where Si is the i’th least element of S. �

We will also need the following combinatorial lemma (a rather standard one, e.g., see Lemma 2.2
in Jukna [Juk01]).

Lemma 3.4. Let A1, . . . , AN be subsets of [n] of average size t. Suppose that |Ai ∩ Aj | ≤ s for
every i 6= j. Then either N < 2n/t or s > t2/2n (or both).4

Proof. For x ∈ [n], let d(x)
def
= |{i | x ∈ Ai}|. On the one hand,

n∑

x=1

d(x) =

N∑

i=1

|Ai| = Nt =⇒
n∑

x=1

d(x)2 ≥ N2t2

n
.

On the other hand,

n∑

x=1

(d(x))2 =
N∑

i=1

N∑

j=1

|Ai ∩ Aj| =
N∑

i=1

|Ai| +
∑

j 6=i

|Ai ∩ Aj | ≤ Nt + N(N − 1)s.

Therefore,
Nt2

n
< t + Ns =⇒ s >

t2

n
− t

N
,

and the result follows. �

4The asymptotic guarantees of our Lemma 3.4 are slightly better than those of Lemma 2.2 in [Juk01] – there the
main statement is more general, but the result is weaker in the special case that we are interested in.
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4 Our quantum money scheme Q
One of the main technical ingredients of our construction is a constant-dimensional (n = 4) special
case of a relational communication problem called Hidden Matching Problem (HMP), first consid-
ered by Bar-Yossef, Jayram and Kerenidis [BYJK04] in the context of communication complexity.

Definition 1. Let HMP4 be as follows. For x ∈ {0, 1}4 and m,a, b ∈ {0, 1}, we say that

(x,m, a, b) ∈ HMP4 if b =

{
x1 ⊕ x2+m if a = 0

x3−m ⊕ x4 if a = 1
.

Intuitively, if we view x ∈ {0, 1}4 as a binary coloring of 4 vertices then a tuple (x,m, a, b)
satisfies the relation HMP4 if and only if b indicates whether x assigns distinct colors to the pair
of vertices determined by m and a.

It has been shown in [BYJK04] that if Alice receives x and Bob receives m then Alice can send
a short quantum message to Bob that would allow him to produce a valid answer (a, b); on the
other hand, if Alice is only allowed to send classical bits then a much longer message is required.
The authors were interested in the asymptotic behavior of quantum and classical communication
cost of HMP , and they gave an elegant proof that the gap between the two is exponential.

How can it help us? We want to build a scheme that would be safe against both classical and
quantum attacks; moreover, we want to be able to carry out certain communication task (testing
validity of a coin) using only classical communication. So, why are we interested in something
showing that quantum communication is more powerful than classical?

The answer is that the role of quantum communication from [BYJK04] in our case is played by
a quantum coin: when the bank issues a coin, it sends a quantum message to its future holder. The
core of our construction is the observation (apparently, new to this work) that in certain quantum
one-way protocol for HMP , a single message from Alice cannot be used by Bob in order to produce
valid answers w.r.t. several different values of m. In other words, the message cannot be “reused”.
This holds in spite of the fact that a message from Alice cannot depend on m, thus using it Bob
can produce a valid answer w.r.t. any legitimate value of m.

In our construction we will use a state |α(x )〉 of 2 qubits (corresponding to the quantum message
that Alice would send to Bob in a one-way protocol for HMP4 ) that allows its holder, who is given
m but doesn’t know x, to find an “answer” (a, b) that satisfies HMP4 with certainty. On the other
hand, using the same state in order to find (a0, b0) and (a1, b1), such that (x,m, am, bm) ∈ HMP4

for both m = 0 and m = 1 would fail with probability at least 1/4. In other words, our state of 2
qubits will be useful but not reusable for producing an answer to HMP4 .

Let the bank choose x1, . . . , xk ∈ {0, 1}4 at random, keep them in secret and produce quantum
states |α(x1 )〉, . . . , |α(xk )〉. A newly issued Q-coin consists of a piece of paper glued to k quantum
registers that hold |α(x1 )〉, . . . , |α(xk )〉. The piece of paper contains a unique identification tag and
k initially unmarked positions, where the i’th position has to be marked when the corresponding
|α(xi )〉 is used in the verification protocol.

More formally:

Definition 2. (HMP4 -states) Let x ∈ {0, 1}4. The corresponding HMP4 -state is

|α(x )〉 def
=

1

2
·

∑

1≤i≤4

(−1)xi |i〉 .

Interestingly, the HMP4 -states (in their multidimensional version) were first considered by
Kerenidis and de Wolf [KdW04] in order to prove a lower bound on the length of certain codes,
and that was before the Hidden Matching Problem was defined.
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Definition 3. (HMP4 -queries) An HMP4 -query is an element m ∈ {0, 1}. A valid answer to the
query w.r.t. x ∈ {0, 1}4 is a pair (a, b) ∈ {0, 1} × {0, 1}, such that (x,m, a, b) ∈ HMP4 .

An HMP4 -state can be used to answer an HMP4 -query with certainty: If m = 0, let

v1
def
=

|1〉 + |2〉√
2

, v2
def
=

|1〉 − |2〉√
2

, v3
def
=

|3〉 + |4〉√
2

, v4
def
=

|3〉 − |4〉√
2

;

otherwise (m = 1), let

v1
def
=

|1〉 + |3〉√
2

, v2
def
=

|1〉 − |3〉√
2

, v3
def
=

|2〉 + |4〉√
2

, v4
def
=

|2〉 − |4〉√
2

.

Measure |α(x )〉 in the basis {v1, v2, v3, v4}, and let (a, b) be (0, 0) if the outcome is v1; (0, 1) in the
case of v2; (1, 0) in the case of v3; (1, 1) in the case of v4. Then (x,m, a, b) ∈ HMP4 always.

Definition 4. (Q-coins) Let 3|t. A secret record consists of k entries x1, . . . , xk, xi ∈ {0, 1}4 (i.e.,
the secret record contains 4k bits).

A “fresh” Q-coin corresponding to the record (x1, . . . , xk) consists of

• k quantum registers consisting of 2 qubits each, where the i’th register contains |α(xi )〉;

• a k-bit classical register P , that is initially set to 0k;

• a unique identification number.

