
Chapter 2
Coordination Control of Distributed
Discrete-Event Systems

Jan Komenda and Tomáš Masopust

Abstract The aim of this essay is to provide a brief introduction to the coordination
control approach for distributed discrete-event systems with synchronous commu-
nication.

2.1 Motivation

Supervisory control of distributed discrete-event systems with synchronous commu-
nication, a global specification and local supervisors is a difficult problem. The con-
trol relying on the equivalent conditions for local control synthesis to equal global
control synthesis is not applicable in general. The coordinated approach, applica-
ble in general, deals with a control synthesis for distributed systems with a global
specification, and uses a coordinator and its controller, and local controllers.

The coordination control architecture was proposed in [11] as a trade-off between
the purely local control synthesis, which does not work in general because the local
supervisors may violate the specification, and the global control synthesis, which is
not always possible because the composition of local subsystems can result in an
exponential blow-up of states in the monolithic plant.

Coordination control was first developed for prefix-closed languages in [10] and
then further extended to partial observations in [6]. A non-prefix-closed extension
is discussed in [7]. The approaches for prefix-closed languages are implemented in
the software library libFAUDES [14].
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2.2 Concepts

The reader is referred to Chapter ?? for the basic notions and concepts of discrete-
event systems and supervisory control.

Having a global specification, the first step we need to do is to identify the right
parts of the specification corresponding to each of the respective subsystems.

A language K is conditionally decomposable with respect to event sets Σ1, Σ2,
Σk, where Σ1∩Σ2 ⊆ Σk ⊆ Σ1∪Σ2, if

K = P1+k(K) ‖ P2+k(K) ,

where Pi+k : (Σ1∪Σ2)
∗→ (Σi∪Σk)

∗ is a projection, for i = 1,2.
There always exists an extension of Σk that satisfies this condition; Σk = Σ1∪Σ2

is such a trivial example. A polynomial algorithm to check whether the condition
is satisfied and, if not, to extend the event set Σk so that it becomes satisfied can be
found in [9]. The question which extension is the most appropriate requires further
investigation. To find the minimal extension with respect to set inclusion is an NP-
hard problem [8].

Languages K and L are synchronously nonconflicting if K ‖ L = K ‖ L.

Lemma 2.1. Let K be a language. If the language K is conditionally decomposable,
then the languages P1+k(K) and P2+k(K) are synchronously nonconflicting.

2.3 Problem

Consider a system given by a composition of generators G1 and G2 over the event
sets Σ1 and Σ2, respectively. Let Gk be a coordinator over an event set Σk such that
Σk ⊇ Σ1 ∩ Σ2. Assume that the specification K ⊆ Lm(G1‖G2‖Gk) and its prefix-
closure K are conditionally decomposable with respect to event sets Σ1, Σ2, and Σk.
The aim of the coordination control synthesis is to determine nonblocking supervi-
sors S1, S2, Sk for respective generators such that

Lm(Sk/Gk)⊆ Pk(K) and Lm(Si/[Gi ‖ (Sk/Gk)])⊆ Pi+k(K) ,

for i = 1,2, and the closed-loop system with the coordinator satisfies

Lm(S1/[G1 ‖ (Sk/Gk)]) ‖ Lm(S2/[G2 ‖ (Sk/Gk)]) = K .

�
One could expect that the equality

L(S1/[G1 ‖ (Sk/Gk)]) ‖ L(S2/[G2 ‖ (Sk/Gk)]) = K

for prefix-closed languages should also be required in the statement of the problem,
but it is sufficient to require the equality for marked languages since it implies that
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Fig. 2.1 Specification K

K = Lm(S1/[G1 ‖ (Sk/Gk)]) ‖ Lm(S2/[G2 ‖ (Sk/Gk)])

⊆ Lm(S1/[G1 ‖ (Sk/Gk)]) ‖ Lm(S2/[G2 ‖ (Sk/Gk)])

⊆ P1+k(K) ‖ P2+k(K)

= K .

If such supervisors exist, their synchronous product is a nonblocking supervisor for
the global plant, cf. [5].

Example 2.1. Database transactions are examples of discrete-event systems that
should be controlled to avoid incorrect behaviors. Transactions are modeled by a
sequence of request (r), access (a), and exit (e) operations. Often, several users ac-
cess the database, which can lead to inconsistencies when executed concurrently,
because not all interleavings of operations give a correct behavior.

Consider three users with events ri,ai,ei, where i = 1,2,3. All possible sched-
ules are described by the behavior of the plant G1‖G2‖G3, where G1,G2,G3 are
nonblocking generators with Lm(Gi) = {(riaiei)

i | i ≥ 0}, which is also denoted as
(riaiei)

∗, and the set of controllable events is Σc = {ai | i = 1,2,3}.
The specification K (Fig. 2.1) describes the correct behavior consisting in finish-

ing the transaction in the exit stage before another transaction can proceed to the
exit phase.

Coordinator

In the statement of the problem above, we have mentioned the notion of a coordi-
nator. The fundamental problem, however, is the construction of such a coordinator.
We now discuss one of the possible constructions of a suitable coordinator.

Algorithm 1 (Construction of a coordinator) Consider two subsystems G1 and
G2 over the event sets Σ1 and Σ2, respectively, and let K be a specification lan-
guage. Construct an event set Σk and a coordinator Gk as follows:

1. Set Σk = Σ1∩Σ2 to be the set of all shared events.
2. Extend Σk with events of Σ1∪Σ2 so that K and K are conditionally decomposable

(for instance using a method described in [9]).
3. Set the coordinator Gk = Pk(G1) ‖ Pk(G2).
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Example 2.2. Consider the statement of Example 2.1. We can verify that, for Σk =
{a1,a2,a3}, the specification language K and its prefix closure K are conditionally
decomposable with respect to Σ1,Σ2,Σ3 and Σk. The coordinator is then computed
as Gk = Pk(G1)‖Pk(G2)‖Pk(G3).

From the complexity viewpoint, the problem is that the projected generator
Pk(Gi) can have exponential number of states compared to the generator Gi. So
far, the only known condition ensuring that the projected generator is smaller (in the
number of states) than the original one is the observer property (see Definition 2.1
below). Therefore, we might need to add step (2b) to further extend Σk so that the
projection Pk is an L(Gi)-observer, for i = 1,2. A polynomial algorithm how to do
this can be found in [16, 2].

Definition 2.1 (Observer property). Let Σk ⊆ Σ . The projection Pk : Σ ∗→ Σ ∗k is an
L-observer for a language L⊆ Σ ∗ if for every t ∈ P(L) and s ∈ L, if P(s) is a prefix
of t, then there exists u ∈ Σ ∗ such that su ∈ L and P(su) = t, cf. Fig. 2.2.

Fig. 2.2 Demonstration of the observer property

Example 2.3. The projection Pk from Example 2.2 is a K-observer, but it is not an
Lm(Gi)-observer for i = 1,2,3. However, the projected generators Pk(Gi), i = 1,2,3,
have only one state.

Theorem 2.1. If a projection P is an L(G)-observer, for a generator G, then the
minimal generator for the language P(L(G)) has no more states than G.

Based on this result, the coordinator Gk is expected to be quite small compared
to the global plant G1‖G2.

2.4 Theory

The theory presented here is based on the latest results that can be found in [7],
together with the results from [10].

Let G1 and G2 be two generators over Σ1 and Σ2, respectively, and let Gk be a
coordinator over Σk. A language K ⊆ L(G1 ‖ G2 ‖ Gk) is conditionally controllable
for generators G1, G2, Gk and uncontrollable event sets Σ1,u, Σ2,u, Σk,u if
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1. Pk(K) is controllable with respect to L(Gk) and Σk,u,
2. P1+k(K) is controllable with respect to L(G1) ‖ Pk(K) and Σ1+k,u,
3. P2+k(K) is controllable with respect to L(G2) ‖ Pk(K) and Σ2+k,u,

where Σi+k,u = (Σi∪Σk)∩Σu, for i = 1,2.

Example 2.4. Consider Example 2.2. It can be verified that Pk(K) = {a1,a2,a3}∗ is
controllable with respect to L(Gk) =Pk(K) and Σk,u = /0. It does not hold for Pi+k(K)

because the language is not included in L(Gi)‖Pk(K), i = 1,2,3.

As in the monolithic case, we need a notion similar to Lm(G)-closedness. A
nonempty language K ⊆ Σ ∗ is conditionally closed for generators G1, G2, Gk if

1. Pk(K) is Lm(Gk)-closed,
2. P1+k(K) is Lm(G1) ‖ Pk(K)-closed,
3. P2+k(K) is Lm(G2) ‖ Pk(K)-closed.

Example 2.5. Consider Example 2.2. It can be verified that Pk(K) is Lm(Gk)-closed,
but Pi+k(K) is not Lm(Gi)‖Pk(K)-closed, i = 1,2,3.

If K is conditionally closed and conditionally controllable, then there exists a
nonblocking supervisor Sk such that Lm(Sk/Gk) = Pk(K), which follows from the
basic theorem of supervisory control applied to languages Pk(K) and L(Gk), see [1].

Theorem 2.2. Consider the problem specified above. There exist nonblocking su-
pervisors S1, S2, Sk solving the problem if and only if the specification language K
is both conditionally controllable with respect to G1, G2, Gk and Σ1,u, Σ2,u, Σk,u,
and conditionally closed with respect to G1, G2, Gk.

Example 2.6. Consider Example 2.2. According to Examples 2.4 and 2.5, there do
not exist such supervisors that would reach the specification K.

If the specification is not conditionally controllable, we can compute the supre-
mal conditionally-controllable sublanguage.

Theorem 2.3. The supremal conditionally controllable sublanguage of a specifica-
tion language always exists and is equal to the union of all controllable sublan-
guages of the specification.

Consider the problem specified above and define the languages

supCk = supC(Pk(K),L(Gk),Σk,u)

supC1+k = supC(P1+k(K),L(G1)‖supCk,Σ1+k,u)

supC2+k = supC(P2+k(K),L(G2)‖supCk,Σ2+k,u)

(2.1)

Example 2.7. Consider Example 2.2. We can compute supCk (Fig. 2.3(b)) and
supC1+k, supC2+k, supC3+k depicted in Fig. 2.3(a).
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Fig. 2.3 Supervisors and the coordinator

For the languages defined in (2.1), it always holds that Pk(supCi+k)⊆ supCk, for
i = 1,2. If the converse inclusion also holds, we obtain the supremal conditionally-
controllable sublanguage.

Theorem 2.4. Consider the languages defined in (2.1). If supCk ⊆ Pk(supCi+k),
for i = 1,2, then the language supC1+k‖supC2+k is the supremal conditionally-
controllable sublanguage of K.

Example 2.8. Consider the coordinator and supervisors computed in Example 2.7.
We can verify that the assumptions of Theorem 2.6 are satisfied. As the language
supCk is Lm(Gk)-closed and supCi+k is Lm(Gi)‖supCk-closed, for i = 1,2,3, they
form a solution for the database problem by Theorems 2.4 and 2.2.

Coordinator for Nonblockingness

In this part we discuss and use the coordinator for nonblockingness in the co-
ordination control framework. Recall first that a generator G is nonblocking if
Lm(G) = L(G).

