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Abstract

The long-term continuous increase of greenhouse gas concentration in the atmosphere and other anthropogenic

influences represent serious threat for human civilization. Therefore, it is necessary to determine the long-term trends

and changes in the atmosphere–ionosphere system. The observed long-term trends in the 20th century might be,

however, influenced by contribution of Sun’s origin, and the process of determination of anthropogenic trends from

observational data may be ‘‘spoilt’’ by the 11-year solar cycle. The role of solar/geomagnetic activity in long-term trends

in various regions of the atmosphere/ionosphere system is briefly reviewed for the first time. The ways of avoiding or at

least diminishing the effect of solar cycle on trend determination are mentioned. As for the possible solar and

geomagnetic activity responsibility for part of the observed long-term trends, the two main conclusions are as follows:

(i) The role of solar and geomagnetic activity in the observed long-term trends decreases with decreasing altitude from

the F-region ionosphere down to the troposphere. (ii) In the 20th century the role of solar and geomagnetic activity in

the observed long-term trends/changes was decreasing from its beginning towards its end.

r 2004 Elsevier Ltd. All rights reserved.
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1. Introduction

The global surface air temperature increased by about

0.6 1C in the 20th century. More pronounced trends

have been observed in the middle and upper atmosphere

and ionosphere. There is a tendency to attribute these

trends solely to the increasing concentration of green-

house gases in the atmosphere. However, the observed

long-term trends in the ionosphere and atmosphere

cannot be explained solely by the greenhouse effect. The

considerable increase of geomagnetic activity in the 20th

century and the increase of solar activity in its first half

contribute to trends observed in the 20th century. The

existence of the strong 11-year solar cycle can result in
e front matter r 2004 Elsevier Ltd. All rights reserve
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the incorrect determination of trends from shorter data

series.

Here I present the first brief overview (in no way a full

review) of the results on the geomagnetic and solar

activity contributions to the observed long-term terms

and to their determination in the atmosphere–iono-

sphere system with particular attention paid to the

ionosphere, particularly to the lower ionosphere. The

ionosphere, the ionized component, is much more under

the solar/geomagnetic control than the neutral compo-

nent. The geomagnetic control in fact means control by

space weather phenomena, which reflect in and have

been recorded through the geomagnetic activity that

itself does not affect the ionosphere–atmosphere system;

it is the only measure of space weather activity available

for a long time. The paper is based on the invited review

presented at the 3rd IAGA/ICMA Workshop ‘‘Solar
d.
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Forcing of the Middle Atmosphere’’, Prague, September

2003. It also represents a contribution to activities of the

IAGA/ICMA working group ‘‘Long-term Trends in the

Mesosphere, Thermosphere and Ionosphere’’.

The calculation of trends and estimates of long-term

changes of anthropogenic origin may be affected by

solar and geomagnetic activity basically in two ways:
1.
 Inappropriate selection of data and/or missing

measures to correct for medium-term solar/geomag-

netic activity variations, which makes the calculation

of trends vulnerable to a substantial effect of the 11-

year solar cycle.
2.
 Long-term changes of solar and geomagnetic activity,

which contribute to long-term trends.

Therefore Section 2 deals with the long-term trends in

solar and geomagnetic activity. The following sections

are organized in terms of height from the troposphere

upwards, and from neutral to ionized component.

Section 3 treats the influence of solar and geomagnetic

activity on trends in the troposphere, Section 4 in the

stratosphere, Section 5 in the mesosphere and lower

thermosphere, Section 6 in the lower ionosphere, Section

7 in the thermosphere, and Section 8 in the F-region

ionosphere. Brief conclusions in Section 9 close the

paper.
2. Long-term trends in solar and geomagnetic activity

Long-term changes of solar activity and/or geomag-

netic activity may play an important role in the observed

long-term trends, particularly in the ionized component

of the atmosphere, in the ionosphere. The geomagnetic

activity in terms of the aa-index was increasing

throughout the 20th century (e.g., Stamper et al.,

1999) and appeared to stabilize near its end.

