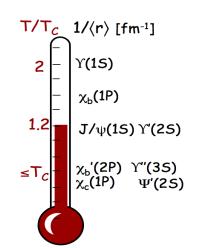
J/Ψ PRODUCTION IN U+U COLLISIONS IN THE STAR EXPERIMENT

Ota Kukral Czech Technical University, Prague

Indian Summer School 2013, Prague 3 September 2013

Outline

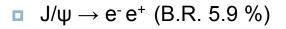
- Motivation
- STAR Experiment
- Analysis
 - Electron identification
 - J/ψ signal
- Summary and outlook

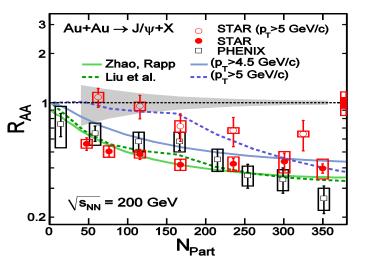

Motivation

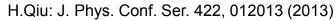
- Since 2000 the properties of hot and dense nuclear matter, Quark Gluon Plasma, are studied at RHIC in BNL by means of heavy ion collisions
- Mass of charm quark is high (~1.3 GeV/c²)
 - Production can be described by pQCD
 - Produced early in hard processes
- \Box J/ ψ should be suppressed in QGP
 - In-medium screening of color charge
 - Different states suppressed at different temperature
 - Use as a thermometer
- Nuclear modification factor

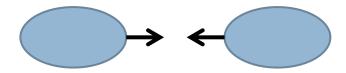
$$R_{AA} = \frac{dN_{AA}^2/dP_T dy(y)}{\langle N_{bin} \rangle \ dN_{pp}^2/dP_T dy}$$

Good understanding of p+p baseline and cold nuclear effects (d+Au) necessary

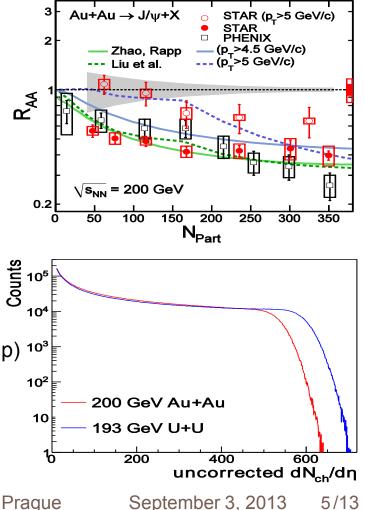

Ota Kukral




Motivation

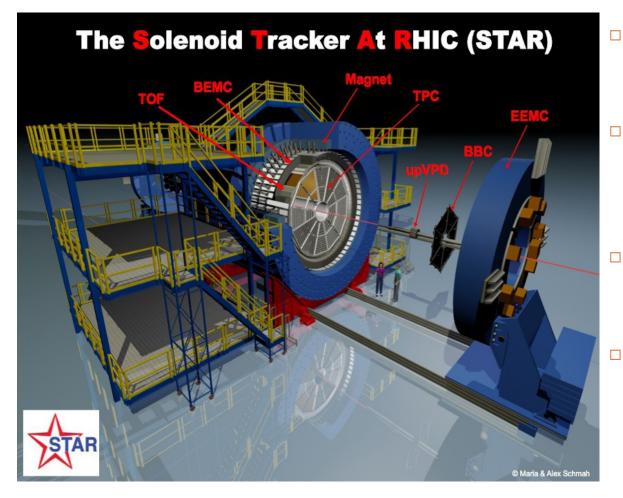

STAR Measurements:

- J/ψ measured in Au+Au, d+Au, p+p and Cu+Cu (various energies)
- R_{AA} decreases with number of participants – size of the system
- Our analysis:
 - U+U collisions at 193 GeV per nucleon (2012)
 - Uranium nucleus is non-spherical → higher initial energy density (highest tip-to-tip) → higher track multiplicity


Tip-to-tip collision

Motivation

STAR Measurements:


