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1 Introduction

In many problems that arise in chemical engineering, a discontinuity may appear. The discon-
tinuity may be a result of external activity, for example it is obtained by adding of a control
member, or it can be directly a natural part of a model under consideration - this is the case of
the closed dynamical system, more precisely an ideal gas—liquid system, which is studied in this
work.

The theory of Filippov systems is applied to this system. Dependence of the solution on a given
parameter set is studied namely, the dependence of the solution on the molar inflow of the gas.
It is shown that the local sliding bifurcations appear on the discontinuity boundary.

All simulations are performed by making use of Maple. For numerical computations, package
AUTO is used.

2 An ideal gas—liquid system

Let us start with a simple system shown in Fig. 1. Feed, that consists of a liquid and gas, is
sent to the closed tank, that has only one outlet tube. If the level of liquid is above the outlet
tube opening, see Fig. 1 (a), the liquid comes out of the tank. Otherwise the gas comes out, see
Fig. 1 (b).
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Fig. 1. An ideal gas—liquid system.

The following assumptions help to simplify the model.

1. Feed consists of an ideal gas G and an incompressible liquid L.

[\

. The gas and the liquid do not react.

w

. The liquid has negligible vapour pressure at the operating conditions.

W

. The gas does not dissolve in the liquid at the operating conditions.



5. In the liquid, there are no gas bubbles that may be leaving the tank.
6. The valve dynamics are ignored.

7. The flow rate through the valve is proportional to the diference of the tank pressure and
the outlet pressure.

8. The temperature, feed flow rates, outlet pressure and the valve opening are all constant.

Let F;, and Fg be the molar inflow rate of liquid and gas, respectively. Let G and L be the
molar outflow rate of liquid and gas, respectively. The following model equations of the ideal
gas—liquid system were proposed by Moudgalya and Ryali [1].

If M1 /pr > V4 (liquid model), then:

dé‘fc’ — P (1)

dé\? = Fp- L, (2)

Mo+ 2L = V. 3)

L = kpz(P — Pout)- (4)

If M1 /pr < Vy (gas model), then:
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G = kgz(P — Pout). (8)

My, and Mg are the molar hold-ups of liquid and gas, pr, is the molar density, T is the absolute
temperature, P and P,,; are the pressure in the tank and in the outlet, respectively. R is the
gas constant, V' is the volume of the tank and V; denotes the volume of the liquid below a
outlet tube opening in the tank, as is shown on Fig. 1 (c¢). The valve opening is denoted by z,
0 < x < 1. The valve coeflicients are kj, for liquid and kg for gas flow.

Fg and Fp, have to be positive constant in time. The valve opening x is constant, too.

From equations (1) and (6), one can see that dynamical system given by equations (1)—(4) and
dynamical system given by equations (5)—(8) have no standard equilibrium. But are there any
sliding equilibria?

From equation (3) we derive an expression for P,

McRT

p= Gt
V—Mp/pL

Substituting this P into equations (4) and (8), we obtain
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and

MgRT
G=kcz|———Poust ] .
¢ <V—ML/PL t)

Equations (1), (2), (5) and (6) with (10) and (11) define Filippov system F,

P ( Mg ) _{ f (Mg, My) , (Mg, Mg) € S,
t g =

My, £ (Mg, My), (Mg, Mp) € S,
where VRT
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Sl = {(Mg,ML) € R2 (Mg,ML < 0}
Sy = {(Mg, Mp) € R? : o(Mg, Mp) > 0}.

The function (Mg, My) is defined as

o(Mg, M) = My, — prVy.

The state space of the system F, denoted as S, is divided into two regions S; and Ss.