A bank produces fresh Q-coins; as a Q-coin goes through more and more verification protocols,
its quantum registers lose their original content (and that shall be reflected in the corresponding
bits of P , see below). The identification number of every coin issued by the bank must be unique.

To verify a Q-coin through classical communication with the bank, its holder runs the following
protocol Ver (t is a parameter in the construction of Q that will be polynomially related to k).

Protocol: When a holder of a valid Q-coin follows the protocol, verification goes like this:

1. The holder sends the identification number of the Q-coin to the bank.

2. The bank chooses uniformly at random a set Lbn ⊂ [k] of size t, and sends it to the coin
holder.

3. The holder consults with P and chooses uniformly at random a set Lhl ⊂ Lbn consisting of
2t/3 yet unmarked positions. He sends Lhl to the bank and marks in P all the elements of Lhl
as used.

4. The bank chooses at random 2t/3 values mi ∈ {0, 1}, one for each i ∈ Lhl , and sends them to
the coin holder.

5. The holder measures the quantum registers corresponding to the elements of Lhl in order to
produce 2t/3 pairs (ai, bi), such that (xi,mi, ai, bi) ∈ HMP4 for all i ∈ Lhl . He sends the list
of (ai, bi)

′s to the bank.

6. The bank checks whether (xi,mi, ai, bi) ∈ HMP4 for all i ∈ Lhl , in which case it confirms
validity of the Q-coin. Otherwise, the coin is declared to be a counterfeit.

7



We will say that an instance of Ver has been passed or won if the bank’s final response was
“valid”.

Observe that a fair coin holder fails to pass Ver with exponentially small probability (corre-
sponding to the situation when less than k/4 of the coin registers are marked as used, but among
the t registers that were uniformly chosen by the bank more than t/3 are marked as used). If this
happens, a new run of Ver can be started.

It follows from the earlier discussion that both the bank and a fair coin holder can perform
their parts of Ver efficiently. Note also that the secret records kept by the bank do not change as a
result of executing Ver – that is, the bank’s database is static.

Intuitively, adversarial ability to counterfeit a Q-coin shall imply ability to answer w.r.t. the
same quantum register i both to the question mi = 0 and to mi = 1. As we said before, that can
be done with probability at most 3/4; moreover, it turns out that in order to successfully counterfeit
a coin the adversary must be able to answer both the HMP4 -queries w.r.t. a considerable fraction
of the coin’s registers, and that will imply exponentially small probability of adversarial success.
We will formalize and prove this intuition in Section 5.

We will show (cf. Theorem 5.1 and Corollary 5.2) that only after an adversary has run eΩ(t3/k2)

auxiliary instances of Ver , he might be able to counterfeit a Q-coin with success probability higher

than e−Ω(t2/k).
Note that every run of Ver “costs” 2t/3 yet unused quantum registers. As soon as k/4 registers

have been used, the Q-coin has to be returned to bank (the bank still would be able to verify its
validity and issue a replacement). Accordingly, after ⌊3k/8t⌋ runs of Ver a Q-coin has to be returned
to the bank.

To conclude : Choosing, for example, t ∈ Θ
(
k3/4

)
gives a construction where a coin that consists

of 2k qubits can go through Ω
(
k1/4

)
validity tests via classical communication with the bank, and

where it takes ekΩ(1)
time to forge a counterfeit with probability higher than e−kΩ(1)

. The bank’s
secret database contains 4k bits corresponding to every coin, and those records are static (in
particular, many de-centralized “verification branches” can exist that do not have to communicate
with one another). In Section 6 we will show that these parameters are very close to the best
possible.

5 Security of Q
We are giving “extended security guarantees”, as follows. Instead of only arguing that the first
cheating attempt is not likely to succeed, we allow an adversary to use multiple attacking attempts
– namely, even having been caught cheating in the past, he may continue his attempts. Recall
that we allow adaptive attacks, thus something learnt form the earlier attempts might help the
adversary in future attacks.

Informally, our security guarantees will be expressed like this: An exponentially large number of
partially completed instances5 of Ver are required for an adversary to have non-negligible probability
to make a counterfeit coin.

A high-level view of our security analysis is as follows. First we make preliminary observations
regarding possible attacks on the Q-scheme (Section 5.1), and demonstrate useful properties of
HMP4 -states (Section 5.2). Then we claim that counterfeiting a Q-coin has its “cost”, in terms
of the number of preliminary runs of Ver that are required in order to collect enough auxiliary

5By a partially completed protocol we mean an instance of Ver , where the first response from the bank has been
received and analyzed by the adversary.
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information about the coin (Section 5.3). Finally, we reduce unrestricted attacks to more structured
ones and show their limitations (Sections 5.4 and 5.5, respectively). We conclude in Section 5.6
that exponentially many preliminary runs of Ver are required in order to counterfeit a Q-coin.

5.1 Possible attacks and security guarantees

Our goal will be to show that a Q-coin is hard to counterfeit. First, we want to argue that in order
to establish security of our Q-scheme it is enough to consider the situation when starting with a
fresh authentic Q-coin, an adversary runs many instances of Ver (probably, in a non-consecutive
manner) for this coin6, and his goal is to produce two (possibly, entangled) quantum objects that
have non-negligible probability to be accepted by the bank as valid coins.

Probably, the most harmful attack on Q would be the one where an adversary starts with M
fresh Q-coins, and his goal is to produce M + 1 quantum objects that are all likely to be accepted
as valid Q-coins.7 Let us look at the “two out of one” security guarantee that we give for the
Q-scheme, and see how it implies robustness against “multi-coin” attacks.

Let us call the first response a message that the bank sends in step 2 of Ver (that is, a list of t
positions). In Section 5.6 we establish the following theorem.

Theorem 5.1. Let a fresh Q-coin be given to a computationally unlimited adversary who runs
auxiliary instances of Ver for this coin and produces two (possibly, entangled) “counterfeits” ρ1 and
ρ2. Then

U ∈ eΩ(t3/k2)

exists, such that if the adversary has received and analyzed the first bank’s responses in at most U
instances of Ver , then the probability that both ρ1 and ρ2 pass Ver is in

e−Ω(t2/k).

