
Optimally-Smooth Adaptive Boosting and

Application to Agnostic Learning

Dmitry Gavinsky

Department of Computer Science

University of Calgary

Calgary, Alberta, Canada, T2N 1N4

e-mail: gavinsky@cpsc.ucalgary.ca

Abstract

We describe a new boosting algorithm that is the first such algorithm to be both
smooth and adaptive. These two features make possible performance improvements for
many learning tasks whose solutions use a boosting technique.

The boosting approach was originally suggested for the standard PAC model; we
analyze possible applications of boosting in the context of agnostic learning, which is
more realistic than the PAC model. We derive a lower bound for the final error achievable
by boosting in the agnostic model and show that our algorithm actually achieves that
accuracy (within a constant factor).

We note that the idea of applying boosting in the agnostic model was first suggested
by Ben-David, Long and Mansour and the solution they give is improved in the present
paper. The accuracy we achieve is exponentially better with respect to the standard
agnostic accuracy parameter β.

We also describe the construction of a boosting “tandem” whose asymptotic number
of iterations is the lowest possible (in both γ and ε) and whose smoothness is optimal in
terms of Õ. This allows adaptively solving problems whose solution is based on smooth
boosting (like noise tolerant boosting and DNF membership learning), while preserving
the original (non-adaptive) solution’s complexity.

1 Introduction

Boosting is a learning method discovered by Schapire [S90]. It proves computational equiva-
lence between two learning models: the model of distribution-free (strong) PAC-learning and
that of distribution-free weak PAC-learning (the PAC-model was first introduced by Valiant,
[V84]; the strong and the weak cases were distinguished by Kearns and Valiant, [KV94]). This
(theoretical) equivalence between the two models may be used to solve various problems in
the domain of Learning Theory—a number of such problems are currently known whose
“strong” solution was achieved by initially constructing a weak learner and then applying a
boosting algorithm.

On the other hand, for many concept classes no weak (PAC) learner has been found so
far (e.g., for the class of DNF formulas, see [J97]). In such cases one possible approach is to
modify the learning model to make the task of learning simpler. For example, in the case
of DNF learning a solution is known for the “simplified” PAC model, where the learner is

1

allowed to ask membership queries and the target distribution is always uniform ([J97]); at
the same time, in its unrestricted form the task is considered rather difficult.

It turns out that the boosting approach, originally developed for the standard PAC model,
may be adapted to other more or less similar learning models. For example, the solution
suggested in [J97] for the DNF learning problem is partially based on a previously known
boosting algorithm, adapted for the uniform model with allowed membership queries.

Recently Ben-David, Long and Mansour [BLM01] have shown that the boosting approach
may also be applied in the model of agnostic learning, which is in a sense “more practical”
than PAC (see Subsection 1.1.3 for model description).

In this paper we construct a boosting algorithm whose requirements for some resources
are “optimally modest”; as a result, this algorithm may be used in a number of “near-PAC”
learning models, achieving the optimal performance.

1.1 Learning Models

All the models considered in this paper have one feature in common: a learner always com-
municates with a D-oracle which produces examples (x, f(x)), where f is the target function
and x is chosen from the domain X according to the distribution D.

In this paper we will always assume that f is binary-valued to {−1, 1}. We will sometimes
use as a complexity parameter a measure of the representation size of f , which we denote
by I(f) (its definition depends on the target class and is usually clear from the context).
Therefore the difference between the following models lies in the requirements for the learner’s
complexity and accuracy.

1.1.1 PAC Learning (Strong)

The target function f is assumed to come from some hypotheses class C. The learner receives
parameters ε and δ; its goal is to produce with probability at least 1 − δ a binary hypothesis
hfin, satisfying:

εhfin
, Pr

D
[hfin(x) 6= f(x)] ≤ ε.

The time complexity of the learner should be polynomial in 1/ε, log(1/δ) and I(f).
(Sometimes δ is referred to as a confidence parameter.)

1.1.2 PAC Learning (Weak)

The target function f is assumed to come from some hypotheses class C. The learner re-
ceives a parameter δ; its goal is to produce with probability at least 1 − δ a hypothesis hfin,
satisfying:

γhfin
, E

D
[h(x) · f(x)] ≥ γmin,

where γmin decreases inversely polynomially in I(f) (we will use the notation γh to denote
the value of ED [h(x) · f(x)] for any real-valued h defined over X). In the context of weak
PAC learning we will not require the produced hypothesis to be binary (it may be real-valued
to [−1, 1]).

The time complexity of the learner should be polynomial in I(f) and log(1/δ).

2

1.1.3 Agnostic Learning

In the framework of agnostic learning no a priori assumptions regarding the target function
f are made; instead we require that the learner’s response hfin should be “close to the best
possible” up to some parameter. Formally, agnostic learning means that we define some
learning hypotheses class F to be used for learning. For any target function f , the best
possible accuracy a hypothesis from F can achieve is either equal or infinitesimally close to

err
D

(F) , inf
h′∈F

{

Pr
D

[

h′(x) 6= f(x)
]

}

. 1

The learner receives a parameter δ and has to produce with probability at least 1 − δ a
binary hypothesis hfin, satisfying:

εhfin
≤ err

D
(F) + β,

for some β announced a priori. A learner satisfying this is called a β-optimal learner.
We do not define a general notion of agnostic learning efficiency here; for a detailed

overview of the agnostic learning model, see [KSS94].

1.2 Boosting

A boosting algorithm B is supplied with an auxiliary algorithm WL (the weak learner). B
communicates with WL, in a sequence of sessions: During session i B chooses a distribution
Di over X and emulates for WL a Di -oracle, answering according to the target function f . In
response WL has to learn f w.r.t. Di , each session ends when WL constructs its hypothesis.

We will denote the total number of performed boosting sessions by T and the weak
learner’s response to Di by hi. We will sometimes refer to individual sessions as “iterations”.

The boosting algorithm itself “faces” some target distribution D, according to which it
receives instances from the oracle. After the T ’th session is finished, B produces its final
hypothesis hfin whose accuracy w.r.t. D is higher than the accuracies of the received weak
hypotheses (w.r.t. corresponding Di -s).

When the boosting is performed in the PAC model, the weak learner is usually a weak
PAC-learner and the booster itself is required to satisfy the strong PAC requirements (see
Subsection 1.1.1). In this case the booster is considered efficient when its complexity is
polynomial in the γmin parameter of WL, as well as in standard PAC complexity parameters.
Note that when WL is an efficient weak PAC learner (i.e., γmin is inverse-polynomial low),
the whole tandem B+WL constitutes an efficient strong PAC learner.

For the case of agnostic model (see Subsection 1.1.3) we will derive efficiency requirements
for both B and WL later in the paper. (Since the PAC model is “more natural” for boosting,
we will describe and analyze our algorithm as a PAC booster, and then we will separately
consider its usage under agnostic settings.)

1Note that sometimes the agnostic model is defined so that the class used for accuracy evaluation is allowed
to differ from that used to produce approximating hypotheses.

3

1.2.1 Boosting by Sampling versus Boosting by Filtering

In this paper we consider two boosting modes: boosting by sampling and boosting by filtering.
Boosting by sampling means that the learning is performed in two stages. In the first

stage the algorithm collects a sufficient number of learning examples (i.e., a subset S ⊂ X
together corresponding values of f) by repeatedly calling the oracle. In the second stage the
booster performs learning over this collection of examples only. The training sample S is of
polynomial size.

The booster’s goal is to achieve some required accuracy over the training set (which is
often the absolute accuracy, so that the hypothesis coincides with f for each x ∈ S). Then
information-theoretic techniques like VC theory ([V82]) and Occam’s Razor ([BEHW89]) may
be applied to measure the overall accuracy w.r.t. D of the same hypothesis.

Of course, the hypothesis may be not accurate over whole X even if it is correct over S.
Such “switching” from sub-domain S to whole X is sometimes called generalization, and the
additional error introduced by generalization is called a generalization error.

In contrast, when boosting by filtering the booster takes the whole set of instances as its
learning domain. The examples received by the booster from the PAC-oracle are not stored,
but are “filtered”: each example is either forwarded to WL or rejected (i.e., is not used at
all).

This approach has two obvious advantages over boosting by sampling: the space com-
plexity is reduced (the examples are not stored) and no generalization error is introduced.
At the same time, the analysis and the algorithm itself become slightly more complicated,
because now the booster cannot get exact statistics by running through all the instances of
the domain and needs to use some estimation schemes (based on various statistical laws of
large numbers, like the Chernoff bound).

Among the possible reasons for using boosting by sampling is that the booster is not
smooth: In general, a distribution which is not polynomially near-D cannot be efficiently
simulated using repeated calls to a D-oracle, when X is superpolynomially large.

1.2.2 Smooth Boosting and Adaptive Boosting

In this paper we consider two special features of boosting algorithm: smoothness and adap-
tiveness.

The term “adaptiveness” means that the algorithm doesn’t require a priori lower bound
for γi; instead the algorithm “takes advantage” of each single weak hypothesis, as good as
it is. More formally, while a non-adaptive booster has its complexity bounds polynomial in
1/min {γhi

|1 ≤ i ≤ T } , adaptive algorithm’s running time is polynomial in

1/ E
1≤i≤T

[poly(γhi
)] .

(For example, we will derive complexity bounds for our algorithm in terms of 1/E1≤i≤T

[

γ2
i

]

.)
The term “smoothness” means that the distributions Di emulated by the booster do not

diverge dramatically from the target distribution D of the booster itself. To measure the
“smoothness” of a distribution Di, we define a smoothness parameter :

αi , sup
x∈X

Di(x)

D(x)
.

4

We define a smoothness parameter for a boosting algorithm as sup of possible smoothness
parameters of distributions emulated by it. A boosting algorithm with smoothness parameter
α will be called α-smooth.

For example, if the target distribution is known to be always uniform and the booster is
smooth, WL will has to deal only with distributions which are near to the uniform (which
simplifies its quest sometimes). This idea is basic for the only known solution of DNF
membership learning w.r.t. uniform ([J97, KS99]). Among other known applications for
smooth boosting algorithms are noise-tolerant learning ([F99, DW00, S01]), learning via
extended statistical queries ([BF01]) and agnostic boosting ([BLM01]).

1.3 Our Results

In this paper we construct a boosting algorithm called AdaFlat , which is optimal from several
points of view. We show that AdaFlat is adaptive and near-optimally smooth (within a
constant multiplicative factor of 2).

Let us consider a variation of the above adaptiveness notation: Call a booster output-
adaptive if the size of the final hypothesis it produces is adaptive (i.e., is bounded above by
a polynomial in 1/E1≤i≤T [poly(γhi

)]). For notation clarity we will sometimes refer to the
“usual” adaptiveness (as defined above) as time-adaptiveness.

If the size of the final hypothesis depends polynomially on γhi
-s, then time-adaptiveness

naturally implies output-adaptiveness. To the best of our knowledge, this is the case for all
known boosting algorithms.

Claim 1 If the size of the final hypothesis depends polynomially on γhi
-s, then smoothness

is essential for performing adaptive boosting over a superpolynomially large domain.

Proof of Claim 1 The booster is output-adaptive, assume that it is not smooth.
On the one hand, non-smoothness obliges to use boosting by sampling. On the other hand,

for an output-adaptive booster it is not in general possible to bound from above “adaptively”
the size of the final hypothesis before the boosting process ends.

In order to fix the size of the learning sample S so that the final error (after generalization)
would be at most ε, it is essential to have an upper bound for the size of the final hypothesis
(e.g., see [V82] and [BEHW89] for overview of generalization techniques).

Because the size of the learning domain must be fixed before boosting by sampling starts
and at that time we do not have an adaptive upper bound for the size of the final hypothesis,
we have to use a learning sample of non-adaptive size, which turns the boosting algorithms
itself into non-time-adaptive.
�Claim 1

To the best of our knowledge, AdaFlat is the first smooth adaptive booster.
An algorithm MadaBoost constructed by Domingo and Watanabe [DW00] is smooth, but

it is adaptive only for a non-increasing sequence of weak hypotheses accuracies (i.e., when
γhi+1

≤ γhi
for 1 ≤ i ≤ T − 1). Besides, their result applies only to the case of binary-valued

weak hypotheses, which seems to produce some difficulties when Fourier spectrum approach
is used for weak learning ([M94, BFJKM94, BJT99]).

5

Another similar result was achieved in [BG01]. The algorithm constructed there is smooth
and output-adaptive, but not time-adaptive: While it makes adaptive number of boosting it-
erations and constructs final hypothesis of adaptive size, the time complexity of each iteration
depends upon the value of γmin (which should be provided before the boosting starts).

We show that AdaFlat may be used in the framework of agnostic learning. We derive a
lower bound for the final error achievable by agnostic boosting; we show that our algorithm
achieves that accuracy (within a constant factor of 2). Our upper bound on the final error is

1

1/2 − β
err
D

(F) + ζ,

where ζ is any real so that the time complexity of the solution is polynomial in 1/ζ .
The idea of applying boosting in the agnostic model is due to Ben-David, Long and

Mansour [BLM01]. Our result is an exponential improvement w.r.t. β over the solution
suggested in [BLM01], whose error is upper bounded by

1

1/2 − β
err
D

(F)2(1/2−β)2/ ln(1/β−1) + ζ.

(In particular, this answers an open question posed in [BLM01].)
Algorithm AdaFlat performs the lowest possible asymptotic number of boosting iterations

in terms of γ.
Next we construct a “boosting tandem”, consisting of AdaFlat “joined” with another

boosting algorithm (this approach was first used by [F92] and since then has become very
popular for constructing boosting algorithms). The underlying idea is to use one booster
(AdaFlat , in our case) to boost hypotheses from “weak” accuracy 1

2 + γ to some fixed accu-
racy 1

2 + const, and then to amplify (1
2 + const)-accurate hypotheses to 1 − ε using another

boosting algorithm. This approach is used when the first booster is more efficient in terms
of γ and the second one is more efficient in terms of ε.

Moreover, since adaptiveness means certain behavior of a booster w.r.t. the parameter γ
and AdaFlat is used as the ‘bottom level” for the tandem, the whole construction remains
adaptive.

Naturally, the final hypothesis structure of the tandem is more complicated. On the other
hand, using this approach we achieve the lowest possible asymptotic number of boosting
iterations both in γ and in ε, and also the lowest possible smoothness factor in terms of Õ.2

Since our tandem algorithm is also adaptive, it may be used in order to solve adaptively
and with optimal number of iterations various boosting tasks, including those requiring that
the boosting algorithm be smooth.

2 Preliminaries

For simplicity, in our analysis of boosting schemes we will not allow WL to fail.

2We use the symbol Õ(t(n)) for O(t(n)) · poly(log t(n)), where t(n) is any function of n.

6

2.1 Agnostic Boosting Approach

The main idea standing behind agnostic boosting is as follows: suppose we are given a β-
optimal learning algorithm; it will be used as a weak learner and therefore is referred to by
WL.

Consider some target distribution D. By definition, the weak learner being executed “in a
straightforward manner” must provide a (1 − errD(F) − β)-accurate hypothesis in the worst
case. Let us modify slightly the target distribution thus achieving a new distribution Di of
smoothness αi (measured w.r.t. D). Obviously, it holds that

err
Di

(F) ≤ αi · err
D

(F),

and WL must provide a hypothesis hi whose error is αi · errD(F) + β, in the worst case.
If distribution Di was produced by a boosting algorithm on stage i, then using boosting

notation we may write:

αi · err
D

(F) + β ≥ εi =
1

2
− γi,

which leads to

γi ≥
1

2
− β − αi · err

D
(F). (1)

While [BLM01] mainly considered agnostic learning in the context of boosting by sam-
pling, our result applies equally to both boosting by sampling and boosting by filtering. In
fact, it seems that the main difficulty lies in constructing a weak learner; possible solutions for
this determine the applicability and the efficiency of the boosting methods. Some examples
of “agnostic weak learners” may be found in [BLM01].

3 Optimally-Smooth Adaptive Boosting

In this section we construct a booster working by sampling and in Section 5 we build a
modification of the algorithm which works by filtering. For the construction of AdaFlat we
modify another algorithm, first introduced by Impagliazzo [I95] in a non-boosting context
and later recognized as a boosting algorithm by Klivans and Servedio [KS99].

Algorithm AdaFlat is represented in Figure 1, the following notation is used:

Ni(s) , f(s) ·
∑i−1

j=0 lj · hj(s), N0(s) , 0,

m(N) ,







1 N ≤ 0
1 − N 0 < N < 1
0 1 ≤ N

,

µi ,

P

s∈S m(Ni(s))

|S| , γi(s) ,
hi(s)·f(s)

2 , sign(y) ,

{

1 y ≥ 0
−1 y < 0

.

When the domain S is of polynomial size, simulation of Di-s is straightforward. Note that
the number of iterations performed by the algorithm defines the number of weak hypotheses
combined in a final hypothesis.

7

AdaFlat (WL, S, ε)
1. set: i = 0
2. while Prs∈S [hfin(s) 6= f(s)] ≥ ε

3. define: Di(s) ,
m(Ni(s))

P

s∈S m(Ni(s))

4. call WL, providing it with distribution Di;
denote the returned weak hypothesis by hi

5. set: γi =
∑

s∈S Di(s) · γi(s)

6. set: li = 2µiγi

7. define: hfin(s) , sign
(

∑i
j=0 lj · hj(s)

)

8. set: i = i + 1
9. end-while

10. Output the final hypothesis hfin

Figure 1: The AdaFlat (WL, S, ε) hypothesis boosting algorithm.

3.1 AdaFlat ’s Analysis

Claim 2 Algorithm AdaFlat executed with parameters (WL, S, ε) performs

T ≤
ε−2

4E0≤i<T

[

γ2
i

] (2)

boosting iterations and produces a final hypothesis which is accurate over S and possesses the
structure of a weighted majority vote of T weak hypotheses. The smoothness parameter of
AdaFlat satisfies:

α ≤ ε−1. (3)

Proof of Claim 2 Define the following reward function:

B(N) ,







N N ≤ 0

N − N2

2 0 < N < 1
1
2 1 ≤ N

.

As follows from a second-order Taylor expansion, for any c ∈ R it holds:

B(N + c) ≥ B(N) +
dB

dN
· c + inf B′′(N) ·

c2

2
,

where B′′(N) , min{ dB2

dN ·dN+ , dB2

dN ·dN− }. By noting that m(N) = dB
dN , we get:

B(N + c) ≥ B(N) + m(N) · c −
c2

2
.

Further, denote:

ci(s) , Ni(s) − Ni−1(s) = li · hi(s) · f(s) = 2liγi(s),

Bi ,

P

s∈S B(Ni(s))

|S| ,

∆i
B , Bi+1 − Bi.

8

Consequently,

∆i
B ≥

P

s∈S m(Ni(s))·ci(s)

|S| −
P

s∈S c2i (s)

2|S|

≥ 2li

P

s∈S m(Ni(s))·γi(s)
P

s∈S m(Ni(s))
· µi −

l2i
2

= 2liγiµi −
l2i
2 ,

and using the expression set for li by AdaFlat , we get:

∆i
B ≥ 2γ2

i · µ2
i . (4)

Since B(N) ≤ 1
2 , the last inequality leads to

T ≤
1

4E0≤i<T

[

γ2
i · µ2

i

] . (5)

We can see that the number of iterations T depends on E0≤i<T

[

γ2
i

]

(rather than on
min2

0≤i<T [γi]), and therefore the algorithm is adaptive.
Next, it holds that

1

αi
=

1

|S|
·

1

maxs∈S Di(s)
=

µi

maxs∈S m(Ni(s))
. (6)

But the algorithm would stop as soon as the error of the last constructed hfin becomes less
or equal to ε, so for each i it holds that

argmax
s∈S

m(Ni(s)) = min
s∈S

Ni(s) ≤ 0,

and therefore maxs∈S m(Ni(s)) = 1. At the same time, this means that µi ≥ ε as long as
AdaFlat continues to run (which follows from the definition of µi). Applying this to (6), we
get

α−1
i = µi ≥ ε, (7)

which leads to (3).
Combining (7) with (5), we receive statement (2).
The result follows.

�Claim 2

4 Agnostic Boosting

In this section we apply AdaFlat to agnostic boosting. (We refer to AdaFlat which works by
sampling and not to AdaFlatFilt introduced in Section 5; however, algorithm AdaFlatFilt may
be used for agnostic boosting as well.) As a result, we achieve upper bound on final error of

1

1/2 − β
err
D

(F) + ζ,

where ζ is any real, so that the time complexity of the solution is polynomial in 1/ζ , as well
as in other standard complexity parameters.

9

The analysis of our new application is straightforward: Combining (1), (4) and (7) gives
us that:

∆i
B ≥ 2

(

γi

αi

)2
≥ (ε

(

1
2 − β

)

− errD(F))2,

T ≤ 1
4

(

ε
(

1
2 − β

)

− errD(F)
)−2

,

ε ≤
1

2
√

T
+errD(F)
1

2
−β

.

That is, applying AdaFlat to the task of agnostic boosting allows to get a hypothesis which
(

errD(F)
1

2
−β

+ ζ
)

-approximates the target concept. For that, AdaFlat needs to perform

T ≤
1

4

(

ζ ·

(

1

2
− β

))−2

iterations.
Recall that if we straightly apply WL, we get a (errD(F) + β)-approximation. Therefore,

our approach actually amplifies WL if and only if

err
D

(F) < β ·
1 − 2β

1 + 2β
.

Note that asymptotic evaluation would work well for the number of iterations needed, but
is not sufficient for the smoothness estimation (3). That is because the smoothness property

determines the “base” for the final error expression
(

errD(F)
1

2
−β

)

, which seems to be rather

“hard” (in particular, cannot be decreased simply by performing a larger number of boosting
iterations). The same thing holds regarding the parameter β.

In Section 6 we show that AdaFlat (and AdaFlatFilt) are near-optimally smooth up to the
constant multiplicative factor of 2, therefore the final hypothesis has half the best possible
relative correspondence with the target for the agnostic boosting approach.

5 Boosting Using Filtering

Algorithm AdaFlatFilt is shown in Figure 2. Note that the algorithm receives confidence
parameter δ. Recall that now the target distribution is D itself and the instance space is
{(x, f(x)) | x ∈ X}.

The algorithm has two subroutines: Digen which is used to produce examples for WL
and Evaluate(V, b − a, δ) which, with probability δ at least, returns a value µ′ such that

|µ′ −E [V] | ≤ E[V]
5 when V receives values from [a, b] and E [V] 6= 0. The latter subroutine

is based on the Chernoff bound, its time complexity is

O

(

(b − a)2 · ln(δ−1) · ln((E [V])−1)

(E [V])2

)

.

5.1 AdaFlatFilt ’s Analysis

Denote by T [WL] the time complexity of WL running over the instance space X , and by
Q[WL] the corresponding query complexity (i.e., the number of requested examples).

10

AdaFlatFilt (WL, ε, δ)

1. set: i = 0, δ0 = δ
2

2. while µ′
i(m) ≥ 4ε

5
3. call WL, providing it with distribution generated by Digen;

denote the returned weak hypothesis by hi

4. set: µ′
i(m) = Evaluate

(

m(Ni(s))|s∼D, 1, δi

2

)

5. set: γ′
i = Evaluate

(


γi(s) · m(Ni(s))




∣

∣

∣

s∼D
, 1, δi

2

)

6. set: l′i = 2µ′
i(m)γ′

i, i = i + 1, δi = 2
3 l′2i−1 · δ

7. end-while

8. define: hfin(s) , sign
(

∑i
j=0 l′j · hj(s)

)

9. Output the final hypothesis hfin

Digen
1. do
2. get (xj , f(fj)) from the oracle; choose r ∼ U0,1

3. if (r < m(Ni(s))) then return (xj , f(xj))
4. end-do

Evaluate(V, b − a, δ)

1. set: µg = 1
2 , i = 0, σ = 0, δ = δ

2
2. do
3. set: i = i + 1, σ = σ+ < sample from V >

4. if i =
⌈

18(b−a)2 ln(2

δ
)

µ2
g

⌉

then

5. set: µ′ = σ
i

6. if |µ′| ≥ µg then return µ′

7. set: µg =
µg

2 , δ = δ
2

8. end-if
9. end-do

Figure 2: The AdaFlatFilt (WL, ε, δ) hypothesis boosting algorithm.

The time and query complexity bounds introduced by the following claim are not tight,
they are reconsidered and improved in Subsection 5.2.

Claim 3 Suppose that algorithm AdaFlatFilt is executed with parameters (WL, ε, δ). Then
with probability at least δ the following statements hold:

- The algorithm performs

T ≤
3

4ε2 ·E0≤i<T

[

γ2
i

] (8)

boosting iterations.