Theorem 2.5. Consider languages L1 over Σ1 and L2 over Σ2, and let the projec-
tion P0 : (Σ1 ∪Σ2)

∗ → Σ ∗0 , with Σ1 ∩Σ2 ⊆ Σ0, be an Li-observer, for i = 1,2. Let
G0 be a nonblocking generator with Lm(G0) = P0(L1) ‖ P0(L2). Then the language
L1‖L2‖Lm(G0) is nonblocking, that is, L1‖L2‖Lm(G0) = L1‖L2‖Lm(G0).

This result is used in the coordination control synthesis as follows. Local super-
visors supC1+k and supC2+k are computed as in (2.1) and the properties of Theo-
rem 2.4 are verified. If they are satisfied, the computed supervisors are the solution
of the problem. However, they can still be blocking. In such a case, we can choose
the language

LC = P0(supC1+k) ‖ P0(supC2+k) ,

where the projection P0 is a supCi+k-observer, for i = 1,2, and obtain that the equal-
ity

supC1+k ‖ supC2+k ‖ LC = supC1+k ‖ supC2+k

= supC1+k ‖ supC2+k ‖ LC

holds by Theorem 2.5. In other words, LC is the behavior of a nonblocking coordi-
nator. This gives the following algorithm.
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Algorithm 2 (Coordinator for nonblockingness) Consider the notation above.

1. Compute supC1+k and supC2+k as defined in (2.1).
2. Let Σ0 := Σk and P0 := Pk.
3. Extend Σ0 so that the projection P0 is both a supC1+k- and a supC2+k-observer.
4. Define the coordinator C as a nonblocking generator with the property Lm(C) =

P0(supC1+k) ‖ P0(supC2+k).

Let A1 and A2 denote automata for languages supC1+k and supC2+k, respectively.
Then the coordinator C is computed as trim(P0(A1)‖P0(A2)), see [1, 18] for more
details.

Example 2.9. Consider the solution of the database problem computed in Exam-
ple 2.7. It can be verified that the language supC1+k‖supC2+k‖supC3+k is non-
blocking, hence we do not need a coordinator for nonblockingness in this example.

Prefix-Closed Languages

Here we assume that the specification is prefix-closed. The following notion is re-
quired. More details, an explanation and examples can be found in [16].

Definition 2.2 (Local control consistency). Let L be a prefix-closed language over
Σ , and let Σ0 ⊆ Σ . The projection P0 : Σ ∗→ Σ ∗0 is locally control consistent (LCC)
with respect to s ∈ L if for all σu ∈ Σ0∩Σu such that P0(s)σu ∈ P0(L), it holds that
either there does not exist any u ∈ (Σ \Σ0)

∗ such that suσu ∈ L, or there exists u ∈
(Σu \Σ0)

∗ such that suσu ∈ L. The projection P0 is LCC with respect to a language
L if P0 is LCC for all words of L.

Consider generators G1, G2, Gk, and denote Li = L(Gi), for i = 1,2,k. There
is not yet a general procedure to compute the supremal conditional controllable
sublanguage. However, there is a procedure for prefix-closed specifications.

Theorem 2.6. Let K ⊆ L1‖L2‖Lk be prefix-closed languages over the event set
Σ1 ∪ Σ2 ∪ Σk, where Li ⊆ Σ ∗i , i = 1,2,k. Assume that the language K is condi-
tionally decomposable and consider the languages defined in (2.1). Let the pro-
jection Pi+k

k be an (Pi+k
i )−1(Li)-observer and LCC for (Pi+k

i )−1(Li), for i = 1,2.
Then supC1+k‖supC2+k is the supremal conditionally-controllable sublanguage of
K.

The following corollary explains the relation to the notion of controllability of
the monolithic case.

Corollary 2.1. In the setting of Theorem 2.6, the supremal conditionally-controlla-
ble sublanguage of K is controllable with respect to L1‖L2‖Lk and Σu.

Finally, the last theorem states the conditions under which the solution is optimal.