Corollary 5.2. Let M fresh Q-coins be given to a computationally unlimited adversary who ana-
lyzes the first bank’s responses in at most U auxiliary instances of Ver , for U as in Theorem 5.1.
If the adversary outputs M + 1 quantum objects then the probability that all of them pass Ver is in

eln M−Ω(t2/k).

Proof. If the identification numbers of the M +1 produced quantum objects are not a subset of the
identification numbers of M initially given objects then at least one counterfeit has been produced
“from scratch”, and it is easy to see that the probability of success in this case is negligible.

Otherwise there is at least one identification number that appears more than once among the
M + 1 produces quantum objects with probability at least 1/M . Starting with a single coin, one
can emulate the cheating strategy for M coins by locally creating M − 1 Q-coins and running the
protocol, locally computing bank’s responses according to Ver w.r.t. any of the M − 1 auxiliary
coins. If in the end of emulation at least two object are marked with the same identification number
as the given coin then those two objects are returned, otherwise arbitrary output is produced.

If the M -coin counterfeit strategy produces M + 1 quantum objects that successfully pass
verification with probability ε, then the strategy above succeeds in counterfeiting a single coin with
probability at least ε/M, and the corollary follows from Theorem 5.1. �

6Note that every run of Ver can be associated with certain Q-coin via its identification number, as reported by
the coin holder in the first round of a protocol.

7Several modifications of this cheating setup can be considered, but it seems that all of them can be reduced to
the “M + 1 out of M” regime.
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5.2 Quantum retrieval games

To analyze some useful properties of HMP4 -states we define the notions of quantum retrieval games,
physical projections, and selective projections.

Definition 5. (quantum retrieval games) Let k,m, n ∈ N, σ ⊆ [m]× [n], and ∀a ∈ [n] let ρa ∈ C
k×k

be positive semidefinite such that tr (
∑

a ρa) = 1. Then G =
(
(ρa)a∈[n], σ

)
is a quantum retrieval

game.

The notion of quantum retrieval games is aimed to model the situation when a mixed quan-
tum state

∑
ρa is measured in order to extract some information about a. The relation σ

describes what knowledge is wanted. We will consider situations when an m-outcome quan-
tum measurement is applied to

∑
ρa, and we say that the game G has been won if the pair

(〈outcome of the measurement〉, a) is in σ. Formally:

Definition 6. (selective and physical projections) Let P = {Pi}m
i=1 be a set of projections in C

k×k,
s.t.

∑
i Pi � I. Call P a selective projection. A selective projection is called physical projections if

it satisfies
∑

i Pi = I.

Definition 7. (selective and physical values of a game) The value of G w.r.t. P is defined as

∑
(i,a)∈σ tr(Piρa)∑

i,a tr(Piρa)
,

and if P is a selective projection then the value is undefined unless
∑

i,a tr(Piρa) > 0. The selective
value of G is the supremum of the game’s value w.r.t. selective projections, and the physical value
of G is the supremum of the game’s value w.r.t. physical projections.

Note that for physical projections it holds that
∑

i,a tr(Piρa) = 1 (and the above definition
simplifies to

∑
(i,a)∈σ tr(Piρa) in that case). Physical projections are the most general “mechanism”

offered by quantum mechanics to extract classical information from a quantum state.
Selective projections are, in general, more powerful than physical projections (they correspond to

measurements with “postselection”, and those are not allowed by the laws of quantum mechanics).
We will consider selective projections in some of our impossibility statements, that will allow simpler
proofs of direct product statements that we will need. Like in the case of physical projections, we
will view the elements of P as outcomes. Clearly, the selective value of a game is always at least
as large as its physical value.

A physical projection P corresponds to some POVM measurement, and the elements of P are
the possible outcomes. When it is applied to some (normalized) ρ ∈ C

k×k, the i’th outcome occurs
with probability tr(Piρ). If i’th outcome occurred then the state of the quantum register that

originally contained ρ ∈ C
k×k becomes MiρM †

i , where Mi =
√

Pi . We view selective projections
as a generalization of POVMs where the requirement

∑
i Pi = I is replaced by

∑
i Pi � I and the

distribution of outcomes is

Pr [i’th outcome]
def
=

tr(Piρ)∑
j tr(Pjρ)

.

The class of selective projections is closed w.r.t. compositions and applying admissible quantum
transformations.8

8The class of admissible quantum transformations generalizes the class of unitary transformations to include what
can be achieved using auxiliary space.

10



5.2.1 An HMP4 -state cannot be used twice

We have seen that each HMP4 -state can be used to answer at least one HMP4 -query. To prove
that our Q is secure we will have to argue that an HMP4 -state cannot be used to answer two
complementary HMP4 -queries with confidence.

Let GHMP4
be the quantum retrieval game corresponding to answering both the possible HMP4 -

queries using one HMP4 -state, namely

GHMP4

def
=

(
(1/16 · |α(x )〉〈α(x )|)x∈{0,1}4 , σHM

)
,

where
σHM

def
= {(x, (a0, b0, a1, b1)) | (x, 0, a0, b0), (x, 1, a1, b1) ∈ HMP4} .

Note that this definition corresponds to the uniform choice of x ∈ {0, 1}4.

Lemma 5.3. The selective value of GHMP4
is at most 3/4.9

Proof. Note that
∑

x
1/16·|α(x )〉〈α(x )| = 1/4·I. Consider a selective projection that produces correct

answer to GHMP4
with probability δ. There must exist an answer (a′0, b

′
0, a

′
1, b

′
1) that is produced

with non-zero probability, and if it is produced then it is correct with probability at least δ when
x ∼ U{0,1}4 . Fix one such answer.

Denote by E the event that (x, (a′0, b
′
0, a

′
1, b

′
1)) ∈ σHM . By the definition of selective value

there exists a projection P such that tr(Pρ) > 0 and if the outcome P occurs then E holds with
probability at least δ. We will argue that E cannot be “witnessed” very well by any outcome of
measuring ρ.

Observe that E always corresponds to choosing three different coordinates j1, j2, j3 ∈ [4] and
fixing the values of xj1 ⊕ xj2 and xj2 ⊕ xj3. By symmetry of |α(x )〉, we can, w.l.g., consider the
case of witnessing x1 = x2 = x3 via measuring of ρ.