- The algorithm produces a final hypothesis possessing the structure of a weighted majority

11

vote of T weak hypotheses whose prediction error over the learning domain (X) is ε at
most.

- The smoothness parameter of AdaFlatFilt satisfies

α ≤ ε−1.

- The query complexity of the algorithm is

Õ

(

ε−1 · Q[WL] + E0≤i<T

[

γ−2
i

]

+ ε−2

ε2 ·E0≤i<T

[

γ2
i

]

)

. (9)

- The time complexity of the algorithm is

Õ

(

ε−1 · Q[WL] + T [WL] + E0≤i<T

[

γ−2
i

]

+ ε−2

ε2 ·E0≤i<T

[

γ2
i

]

)

. (10)

Proof of Claim 3 Notice that AdaFlatFilt is smooth as well, Equation (3) still holds.
Now we calculate the overall number T of iterations (by adjusting slightly the analysis

given for AdaFlat in Subsection 3.1). Start by assuming that all the estimations performed
by Evaluate (lines 4 and 5 of AdaFlatFilt) are accurate within a relative factor of 1

5 (i.e.,
within 20% accuracy), later we show that the probability of this event is 1 − δ at least.

That is, suppose that during the i’th iteration the assumption holds; therefore, the re-
sulting value received for l′i estimates within a relative factor of 1

2 the “real” value of li, as
defined before. In this case, Equation (4) can be rewritten as follows:

∆i
B ≥

3

2
· γ2

i µ2
i .

The halting condition
(

µ′
i(m) < 4ε

5

)

guarantees, on the one hand, that the final error is smaller
than ε (i.e., AdaFlatFilt is accurate), and, on the other hand, that throughout the iterations
µi is at least 2ε

3 . This leads to (8).
Next, we prove the following statement: the probability that our estimations accuracy

assumption fails during stage 0 and k following stages is (1
2 + Bk) · δ at most. Note that,

under the assumption of statement correctness for stages 0 − k, the value of δk+1 set in line 6
is not greater than ∆k

B · δ, and the result follows. As it is always true that Bk ≤ 1
2 , the failure

probability is bounded from above by δ and AdaFlatFilt satisfies the confidence requirement.
It remains to evaluate the time and number of queries consumed by each boosting iteration

(under the estimations accuracy assumption). It holds for i ≥ 1 that δi > 1
15ε2γ2

i−1δ, therefore
two calls to Evaluate take

O

(

ln(δ−1ε−1γ−1
i−1) ·

(

ln(γ−1
i)

γ2
i

+
ln(ε−1)

ε2

))

.

Getting a single example from Digen takes in average

1

µi
≤ ε−1

12

time, therefore the (average) query complexity of a single call to WL is

O
(

ε−1 · Q[WL]
)

.

The resulting query complexity of a single boosting iteration is

O

(

ε−1 · Q[WL] + ln(δ−1ε−1γ−1
i−1) ·

(

ln(γ−1
i)

γ2
i

+
ln(ε−1)

ε2

))

, (11)

and the time complexity is

O

(

ε−1 · Q[WL] + T [WL] + ln(δ−1ε−1γ−1
i−1) ·

(

ln(γ−1
i)

γ2
i

+
ln(ε−1)

ε2

))

. (12)

In terms of Õ, these expressions respectively correspond to

Õ
(

ε−1 · Q[WL] + γ−2
i + ε−2

)

queries and
Õ
(

ε−1 · Q[WL] + T [WL] + γ−2
i + ε−2

)

time needed for the i’th boosting iteration.
Obviously, the case of i = 0 will not rise the average iteration complexity resulting from

these observations. Combining them with Equation (8) gives the required bounds (9) and (10).
The result follows.

�Claim 3

5.2 Implementation Considerations

The complexity bounds (11) and (12) (see the proof of Claim 3) depend on both γi and γi−1,
which may be viewed as a certain kind of “memory”, or a loss of adaptiveness. This effect
may be removed by halving δ after each iteration (in line 6), in this case the logarithmic
terms are replaced by polynomials “without memory”. To our point of view, the complexity
resulting from the “attaching” δi to ∆i−1

B is better, despite the mentioned weakness (which,
in fact, completely disappears in terms of Õ).

Next, note that if γi approaches the value of 0 this considerably increases the time needed
for Evaluate in order to estimate its value; to avoid this, we may introduce a lower bound
for “acceptable” γi-s. B.t.w., the case of negative γi rises no difficulties (it is “turned into
positive” by corresponding negative li).

Another consideration may useful as well in this connection. It seems like a very natural
assumption that WL, while producing a weak hypothesis, is capable to report the received
accuracy. In this case, the term of E0≤i<T

[

γ−2
i

]

disappears from the complexity bounds: for
instance, the time complexity would be bounded by

Õ

(

ε−1 · Q[WL] + T [WL] + ε−2

ε2 ·E0≤i<T

[

γ2
i

]

)

.