Theorem 2.7. Consider the setting of Theorem 2.6. If, in addition, Lk ⊆ Pk(L) and
Pi+k is LCC for P−1

i+k(Li‖Lk), for i= 1,2, then supC(K,L1‖L2‖Lk,Σu) is the supremal
conditionally-controllable sublanguage of K.
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2.5 Further Reading

The theory presented here is based on paper [7]. This topic is still under investi-
gation. For other structural conditions on local plants under which it is possible to
synthesize the supervisors locally, but which are quite restrictive, see [3, 12]. Among
the most successful approaches to supervisory control of distributed discrete-event
systems are those that combine distributed and hierarchical control [16, 17], or the
approach based on interfaces [13]. For coordination control of linear or stochastic
systems, the reader is referred to [4, 15].

References

1. C. G. Cassandras and S. Lafortune. Introduction to Discrete Event Systems. Springer, 2008.
2. L. Feng and W.M. Wonham. On the computation of natural observers in discrete-event sys-

tems. Discrete Event Dyn. Syst., 20:63–102, 2010.
3. B. Gaudin and H Marchand. Supervisory control of product and hierarchical discrete event

systems. Eur. J. Control, 10(2):131–145, 2004.
4. P. L. Kempker, A. C. M. Ran, and J. H. van Schuppen. Construction of a coordinator for

coordinated linear systems. In ECC 2009, pages 4979–4984, 2009.
5. J. Komenda, T. Masopust, and J. H. van Schuppen. Coordinated control of discrete event

systems with nonprefix-closed languages. In IFAC World Congress, pages 6982–6987, 2011.
6. J. Komenda, T. Masopust, and J. H. van Schuppen. Synthesis of controllable and normal sub-

languages for discrete-event systems using a coordinator. Systems Control Lett., 60(7):492–
502, 2011.

7. J. Komenda, T. Masopust, and J. H. van Schuppen. On algorithms and extensions of coordi-
nation control of discrete-event systems. In WODES, pages 245–250, 2012.

8. J. Komenda, T. Masopust, and J. H. van Schuppen. On algorithms and extensions of coordi-
nation control of discrete-event systems. Extended version of [7]. Submitted for publication,
2012.

9. J. Komenda, T. Masopust, and J. H. van Schuppen. On conditional decomposability. Systems
Control Lett., 61(12):1260–1268, 2012.

10. J. Komenda, T. Masopust, and J. H. van Schuppen. Supervisory control synthesis of discrete-
event systems using a coordination scheme. Automatica, 48(2):247–254, 2012.

11. J. Komenda and J. H. van Schuppen. Coordination control of discrete event systems. In
WODES, pages 9–15, 2008.

12. J. Komenda, J. H. van Schuppen, B. Gaudin, and H. Marchand. Supervisory control of mod-
ular systems with global specification languages. Automatica, 44(4):1127–1134, 2008.

13. R. J. Leduc, D. Pengcheng, and S. Raoguang. Synthesis method for hierarchical interface-
based supervisory control. IEEE Trans. Automat. Control, 54(7):1548–1560, 2009.

14. Th. Moor et al. libFAUDES – a discrete event systems library, 2012. [Online]. Available at
http://www.rt.eei.uni-erlangen.de/FGdes/faudes/.

15. A. C. M. Ran and J. H. van Schuppen. Control for coordination of linear systems. In MTNS
2008, Blacksburg, USA, 2008.

16. K. Schmidt and C. Breindl. Maximally permissive hierarchical control of decentralized dis-
crete event systems. IEEE Trans. Automat. Control, 56(4):723–737, 2011.

17. K. Schmidt, Th. Moor, and S. Perk. Nonblocking hierarchical control of decentralized discrete
event systems. IEEE Trans. Automat. Control, 53(10):2252–2265, 2008.

18. W. M. Wonham. Supervisory control of discrete-event systems. Lecture notes, Department of
electrical and computer engineering, University of Toronto, 2009.