The number of geomagnetic storms per solar cycle

had also been increasing until it had reached the level

of about 400 events per solar cycle and then it stabilized

for the last few cycles (Clilverd et al., 2002). Long-term

drifts in the solar open magnetic flux seem to be

probably the main driver of these long-term changes

of geomagnetic activity (Lockwood, 2003), even

though there might be also other drivers (Richardson

et al., 2002).

The general solar activity variability and/or variability

of solar electromagnetic radiation over long time-scales

has usually been studied with the use of sunspot

numbers, which are available for several centuries, or

with various proxies over longer time spans. The

amplitude of sunspot cycles was increasing throughout

the first half of the 20th century until the peak in cycle

19 (1957–1958), then dropped a little and basically

stagnated until the end of the century. However, sunspot
numbers are only a good proxy for long-term

changes, not the physical quantity that affects

various levels of Earth’s atmosphere. The troposphere

is affected by variability of the total solar irradiance,

the stratosphere by solar ultraviolet radiation, the

mesosphere, lower thermosphere and lower ionosphere

by solar X-rays and the solar extreme ultraviolet

radiation (EUV), and upper levels by the solar EUV

variability.

The secular total solar irradiance trend during the

last three solar cycles inferred from satellite mea-

surements remains a question of controversy.

Various results provide rather weak but different, even

opposite trends, and their origin is not clear, it is not

necessarily the solar magnetic activity cycle and its

variation (e.g., Wilson and Mordvinov, 2003, and

references therein).

Long-term changes in the EUV and X-ray emissions

are rather difficult to be studied directly due to relatively

short series of direct measurements by different satellites

and presence of a strong solar cycle effect. Lean et al.

(2001) used the EUV satellite measurements and proxies

(before 1974 only proxies) and found an increase of the

chromospheric EUV emission from 1900 to about 1950

and almost no trend in recent decades, overlapped by a

strong solar cycle. Indirect ionospheric evidence yields a

general trend of increasing solar EUV and X-ray

irradiance for the period 1932–1999, which appears to

be supported by SOHO solar data (Davis et al., 2001).

Other features of solar/space weather activity, like the

high-energy proton fluence variability, may influence

trends only locally, like protons in the lower ionosphere

over polar cap, and not much is known about their long-

term changes. As for the galactic cosmic ray flux, most

of its mild long-term trend near the Earth seems to be

explainable by the interplanetary magnetic field varia-

tions (Lockwood, 2001).

Thus the main potential solar drivers of long-term

atmospheric/ionospheric changes during the 20th cen-

tury are the geomagnetic activity essentially throughout

the century and the general solar activity until about

1960, or in the EUV and X-ray flux may be even in more

recent years. The determination/estimation of trends in

various solar parameters may be affected by the 11-year

solar cycle. Since we deal with trends in atmospheric and

ionospheric parameters only in the 20th century, solar

irradiance (total or spectral) reconstructions from the

Maunder minimum until present or over longer time

scales are not mentioned here.
3. Troposphere

A review of solar effects on climate and weather

has been provided by Rind (2002). The presence of the

solar cycle was identified in the lower tropospheric
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temperature, surface temperature, and upper ocean

temperature (van Loon and Shea, 1999; Lean and Rind,

2001). Coherence with solar activity was found for some

features of tropospheric circulation, e.g. latitudinal

position of storm tracks (Brown and John, 1979). Some

of the effects are pronounced in data stratified by the

phase of the QBO: the polar winter stratospheric

temperatures (e.g., Labitzke, 1987, 2001), the Northern

Hemisphere tropospheric circulation and temperature

(Barnston and Livezey, 1989; Venne and Dartt, 1990),

and, more specifically, the North Atlantic storm tracks

(Tinsley, 1988). Recently, Kodera (2002) found that the

North Atlantic Oscillation (NAO) in winter depends on

the phase of solar cycle.

