Lecture 1: Basics, hard scattering processes in nuclei

> Brian. A Cole, Columbia University September 5, 2013

Cronin effect: a "case study"

An early measurement

Cronin *et al,* Phys. Rev. D11 (1975) 3105

- Inclusive invariant cross-section for π⁻ production as a function of p_T
 - -At 90° in center of mass
 - -For three different fixed target collision energies
 - ⇒Clear variation in yield at high p_T with collision energy.

Some basics

 First, center of mass energies: $-200 \text{ Gev} \rightarrow \sqrt{s} = 19.4 \text{ GeV}$ $-300 \text{ Gev} \rightarrow \sqrt{s} = 23.7 \text{ GeV}$ $-400 \text{ Gev} \rightarrow \sqrt{s} = 27.4 \text{ GeV}$ Kinematic limits: -At nucleon-nucleon level single particle p_T must satisfy $p_T < \sqrt{s}/2$ ⇒ 12.0, 13.9, 15.6 GeV Invariant cross-section $-E d^3 p$ is Lorentz invariant

Early measurement: x_T

 Define a scaling variable: $-x_\perp = p_T/(\sqrt{s}/2)$ -Measurements extend to significant fraction of kinematic limit. Shapes of x_T spectra between different energies are similar. -But have different normalization. \Rightarrow Correct for \sqrt{s} in $p_T \rightarrow x_\perp$ transformation

XT scaling

High-p_T invariant cross-sections have power-law shape:

$$- E rac{d^3\sigma}{dp^3} \propto \left(rac{1}{p_T}
ight)^n$$

• Then, under $p_T \rightarrow x_{\perp}$ pick up factor of $\left(\frac{1}{\sqrt{s}}\right)^n$

A dependence

• Cross-sections were observed to vary (inclusively) as A^{α} .

FIG. 1. The invariant cross section for π production relative to tungsten for various atomic numbers at 400 GeV; (a) π^- at $p_{\perp} = 3.85 \text{ GeV}/c$, (b) π^+ at $p_{\perp} = 3.85 \text{ GeV}/c$ (c) π^- at $p_{\perp} = 5.38 \text{ GeV}/c$, (d) π^+ at $p_{\perp} = 5.38 \text{ GeV}/c$.

A dependence

 Extracted values of $\alpha(\mathbf{p}_{\mathsf{T}})$ for pions, kaons and protons. $-0.9 < \alpha(pT) < 1.1$ for pions \Rightarrow Surprise: $\alpha > 1$ \Rightarrow Varies with particle type This is the wellknown "Cronin effect" ⇒Why?

Physics: pQCD, geometry

Hard Scattering in p-p Collisions

From Collins, Soper, Sterman Phys. Lett. B438:184-192, 1998 **STAR** p-p di-jet Event

$$\sigma_{AB} = \sum_{ab} \int dx_a dx_b \,\phi_{a/A}(x_a,\mu^2) \,\phi_{b/B}(x_b,\mu^2) \,\hat{\sigma}_{ab} \left(\frac{Q^2}{x_a x_b s},\frac{Q}{\mu},\alpha_s(\mu)\right) \,\left(1 + \mathcal{O}\left(\frac{1}{Q^P}\right)\right)$$

Factorization: separation of σ into

 Short-distance physics: σ̂
 Long-distance physics: φ's (universal)

Single High-pt Hadron Production

 For single hadron production need fragmentation functions

 Describe inclusive hadron longitudinal momentum distribution inside a jet

 $\Rightarrow D_i^a(z)$ for parton $i \rightarrow$ hadron a

⇒z is fraction of parton/jet momentum carried by the hadron

Fragmentation functions satisfy sum rule

$$-\sum_{a}\int_{0}^{1}dz\,zD_{i}^{a}(z)=1$$

- •Starting point, nuclear nucleon density distribution: $\rho(r)$
- •Then, assuming straight-line trajectory at impact parameter b,

- electron or proton passes through "thickness"
 - $T(b)=\int_{-\infty}^\infty dz\,
 ho(\sqrt{b^2+z^2})$
- T(b) has dimensions 1/L²
 ⇒ T(b) x cross-section = number of scatterings

 Then, e.g. produce high-p_T hadrons in p-A collisions at rate/event:

$$\overline{} E \, rac{d^3 n^{pA(b)}}{dp^3} = T(b) imes E \, rac{d^3 \sigma^{pp}}{dp^3}$$