Let P =
∑

i∈[k] |ei〉〈ei| for some orthonormal |e1〉 , . . . , |ek〉. We have:

δ ≤
tr

(
P

∑
x1=x2=x3

|α(x )〉〈α(x )|
)

tr
(
P

∑
x∈{0,1}4 |α(x )〉〈α(x )|

) ≤ max
i∈[k]





∑
x1=x2=x3

|〈ei|α(x)〉|2

tr
(
|ei〉〈ei|

∑
x∈{0,1}4 |α(x )〉〈α(x )|

)





=
1

4
·

∑

x1=x2=x3

|〈e0|α(x)〉|2 ,

where |e0〉 ∈ {|e1〉 , . . . , |ek〉} attains the optimum of the second inequality (under the “0/0 = 0”

convention). Let e
(j)
0

def
= 〈e0|j〉 for j ∈ [4], then

δ ≤ 1

8

((
e
(1)
0 + e

(2)
0 + e

(3)
0 + e

(4)
0

)2
+

(
e
(1)
0 + e

(2)
0 + e

(3)
0 − e

(4)
0

)2
)

=
1

4

((
e
(1)
0 + e

(2)
0 + e

(3)
0

)2
+

(
e
(4)
0

)2
)

≤ 3

4
,

because |e0〉 is a unit vector. �

For k ∈ N, let Gk
HMP4

be the naturally defined “product game” that consists of k independent
instances of GHMP4

.

9From the proof it can be seen that the bound is, actually, tight.
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Corollary 5.4. The selective value of Gk
HMP4

is at most (3/4)k.

Proof. Let G(i)
HMP4

denote the i’th instances of GHMP4
“inside” Gk

HMP4
. Then

Pr
[
Gk

HMP4
is won

]
=

∏

i∈[k]

Pr
[
G(i)

HMP4
is won

∣∣∣G(1)
HMP4

, . . . ,G(i−1)
HMP4

are won
]
, (1)

where the probabilities are defined w.r.t. the selective measurement being used to play Gk
HMP4

.

Note that each conditional probability that appears on the right-hand side of (1) is at most
3/4: Otherwise there would exist a selective measurement that used i − 1 auxiliary instances

G(1)
HMP4

, . . . ,G(i−1)
HMP4

, and conditioned upon winning these i − 1 instances won G(i)
HMP4

with prob-

ability higher than 3/4, contradicting Lemma 5.3. The result follows. �

5.3 The cost of counterfeiting a Q-coin

Unless stated otherwise, let c be the Q-coin that an adversary is trying to counterfeit, and let x be
the bank’s secret string that describes the structure of c. We want to argue that in order to achieve
his goal, the adversary has to collect certain minimal amount of additional information about the
coin, and that task itself is difficult to fulfill.

Let us assume for the rest of our security analysis that the attack under consideration, denoted
by C, runs at most U instances of Ver , all of them initiated by sending the identification number of
c. Informally, C is successful if in the end it outputs quantum states ρ1 and ρ2 (possibly entangled),
such that both of them, if given to a trustworthy user, pass Ver with some non-negligible probability.
This probability is viewed w.r.t. the randomness present in the construction of c, in C itself, and
in the final run of Ver .

It is crucial that we consider the probability of both the fakes having been accepted. If instead
we were asking what is the smaller of the probabilities that ρj passes Ver for j ∈ {0, 1}, we would
end up with a bound of at least 1/2: For example, an adversary can toss j ∼ U{0,1} and make ρj

to be c, and ρ1−j to be anything.

Lemma 5.5. Consider an attack that completes at most U instances of Ver in order to counterfeit
c. Conditional upon having passed at most u ≤ U instances, the success probability of counterfeiting
is at most

e−Ω(t) + eu ln U−Ω(k).

Proof. For j ∈ {0, 1}, let Ij be a random variable taking the value of the list of HMP4 -registers
that are marked as unused on ρj . By the definition of Q-scheme it should hold that |Ij| ≥ 3k/4
(otherwise the forgery would be obvious right away).

Consider the run of Ver for the counterfeit contained in ρj. For any choice of Lhl in step 3 and
of “questions” {mi | i ∈ Lhl } in step 4, the quantum measurement applied by the coin holder in
step 5 can be decomposed into 2t/3 measurements that access individual registers of ρj in order to

find answers w.r.t. the corresponding mi. Let us denote by P i,m
j the measurement applied to ρj in

order to produce (ai, bi) when mi = m.

In step 5 of Ver the holder of ρj performs the measurements
{
P i,mi

j

 i ∈ Lhl

}
in order to

determine the 2t/3 pairs (ai, bi) that he will report to the bank. Now we make two observations that
will be crucial for the proof:

• The only pairs of the measurements that do not commute are
{(

P i,m
j , P i,1−m

j

)  j ∈ {0, 1} , i ∈ [k],m ∈ {0, 1}
}

.
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• Since the coin holder is now fair to the protocol, the 2t/3-set Lhl chosen in step 3 of Ver is a
uniformly random subset of Ij. The questions (mi)i∈Lhl are i.i.d. by U{0,1}.

Denote by Vj the instance of Ver that tests ρj , and accordingly define Lj
hl

and mj
i . Let us view

choosing (mj
i )i∈Lj

hl

as first taking mj ∼ U{0,1}k , followed by choosing a random Lj
hl

and outputting

the projection of mj to the coordinates in Lj
hl

. Clearly, the resulting distribution of Lj
hl

and

(mj
i )i∈Lj

hl

are the same. Therefore, we can replace the protocols V1 and V2 by a new quantum

procedure, somewhat more friendly to analyze.
Let Ṽ be the following procedure that either accepts or rejects quantum states ρ1 and ρ2.

1. For j ∈ {0, 1}, choose mj ∼ U{0,1}k .

2. For j ∈ {0, 1} and i ∈ Ij, apply P
i,mj

i
j to ρj and denote the outcome by (aj

i , b
j
i ).

3. For j ∈ {0, 1}, choose Lj
hl

as a uniformly random subset of Ij of size 2t/3.

4. Accept if for all j ∈ {0, 1} and i ∈ Lj
hl

it holds that (xi,m
j
i , a

j
i , b

j
i ) ∈ HMP4 ; reject otherwise.