Thus there is some impact of long-term solar

variability on the troposphere. However, it does not

mean automatically an impact on tropospheric trends.

In model calculations as well as in analyses of

observations, the solar activity was found to be

responsible, together with major volcanic eruptions

and the greenhouse effect, for global mean temperature

variations in the first part of the 20th century, but not

for the rapid global warming in the last two-three

decades, which is considered to be essentially of

anthropogenic origin (e.g., Stott et al., 2001; North

and Wu, 2001; Bertrand and van Ypersele, 2002).

The effects of geomagnetic activity on tropospheric

circulation have been demonstrated experimentally

(Bochnı́Wek et al., 1999a, b; Bochnı́Wek and Hejda,

2002) as well as theoretically (Arnold and Robinson,

2001), but they remain less understood than the solar

ones. Their possible influence on long-term trends has

not yet been studied, but it might be responsible for a

part of experimentally estimated solar influence on

trends due to similar long-term development of solar

and geomagnetic activity at least in the first half of the

century.

There are some indications of the galactic cosmic ray

variability impact on cloudiness and, thus, upon the

troposphere on the solar cycle time scale (e.g., Svens-

mark and Friis-Christensen, 1997; Marsh and Svens-

mark, 2003). However, the reality of that effect is under

debate (e.g., Sun and Bradley, 2002) and the explanation

of observational correlations is possible also through

variability of the total solar irradiance (Kristjánsson et

al., 2002). This effect may be masked in observational

studies of solar influence on trends in the troposphere as

a part of the direct solar effect (expressed either through

the total solar irradiance or the sunspot numbers).

Thus it may be said that there is some effect of solar

origin on the observed long-term trends (e.g., in

temperature) at surface and in the troposphere during

the first part of the 20th century, but not towards its end.

The role of the above space weather parameters in the

solar contribution is not clear, but I do not expect it to

be dominant.
4. Stratosphere

One of the principal stratospheric parameters is the

concentration of ozone. The effect of the 11-year solar

cycle in total ozone is small, � 1:5% (e.g., Hood, 1997).

Therefore it may be well corrected for and does not

affect determination of trends in total ozone, which are

affected much more by changes in chemistry, dynamics

and other parameters (e.g., Staehelin et al., 2001).

Another important minor component is water vapor.

Ground-based, balloon-borne, airborne and satellite

data reveal a trend of increasing water vapor concentra-

tion in the stratosphere of about 1%/yr since the 1950s

(e.g., Nedoluha et al., 1998; Oltmans et al., 2000;

Rosenlof et al., 2001), which is not geographically

localized. However, its explanation is not clear enough,

because methane photolysis mechanism can explain a

half of this increase at maximum. About 10% of this

increase might be perhaps accounted for by long-term

change of the El Niño-Southern Oscillation (Scaife et al.,

2003). With respect to the length of the period of

available data and their time-development, it is almost

certain that the trend in the stratospheric water vapor

concentration is not influenced by contributions of solar

origin.

There is a measurable but moderate solar cycle effect

in temperature and ozone in the upper stratosphere and

stratopause region. Labitzke (1987, 2001) and Labitzke

and van Loon in a couple of papers (e.g., 1993) found a

correlation of temperature and geopotential height with

solar activity on the solar cycle time scale. In winter this

correlation becomes well pronounced after dividing data

according to the phase of the quasi-biennial oscillation

(QBO). Quite recently Labitzke (2003) disclosed an

important role of the QBO in solar correlations even in

summer.

Stratospheric data for trend calculations are available

(except for ozone) since the late 1940s, since the

International Geophysical Year (IGY, 1957–1958) or

from the (late) 1970s (satellite era). However, except for

the solar cycle, long-term changes of solar and

geomagnetic activity were relatively small since the

IGY. The solar cycle effect in stratospheric parameters is

not strong, and geomagnetic activity effects appear to be

substantial only rarely. Therefore, their effect on trends

cannot be significant. The effect of solar cycle can

largely be removed by appropriate selection of the

analyzed period. Ramaswamy et al. (2001) reviewed

trends in stratospheric temperatures for the period from

the mid-1960s to mid-1990s and came to the conclusion

that for data series of the length of about 30 years (about

three solar cycles) the solar activity cannot affect the

calculated trends in stratospheric temperatures.

