RHIC: a new regime
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Hard Scattering in p-p Collisions

From Collins, Soper, Sterman
Phys. Lett. B438:184-192, 1998
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*Factorization: separation of o into
—Short-distance physics: &
—Long-distance physics: @’s (universal) 2



t Hadron Production
Phys. Rev. Lett. 91, 241803 (200:
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Hard Photon Production in pQCD

@ LO in pQCD, photon production is simple.

e Two contributions:
— “partonic” photons: direct from hard scattering
- “Fragmentation” photons — from fragmentation of jet(s)

e But, @ NLO things are much more complicated

— Distinction between partonic & fragmentation
contributions becomes ambiguous.

— In principle, “isolation” cuts possible — but matching
those cuts with pQCD is difficult (infrared sensitivity). 4



_PHENIX Prompt y: Comparison to pQCD
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* No K factors, no fudge factors, absolute comparison

e Completely independent calculation.
— Good control over pQCD prompt photon calculation @ RHIC.



p-p Prompt Photon — Comparison w/ QCD

Aurenche et al., PRD73, 094007(2007)
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*PHENIX prompt photon spectra consistent
w/ other collider data (vs x;) and QCD




Jet Quenching: RHIC perspective

e Key question:

— How quarks
(and gluons)
lose energy in
the quark gluon
plasma?
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The early days of jet quenching
PHENIX, Phys. Rev. Lett. 91, 241803 (2003)
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Geometry, again

*For “partonic” scatteringor 7, _ [ P4 " (2,1,

production processes, rates
are determined by T,g

Tan(b) = f di* Ta (7)) T (b — 7)

— t-integrated A-A parton luminosity
— Normalized relative to p-p

e |f factorization holds, then
AB NN
d]’l hazrd — dohczlrd TAB (b)
dpJ_ dpJ_
e Define R AB NN
d . dn hard dgham’

— Degree to which RAA N dn> dn>
factorization is violated P P,

T5(D)
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PHENIX: “jet” quenching @ 130, 200 GeV

| AutAu Syn= 130 GeV ‘ C ® Central =% (0-10%)
[ central 0-10% , ' ' O Peripheral =° (80-92%)

eLimited reach in pT compared to what we
are used to in the LHC era.

—Qualitative features of single hadron
suppression already established in 2003.

=|n particular, apparent weak pr variation 10




Single/di-hadron suppression w/ control
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PHENIX Au+Au nt° Spectra
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PHENIX Au+Au n° R
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STAR charged hadron suppression

STAR, PRL 91 , |
(2003) 172302 Co- F10-20%
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Prompt Photon Production

* Prompt photons provide an independent control
measurement for jet quenching.

—Produced in hard scattering processes
—But, no final-state effects (naively)




Au+Au photon vs hadron R, ,

| PHENIX Au+Au (central collisions):
l o Direct y
7 Preliminary

o n
GLV parton energy loss (dN°/dy = 1100)

Prompt photons in Au+Au consistent with
TAB scaling of p+p (factorization)

=|mportant test of understanding of

hard processes in A+A. ”
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Photons Raa RHIC: more recent
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*With improved
systematics,
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Jet tomography

How to probe
geometry?

—Use spatial asymmetry
of medium @ non-zere
impact parameter

—Measure orientation
(V) event-by event
eMeasure Raa
vs Ap = -y
Characterize by
amplitude of A

0 0.5 1 15 0

modulation: PHYENIX

% = C'[1 + 2vz cos (2A¢)] 20



Single hadron suppression

WHDG A CcT:Asw ! N\ CT: AdS/CFT

A= dtp, o F IR: 1~ |dlip,, ] Calculations:

lacts 4 F 4 1 [
' ' ' » Wicks et al.,
NPA784, 426

» Marquet, Renk,
PLB685, 270

» Drees, Feng,
Jia, PRC71,
034909

»Jia, Wei, arXiv:
1005.0645

Two calculations: weak, strong coupling
—Npart dependence same for both
—But v2 (modulation vs Ap) prefers strong




Fast forward ... hadron v @ LHC

@ ATLASH Pb+PL\[5,=2.76 TeV 40-50%
0 .
[ ALICE n' Po+Pb \5,.=2.75 TeV 40-50% n WHDG LHC Extrapolation
T STARNK AusAu\s, <200 G 60% . e h_ ATLAS (Preliminary)
L PHENIX = Au+Au\[s,, =200 GeV 40507

p, (GeVic)

 Charged hadron v2(pt) from ATLAS
— Compared to PHENIX n° results (beware)
=Surprising agreement
e Compared to energy loss calculation
— Reasonable agreement for pr > 10 GeV

=Likely contamination of v2(pT) from strong
elliptic flow in underlying event for lower pr 22



PHENIX v2(pT)

uls iaaadia1s

= NN TN

* PHENIX “strong
coupling” result
dominated by yield
at 6 GeV/c.