•With a corresponding differential crosssection per impact parameter:

$$- E rac{d\sigma^{pA}}{db \, d^3 p} = 2\pi b \left(E \, rac{d^3 n^{pA(b)}}{dp^3}
ight) = 2\pi b \left(T(b) imes E \, rac{d^3 \sigma^{pp}}{dp^3}
ight)$$

Integrate over b:

$$- E rac{d \sigma^{pA}}{d^3 p} = \int db \; 2 \pi b T(b) \; imes E \, rac{d^3 \sigma^{pp}}{d p^3}$$

•But,

 $-\int db \ 2\pi bT(b) = \int db dz \ 2\pi b\rho(\sqrt{b^2 + z^2}) = \int d^3 r \rho(r) = A$ • So, $-E \frac{d\sigma^{pA}}{d^3 p} = A \times E \frac{d^3 \sigma^{pp}}{dp^3}$

You'll sometimes here that this result depends on small p-p cross-section ⇒ complete nonsense!
In principle, can have a total hard scattering rate/event n^{pA(b)} = T(b)σ^{pp} that is > ~ 1 ⇒ especially in p+Pb @ LHC

•So what assumptions did we make in:

$$E\,rac{d^3n^{pA(b)}}{dp^3}=T(b) imes E\,rac{d^3\sigma^{pp}}{dp^3}$$

-That *\phi***'s**, *D***'s** are the same when colliding with proton and nucleus

-That ϕ 's, D's are the same everywhere along the path (z) of the proton through the nucleus.

⇒Universality

- -That multiple hard scatterings are incoherent
- That the hard scattering occurs over a small transverse distance.
- -That T(b) is constant over transverse size of p 15

•Why is there no knowledge of the finite (transverse) size of the proton in

$$\sigma_{AB} = \sum_{ab} \int dx_a dx_b \,\phi_{a/A}(x_a,\mu^2) \,\phi_{b/B}(x_b,\mu^2) \,\hat{\sigma}_{ab} \left(\frac{Q^2}{x_a x_b s},\frac{Q}{\mu},\alpha_s(\mu)\right) \,\left(1 + \mathcal{O}\left(\frac{1}{Q^P}\right)\right)$$

- Suppose we consider some spatial distribution of partons in proton: η(z, r_T)
 - -longitudinal physics complicated but it's the transverse part of the problem that matters
- Define proton thickness

 $\int_{-\infty}^{\infty} dz \, \eta(\sqrt{r_T^2+z^2})$

 Consider proton-proton collision in transverse plane.

- Consider two partons at transverse positions relative to proton centers of $\vec{r_{T1}}$ and $\vec{r_{T2}}$
- •Separated by a distance $\vec{\Delta r}$

 $\vec{\Delta r} = \vec{b} + \vec{r_{T2}} - \vec{r_{T1}}$

•Write differential cross-section for scattering between the two partons $= d^2\sigma/d\vec{\Delta r}^2$

•Then, $\sigma^{pp}_{hard} = \int d^2b \int d^2r_{T1} \int d^2r_{T2} t(r_{T1})t(r_{T2}) rac{d^2\sigma}{d \Delta \vec{r}_{A2}^2}$

 But, large momentum transfer scattering occurs over small transverse distance

$$\Rightarrow rac{d^2\sigma}{dec{\Delta r}^2} \propto \delta^2(ec{\Delta r})$$

Then,

 $- \sigma^{pp}_{hard}
ightarrow \int d^2 r_{T1} \int d^2 r_{T2} \, t(r_{T1}) t(r_{T2})
ightarrow n_1 imes n_2$

- Of course neglects all QM, kinematics, etc
 ⇒But gets the essence of the transverse physics right.
- So, what happens in p+A collisions? – In principle, replace: $\eta(z, \vec{r_{T2}}) \rightarrow \eta_A(z, \vec{r_{T2}})$ $t(\vec{r_{T2}}) \rightarrow t_A(\vec{r_{T2}})$

 But, write in terms of convolution of nucleon parton density and nuclear density function:

 $egin{aligned} &\eta_A(z,ec{r_T}) = \int dz_A \int d^2 r_{TA} \;
ho(z_A,ec{r_T}_A) \; \eta(z-z_A,r_T-r_{TA}) \ &t_A(z,ec{r_T}) = \int d^2 r_T' \; T(ec{r_T}-ec{r_T}') \; t(ec{r_T}') \end{aligned}$