Thus we may conclude that Sun’s influence on the

observed trends in the stratosphere in the second half of

the 20th century is negligible, if any at all.
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5. Mesosphere and lower thermosphere

When we go up to the mesosphere, we enter the region

where the solar control begins to compete successfully

with the ‘‘meteorological’’ control.

Trends in temperature in the mesosphere and

mesopause region have most extensively been studied

among trends in the mesosphere and lower thermo-

sphere (MLT) region. Beig (2002) and particularly Beig

et al. (2003) critically summarized the results. The solar

cycle effect at northern middle latitudes seems to be

heating by several degrees from the solar cycle minimum

to its maximum in the mesosphere and slightly less in the

mesopause region, larger in winter than in summer. At

high latitudes, there seems to be large heating in the

mesosphere and essentially no heating in the mesopause

region. There are substantial differences between various

authors (e.g., Labitzke and Chanin, 1988; Kokin et al.,

1990; Mohankumar, 1995; Keckhut et al., 1995;

Lübken, 2001; Beig and Fadnavis, 2001; Espy and

Stegman, 2002). The solar cycle effect seems to alternate

its sign with height. Nevertheless, the solar cycle effect

appears to be larger than the trend-related change over

one decade (Beig et al., 2003; Khosravi et al., 2002).

Therefore it must be taken into account, when

temperature trends are determined. Fortunately, many

data series are sufficiently long to allow diminish and/or

filter out the solar cycle effect. Geomagnetic activity

(storms) probably plays less important role and its effect

on temperature has a complex height structure at middle

latitudes with a negative effect in the middle mesosphere

(LagtoviWka, 1988).

One must be careful in calculating the trends in the

MLT region temperatures in order not to ‘‘spoil’’ the

trend with the strong solar cycle effect. On the other

hand, the long-term change of solar activity in the last

four decades was rather weak, therefore the solar

contribution to the observed trends in temperature, if

any, has to be small and unimportant.

Another important quantity in the MLT region is

wind. There is a worldwide network of observatories to

measure the wind in the mesopause region, particularly

near 95 km with meteor radars and other instruments. In

the prevailing zonal wind neither the trend, nor solar

cycle effect is clear (Jacobi et al., 2001, 2003). The

prevailing meridional wind appears to weaken (Jacobi et

al., 2001) in agreement with model calculation (Jacobi et

al., 2003), but the solar cycle effect again is not clear.

Anyway, the solar cycle effect in winds does not seem to

be strong and does not affect the determination of trends

significantly.

The water vapor concentration in the mesosphere

exhibits a similar trend to that in the stratosphere, �

þ1%=yr (e.g., Nedoluha et al., 1998), even though this

statement is based on shorter data series. There is no

available indication of a solar cycle influence on the
trend. However, the increasing concentration of water

vapor resulted in a significant decrease of the meso-

spheric ozone concentration near sunset (not near

sunrise) according to HALOE measurements, probably

as a consequence of the production of ozone-destroying

hydrogen species via photolysis of water vapor (Marsh

et al., 2003). This process may be influenced by

variations of solar activity and, therefore, more research

into the possible solar activity effect on changes of

mesospheric water vapor and ozone is needed. Never-

theless, the basic long-term trends in the concentration

of both species seem to be very predominantly of non-

solar origin.