(16)

The

region S corresponds to the case, when the gas is leaving a vessel. Sy corresponds to the case,
when the liquid is leaving a vessel. Both S7 and Se can be again divided into two regions, each
of them with the different qualitative behavior of the vector field. The system behavior is shown

on Fig. 2 and Fig. 3 (for more details see [1]).
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Fig. 2: The splitting of the state plane S with the qualitative directions of orbits for Mé > Mg
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Fig. 3: The splitting of the state plane S with the qualitative directions of orbits for Mé < Mg



Fig. 4 show the results gained from the simulations. Parameters used for the simulations are in
Table 1.

Table 1: Parameters used for the simulation of system F(Fg):

Fr, (mol/s) 2.5
pr, (mol/1) 50
V(1) 10
Va (1) 5
T(K) 300
Pyt (atm) 1
R (I atm K=! mol™!) 0.0820574587
T 0.1
kr 1
ka 1
Mg ~
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Fig. 4: Bifurcation diagram

3 Conclusion

One can see from Fig. 4, there is no possibility to collision of sliding point C and the generic
pseudo-equilibrium P, because the related lines are parallel. But what if that parallelism dis-
appear? This would require the modification of the model equations, and the ideal gas-liquid
system become the non-ideal gas-liquid system.
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Computational experience with modified conjugate
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Conjugate gradient methods are widely used for unconstrained minimization of function F :
R™ — R. These methods generate a sequence of points {z;} C R™ by the formula

Tiy1 = T; + 585, 1 €N,

where s; € R" is a direction vector satisfying a descent condition s g(x;) < 0 (g(z;) is a gradient
of the function F' at a point z;), and a; > 0 is a step-length chosen to satisfy the generalized
Wolfe conditions
F(zip1) — Fa;) < erqus] g(wi), (1)
eas] g(:) < 5] gwit1) < esls] g(wi), (2)
with 0 < g1 < g9 < 1 and g3 > 0, are satisfied. The direction vector s; is chosen in such a way
that
s1=—g1 and Sj11 = —¢gi+1+ 0Gis; for i€ N, (3)
where parameter (3; is chosen so that the direction vectors s;, 1 < i < n, were mutually conjugate
if we apply this method to a strictly convex quadratic function.

There is six basic conjugate gradient methods:

HS _ y;'fgi+1 PR _ szgi—l—l LS _ szgi—l—l (4)
7 - T.. ° (3 - T, 7 - T..

Y; Si g; 9i ’gi 32’
(HS — Hestenes and Stiefel [4], PR — Polak and Ribiére [8], LS — Liu and Storey [5]),

DY _ 9;1:;_192'+1 FR _ 93:;_192'+1 cD _ gﬂ1gz’+1
i = T, > P =7 P =7 (5)
Yi Si 9; 9i ‘gi 54

(DY — Dai and Yuan [1], FR — Fletcher and Reeves [3], CD — conjugate descent [2]). These
methods can be divided into two groups by the numerator used. Methods of the first group (HS,
PR, LS) are more suitable for practical computations but they are globally convergent only with
necessary modifications. Methods of the second group (DY, FR, CD) are globally convergent
under certain assumptions (put on a choice of a step-length) but the direction vectors stay worse
conjugate if a step-length is inexact and the minimized function is not quadratic.

Relation (3) can be variously modified in order to improve effectiveness of conjugate gradient
methods. One such possibility, is used in the following theorem (see also [9]).

Theorem 1 Consider modified methods DY, FR, CD given by the rule

s1=—g1 and Si1 = —Vigiy1+ Bisi for i €N, (6)
where the values BPY, BEE, BEP are determined by (5) and
ﬁpy_y;'fsi_l 0};3_1/?8@' CD _ y;'fsi
(3 - T . - 7 - T R 7 - To. |
Yi Si 9; 9i ’gi 54

If a function F : R™ — R is bounded from below and has bounded second order derivatives and
if we use generalized Wolfe conditions (1)—(2) with 0 < g1 < e2 <1 and 0 < e3 < 0o during a
choice of a step-length, then these methods are globally convergent.



Relation (6) can also be used to improve conjugation of direction vectors in methods PR and
LS.