 Now write the p+A hard scattering probability at an impact parameter b

 $P_{hard}(b) = \int d^2 r_{T1} \int d^2 r_{T2} \int d^2 r_{TA} t(\vec{r_{T1}}) T(\vec{r_{TA}}) t(\vec{r_{T2}} - \vec{r_{TA}}) rac{d^2 \sigma}{d ee d ee r_{TA}}$

• If everything works as above this should reduce to $\sigma_{pp}^{hard} T(b)$

Put in the delta function

 $P_{hard}(b) = \int d^2 r_{T1} \int d^2 r_{T2} \int d^2 r_{T'} t(\vec{r_{T1}}) T(\vec{r_{T2}} - \vec{r_{T'}}) t(\vec{r_{T'}}) \frac{d^2 \sigma}{d\vec{\Delta r^2}}$

 $P_{hard}(b) = \int d^2 r_{T1} \int d^2 r_{T'} T(\vec{r_{T1}} - \vec{r_{T'}} - \vec{b}) t(\vec{r_{T1}}) t(\vec{r_{T'}})$

-No simple reduction.

- •But, the ranges of $\vec{r_{T1}}$ and $\vec{r_T}'$ over which $t(\vec{r_{T1}})$ and $t(\vec{r_T}')$ are finite are small (< 1 fm).
 - -we are sampling nuclear thickness over a small region around \vec{b}

If T is ≈ constant over that region:

 $= P_{hard}(b) \approx T(b) \int d^2r_{T1} \int d^2r_{T'} t(\vec{r_{T1}}) t(\vec{r_{T'}}) \rightarrow T(b)\sigma_{hard}$

Go back to Cronin

So hard scattering rates in p+A varying as A¹ make sense.
What about < 1?
What about > 1?
Why particle species dependent?

Why α < 1 @ low p_T ?

Cronin *et al,* Phys. Rev. D 29, 2476–2482 (1984)

FIG. 4. The ratio $R = \langle n \rangle_{pA} / \langle n \rangle_{pp}$ versus the average number $\overline{v}(n_p)$ of projectile collisions for pXe (circles), pAr (triangles), and pNe (squares) collisions. A line of the form $R = 0.5[\overline{v}(n_p) + 1]$ is shown for comparison.

• Soft particle production does not grow proportional to number of soft N-N scatterings, $\nu = \sigma_{inel} T(b)$ \Rightarrow Instead varies like number of wounded nucleons (participants), $N_w = \frac{1}{2} (1 + \nu)$

Why α < 1 @ low p_T ?

- If we integrate over impact parameter the contribution from the "1" is proportional to the total p+A inelastic cross-section $\Rightarrow A^{2/3}$
- •While the contribution proportional to v varies like A^1
 - ⇒So the soft production varies with A at a power between 2/3 and 1.
- Strictly, pure wounded-nucleon scaling only applies for total multiplicities
 - Depending on kinematic region covered soft A dependence can be closer to 2/3 or 1.
 - \Rightarrow Beware, $\alpha \neq R_{pPb}$

Why α > 1 @ high p_T ?

$$\sigma_{AB} = \sum_{ab} \int dx_a dx_b \,\phi_{a/A}(x_a,\mu^2) \,\phi_{b/B}(x_b,\mu^2) \,\hat{\sigma}_{ab} \left(\frac{Q^2}{x_a x_b s},\frac{Q}{\mu},\alpha_s(\mu)\right) \left(1 + \mathcal{O}\left(\frac{1}{Q^P}\right)\right)$$

• The α > 1 results from higher twist terms \Rightarrow involve additional soft (<< Q²) exchanges between ingoing/outgoing parton of hard scattering and other partons from target In case of Cronin effect: -Usual explanation is soft multiple scatterings of ingoing and outgoing partons \Rightarrow broadens the p_T distribution -fragmentation no longer universal! ⇒hadron species dependence ⇒Poorly understood

Quarks fragmenting in nuclei

Study the fragmentation of quarks (?) in nucleus using semi-inclusive deep inelastic scattering

"Stopping" quarks in nuclei

 z = fraction of quark energy (v) carried by hadron

 Ratio of yields relative to those on deuterium

⇒A and flavor dependent reduction in yield of high-z hadrons

"Stopping" quarks in nuclei

Weak Q²
 dependence

 "Stopping" decreases with increasing quark energy.