No information about long-term trends in the

gravity wave activity is available. However, long-term

trends in the planetary wave activity have been studied

based on the planetary wave activity inferred from long-

term, continuous measurements of the radio wave

absorption in the lower ionosphere over Europe (e.g.,

LagtoviWka et al., 1994; LagtoviWka, 1997). Some

increase of planetary wave activity was found in the

1970s and early 1980s with no change in the 1960s and

early 1990s. There was evidently no solar activity effect

on those long-term changes. It should be mentioned that

in the stratosphere at northern high latitudes (50–901N)

in January–March, a significant decrease of planetary

wave activity has been observed since the 1980s (Hu and

Tung, 2003).
6. Lower ionosphere

The lower ionosphere is the lowest part of the

ionosphere, located below about 100 km. However, for

the sake of trend studies we consider the lower

ionosphere up to 120 km, i.e. including the maximum

of the E region of the ionosphere. The studied region

consists of two ionospheric regions, D and E regions,

located below and above 85–90 km, respectively. The

lower boundary of the lower ionosphere varies between

about 40 km (solar proton events at high latitudes) and

75–80 km (night, quiet conditions, middle and low

latitudes). For trend studies we understand under the

term lower ionosphere only its ionized component,

which means practically the electron density, because

much more observational data are available for the

electron density than for the ion density and ion

composition. The lower ionosphere is an extremely

variable part of the ionosphere, where both the solar/

geomagnetic/high-energy particle effects and the me-

teorological effects play an important role and compete

with each other. In terms of the neutral atmosphere, the

lower ionosphere corresponds to the mesosphere and

lower thermosphere. The lower ionosphere exhibits a

strong solar cycle effect, and particularly the D region at

higher latitudes is strongly affected by geomagnetic
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Fig. 2. Trend (thick straight line) in the nighttime LF reflection

height (h—thin line), yearly average raw data, over 1983–2001

as measured at Collm on 177 kHz (adopted from Kürschner

and Jacobi, 2002). R—yearly average sunspot numbers (dashed

line).
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storms (e.g., LagtoviWka, 1996), while storm effects on

the E region are weaker (e.g., Brown and Wynne, 1977;

Buonsanto, 1999). Therefore a substantial influence of

solar origin on the trend determination and trends

themselves is possible. An overview of trends in the

lower ionosphere has quite recently been given by

LagtoviWka and Bremer (2004).

The effect of solar cycle on the calculation of

trends may be eliminated or at least diminished by

three ways. First, right selection of data (examples are

shown in Figs. 1 and 2). Second, to correct data for solar

and geomagnetic activity variability and calculate trend

from corrected data, as it was done for the indirect LF

phase reflection height data (e.g., Bremer and Berger,

2002). Third, to apply a method developed by Danilov

(1997) for E-region studies. A multi-parameter regres-

sion analysis of experimental data, which takes into

account dependencies on the solar zenith angle, local

time, latitude, solar activity and geomagnetic activity

without any allowance for possible effects of trends, was

applied to construct an empirical model of electron

densities. The ratio of observed electron density in each

particular experiment to the corresponding model

density, rc, was investigated in search for long-term

trends.

To study trends in the lower ionosphere, data sets

obtained by the following methods were used: A3 radio

wave absorption (LF or MF-HF, oblique incidence on

the ionosphere, continuous wave, e.g. LagtoviWka et al.,

1993), A2 (cosmic radio noise) riometric absorption

(e.g., Ranta et al., 1983), IPHA (Indirect Phase Height
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Fig. 1. Trend (thick straight line) in the yearly average raw

absorption data (thin line), slope =+0.893dB/yr, at 1412 kHz,

1970–1990 (adopted from LagtoviWka and Pancheva, 1999).

R—yearly average sunspot numbers (dashed line).
Analysis—indirect measurements of the LF phase

reflection height, e.g., Lauter et al., 1984), LF radio

wave reflection heights, rocket measurements of electron

density, and ionosonde (vertical ionospheric sounder)

measurements of the maximum electron density in the E

region and of its height.