Observe that all P
i,mj

i
j

′s that can appear in a single run of Ṽ commute, and therefore the

probability that Ṽ accepts exactly equals the probability that both V1 accepts ρ1 and V2 accepts
ρ2.

Denote I
def
= I1 ∩ I2, I ′

def
=

{
i ∈ I

m1
i 6= m2

i

}
, Ĩj

def
=

{
i ∈ I ′

 (xi,m
j
i , a

j
i , b

j
i ) 6∈ HMP4

}
and

Ĩ
def
= Ĩ1 ∪ Ĩ2. We will see that Ĩ is unlikely to be small, and if it is big then Ṽ is unlikely to accept.
Let us first consider the case when the adversary has not run any preliminary protocol and

created ρ1 and ρ2 from c alone, without any auxiliary knowledge about x.
By definition, |I| ≥ k/2. By uniformity of m1 and m2 it holds that E [|I ′|] = |I| /2, and

Chernoff bound (Theorem 3.1) implies

Pr

[∣∣I ′
∣∣ ≤ k

5

]
< e−

|I|
100 ≤ e−

k
200 . (2)

By Lemma 5.3, for every i0 ∈ I ′ it holds that Pr
[
i0 6∈ Ĩ

]
≤ 3/4; moreover, the same remains true

even if we condition upon the content of Ĩ \ {i0} (otherwise Lemma 5.3 would be contradicted
by a selective measurement that uses auxiliary instances of GHMP4

in order to win with higher
probability, similarly to the proof of Corollary 5.4). Therefore Corollary 3.3 can be used here,
resulting in

Pr

[∣∣∣Ĩ
∣∣∣ ≤ |I ′|

5

]
≤ e−

|I′|
200 . (3)

Clearly,

Pr

[∣∣∣Ĩ
∣∣∣ <

k

25

]
≤ Pr

[∣∣I ′
∣∣ ≤ k

5

]
+ Pr

[∣∣∣Ĩ
∣∣∣ ≤ |I ′|

5

∣∣∣∣
∣∣I ′

∣∣ >
k

5

]
,

which leads, together with (2) and (3), to

Pr

[∣∣∣Ĩ
∣∣∣ <

k

25

∣∣∣∣⋆
]
≤ e−

k
200 + e−

k
1000 , (4)

where “⋆” is the condition that ρ1 and ρ2 are created from c not using any auxiliary input.
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Now assume that in order to produce ρ1 and ρ2 the adversary has completed at most U instances
of Ver , and condition upon at most u of them having been passed successfully. The idea here is to
emulate the same attack, letting the adversary guess the bank’s responses locally. In this form the
attack uses no auxiliary data from the bank, which makes ⋆ from (4) hold.

According to Ver , the only bank’s message that depends on x is the final “accept”/“reject”
notice. Therefore, if the adversary (who doesn’t know x) does his best to predict all bank’s re-
sponses, such predictions will be statistically indistinguishable from bank’s responses, as long as all
“accept”/“reject” verdicts are guessed correctly. The number of different ways to choose at most
u “accepts” out of U verdicts is at most Uu + 1, and therefore they are guessed correctly with
probability at least 1

Uu+1 . Thus from (4),

Pr
[∣∣∣Ĩ

∣∣∣ < k/5
]

Uu + 1
≤ e−

k
200 + e−

k
1000 . (5)

Now assume that
∣∣∣Ĩ

∣∣∣ ≥ k/5. W.l.g., let
∣∣∣Ĩ1

∣∣∣ ≥ k/10. Then the probability that Ṽ accepts is

upper-bounded by the probability that none of the elements of L1
hl

comes from Ĩ1, and that is at
most (9/10)2t/3 < (14/15)t. Together with (5), this implies that

Pr
[
Ṽ accepts

]
<

(
14

15

)t

+
(
e−

k
200 + e−

k
1000

)
· (Uu + 1),

as required. �

5.4 Phased attacks

If we could assume that the attack under consideration is phased, in a sense that during cheating
phase i the i’th steps of all U auxiliary instances of Ver are executed, that would simplify our
analysis considerably. In this part we will show that any attack can be transformed, with a modest
loss in the success probability, to the nearly-phased form.

Definition 8. (phased and nearly-phased attacks) Let an attack be using U auxiliary instances of
Ver .

We say that the scenario is phased if it can be viewed as consisting of 6 consecutive phases,
such that at phase i the i’th steps of all U auxiliary instances of Ver are executed.

We call the scenario nearly-phased if it is phased with a relaxation that instead of phases 3 and
4 it has a phase called “3 - 4”, when both the 3’rd and the 4’th steps of the auxiliary instances of
Ver are executed.

Intuitively, the difference between the two restrictions is that in a nearly-phased scenario an
adversary is allowed, say, to choose the 2t/3 “playing” registers (out of the t suggested by the bank)
in the auxiliary instance 1 of Ver after he has received the 2t/3 questions mi relevant to the auxiliary
instance 2 of Ver . In the case of phased attacks such behavior is not allowed: the questions mi

relevant to all the auxiliary instances of Ver are available to the adversary only after the choices of
“playing” registers have been made w.r.t. all the instances.

The convenience of these definitions comes from the fact that, on the one hand, if an attack is
phased then it cannot use in an earlier stage of one auxiliary instances of Ver the output from a later
stage of another instances, while on the other hand, only the last bank’s response in Ver provides
any information about the string x. That is, assuming that an attack is (nearly-) phased limits
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considerably the possibilities for the adversary to use dependencies between different instances of
Ver .

Our claim is the following.

Lemma 5.6. If an attack exists that initiates at most U and wins at least u ≤ U auxiliary instances
of Ver with probability at least δ, then there is a nearly-phased scenario that initiates and completes
exactly U and wins exactly u instances of Ver with probability larger than

δ − U/2
2t/3

Uu
.

In the above statement by “initiating” an instance of Ver we mean sending a coin identification
number to the bank and getting back a list of t registers (step 2 of Ver ).

Proof. The proof idea here is somewhat similar to that of Lemma 5.5 – namely, if the output from
a later stage of one auxiliary instance of Ver is used by the adversary in order to decide how to act
in an earlier stage of another instance, we would let a “new adversary” guess the future response of
the first instance before actually receiving it from the bank, and act in the second instance under
the assumption that the guessing has been accurate.

Let C be the attack, as guaranteed by the lemma condition.
First of all, let us turn it into C′ that always completes U instances of Ver and is likely to win

exactly u of them. This first modification is straightforward – C′ would behave as C, except for the
following modifications:

• If, according to C, no more auxiliary instances are needed but less than U have been run then
C′ runs “dummy” instances of Ver (generating uniformly at random all messages that are sent
to the bank), in order to make their total number equal U .

• If, according to C, some instances of Ver are aborted, C′ completes them in a “dummy” way.

• If at some point it occurs that C′ has already won u instances of Ver , then it completes all
remaining instances in a “dummy” way.

Note that the way C′ produces ρ1 and ρ2 is irrelevant for us now, as here we are only interested in
the number of “accepts” among the preliminary runs of Ver .

Clearly, the probability that C′ wins at least u instances is the same as in the case of C; on the
other hand, C′ wins more than u instances only if at least one “dummy” instance has been won.
A single “dummy” instance is won with probability exactly 2−2t/3, and at least one is won with
probability less than U · 2−2t/3. Therefore, C′ wins exactly u instances of Ver with probability larger
than

δ − U · 2−2t/3. (6)

Now let us turn C′ into nearly-phased. The new attack C′′ consists of 5 phases, as follows.

1. Initiate U instances of Ver , sending the identification number of c to the bank. Index the
instances by 1, . . . , U .

2. Get back U t-tuples, denoting by T
(1)
i the response from the i’th instance of Ver , i ∈ [U ].

3 - 4. Let W ∈ {0, 1}U be a uniformly chosen binary vector of Hamming weight u – this is going to
be the adversary’s guess regarding the winning instances of Ver . Start emulating C′ skipping

the first two steps of each instance of Ver , as those have been processed already (use T
(1)
i

′s as
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bank’s responses in step 2 of Ver ). Skip all interaction with the bank beyond step 4; instead,
whenever C′ acts depending on the bank’s final response in the i’th instance of Ver , emulate
C′ assuming that the response was Wi (where “0” stands for “reject”, and “1” stands for
“accept”). Run the emulation until the bank’s responses in step 4 have been received in all U

instances of Ver . For i ∈ [U ], denote by T
(2)
i the 2t/3-tuple chosen in step 3 of the i’th instance

of Ver , and by Mi ∈ {0, 1}2t/3 the values sent by the bank in step 4 of the i’th instance.

5. Start a new emulation of C′, this time skipping steps 1 - 4 of each instance of Ver and

respectively using the values T
(1)
i and Mi as bank’s responses. Do not interact with the bank

beyond step 5; instead, whenever C′ acts depending on the bank’s final response in the i’th
instance of Ver , emulate C′ assuming that the response was Wi.

6. Receive the final responses from the bank, denote them by V ∈ {0, 1}U .

It is clear from the construction that C′′ is nearly-phased.
Let us analyze the probability that C′′ wins exactly u instances of Ver . It is lower bounded by

the probability that V = W , and that equals the probability that C′ wins u instances of Ver and
the right W has been guessed in the beginning of phase “3 - 4” of C′′. The string W ∈ {0, 1}U is
uniformly random of Hamming weight u, thus it is correct with probability at least U−u. Therefore,
(6) implies that C′′ wins exactly u instances of Ver with probability larger than

(
δ − U · 2−2t/3

)
· U−u,

as required. �

5.5 Phased cheating is slow

In this section we will prove that nearly-phased attacks require many auxiliary instances of Ver in
order to win enough of them for Lemma 5.5 to allow non-negligible counterfeiting success proba-
bility.

Lemma 5.7. A nearly-phased attack that initiates and completes U auxiliary instances of Ver wins
at least 3k/t of them with probability at most

e2 ln U−Ω(t2/k).

As before, by “initiating” an instance of Ver we mean sending a coin identification number to
the bank and getting back a list of t registers (step 2 of Ver ).

Proof. Let C be the nearly-phased attack under consideration. For i ∈ [U ], let random variables

T
(1)
i , T

(2)
i and Mi describe the transcript of the i’th instance of Ver , as follows:

• T
(1)
i takes the value of the t-tuple chosen by the bank in step 2;

• T
(2)
i takes the value of the 2t/3-tuple chosen by the adversary in step 3;

• Mi ∈ {0, 1}2t/3 contains the 2t/3 “questions” chosen by the bank in step 4.

For j ∈ T
(1)
i , let T

(1)
i [j] be the position of j in T

(1)
i , and similarly define T

(2)
i [j]. For j ∈ T

(2)
i , let

Mi[j] be the T
(2)
i [j]’th bit of the value received by Mi – that is, Mi[j] denotes the HMP4 -query

asked in the i’th instance of Ver w.r.t. the register j.

For i, j ∈ [U ], i 6= j, let S
(2)
i,j

def
= T

(2)
i ∩ T

(2)
j (viewed as a set) and

S̃
(2)
i,j

def
=

{
Mi[s] 6= Mj [s]

 s ∈ S
(2)
i,j

}
. (7)
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That is, S
(2)
i,j contains the registers of c that are part of the bank’s challenge questions both in the

i’th and in the j’th auxiliary instances of Ver , and S̃
(2)
i,j contains the registers where good answers

to the both possible HMP4 -queries have to be found in order to pass both the i’th and the j’th
instances of Ver . Note that the attack C produces answers to all the relevant HMP4 -queries not
having any auxiliary information about x (C is phased, and the only bank’s responses that contain
information about x are the final ones, which were not available to C at the earlier phase).