= Likely from pr region
contaminated by flow




Single hadron Raa, PID

STAR, PRL 108 (2012) 072302

Yield ratio

4 6 8 10 1214 4 6 8 10 12 14 5 8 10 12 14
pT(GeV/c)

eIndications that the yield ratios at high pr
are approaching “vacuum” values
—In contrast to earlier results.

=But, important to evaluate hadron species
composition within jets at low pr 24



STAR Experiment: “det” Observations

proton-proton jet event Analyze by measuring (azimuthal)

angle between pairs of particles
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> In Au-Au collisions we
see one “jet” at a time

» Strong jet quenching
» Enhanced by surface bias




Two-particle correlations

Indirect dijet
measurement via
dihadron correlations

Kesm

STAR,
Phys. Rev. C82

VSRV PR G  (2010) 024912

-101234510123451012345101234;’»
Q

* Through very detailed measurements from STAR and
PHENIX we’ve learned that most of this has little to do
with high-prt physics, though it is very interesting 26
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*Detailed, time consuming (~ 4 man-years)
analysis. No theoretical comparisons.

=Why?




Theoretical problems (e.

dN, 8C pavs pt? L‘/' o q%
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* Gluon emission kernel used in many energy loss

calculations (from collinear approximation)
— But application violates approximation
— Collinear approximation not unique

=Different versions yield very different results
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First step towards jets:

L ] L ' ] 1] T 13 I

E T ~— s . LY PHEN'X,
PH-ENIX M VI Phys. Rev. D82
200 GeV p+p (2010) 072001

5<p. <7 GeVic

7< p‘T"9 <9 GeV/c

9<p,”<12GeVic

12< p‘T"" <15 GeV/c
~— TASSO 14 GeV x 10"

TASSO 44 GeV x 10

el 1
2 3
E=-Inxg

* Measure jet fragmentation using y-jet events
but measuring “jet” via single hadrons
— Compare to measurements from TASSO

=Good agreement
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PHENIX Au+Au 0-20% 5-:p‘ <15 GeVic x 0.5-:p' <7 GeVie
g .

PHENIX p+p 5-.-pT <15 GeViec x 1<p_ <10 GeVic PhysRevD.82.072001
L) - 1)

.
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* Observe suppression in yield of large z (small
¢) fragments in (central) Au+Au collisions

— Red curve shows medium-modified MLLA
calculations by Borghini and Wiedemann.




PHENIX: Heavy Quark Quenching

Measure via semi-
leptonic decays
-Single e* + e-

spectrum

2 methods to

estimate (large)
backgrounds

—Direct estimate of
backgrounds
(cocktail)

—Data taken with extra
converter material

=Directly measure
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Heavy quark suppression

R, : Minimum Bias 8l R,, : 0-10 % Central
Au+Au @\s,, = 200 GeV eb Au+Au @\s,, = 200 GeV

——
PH ENIX

——
PH ENIX

Measure heavy quark production via
semi-leptonic decays (B+D) to electrons

—See suppression comparable to light mesons

=Unexpected due to mass suppression of
radiative contributions, especially for b
quark.

32



Heavy quark suppression

0-10% central

collisional
' “ Hadronic

dissociation

e Heavy quarks provide a valuable test of our
understanding of energy loss

— Large mass changes contribution of collisional
and radiative energy loss

=But RHIC semi-leptonic decay data proved

challenging to describe theoretically.
33



Heavy quark suppression
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 Recent calculations by Aichelin et al are able to
describe RHIC results

—But only by scaling up the collisional interaction
rates by a factor of 1.5-2 34



RHIC — Where We Stand

Unequivocal observation of substantial
quark/gluon energy loss in plasma.

- Significant theoretical uncertainties
=Role of collisional energy loss.
=Differences in approximations.
=Choice of strong coupling constant.

=Description of medium
i L)

*13 years after start of RHIC operation,
we still do not have unique, complete
understanding of energy loss physics.

=Need more complete empirical
understanding of quenched jets.
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