Theorem 2 Consider modifications of methods HS, PR, LS given by the rule
s1=—g1 and sjp1 = —V;gi41 + Bis; for i€ N,

where the values 35, BFE, BES are determined by (4) and

T T T
HS _ Yi Si PR _ Y Si LS _ Yi Si
;77 == =1, 0" =%, U7 = .
Yi Si 9; i lg; sil

Then
yZ-TsHl =0 for i€N.

Efficiency of conjugate gradient methods can be improved by suitable restarts. It is very conve-
nient to test a uniform descent condition —gZ, 1 s;+1 > £o|git1][|[sit1]], where g9 > 0 is a small
number. Such a modified conjugate gradient method is globally convergent without occurring
restarts too often. If methods (5) are used, then it is suitable to test a conjugation of direction
vectors. In this case, we perform restart if the condition

yi siv1 < mllsiallllyill (7)
does not hold, where the value 7; depends on the Wolfe conditions chosen.

Various variants of conjugate gradient methods were tested by using a collection of 60 test
functions with 1000 variables. Results of these tests imply several conclusions:

e It is advantageous to use the strong Wolfe conditions with €5 = €3 = 10™! at a realization
of conjugate gradient methods, particularly methods HS, PR, LS, and their modifications.

e In case that we use the strong Wolfe conditions, method HS gives the best results. Modi-
fication (6) improve efficiency of methods HS, PR, LS.

e In case that we use the strong Wolfe conditions, methods DY, FR, CD give worse results
than methods HS, PR, LS. The properties of methods DY, FR, CD are considerably
improved if they are restarted each time condition (7) is not fulfilled.

e In general, modification (6) considerably improve efficiency of methods FR and CD. This
observation is independent of a choice of the Wolfe conditions which confirms a significance
of Theorem 1. Moreover, if we use conjugation test (7), then the resulting methods are
competitive with the best modifications of methods HS and PR.

e In case that we use the weak Wolfe conditions with €5 = 0.9 and €3 = oo, method PR
gives better results than methods HS (particularly if we use modification (6)).
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1 Introduction

The photosynthetic microorganism growth description is usually based on the so-called microbial
kinetics, i.e. on the lumped parameter models (LPM) describing the photosynthetic response
in small cultivation systems with a homogeneous light distribution [3, 6]. However, there is an
important phenomenon, the so-called flashing light enhancement, which demands some other
model than it residing in the artificial connection between the steady state kinetic model and
the empiric one describing the photosynthetic productivity under fluctuating light condition.
Nevertheless, even having an adequate dynamical LPM of microorganism growth, see e.g. phe-
nomenological model of so-called photosynthetic factory [4, 5], another serious difficulty resides
in the description of the microalgal growth in a photobioreactor (PBR), i.e. in a distributed
parameter system.

In order to develop the distributed parameter model (DPM) of a microorganism growth, two
main approaches for transport and bioreaction processes modelling are usually chosen: (i) Eu-
lerian infinitesimal, and (ii) Eulerian multicompartmental. While the Eulerian infinitesimal
approach, leading to the partial differential equations (PDE), is an usual way to describe trans-
port and reaction systems, the multicompartmental modelling framework, resulting in a system
of ordinary differential equations (ODE), is mostly used in the process engineering area. This
second approach, based on balance equation among compartments with finite control volume,
has been recently treated by Bezzo et al. [2]. The authors presented there a rigorous mathe-
matical framework for constructing hybrid multicompartment/CFD models. Hybrid there means
that the fluid flow description is resolved by a CFD code, and does not make a part of the ODE
system of governing equations.

In the sequel, we adopt the first approach aiming to clarify in an analytical manner the role of
hydrodynamic mixing, or more precisely, the mechanism of the photosynthetic microorganism
growth enhancement due to the microbial cell transport by radial dispersion. Nevertheless,
in the future work, our results should serve to develop a numerical scheme for setting up the
optimal compartment size in the multicompartment/CFD models.