"Stopping" quarks in nuclei

 E665 (v > 100 GeV) and EMC see little/no stopping of quarks in nucleus

"Cold nucleus" energy loss

- Existing data suggest that cold nucleus energy loss is small for quark energies greater than ~ 100 GeV.
 - -Better data needed \rightarrow EIC.
- Consider effects in d/p+A at RHIC, LHC.
 - -mid-rapidity jets with transverse mass

 $m_T=\sqrt{p_T^2+m^2}$

- -Have energies in the nuclear rest frame given by $E=m_T\cosh\Delta y$
- -With Δy the rapidity difference between the jet and the nucleus.

• For RHIC @ mid-rapidity, $E = m_T imes 106$

- ⇒ weak cold nucleus energy loss
- \Rightarrow even less @ LHC except maybe at large y. ²⁹

E609, Corcoran et al, PLB 259 (1991) 209

• Broadening of the dijet $\Delta \varphi$ distribution

E609, Corcoran et al, PLB 259 (1991) 209

 Similar results with calorimetric energy flow instead of jets.

E557, Stewart et al, Phys. Rev. D 42, 1385–1395 (1990)

800 GeV (fixed target) p+p, Be, C, Cu, and Pb

Single jets

E557, Stewart et al, Phys. Rev. D 42, 1385–1395 (1990)

800 GeV (fixed target) p+p, Be, C, Cu, and Pb

dijets (Ejj is scalar sum of dijet E_T's)

FIG. 8. (a) Dependence of $d^3\sigma/dE_i^{\mu}d\eta_1^{\bullet}d\eta_2^{\bullet}$ on dijet E_i^{μ} for pA interactions at 800 GeV/c, where E_i^{μ} is the scalar sum of transverse energy of the two jets. (b) α vs E_i^{μ} . (c) and (d) Same as (a) and (b) after correction for the underlying event (see text) was applied to the heavier nuclei data.

Jets in fixed-target p+A

- Data suggest that in p+heavy nucleus collisions, for jets with p_T ~ 4-6 GeV
 - "nuclear enhancements" are observed in the single jet, dijet rates
 - -and dijet acoplanarity.
- But, E557 data show that at higher jet p_T, at most weak modifications

once underlying event is subtracted

 "nuclear effects" are dying away more rapidly with jet energy in p+A than in e+A?
 ⇒due to larger Q² in p+A vs DIS?

Summary

- Studies of hard scattering processes in proton-nucleus and lepton-nucleus collisions show non-trivial A dependence
 Separate from nuclear PDF modifications
- Those effects are consistent with initial and/or final-state transverse momentum broadening
 - -Cronin effect, Dijet broadening
- And cold nuclear energy loss
 - -semi-inclusive deep inelastic scattering
- Confined to p_T scales <~ 10 GeV
 ⇒Though relevant scales for broadening & energy loss may be different

Geometry, again

Go back to:

 $\int - E \, rac{d^3 n^{pA(b)}}{dp^3} = T(b) imes E \, rac{d^3 \sigma^{pp}}{dp^3}$

 Most fundamental expression of the impact of the nuclear geometry on hard scattering
 ⇒assuming factorization

Often, the right-hand side is reinterpreted

$$- E \, {d^3 n^{pA(b)} \over dp^3} = T(b) imes \sigma^{pp}_{inel} imes E {d^3 n^{pp} \over dp^3}$$

•Then, N_{coll} is defined $N_{coll} = T(b) \sigma_{inel}^{pp}$ -Yielding, $E \frac{d^3 n^{pA(b)}}{dp^3} = N_{coll} \times E \frac{d^3 n^{pp}}{dp^3}$

Geometry, again

•Which might motivate a definition of R_{pA} - $R_{pA} \equiv rac{d^3 n^{pA(b)}/dp^3}{N_{coll} \ d^3 n^{pp}/dp^3}$

This is an abomination!
Measuring E d³n^{pp}/dp³ is difficult due to ⇒diffraction (in inelastic cross-section)
⇒inefficiencies in triggering on or reconstructing low-multiplicity events.
But, if we use T(b) and p-p cross-section for hard process, R_{pA} is robust

$$^-R_{pA}\equiv rac{d^3n^{pA(b)}/dp^3}{T(b)~d^3\sigma^{pp}/dp^3}$$

RHIC: a new regime

7-200 GeV/A Au+Au, d+Au, Cu+Cu 32-500 GeV p+p, ...

