

Nuclear effects in p-A interactions

Michal Krelina

Czech Technical University in Prague, FNSPE, Prague, Czech Republic

25th Indian-Summer School of Physics, Prague, Czech Republic

Outline

ZECH ECHNICAL NIVERSITY I PRAGUE

- Introduction and motivation
 - Nuclear effects in pA collisions
- Calculation of the hadron production
 - QCD improved parton model
 - Cross section for pp collisions
 - Cross section for pA collisions
 - Nuclear broadening
 - ISI effect
- Numerical Results
 - *pp* collisions
 - pA collisions
- Conclusions

Introduction & motivation

- ZECH ECHNICAL NIVERSITY I PRAGUE
- Nuclear effects: suppression or enhancement of hadron production in pA vs hadron production in pp
- We study nuclear effects through the nuclear modification factor of inclusive hadron production

•
$$R_{pA}(p_T) = \frac{\sigma^{pA \rightarrow h+X}(p_T)}{A \sigma^{pp \rightarrow h+X}(p_T)}$$

1.4
1.2
1.0
 $\Re_{DA}(p_T) = \frac{\sigma^{pA \rightarrow h+X}(p_T)}{A \sigma^{pp \rightarrow h+X}(p_T)}$
Emergination for the second state of the second st

Introduction & motivation

ZECH ECHNICAL NIVERSITY PRAGUE

- We focused on three effects:
 - Cronin effect, $R_{pA}(p_T)$ >1 at medium-high p_T
 - Suppression at small- p_T nuclear shadowing
 - Suppression at large- p_{T} and forward rapidity, indicated by the PHENIX, STAR and BRAHMS

M. Krelina, 25th Indian-Summer School of Physics

S.S. Adler, et al. (PHENIX Collaboration), Phys.Rev. Lett. 98, 172302 (2007).
I. Arsene, et al. (BRAHMS Collaboration), Phys.Rev. Lett. 93, 242303 (2004);
J. Adams, et al. (STAR Collaboration), Phys. Rev. Lett. 97, 152302 (2006).

4

QCD improved parton model

 Factorization theorem: separate perturbative and nonperturbative QCD

$$d\sigma^{pp \to h+X} = \sum_{abcd} f_{a/p}(x_a, Q^2) \otimes f_{b/p}(x_b, Q^2) \otimes \hat{\sigma}^{ab \to cd} \otimes D_{h/c}(z_c, \mu_F^2)$$

Cross section for *pp* collisions

• We use the QCD improved parton model + initial transverse momentum (k_T -smearing)

$$E \frac{d^{3}\sigma^{pp \to h+X}}{d^{3}p} = K \sum_{abcd} \int d^{2}k_{Ta} d^{2}k_{Tb} \frac{dx_{a}}{x_{Ra}} \frac{dx_{b}}{x_{Rb}} dz_{c} g_{p}(k_{Ta}, Q^{2}) g_{p}(k_{Tb}, Q^{2})$$
$$\times f_{a/p}(x_{a}, Q^{2}) f_{b/p}(x_{b}, Q^{2}) D_{h/c}(z_{c}, \mu_{F}^{2}) \frac{\hat{s}}{z_{c}^{2}\pi} \frac{d\hat{\sigma}^{ab \to cd}}{d\hat{t}} \delta(\hat{s} + \hat{t} + \hat{u}),$$

where

 $f_{i/p}(x_i, Q^2)$ are parton distribution functions (PDF), $D_{h/c}(z_c, \mu_F^2)$ is fragmentation function (FF), $g_p(k_{Ta}, Q^2)$ are distributions of initial transverse momentum $d\hat{\sigma}^{ab \to cd}/d\hat{t}$ is partonic cross section $x_{Ri}^2 = x_i^2 + 4k_{Ti}^2/s$ is radial variable R. P. Feynman, R. D. Field and G. C. Fox, Phys. Rev. D18, 3320 (1978)

Cross section for pp collisions

 Distribution of initial transverse momentum is described by the Gaussian distribution

•
$$g_N(k_T, Q^2) = \frac{e^{-k_T^2/\langle k_T^2 \rangle_N}}{\pi \langle k_T^2 \rangle_N}$$

with non-perturbative parameter

•
$$\langle k_T^2 \rangle_p = \langle k_T^2 \rangle_0 + 0.2 \, \alpha_S(Q^2) \, Q^2$$

X.-N. Wang, