
Chapter 1
Supervisory Control of Discrete-Event Systems

Jan Komenda and Tomáš Masopust

Abstract The aim of this essay is to provide a brief introduction to supervisory
control of discrete-event systems.

1.1 Motivation

Every day people meet and work with many different instances of discrete-event
systems. Probably the most popular examples are personal computers, laptops, ATM
machines, or beverage machines. However, also many complex manufacturing sys-
tems are composed of discrete-event systems, such as of various types of vehicles,
conveyor belts, robots, buffers, etc. Notice that the composition of discrete-event
systems results in a discrete-event system again. Discrete-event systems composed
of two or more subsystems are called distributed. As the complexity of distributed
systems grows, human operators are not able to control the systems by hand, and a
formal approach to control or supervise the systems is needed. Supervisory control
is a formal method providing a theory to control discrete-event systems.

The aim of this essay is to acquaint the reader with the basic notions, concepts
and results of discrete-event systems and supervisory control. It is a useful introduc-
tion to the subsequent essay, Chapter ??. For further details, the reader is referred to
[2, 9, 12]. The pioneering work on this topic are papers [6, 7].

Jan Komenda and Tomáš Masopust
Institute of Mathematics, Academy of Sciences of the Czech Republic, Žižkova 22, 616 62 Brno,
Czech Republic, e-mail: komenda@ipm.cz, masopust@math.cas.cz

1

2 Jan Komenda and Tomáš Masopust

12 3
a

b c

d

Fig. 1.1 A graphical representation of the generator G

1.2 Concepts

An introduction to automata theory and formal languages can be found in [4, 10].
Here we recall only the notions necessary for the presented theory.

Let Σ be a finite nonempty set whose elements are called events, and let Σ ∗

denote the set of all finite words over Σ , that is, finite sequences of events; the
empty word is denoted by ε . Thus, for an event set Σ = {e,h, l,o}, the word hello is
an example of a word over Σ .

A generator is a quintuple G = (Q,Σ , f ,q0,Qm), where Q is a finite nonempty
set of states, Σ is a finite set of events (event set), f : Q×Σ → Q is a partial tran-
sition function, q0 ∈ Q is the initial state, and Qm ⊆ Q is a set of marked states.
The transition function f can be extended to the function f̂ : Q×Σ ∗ → Q so that
f̂ (q,ε) = q and f̂ (q,aw) = f̂ (f (q,a),w), for a ∈ Σ and w ∈ Σ ∗. The behavior of
a generator G is described in terms of languages. The language generated by G is
the set L(G) = {s ∈ Σ ∗ | f̂ (q0,s) ∈ Q}, and the language marked by G is the set
Lm(G) = {s ∈ Σ ∗ | f̂ (q0,s) ∈ Qm}. Obviously, Lm(G)⊆ L(G).

Example 1.1. Let G = ({1,2,3},{a,b,c,d}, f ,1,{1}) be a generator. A graphical
representation of generators uses labeled graphs as demonstrated in Fig. 1.1. States
of the generator are drawn as circles, a transition f (q,a) = p is depicted as a
labeled arrow from state q to state p labeled by event a, the initial state is de-
noted by an incoming arrow that does not come from any other state, and the
marked states are drawn as double circles. The language generated by the gen-
erator G is L(G) = {ε,a,c,ab,cd,aba,abc,cda, . . .} and the marked language is
Lm(G) = {ε,ab,cd,abab,abcd,cdab,cdcd, . . .}.

A (regular) language L over an event set Σ is a set L⊆ Σ ∗ such that there exists
a generator G with Lm(G) = L. The prefix closure L of a language L over an event
set Σ is the set of all prefixes of all its words, that is, L = {w ∈ Σ ∗ | there exists u ∈
Σ ∗ such that wu ∈ L}; L is prefix-closed if L = L.

A (natural) projection P : Σ ∗ → Σ ∗0 , where Σ0 is a subset of Σ , is a homomor-
phism defined so that P(a) = ε for a ∈ Σ \Σ0, and P(a) = a for a ∈ Σ0. The pro-
jection of a word is thus uniquely determined by projections of its letters. The in-
verse image of P is denoted by P−1 : Σ ∗0 → 2Σ∗ . The projection of a generator G,
denoted by P(G), is a generator whose behavior satisfies L(P(G)) = P(L(G)) and
Lm(P(G)) = P(Lm(G)).

Example 1.2. Let P : {a,b,c}∗ → {a,b}∗ be a projection. Then the projection of a
word abcba is P(abcba) = abba. On the other hand, the inverse image of abba is
P−1(abba) = {ciac jbckbc`acm | i, j,k, `,m≥ 0}.

1 Supervisory Control of Discrete-Event Systems 3

12 3
a

b c

d

Fig. 1.2 Generator G

For event sets Σi,Σ j,Σ` ⊆ Σ , we use the notation Pi+ j
` to denote the projection

from (Σi ∪Σ j)
∗ to Σ ∗` . If Σi ∪Σ j = Σ , we simplify the notation to P̀ . Moreover,

Σi,u = Σi∩Σu denotes the set of locally uncontrollable events of the event set Σi.
A controlled generator over an event set Σ is a triple (G,Σc,Γ), where G is a

generator over Σ , Σc ⊆ Σ is the set of controllable events, Σu = Σ \Σc is the set of
uncontrollable events, and Γ = {γ ⊆ Σ | Σu ⊆ γ} is the set of control patterns.

Example 1.3. Let G = ({1,2,3},{a,b,c,d}, f ,1,{1}) be a generator over the event
set Σ = {a,b,c,d} depicted in Fig. 1.2. Let the controllable events be Σc = {a,c}.
Then Σu = {b,d} are uncontrollable events (depicted by dashed arrows) and the set
of control patterns is Γ = {{b,d},{a,b,d},{b,c,d},{a,b,c,d}}. One can think of
this example as a simple manufacturing system, where a single resource (e.g. a ma-
chine) is shared by two manufacturing lines: one line is represented by operations
(event sequences) (ab)∗ and the other one by operations (cd)∗. All possible sched-
ules are considered, that is, the resource can be attributed to an arbitrary sequence
of both lines.

A supervisor for the controlled generator (G,Σc,Γ) is a map S : L(G)→ Γ . The
meaning of a supervisor is that for any word w generated by the system, S(w) defines
the set of events that are enabled in the system after w is generated. Moreover, only
controllable events can be disabled.

The closed-loop system associated with the controlled generator (G,Σc,Γ) and
the supervisor S is defined as the minimal language L(S/G)⊆ Σ ∗ such that

1. ε ∈ L(S/G) and
2. if s ∈ L(S/G), a ∈ S(s), and sa ∈ L(G), then sa ∈ L(S/G).

The marked language of the closed-loop system is defined as

Lm(S/G) = L(S/G)∩Lm(G) .

The intuition is that the supervisor disables some transitions of the generator G,
but it can never disable any transition under an uncontrollable event.

If the closed-loop system is nonblocking, that is, Lm(S/G) = L(S/G), then the
supervisor S is called nonblocking.

Example 1.4. Consider the controlled generator from Example 1.3. Our goal is to
define a supervisor that disables events c and a in an alternating way when the plant
is back in the initial state. More precisely, c is disabled in the initial state at the
beginning of the work of the system (that is, the generated word is ε), a is disabled

4 Jan Komenda and Tomáš Masopust

1

2

3

4

a b

cd

Fig. 1.3 Generator of the specification K

in the state after ab is generated, c disabled after abcd is generated and so forth. We
define the supervisor S as follows. For k ≥ 0,

• S((abcd)k) = {a,b,d},
• S((abcd)kab) = {b,c,d},
• for all other words w, S(w) = {a,b,c,d}.

The closed-loop system is then L(S/G) = Lm(S/G) = {(abcd)k | k ≥ 0}, so the su-
pervisor is nonblocking.

The following two concepts play a central role in supervisory control [12].

Definition 1.1 (Controllable language). Let G be a generator over an event set Σ .
A language K ⊆ L(G) is controllable with respect to L(G) and Σu if

KΣu∩L(G)⊆ K .

The concept of controllability of a specification language in supervisory control
differs from controllability in classical control theory of linear or nonlinear systems.
It is however closely related to the concept of invariant spaces from geometrical
control theory, because it requires that one cannot exit from the specification by an
uncontrollable transition while staying within the plant language.

Definition 1.2 (Lm(G)-closed language). Let G be a generator. A nonempty lan-
guage K ⊆ Lm(G) is Lm(G)-closed if

K = K∩Lm(G) .

Example 1.5. Consider the generator G defined in Example 1.3, and define a speci-
fication language K as the language of the generator depicted in Fig. 1.3. Note that
the specification restricts the behavior of the manufacturing system by imposing a
particular schedule so that the resource is attributed in an alternating way to both
manufacturing lines. One can verify that K is controllable with respect to L(G) and
Σu, and Lm(G)-closed.

1 Supervisory Control of Discrete-Event Systems 5

1.3 Supervisory Control Problem

In this short section, we define the supervisory control problem.
Let K be a specification language, and let G be a plant (generator). The control

objective of supervisory control is to find a nonblocking supervisor S (if possible)
such that the closed-loop system satisfies the specification, that is,

L(S/G) = K and Lm(S/G) = K .

Note that it cannot be satisfied if K 6⊆ Lm(G), therefore we can also assume that
K ⊆ Lm(G).

1.4 Theory

The supervisory control problem is to find conditions that are equivalent to the ex-
istence of a supervisor that achieves a specification. Two conditions defined above,
controllability and Lm(G)-closedness, are necessary and sufficient for the existence
of a nonblocking supervisor that achieves the specification, cf. [2, 12].

Theorem 1.1. Consider the problem specified above. There exists a nonblocking
supervisor S solving the problem if and only if the specification language K is both
controllable with respect to L(G) and Σu, and Lm(G)-closed.

Example 1.6. Consider the plant and the specification of Example 1.5. By Theo-
rem 1.1, there exists a supervisor S solving the supervisory control problem. This
supervisor is described in Example 1.4. Note that the supervisor can be represented
as an automaton. Note that if the specification K is controllable with respect to the
plant language L(G) and Σu, the generator for the specification is directly the au-
tomaton representation of the supervisor. Thus, the automaton representation of the
supervisor S is depicted in Fig. 1.3.

It remains to explain what to do if the specification language is not controllable
(in some sense, the Lm(G)-closedness is not an issue, because if K is not Lm(G)-
closed, then K ∩ Lm(G) is considered as a new specification, cf. [2]). For uncon-
trollable specification languages, controllable sublanguages of the specification are
considered instead. The notation C(K,L(G),Σu) stands for the set of controllable
sublanguages of the specification K with respect to L(G) and Σu. It is easy to check
that controllability is preserved by language unions, i.e., that unions of controllable
sublanguages of a language are always controllable. Consequently, there always ex-
ists the supremal controllable sublanguage of the specification language among the
controllable sublanguages, denoted by supC(K,L(G),Σu), see [2, 12].

Theorem 1.2. The supremal controllable sublanguage of a specification language
always exists and is equal to the union of all controllable sublanguages of the spec-
ification.

6 Jan Komenda and Tomáš Masopust

1 2 3 x y za b a d

Fig. 1.4 Generators G1 and G2

1.5 Nonblockingness in Distributed Systems

In this section we study the blocking issue that can appear in distributed discrete-
event systems. A distributed discrete-event system with synchronous communica-
tion is a concurrent system formed by the synchronous product of several local sub-
systems. The engineering significance of distributed systems modeled by discrete-
event systems can be justified by showing that supervisory control for the following
systems has been investigated in the literature. Control of a rapid thermal multi-
processor [1], databases [2], chemical plants [8], feature interaction in telephone
networks [11], theme park vehicles [3], a controller for traffic lights [5].

A synchronous product of languages L1 ⊆ Σ ∗1 and L2 ⊆ Σ ∗2 is the language

L1‖L2 = P−1
1 (L1)∩P−1

2 (L2)⊆ Σ
∗ ,

where Pi : Σ ∗ → Σ ∗i are natural projections, for i = 1,2. Similarly, for generators
G1 = (Q1,Σ1, f1,q01,Qm1) and G2 = (Q2,Σ2, f2,q02,Qm2), the generator G1‖G2 is
the accessible part (i.e., the part of the state set which can be reached from the initial
state) of the generator (Q1×Q2,Σ1∪Σ2, f ,(q01,q02),Qm1×Qm2), where

f ((x,y),e) =

(f1(x,e), f2(y,e)), if f1(x,e) ∈ Q1 and f2(y,e) ∈ Q2,
(f1(x,e),y), if f1(x,e) ∈ Q1 and e /∈ Σ2,
(x, f2(y,e)), if e /∈ Σ1 and f2(y,e) ∈ Q2,
undefined, otherwise.

It is known that the relation to the synchronous product of languages is as follows:
L(G1‖G2) = L(G1)‖L(G2) and Lm(G1‖G2) = Lm(G1)‖Lm(G2).

Example 1.7. Consider two generators G1 and G2 depicted in Fig. 1.4. Note that the
only event shared by the generators is the event a, and that events b and d are pri-
vate in the respective generators. Then the synchronous product (also called parallel
composition) G1‖G2 is depicted in Fig. 1.5.