- J/ψ measured in Au+Au, d+Au, p+p and Cu+Cu (various energies)
- R_{AA} decreases with number of participants – size of the system
- Our analysis:
 - U+U collisions at 193 GeV per nucleon (2012)
 - Uranium nucleus is non-spherical →
 higher initial energy density (highest tip-to-tip) ^{10³}
 → higher track multiplicity

□
$$J/\psi \rightarrow e^- e^+$$
 (B.R. 5.9 %)

Ota Kukral

STAR Experiment

- Brookhaven
 National Laboratory,
 USA
- Time Projection
 Chamber (TPC)
 - Particle momentum, dE/dx
- Time Of Flight (TOF)
 - Particle velocity (1/β)
 - Barrel Electromagnetic Calorimetr (BEMC)
 - Particle energy

Ota Kukral

Analysis overview

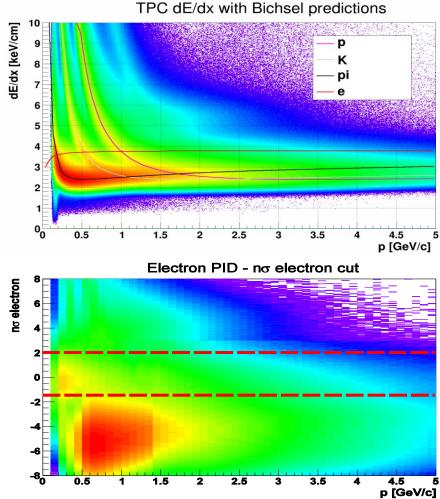
□ U+U at 193 GeV per nucleon, $J/\psi \rightarrow e^-e^+$ (B.R. 5.9 %)

- Minimum bias events
- Event cuts
- Trajectory cuts
- Electron selection
- Invariant mass

<u>Event cuts</u>

- Reference Multiplicity > 10 (0-80%)
- Primary Vertex Z: -30 cm < Pz < 30 cm
- Difference of TPC and VPD Primary

Vertex Z < 3 cm


• Signal in BEMC required

Trajectory cuts

- Number of fitted hits > 19
- Ratio of fitted to possible TPC hits > 0.51
- DCA to primary vertex < 3 cm
- \circ *Pseudorapidity -1<η<1*

Electron Identification

- TPC, BEMC and TOF used
- □ TPC:
 - -1.5 < $n\sigma_{elektron}$ <2
 - $|n\sigma_{pion}| > 2.5$
- □ BEMC:
 - Used only for $p \ge 1.4 \text{ GeV/c}$
 - □ 0.3 < p/E < 2.0
 - E > 0.1 GeV
- □ TOF:
 - p < 1.4 GeV/c required,</p>
 - □ $p \ge 1.4$ GeV/c used only if signal exists
 - **0.97 < 1/β < 1.03**

September 3, 2013

8/13

Electron Identification

- TPC, BEMC and TOF used
- □ TPC:
 - -1.5 < $n\sigma_{elektron}$ <2
 - $|n\sigma_{pion}| > 2.5$
- □ BEMC:
 - Used only for $p \ge 1.4 \text{ GeV/c}$
 - □ 0.3 < p/E < 2.0
 - E > 0.1 GeV
- □ TOF:
 - p < 1.4 GeV/c required,</p>
 - □ $p \ge 1.4$ GeV/c used only if signal exists
 - **0.97 < 1/β < 1.03**

TPC dE/dx with Bichsel predictions dE/dx [keV/cm] p κ pi 7 3 2 1 0 0.5 3.5 1 1.5 2.5 4.5 5 p [GeV/c] **Electron PID - TOF € ^{1.7}**∃ 1.5 1.4 1.3 1.2 1.1 0.9 0.8 0.7^b 3.5 0.5 4.5

September 3, 2013

p [GeV/c]

9/13

Signal

Like-sign background reconstruction ($e^+e^+ + e^-e^-$):

Unlike sign pairs

Like sign pairs

- Crystal ball fit (Gaussian with tail)
- Significance $Sg = \frac{S}{\sqrt{S+2B}}$
- $S = 9440 \pm 640$ in (2.9-3.2) GeV/c²
- Sg = 12.9