Denote by Wi the event that the i’th instance of Ver is won, and by Wi,j the event that both
the i’th and the j’th instances are won. For every i 6= j, Corollary 5.4 implies that

Pr
[
Wi,j

∣∣∣T (2)
1 , . . . , T

(2)
[U ] ,M1, . . . ,M[U ]

]
≤ (3/4)

˛̨
˛ eS(2)

i,j

˛̨
˛
. (8)

Let r̃ ∈ N, and denote by Ẽ the event that Wi,j does not hold whenever
∣∣∣S̃(2)

i,j

∣∣∣ ≥ r̃ (later we

will fix r̃ to make Wi,j very likely to occur). Then from (8),

Pr
[
Ẽ
]
≥ 1 − U2 · (3/4)er . (9)

Similarly, let r ∈ N (to be fixed later), and denote by E the event that Wi,j does not hold

whenever
∣∣∣S(2)

i,j

∣∣∣ ≥ r. Let E ′ be the event that
∣∣∣S̃(2)

i,j

∣∣∣ ≥ r̃ whenever
∣∣∣S(2)

i,j

∣∣∣ ≥ r, then from (9),

Pr [E ] ≥ Pr
[
E ′

]
− U2 · (3/4)er . (10)

When E holds, any two different elements of the family

F def
=

{
T

(2)
i

Wi holds
}

share less than r elements. We choose

r
def
=

⌊
2t2

9k

⌋
,

then Lemma 3.4 implies that |F| < 3k/t, i.e.,

E holds =⇒ Less than 3k/t instances of Ver are won. (11)

It remains to show that E is likely to hold. Fix

r̃
def
=

⌊
t2

10k

⌋
,

and let us see that E ′ is very likely to occur.
Before we deal with the nearly-phased case, suppose that C is phased. In this case there is

no dependence between the variables
(
T

(2)
i

)U

i=1
and the variables (Mi)

U
i=1, and therefore S̃

(2)
i,j is a

randomly chosen subset of S
(2)
i,j , where each s ∈ S

(2)
i,j independently becomes an element of S̃

(2)
i,j with

probability 1/2. By Chernoff bound (Theorem 3.1), if
∣∣∣S(2)

i,j

∣∣∣ ≥ r then Pr
[∣∣∣S̃(2)

i,j

∣∣∣ < r̃
]
≤ e−Ω(r), and

therefore
Pr

[
E ′

]
≥ 1 − U2 · e−Ω(r). (12)

When C is nearly-phased, the variables
(
T

(2)
i

)U

i=1
are not necessarily independent from (Mi)

U
i=1

(the adversary is allowed to choose the 2t/3 “playing” registers in step 3 of the i’th instance of Ver ,
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depending on Mj received from the bank in step 4 of the j’th instance of Ver , j 6= i). However, we

claim that for every j 6= i the values
{
Mi[s] ⊕ Mj[s]

 s ∈ T
(2)
i ∩ T

(2)
j

}
are unbiased and mutually

independent – and this is all we need for (12) to hold (cf. (7)). Indeed, from the definition of Ver it
is clear that at least one of Mi and Mj is chosen by the bank uniformly at random after the values

of both T
(2)
i and T

(2)
j have been set by the choice of the adversary, and therefore Mi[s] ⊕ Mj [s] is

unbiased.
From (10) and (12),

Pr [E ] ≥ 1 − e2 ln U−Ω(t2/k).

Together with (11), this implies the result. �

5.6 Q is safe

We are ready to prove the main theorem.

Theorem 5.1: Let a fresh Q-coin be given to a computationally unlimited adversary who runs auxil-
iary instances of Ver for this coin and produces two (possibly, entangled) “counterfeits” ρ1 and ρ2.
Then

U ∈ eΩ(t3/k2)

exists, such that if the adversary has received and analyzed the first bank’s responses in at most U
instances of Ver , then the probability that both ρ1 and ρ2 pass Ver is in

e−Ω(t2/k).

Proof. From Lemmas 5.6 and 5.7 it follows that an attack C that receives the first responses in at
most U auxiliary instances of Ver can win at least 3k/t of them with probability at most

eO(k/t) ln U−Ω(t2/k).

Then Lemma 5.5 implies that C succeeds in counterfeiting the coin c with probability at most

eO(k/t) ln U−Ω(t2/k),

and the result follows. �

6 Optimality of Q
In this part we consider a generic quantum money scheme with classical verification, where the
qubit-size of a coin is K and a secret bank record describing a coin contains R bits.

Let us define the counterfeiting complexity of a quantum money scheme as

min
ε

{max {1/ε, 〈time required to counterfeit a coin with success probability at least ε〉}},

this definition is a lower bound on what we intuitively mean by “time required to forge a counter-
feit”.10 Note that Theorem 5.1 and Corollary 5.2 imply that the counterfeiting complexity of Q is
exponential both in K and in R.

10Instead, one might consider the time required to counterfeit a coin with constant success probability. The (asymp-
totic) time complexity of an attack that succeeds with constant probability is an upper bound on the counterfeiting
complexity, as defined above. Note that our scheme from the previous section has high counterfeiting complexity,
therefore it is secure in the stronger sense. On the other hand, the upcoming (formal) optimality statements will
be made w.r.t. attacks that achieve constant success probability, which will make those statements also as strong as
possible. Intuition-wise, we find the definition with “flexible ε” more appealing, that is why we use it in the informal
discussion.
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First of all, 2R adversarial verification attempts are enough to exhaustively check all possible
bank’s records, and therefore O

(
2R

)
is an upper bound on the counterfeiting complexity of any

quantum scheme. So, in the case of Q the length of a bank record as a function of counterfeiting
complexity is polynomially-close to optimal.

Can the counterfeiting complexity be super-exponential in K? We could not find a simple
argument against this possibility. The counterfeiting complexity of Q is exponential in K (which
can probably be viewed as “reasonably good”), and we leave the question above as an open problem.

There is one parameter in the construction of Q that one might like to improve – namely, the
number of verification rounds that a new quantum coin can go through before it has to be returned
to the bank. In this section we show that no scheme can allow this number to be larger than linear
in K, and therefore our construction is polynomially-close to the optimal in this respect also.

Theorem 6.1. Let T be the number of times that a new coin can be verified via classical commu-
nication with the bank before it has to be replaced. Suppose that if a fair user verifies a fresh coin
T times in a sequence then all T verifications are passed with probability at least 8/9. Then either T
auxiliary instances of the verification protocol are sufficient for an adversary to counterfeit a coin
with probability at least 2/3, or a coin contains Ω(T ) qubits (or both).

To prove the theorem we will need the following technical statement (which might be of inde-
pendent interest).

Lemma 6.2. Let A and B be discrete random variables, such that there exists a condition that can
be satisfied with probability at most α by the value of any random variable independent from A. If
the value of B satisfies the condition with probability at least β ≥ α, then

I(A : B) ≥ 2(β − α)2.