13

Further, examples may be “reused” throughout the computation, both for WL teaching
and for values estimation.3 Of course, in this case the algorithm requires additional memory
of size equal to the query complexity. Assuming that WL reports the accuracies, both storage
and query complexity is bounded by

Õ
(

ε−1 · Q[WL] + ε−2
)

.

Notice that our adaptive technique is aimed to minimize the number of performed iter-
ations, from this point of view it is worth to make use of each received weak hypothesis,
including those with small |γi|-s. On the other hand, slightly different approach should be
used to minimize the overall time and/or query complexity: for example, consider, as de-
scribed above, setting a lower bound for acceptable |γi|-s in order to avoid “too expensive”
mean value estimations.

6 Optimality of AdaFlat and AdaFlatFilt

In this section we consider the smoothness parameter and the number of iterations performed
by our algorithms.

Claim 4 The following holds for the algorithms AdaFlat and AdaFlatFilt :

- Their smoothness parameters are not higher than two times the minimum required for
successful boosting.

- The asymptotic number of iterations they perform is optimal in terms of γ.

Proof of Claim 4 The second part of the claim follows from a result by Freund [F95]:
The number T of iterations of any boosting scheme must satisfy

T = Θ
(

γ−2 · ln ε−1
)

.

The fact that α ≤ ε−1 is near-optimal up to the multiplicative factor of 2 becomes clear
from the following argument: Consider a general boosting algorithm, suppose that it is not
allowed to diverge from the original distribution D by more than

ε−1 · (
1

2
−

1

2
γ) =

1 − γ

2ε
. (13)

Now suppose that the weak learner chooses some region Y ⊂ X such that

D(Y) = ε,

and then produces the following hypothesis:

hY =

{

f(x) if x /∈ Y
−f(x) otherwise

.

3Note that this is still learning by filtering and no generalization error is introduced by such modification.

14

Note that in this case the region Y should not be chosen randomly. We only require that
the booster (which is supposed to be general, i.e., not restricted to a specific weak learner)
has no information about Y and therefore must treat this region as a randomly chosen one.

As long as the target distribution for the weak learner has smoothness parameter not
greater than (13), the weak learner may repeatedly return the hypothesis hY and still satisfy
its specifications.

On the other hand, since form the booster’s point of view the region Y is randomly chosen,
the best thing the booster can do is to attach a list of polynomially many points from Y as a
“correction” to hY . Since such a correction has, in general, only exponentially small impact,
it can be neglected, and the final error may be assumed to be equal to D(Y) = ε.

The maximum smoothness parameter we have allowed is (1 − γ)/2ε, and since γ decreases
polynomially as the input size grows, the parameter can be made arbitrary close to ε−1/2,
as required.
�Claim 4

7 Boosting Tandems

In this section we construct a boosting tandem, or combine two boosting algorithm in a
kind of hierarchy. The upper level algorithm views the lower level algorithm as its weak
learner, while the latter communicates with the “real” weak learner. While in the case of
usual boosting the weak learner provides a polynomially-accurate weak hypothesis which
is afterwards “amplified” by the booster into a polynomially-accurate strong hypothesis, in
the boosting tandem model the corresponding evolution is polynomial weak → constant
correspondence → polynomial strong.

This technique was first used by Freund [F92]. Its advantage is that if one algorithm
is more efficient in terms of γ and the other in terms of ε, this approach makes use of the
“strong sizes” of the both, setting their “weak” parameters to constants.

Naturally, we are interested in preserving the adaptiveness and efficiency in terms of γ
of AdaFlatFilt , and it will be used as a low level.4 In this case the smoothness factor of
AdaFlatFilt will be bounded by a constant.

As a high level, we use an algorithm introduced in [F92] (and used there for the same
purpose). It performs O(ln(ε−1) · f(γ)) iterations and its smoothness is Õ(ε−1).

Putting everything together, we achieve the number of iterations (i.e., that of calls to the
weak learner) bounded by

O

(

ln(ε−1)

E0≤i<T

[

γ2
i

]

)

and smoothness of
α = Õ(ε−1).

Note that the resulting algorithm is adaptive. (The whole construction is similar to that
made by Klivans and Servedio [KS99]; their result, however, is not adaptive.)

As mentioned in Section 6, this number of iterations corresponds to the lower bound.
The price that we pay for the improvement is further complication of the final hypothesis

4The same approach works for AdaFlat as well.

15

structure,5 and also a logarithmic in ε−1 growth of the smoothness parameter.6 Notice that
for the case of agnostic boosting considered in Section 4, bounding the smoothness strictly
was shown to be critical.

An interesting application for the tandem is for near-uniform DNF learning with member-
ship queries. The problem was solved for the first time by Jackson [J97]; The most efficient
solution known so far is that by Klivans and Servedio [KS99], where they use a similar tan-
dem for their construction. Our algorithm possesses the same complexity, and therefore the
complexity of the solution equals that achieved by [KS99]; moreover, our solution it is adap-
tive. The latter fact directly addresses an open question posed by [J97]. Another attempt to
use an adaptive algorithm in the context of near-uniform DNF learning was made by [BG01];
the result received there has weaker complexity bounds and it is adaptive only w.r.t. the size
of the final hypothesis, but not w.r.t. the time complexity of the solution.