Raw counts

50 40

30

20

10

Ota Kukral

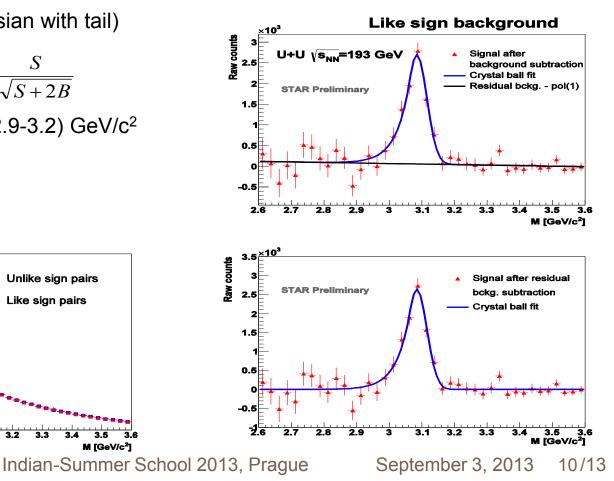
2.6

U+U √s_{NN}=193 GeV

2.9

3.1

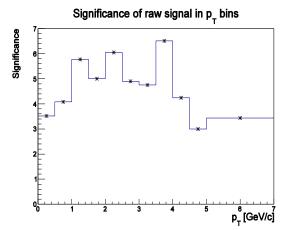
3.2

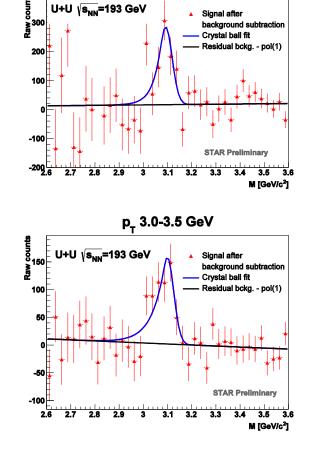

3.3

3.4

3.5 M [GeV/c²]

3.6

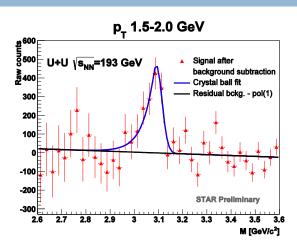

2.8

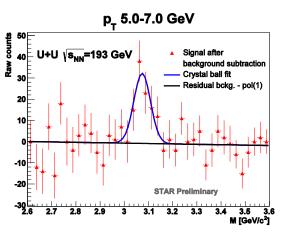


Signal for different p_T bins

- 11 p_T bins up to 6 GeV/c
- Linear fit to residual background
- Significance

$$Sg = \frac{S}{\sqrt{S+2B}}$$

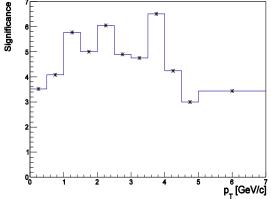


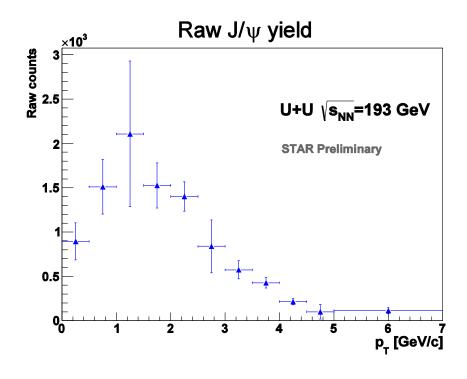

p_ 0.0-0.5 GeV

Signal after

background subtraction

U+U √s_{NN}=193 GeV


Ota Kukral


Uncorrected spectra

- □ 11 p_T bins up to 6 GeV/c
- Linear fit to residual background
- Significance

$$Sg = \frac{S}{\sqrt{S+2B}}$$

Summary

J/ψ signal observed in U+U collisions

- Significance 12.9
- 11 p_T bins

Outlook

- Signal corrections
- Embedding under way
- Cross section and R_{AA}