Fig. 1 illustrates the case when even a strong

solar cycle effect did not affect much the trend. The

A3 radio wave absorption data exhibit a strong solar

cycle effect. However, the positive long-term trend in

Fig. 1 is not affected significantly by the solar cycle due

to the right selection of data (from solar cycle maximum

to solar cycle maximum; the level of solar activity in

1967–1969 was the same as in 1970) and relatively strong

trend.

The A2 riometric absorption did not provide a

conclusive result and appears not to be an appropriate

tool for studying trends, perhaps because the trends in

electron density are height-dependent in the lower

ionosphere (LagtoviWka and Bremer, 2004) and the A2

absorption integrates over a relatively broad range of

altitudes.

As stated above, calculation of trends in the IPHA

data were made with data corrected for solar and

geomagnetic activity (e.g., Bremer and Berger, 2002)

and, therefore, no evident solar cycle effect occurs in the

data series used and the observed trend may be

considered to be very predominantly of anthropogenic

origin.
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Table 1

Sign of the relation between foE132 and Ap132 (132 month

(=11 year) smoothed values) and the period of occurrence of

the given sign for five selected midlatitude stations from western

Europe (Slough) to eastern Asia (Khabarovsk), adopted from

Mikhailov and de la Morena (2003)

Station Sign Period Sign Period

Slough + 1968–80 � 1936–67

Rome + 1972–95 � 1962–71

Tomsk + 1971–92 � 1950–70

Askhabad + 1973–81 � 1962–72

Khabarovsk + 1970–83 � 1965–69
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Another situation is with the LF reflection heights,

shown in Fig. 2 as an example of a trend strongly

affected by solar cycle. These data are by-product of

wind measurements at Collm, Germany. Fig. 2 shows

that the data series is relatively short, and it begins under

lower solar activity conditions (high reflection heights

due to lower electron density) and ends under high solar

activity conditions (low reflection heights). Therefore the

trend line in Fig. 2 is strongly affected by the solar cycle

and it does not represent real trend. LagtoviWka and

Bremer (2004) estimated the real trend to be a little bit

more than a half of that shown in Fig. 2.

Rocket data on electron density yielded negative

trends below about 87–90 km in agreement with ground-

based data, but positive trends above (Friedrich and

Torkar, 2001) in contradiction with ground-based data

(LagtoviWka and Bremer, 2004). Since the database

consists of slightly more than 100 rocket launches over

almost 50 years, it is possible that solar and geomagnetic

influences contribute to the contradiction. More detailed

investigation of this problem is required.

In the E region, trends in foE and the height of E-

region maximum, hmE, have been studied. The global

network of ionosonde measurements has been utilized

for trend examinations. Trends in foE are generally

positive while those in hmE are generally negative (e.g.

Bremer, 2001; Danilov, 2002a) in qualitative agreement

with model expectations, changes in ion composition

(foE) and idea of thermal shrinking of the upper

atmosphere (hmE). Fortunately the global ionosonde

network has been working since the IGY (1957–1958)

and a couple of stations even before, therefore there are

relatively large amount of data for trend investigations.

The positive trend in foE is suggested to be caused by a

negative trend in jþ ¼ ðNOþ=Oþ
2 Þ near the maximum of

E region and, therefore, by a positive trend in the

effective recombination coefficient. The negative trend

in jþ was revealed by analysis of rocket measurements

(e.g., Danilov, 2001).

Long-term changes of geomagnetic activity might be

also important for trend calculations, particularly in the

ionized component at higher latitudes and higher

heights. Mikhailov and de la Morena (2003) claim that

before about 1970 the long-term changes/trends in foE

had been controlled predominantly by geomagnetic

activity, whereas since about 1970 they have been

controlled predominantly by anthropogenic factors.

Their result is based on the change of sign of the

relation between foE132 and Ap132 (132 months, i.e. 11-

year smoothed values)—the negative sign corresponds

to the sign of effect of geomagnetic storm (activity).