2 Model development

Accordingly to [7], the transport equation for microbial cells (concentration or cell density ¢) as
the function of spatial coordinates and time gets the next form:

Oc
a%—V'(ﬁc)—V'(DeVC):R, (1)
where R is the source term (representing microbial growth, unit: cell m~3s~!), ¥ represents the

velocity field, and D, is the dispersion coefficient, which corresponds to diffusion coefficient in


stary
Obdélník


microstructure description and becomes mere empirical parameter suitably describing mixing
in the system. D, is influenced by the molecular diffusion and velocity profile. When mixing is
mainly caused by the turbulent micro-eddies, the phenomenon is called the turbulent diffusion
and a turbulent diffusion coefficient is introduced e.g. in [1]. The reaction obviously depends
on some variables, usually called as substrates. For our special case of photosynthetic growth
in a PBR, the role of only one limiting substrate (the nutrients are supposed to be present in
a sufficient amount, i.e. they do not limit the growth) fulfills the irradiance, in other words,
an external forcing input u. Moreover we suppose the rectangular PBR geometry illuminated
from one side, i.e. the irradiance level is decreasing from the PBR wall to PBR core. Thus, the
PBR volume (our computational domain) can be divided into layers with the same irradiance
level, transforming the 3D problem into the one-dimensional. Consequently, the description of
cell motion in direction of light gradient, i.e. perpendicular to PBR wall and at the same time
perpendicular to the direction of convective flow, is of most interest. This motion is caused by
the just mentioned turbulent diffusion. Furthermore, we can introduce the dimensionless spatial
coordinate x by r := xL, where L is the the PBR length in direction of light gradient, and the
dimensionless dispersion coefficient p(x) by D, := p(z) Dy, where Dy is a constant with some
characteristic value, unit: m?s~!'. Furthermore we introduce the dimensionless concentrations
as Y 1= .=, Yss = 2, where ¢y, is a characteristic (e.g. maximal) concentration of c.

cm’

Based on photosynthetic factory model [4, 5] we have for the reaction term R the relation
R=—k (c—css) (2)

where k is the rate (unit: s~!) associated with the dynamic process by which is the concentration
approaching to some value css depending only on the external input u.

As we are interested on the steady state solution of (1), i.e. % = 0, we obtain
— [p@)y] +a@) y = a@) yss, ¥'(0)=0, y'(1)=0, (3)
where ¢(x) := W.

If we define kg as follows: k := k4 (u(zx)) ko, then the characteristic number, so-called Damkdhler
number of second type, could be defined as Dajy := k%)—LQ, and the the dependence of the solution

of (3) on Dajr could be studied. ’

3 Analytical solution

In fact, we do not need the solution of equation (3) in form y = y(x), but we want to find the
mean value of y in the interval z € [0.1], i.e. to compute the expression fol y(x) dz. Based on [8],
the boundary value problem is transformed into the related initial value problem. It consists in
finding solutions of two homogeneous equations, two differential equations with the right-hand
side and computing a solution of a system of two algebraic equations. The result is that we obtain
a function value and its derivative in an arbitrary point. The original differential equation with
boundary conditions is thus transformed into a differential equation with an initial condition. As
we need only a solution in several points, we can apply the above procedure repeatedly. Finally,
the value fol y(x) dzx is obtained by a suitable numerical method.
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4 Conclusion

An analytical study of the effect of hydrodynamic mixing on the photosynthetic microorganism
growth is presented. The spatio-temporal dependence of microorganism cell concentration in
our system of interest, i.e. in the photobioreactor (PBR), is reduced into a one-dimensional
problem described by the second-order non-homogeneous ordinary differential equation with the
non-linear continuous function on the right hand side. The impermeability of the PBR’s walls
imposes the Neumann boundary condition. The related initial value method is applied, and for
a special case of forcing input and for the special right hand side (Haldane type kinetics), the
resulting dependence of the PBR productivity (the average value of steady-state concentration)
on hydrodynamic mixing is determined.
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