STAR

The early days of jet quenching

PHENIX, Phys. Rev. Lett. 91, 241803 (2003)

A-A Hard Scattering Rates

 For "partonic" scattering or production processes, rates are determined by T_{AB}

$$T_{AB}(b) = \int dec{r} \ T_A(ec{r}ec{}) \ T_B(ec{b}-ec{r}ec{})$$

- -t-integrated A-A parton luminosity
- Normalized relative to p-p
- If factorization holds, then

$$\frac{dn_{hard}^{AB}}{dp_{\perp}^{2}} = \frac{d\sigma_{hard}^{NN}}{dp_{\perp}^{2}}T_{AB}(b)$$

- Define R_{AA}
 - Degree to which factorization is violated

 $T(r_t) = \int dz \, \rho_A^{nucleon}(z, r_t)$

PHENIX: "jet" quenching @ 130, 200 GeV

Limited reach in pT compared to what we are used to in the LHC era.

 Qualitative features of single hadron suppression already established in 2003.
 ⇒In particular, apparent weak p_T variation

41

Single/di-hadron suppression w/ control

PHENIX Au+Au π⁰ Spectra

 Control over systematic errors w/ two measurements using different electromagnetic calorimeter

PHENIX Au+Au π⁰ R_{AA}

• Factor of ~ 5 violation of factorization in central Au+Au

 Smooth evolution of high-p_T π⁰ suppression with centrality.

 ≈ constant for p_T > 4 GeV/c (more on this later).

STAR charged hadron suppression

STAR, PRL 91 (2003) 172302

45

Single hadrons, photon

 "State of the art" in single hadron suppression measurements @ RHIC.

Single hadron and quenching "theory"

 suggests qhat values >> larger than ones we currently think are appropriate (~ 1 GeV²/fm)

Jet tomography

• How to probe geometry?

- Use spatial asymmetry of medium @ non-zero impact parameter
- Measure orientation
 (ψ) event-by event
- Measure R_{AA} vs $\Delta \phi = \phi - \psi$

Jet tomography

0.5

PH ENIX

1.5

0.5

- How to disentangle two contributions?
 - Use spatial asymmetry of medium @ non-zero impact parameter
 - Measure orientation
 (ψ) event-by event
- Measure R_{AA} vs $\Delta \phi = \phi - \psi$
- Characterize by amplitude of Δφ modulation:

0.5

 $\Delta \phi$ (rad)

1.5 0

0.5

1.5

Single hadron suppression

Wicks et al., NPA784, 426
Marquet, Renk, PLB685, 270
Drees, Feng, Jia, PRC71, 034909
Jia, Wei, arXiv: 1005.0645

Calculations:

Two calculations: weak, strong coupling

- N_{part} dependence same for both
- But v_2 (modulation vs $\Delta \phi$) prefers strong coupling

Single hadron suppression

Two calculations: weak, strong coupling

- N_{part} dependence same for both
- But v_2 (modulation vs $\Delta \phi$) prefers strong coupling

STAR Experiment: "Jet" Observations

proton-proton jet event

Analyze by measuring (azimuthal) angle between pairs of particles

In Au-Au collisions we see one "jet" at a time
 Strong jet quenching
 Enhanced by surface bias

Two-particle correlations

Indirect dijet measurement via dihadron correlations

STAR, Phys. Rev. C82 (2010) 024912

 Through very detailed measurements from STAR and PHENIX we've learned that most of this has little to do with high-p_T physics, though it is very interesting 53

Heavy quark suppression

 Measure heavy quark production via semi-leptonic decays (B+D) to electrons
 See suppression comparable to light mesons
 Unexpected due to mass suppression of radiative contributions, especially for b quark.

RHIC – Where We Stand (from 2009)

Significant theoretical uncertainties

- Role of collisional energy loss.
- Differences in approximations.
- Choice of strong coupling constant.
- Description of medium
- Incorporating position, time dependence of medium.
- Fluctuations in # emitted gluons.
- Energy loss biases.

 Currently single hadron data do not sufficiently discriminate, test theoretical differences.

- Use more "differential" measurements.
- Use multi-hadron measurements.

Better: use full jet measurements

Where are we?

 Studies of "jet" modification in nuclei show clear, but modest effects in e+A/p+A collisions.

-Clearly decrease with increasing jet energy

Geometry plays an critical role in hard scattering in nuclei

– and influencing initial/final-state interactions

 Start of RHIC program opened a new frontier where much larger effects are observed due to (s)QGP.

 But single, two-particle, heavy quark measurements have not provided unique understanding of quenching physics ⇒ jets.