Table 1 as an example of possible strong geomagnetic

activity impact on long-term changes of foE shows

negative signs, i.e. geomagnetic control, before about

1970, and positive signs, i.e. non-geomagnetic, anthro-

pogenic control, after about 1970.
The lower ionosphere is under strong control by solar

and geomagnetic activity. Nevertheless, suitable selec-

tion of analyzed periods or data corrections make it

possible to avoid or at least substantially diminish the

effect of solar cycle on the trend determination, the

trends being considered to be of basically anthropogenic

origin. This anthropogenic origin means primarily the

greenhouse effect, but some contribution of anthropo-

genic non-greenhouse changes of ozone concentration

seems to be likely (e.g., Bremer and Berger, 2002). On

the other hand, as Mikhailov and de la Morena (2003)

claim for foE, trends in older data, but not in the data of

the last 2–3 decades of the 20th century, might be to a

substantial extent of Sun’s origin, particularly of

geomagnetic activity change origin.
7. Thermosphere

In the thermosphere, only trends in neutral density

have been studied due to availability of data. The trends

in thermospheric density around 350 km were derived by

Keating et al. (2000) from satellite drag measurements.

The observed decrease of thermospheric density was

about 5% per decade for solar minimum years. It was

interpreted as a consequence of greenhouse cooling.

Emmert et al. (2004) analyzed satellite drag measure-

ments, as well. To avoid the strong effect of solar cycle

on thermospheric density, data were separated accord-

ing to the level of solar activity. The average trends of

decrease of the thermospheric density ranged at heights

of 200–700 km from �2% to �5% per decade; they were

largest for solar minimum conditions and they increased

with increasing height. The trends were largely indepen-

dent of geomagnetic activity, local time, latitude and

season, which support their anthropogenic origin.

It was possible to find trends in the thermospheric

density, which were not affected by solar cycle and

agreed at least qualitatively with the expected effect of

greenhouse cooling, due to appropriate selection of data,

which took into account the phase of solar cycle.
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8. F-region ionosphere

The F-region ionosphere is predominantly controlled

by solar and particularly geomagnetic activity, or

physically more correct by space weather phenomena,

which mostly affect the geomagnetic activity. Buonsanto

(1999) reviewed the effects of geomagnetic storms on the

F region. There is also a modeling activity in this area

towards quantitative modeling of the effects of geomag-

netic storms (e.g., Fuller-Rowell et al., 2000).

For the sake of trend investigations we have to divide

the F region into two parts, the F1 region ðh �

1602200kmÞ and the F2 region characterized by the

maximum critical frequency foF2, which corresponds to

the maximum electron density in the ionosphere, and by

the height of this maximum, hmF2. Trends and their

relation to solar/geomagnetic activity in the F1 and F2

regions differ substantially.

As for trends in the F1 region, they have little been

studied. However, investigations with corrections of

data for solar (R) and geomagnetic (Ap) activity

revealed positive trends in foF1 in reasonable agreement

with model predictions (e.g., Bremer, 2001).

There is a lot of controversy about the interpretation

of observed trends in foF2 and hmF2, and partly even in

their values obtained by different methods (e.g., Ulich

and Turunen, 1997; Jarvis et al., 1998; Bremer, 1998,

2001; Mikhailov and Marin, 2000, 2001; Danilov, 2002a

and references herein, 2002b, 2003a; Danilov and

Mikhailov, 1999). Some studies provide trends of

opposite sign in foF2 for different regions (e.g., Bremer,

1998, 2001). A brief critical review of problems with

trend determination in the F2 region was done by Ulich

et al. (2003). Another problem is with hmF2, which has

to be computed from M(3000) for older data. Different

methods of that calculation resulted in even opposite

trends in hmF2 for some stations like Ottawa (Ulich,

priv. comm.).