1,x 2,y

3,y 3,z

2,z
a

b

d

d

b

Fig. 1.5 Synchronous product G1‖G2

1 Supervisory Control of Discrete-Event Systems 7

1 2 3 4 1

2

3

4

a b d

a c

d a

Fig. 1.6 Generators G1 and G2

Recall that a generator G is nonblocking if Lm(G) = L(G), that is, if every gener-
ated word from L(G) can be prolongated to a marked word from Lm(G). Otherwise,
we say that the system is blocking, which typically arises in discrete-event systems
formed by the synchronous product. It is well-known that the synchronous prod-
uct of two nonblocking generators G1 and G2 can be blocking as demonstrated in
Example 1.8 below. In this section we discuss an approach using a coordinator to
eliminate the blocking issue from the synchronous composition.

Example 1.8. Consider generators G1 and G2 depicted in Fig. 1.6. Their synchronous
product, depicted in Fig. 1.7, is blocking because no marked state is accessible from
state 3.

The notion of an observer plays the central role in the following result.

Definition 1.3 (Observer property). Let Σk ⊆ Σ be event sets. The projection Pk :
Σ ∗→ Σ ∗k is an L-observer for a language L⊆ Σ ∗ if for all words t ∈ P(L) and s ∈ L,
if P(s) is a prefix of t, then there exists u ∈ Σ ∗ such that su ∈ L and P(su) = t.

Theorem 1.3. Consider languages L1 over Σ1 and L2 over Σ2, and let the projection
P0 : (Σ1∪Σ2)

∗→ Σ ∗0 , with Σ1∩Σ2 ⊆ Σ0, be an Li-observer, for i = 1,2. Define G0
to be a nonblocking generator with Lm(G0) = P0(L1) ‖ P0(L2). Then the language
L1‖L2‖Lm(G0) is nonblocking, that is, L1‖L2‖Lm(G0) = L1‖L2‖Lm(G0).

This result can be used to eliminate the blocking issue as demonstrated in the
following example.

Example 1.9. Consider the generators from Example 1.8. It can be verified that the
projection P : Σ ∗→{a,b,d}∗ is an Lm(G1)- and Lm(G2)-observer. The generator G0

0 1

2

3

4

a

b c

c b

Fig. 1.7 Synchronous product G1‖G2

8 Jan Komenda and Tomáš Masopust

1 2 3 4 1 4 3
a b d

a

d a

Fig. 1.8 Generators for P(L(G1)) and P(L(G2))

with Lm(G0) = P(L(G1))‖P(L(G2)) is a nonblocking (trim) part of the synchronous
product of generators depicted in Fig. 1.8, that is, Lm(G0) = {a}. The synchronous
product of G1‖G2 with G0 is depicted in Fig. 1.9. The result is nonblocking. It is
important to notice that the event set of the generator G0 is {a,b,d} even though
there are no transitions under b or d in G0.

0 1 2
a c

Fig. 1.9 Synchronous product G1‖G2‖G0

References

1. S. Balemi, G. J. Hoffmann, P. Gyugi, H. Wong-Toi, and G.F. Franklin. Supervisory control of
a rapid thermal multiprocessor. IEEE Trans. Automat. Control, 38(7):1040–1059, 1993.

2. C. G. Cassandras and S. Lafortune. Introduction to Discrete Event Systems. Springer, 2008.
3. S. T. J. Forschelen, J. M. Mortel-Fronczak, R. Su, and J. E. Rooda. Application of supervisory

control theory to theme park vehicles. Discrete Event Dyn. Syst., 22(4):511–540, 2012.
4. J. E. Hopcroft, R. Motwani, and J. D. Ullman. Introduction to Automata Theory, Languages,

and Computation. Addison-Wesley, 2006.
5. R. P. Kurshan. Computer-aided verification of coordinating processes: the automata-theoretic

approach. Princeton University Press, 1994.
6. P. J. Ramadge and W. M. Wonham. Supervisory control of a class of discrete event processes.

SIAM J. Control Optim., 25(1):206–230, 1987.
7. P. J. Ramadge and W. M. Wonham. The control of discrete event systems. Proc. of IEEE,

77(1):81–98, 1989.
8. L. Sang-Heon. Structural decentralised control of concurrent discrete-event systems. PhD

thesis, Australian National University, Canberra, 1998.
9. C. Seatzu, M. Silva, and J. H. van Schuppen, editors. Control of Discrete-Event Systems,

volume 433 of Lecture Notes in Control and Information Sciences. Springer London, 2013.
10. M. Sipser. Introduction to the Theory of Computation. Course Technology, 2005.
11. J. G. Thistle, R. P. Malhamé, H. H. Hoang, and S. Lafortune. Feature interaction modelling,

detection and resolution: A supervisory control approach. In FIW, pages 93–107, 1997.
12. W. M. Wonham. Supervisory control of discrete-event systems. Lecture notes, Department of

electrical and computer engineering, University of Toronto, 2009.