First we prove the theorem, then the lemma.

Proof sketch of Theorem 6.1. Assume that more than T auxiliary instances of the verification pro-
cedure are required for an adversary to counterfeit a coin with probability at least 2/3.

To argue that a coin consists of Ω(T ) qubits, let us show that its “quantum part” has mutual
information Ω(T ) with bank’s secret record. To make sure that we are not counting information
carried by the classical part of a coin, let us assume w.l.g. that the first message of the verification
protocols is sent by the coin holder to the bank and contains all the classical information that the
coin contained when it was fresh.

Let L1, . . . , LT be random variables, respectively taking values of the transcripts of T sequen-
tially executed protocols for coin verification via classical communication (assuming that the coin
holder fairly follows the protocol, and that the coin was fresh when the first verification started).
For convenience (and w.l.g.), assume that a transcript provides complete information about the
action taken by a fair coin holder w.r.t. the coin being verified. Let ρ be the mixed state of a
fresh coin whose secret record is unknown, and for every j ∈ [T ] and ℓ1, . . . , ℓj, let ρℓ1,...,ℓj

be the
state of a fresh coin that went through j verification protocols whose transcripts were, respectively,
ℓ1, . . . , ℓj .

Let (ℓi)
T
i=1 be the values taken by (Li)

T
i=1. Denote by R a random variable describing the bank’s

secret record corresponding to the coin under consideration. Let S(·, ·) denote quantum mutual
information, we claim that

∀i ∈ [T ] : E
[
S(ρℓ1,...,ℓi−1

: R) − S(ρℓ1,...,ℓi
: R)

]
≥ 1

2592
, (13)
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where the expectation is taken w.r.t. the choice of (Li)
T
i=1. From (13) it follows that S(ρ : R) ∈

Ω(T ), and Holevo’s bound implies that ρ consists of Ω(T ) qubits, as required.
To prove (13) we will also use Holevo’s bound. For simplicity let us assume that each run of

the verification protocol requires exactly one quantum measurement to be performed by the coin
holder (the case of many measurements is treated similarly).

Fix i ∈ [T ]. Observe that if during the i’th run of the verification protocol the coin holder would
not perform any quantum measurement, instead making the “best guess” responses based on the
previous transcripts ℓ1, . . . , ℓi−1, then the probability to pass the verification would be less than 7/8

– otherwise an adversary could, based on the transcripts ℓ1, . . . , ℓi−1, prepare two counterfeits that
would both pass the verification with probability at least (7/8)2 > 2/3, contradicting the assumptions
of the theorem. On the other hand, by making the quantum measurement, as prescribed by the
verification protocol, a fair coin holder is able to pass the verification with probability at least 8/9,
also guaranteed by the theorem assumptions.

Conditional on ℓ1, . . . , ℓi−1 being the values taken by L1, . . . , Li−1, the following holds. The ac-
ceptance condition of the i’th verification can be satisfied with probability at most 7/8 by a random
variable that doesn’t depend on R; at the same time the outcome of the quantum measurement per-
formed by the coin holder satisfies the condition with probability at least 8/9. Therefore, Lemma 6.2
implies that the expected conditional mutual information between the measurement outcome and
R is at least 1/2592. Holevo’s bound implies (13), and the result follows. �Theorem 6.1

Proof of Lemma 6.2. W.l.g., assume that the condition under consideration is a function of the
value taken by B. Let X and Y be the supports of A and B, respectively. For every b ∈ Y , let
Xb ⊆ X be the set of values of A that satisfy the condition when B = b. Let µ be the distribution of

A, and let µb be the distribution of A conditional upon B = b. Let αb
def
= µ(Xb) and βb

def
= µb(Xb).

The requirements of the lemma assure that

E
B=b

[αb] ≤ α and E
B=b

[βb] ≥ β. (14)

By definition,

I(A : B) = E
B=b

[dKL (µb||µ)] = E
B=b

[
∑

x

µb(x) · log
(

µb(x)

µ(x)

)]
, (15)

and this is the value we want to bound from below. We have

∑

x∈Xb

µb(x) · log
(

µb(x)

µ(x)

)
= αb

∑

Xb

µb(x)

αb
· log

(
µb(x)/αb

µ(x)/βb

· αb

βb

)

= αb ·
(

dKL

(
µb

αb

∣∣∣∣
∣∣∣∣
µ

βb

)
+ log

(
αb

βb

))
≥ αb · log

(
αb

βb

)
,

where the inequality follows from non-negativity of dKL (·||·) and the fact that, restricted to Xb,
both µb/αb and µ/βb are probability distributions. Similarly,

∑

x 6∈Xb

µb(x) · log
(

µb(x)

µ(x)

)
≥ (1 − αb) · log

(
1 − αb

1 − βb

)
,

leading to

dKL (µb||µ) ≥ αb · log
(

αb

βb

)
+ (1 − αb) · log

(
1 − αb

1 − βb

)
= dKL (Bαb

||Bβb
) ≥ 2(αb − βb)

2,
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where Bp denotes Bernoulli distribution with probability p for outcome “1”, and the last inequality
follows from Pinsker’s inequality. Plugging this into (15), we obtain the desired

I(A : B) ≥ 2 E
B=b

[
(αb − βb)

2
]
≥ 2(β − α)2,

where the last inequality follows from (14). �Lemma 6.2

7 Conclusions

We constructed a quantum money scheme Q that allows verifying a coin via classical communication
with a bank. Thus we are proving existence of secure quantum money schemes that do not require
quantum communication for coin verification.

Our scheme has the following properties.

• The coins are exponentially hard to counterfeit, even if an adversary is adaptively using
repeated verification attempts in order to collect information about a coin.

• The classical communication channel used for verification can be unsecured.

• The database of the bank is static.

• The dependence between the number of verifications that a Q-coin can go through and the
number of qubits that it contains is optimal, up to a polynomial.

There are (at least) two questions that remain open:

• Is it possible to build anonymous quantum money schemes with classical verification, by allow-
ing multiple identical instances of quantum coins, as suggested by Mosca and Stebila [MS10]?

• Is it possible to have the counterfeiting complexity of quantum money super-exponential in
the number of qubits that a coin contains (cf. Section 6)?
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