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Detector

The ATLAS detector

ATLAS is one of two general purpose detectors at the LHC
Precise tracking, excellent calorimetry, good muon
identification

Large acceptance in pseudorapidity, full coverage in azimuth
Overall dimensions are =~ 45 x 25 m, 7000 tones

Can be very well used for the study of the HI collisions
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Detector

Calorimetry

@ Sampling electromagnetic and hadronic calorimeters

@ Fine granularity of calorimeters enables precise measurements
of high pr electrons, photons and jets

o Calorimeters cover range |n| < 4.9
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Jet reconstruction

Jets in HI collisions

@ Jet measurement in HI collisions provides important insight on
the properties of the medium created in the collisions (jet
quenching)

@ Example: centrality dependent dijet asymmetry
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Jet reconstruction

Jet reconstruction

@ Reconstruction of jets in HI collisions is challenging by itself

@ Presence of large underlying event background (UE) requires
subtraction procedure

o Large variations of UE energy density due to geometry of the
collisions and physics effects such as elliptic flow implies that
UE subtraction procedure must be on the event-by-event basis
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Jet reconstruction

Jet reconstruction in ATLAS

@ Input into the reconstruction procedure is the measured
Efever distribution

dEP®  dEYE  dES
dnd¢ — dndg — dnd¢
o UE background is estimated and subtracted from the jet

energy in the subtraction procedure at the cell level
(separately for each calorimeter layer)

@ Fake jets are rejected by matching to the track jets or
calorimeter clusters

@ Self energy bias correction is applied

@ Numerical Inversion calibration is used to get the final jet
energy
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Jet reconstruction

UE subtraction

@ The UE background density is estimated at the cell level
(separately for each calorimeter layer)

@ Elliptic flow modulation of the background is taken into
account
@ Jets have to be excluded from the background density
calculation, this is done iteratively in two steps
@ clustering algorithm gives set of jets, real jet candidates
identified by a discrimination factor based on the measure of
the collimation of the jet (seeds)
@ background density p;(n) is calculated from cells excluding
cells from seeds
@ background is subtracted at the cell level and as a function of
the calorimeter sampling
© the whole procedure is repeated but with UE subtracted and
thus more precise seeds
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Jet reconstruction

Numerical Inversion |

@ Energy deposits in the calorimeter are reconstructed at the
electromagnetic (EM) scale

@ The response of the calorimeter to jets (hadronic processes) is
lower and has to be corrected

@ The NI is the procedure that determines the calibration factor

for jet with given 7 and E%}Z[alo, is based on the MC simulation

@ The goal of Nl is to derive Response R = E%}:falo/ET,tmth as a

M

function of E’Ecalo in n bins
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Jet reconstruction

Numerical Inversion |l

@ For each bin in 1ge; and Er ryih response distribution is fitted
by the gaussian function

@ Mean Response (R) is then defined as the mean of the
gaussian fit

® Mean reconstructed energy is then (EXM, Y = (R)Er tyutn

o ((EEM ) (R)) points are fitted for each 7 bin with function

T,calo
parametrised as:

2

max

Fcalib(E'%}};/élo) = Z aj (ln(ETEpl\glo))i (2)
i=0
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Jet reconstruction

Numerical Inversion |l

@ Having the Response the jets are calibrated via relation

EEM
EM+JES _ T (3)
T.calo Fcalib(EqE}‘\z/{ﬂO)
@ In order to improve the JES(7) we developed iterative method
that improves our closure significantly and enables us use finer
n binning
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Performance

Performance

@ Performance of R = 0.2 (left) and R = 0.4 (right) anti-kr jets

o Very small difference of AEr/EYuth between central and
peripheral events

@ Significantly higher JER in central events for R = 0.4 jets
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Performance

Conclusions

@ Sophisticated and carefull UE background subtraction
together with SEB correction and NI performs very well

@ It allows us to do nice and precise measurements like dijet
asymmetry, jet Rcop, fragmenation functions...
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