8 Other Applications and Further Work Directions

As mentioned before, in addition to the contexts of agnostic boosting and near-uniform
DNF learning with membership queries, smoothness is critical for noise-tolerant learning
([F99, DW00, S01]), for learning via extended statistical queries ([BF01]) and for agnostic
learning ([BLM01]).

Our algorithm can be used to solve all these tasks adaptively; the boosting tandem
introduced in Section 7 achieves performance as efficient as that of other boosting algorithms
known so far.

We based our analysis of the application of AdaFlat to agnostic boosting upon the adap-
tiveness feature of the booster (if we would use a lower bound on γi-s instead, the achieved
result would be noticeably weaker). An interesting open question is whether this adaptive-
ness feature can be similarly taken into consideration in the analysis of other smoothness
dependent learning tasks, in particular, it would be interesting to gain some performance
improvement for the widely studied task of DNF membership learning.

9 Acknowledgments

I would like to thank Nader Bshouty for his guidance and advice.

References

[BEHW89] A. Blumer, A. Ehrenfeucht, D. Haussler and M. K. Warmuth. Learnability and
the Vapnik-Chervonenkis Dimension. Journal of the ACM 36(4), pp. 929-965,
1989.

[BF01] N. Bshouty and V. Feldman. On Using Extended Statistical Queries to Avoid
Membership Queries. Proceedings of the 14th Annual Conference on Computa-
tional Learning Theory, pp. 529-545, 2001.

5The final hypothesis generated by the tandem is represented as a majority vote of weighted majority votes,
instead of a single weighted majority vote, as generated by AdaFlat .

6Recall that for AdaFlat and AdaFlatFilt it was strictly bounded by ε−1.

16

[BFJKM94] A. Blum, M. Furst, J. Jackson, M. Kearns, Y. Mansour and S. Rudich. Weakly
learning DNF and characterizing statistical query learning using Fourier analy-
sis. Proceedings of the 26th Symposium on Theory of Computing, pp. 253-262,
1994.

[BG01] N. Bshouty and D. Gavinsky. On Boosting with Optimal Poly-Bounded Distri-
butions. Proceedings of the 14th Annual Conference on Computational Learning
Theory, pp. 490-506, 2001.

[BJT99] N. Bshouty, J. Jackson and C. Tamon. More efficient PAC-learning of DNF
with membership queries under the uniform distribution. Proceedings of the 12th
Annual Conference on Computational Learning Theory, pp. 286-295, 1999.

[BLM01] S. Ben-David, P. M. Long and Y. Mansour. Agnostic Boosting. Proceedings of
the 14th Annual Conference on Computational Learning Theory, pp. 507-516,
2001.

[DW00] C. Domingo and O. Watanabe. MadaBoost: A modification of AdaBoost. Pro-
ceedings of the 13th Annual Conference on Computational Learning Theory, pp.
180-189, 2000.

[F92] Y. Freund. An improved boosting algorithm and its implications on learning
complexity. Proceedings of the 5th Annual Conference on Computational Learn-
ing Theory, pp. 391-398, 1992.

[F95] Y. Freund. Boosting a weak learning algorithm by majority. Information and
Computation 121(2), pp. 256-285, 1995.

[F99] Y. Freund. An adaptive version of the boost by majority algorithm. Proceedings
of the 12th Annual Conference on Computational Learning Theory, pp. 102-113,
1999.

[I95] R. Impagliazzo. Hardcore Distributions for Somewhat Hard Problems. Proceed-
ings of the 36th Annual Symposium on Foundations of Computer Science, pp.
538-545, 1995.

[J97] J. Jackson. An efficient membership-query algorithm for learning DNF with
respect to the uniform distribution. Journal of Computer and System Sciences
55(3), pp. 414-440, 1997.

[KS99] A. R. Klivans and R. A. Servedio. Boosting and Hard-Core Sets. Proceedings of
the 40th Annual Symposium on Foundations of Computer Science, pp. 624-633,
1999.

[KSS94] M. J. Kearns, R. E. Schapire and L. M. Sellie. Towards Efficient Agnostic
Learning. Machine Learning 17, pp. 115-141, 1994.

[KV94] M. Kearns and L. Valiant. Cryptographic limitations on learning boolean for-
mulae and finite automata. Journal of the ACM 41(1), pp. 67-95, 1994.

17

[M94] Y. Mansour. Learning Boolean Functions via the Fourier Transform. Theoretical
Advances in Neural Computing and Learning, Kluwe Academic Publishers, ,
1994.

[S90] R. E. Schapire. The strength of weak learnability. Machine Learning 5(2), pp.
197-227, 1990.

[S01] R. Servedio. Smooth Boosting and Learning with Malicious Noise. Proceedings
of the 14th Annual Conference on Computational Learning Theory, pp. 473-489,
2001.

[V82] V. N. Vapnik. Estimation of Dependences Based on Empirical Data. Springer,
, 1982.

[V84] L. Valiant. A theory of learnable. Communications of the ACM 27(11), pp.
1134-1142, 1984.

18