The trends are interpreted as a consequence of

greenhouse cooling (Ulich and Turunen, 1997; Jarvis

et al., 1998), or as being controlled by geomagnetic

activity (Mikhailov and Marin, 2000, 2001). Danilov

(2002b) developed a special method to separate the

‘‘non-geomagnetic’’ trend component. He obtained a

decrease of foF2 by �0:12MHz=decade (Danilov,

2003a). The anthropogenic origin means for most

authors the increasing atmospheric concentration of

greenhouse gases, but possible role of space debris as

anthropogenic pollutant responsible for part of the

observed trends cannot be entirely excluded (Danilov,

2003b). A substantial, may be dominant part of long-

term trends/changes in foF2 is still likely caused by the

respective variations of geomagnetic activity, even

though the existence of the anthropogenic contribution

to the trends is evident (Danilov, 2003a). The situation

remains to a large extent controversial and unclear (even
though slightly less than a few years ago), and more

research into the problem of determination, and

particularly interpretation, of F2 region trends is

necessary.
9. Conclusions

Presence of the solar cycle and other long-term

variations and changes of ionization rate of solar origin,

investigated usually in terms of effects of solar and

geomagnetic activity, may affect the trend determina-

tion, and in some parameters even to some extent cause

the trends. It is possible to suppress or even avoid the

effects of Sun’s origin, namely of solar cycle, on trend

determination with the use of proper selection of

analyzed periods, or with the use of data corrected for

solar and geomagnetic activity, or with the use of

differences from or ratios to an empirical model,

which includes the solar and geomagnetic activity, local

time, season, latitude and may be some other para-

meters. The solar and geomagnetic activity may have a

crucial impact on the trend determination when data

series are relatively short, like LF reflection heights, or

when we study trends in the ionized component (iono-

sphere).

On the other hand, the solar and geomagnetic activity

may be responsible for part of the observed long-term

trends due to its secular change during the last century,

particularly during its first half. To this end, the two

main conclusions are as follows:
1.
 The role of solar and geomagnetic activity in the

observed long-term trends decreases with decreasing

altitude from the F-region ionosphere (very impor-

tant) down to the troposphere (negligible at least in

the last three decades), and from the ionized

component to the neutral component.
2.
 In the 20th century the role of solar and geomagnetic

activity in the observed long-term trends/changes was

decreasing from its beginning (some role even in the

troposphere) towards its end (important probably

only in the F2 region), and the role of the greenhouse

effect was increasing towards the end of the century.

This was caused both by a continuous increase of

concentration of greenhouse gases in the atmosphere

and by much weaker trend in the solar and

geomagnetic activity towards the end of the 20th

century compared to its first half.
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Lübken, F.-J., 2001. No long term change of the thermal

structure in the mesosphere at high latitudes during

summer. Advances in Space Research 28, 947–953.

Marsh, N., Svensmark, H., 2003. Galactic cosmic ray and El

Niño-Southern oscillation trends in international satellite

cloud climatology project D2 low-cloud properties. Journal

of Geophysical Research 108 (D6), 4195 doi: 10.1029/

2001JD001264.

Marsh, D., Smith, A., Noble, E., 2003. Mesospheric ozone

response to changes in water vapor. Journal of Geophysical

Research 108 (D3), 4109 doi: 10.1029/2002JD002705.

Mikhailov, A.V., Marin, D., 2000. Geomagnetic control of the

foF2 trends. Annales Geophysicae 18, 653–665.

Mikhailov, A.V., Marin, D., 2001. An interpretation of the

foF2 and hmF2 long-term trends in the framework of the

geomagnetic control concept. Annales Geophysicae 19,

743–748.

Mikhailov, A.V., de la Morena, B.A., 2003. Long-term trends

of foE and geomagnetic activity variations. Annales

Geophysicae 21, 751–760.

Mohankumar, K., 1995. Solar activity forcing of the middle

atmosphere. Annales Geophysicae 13, 879–885.

Nedoluha, G.E., Bevilacqua, J.M., Gomez, R.M., Siskind,

D.E., Hicks, B.C., 1998. Journal of Geophysical Research

103 (D3), 3531–3543.

North, R.G., Wu, Q., 2001. Detecting climate signals using

space–time eofs. Journal of Climate 14, 1839–1863.
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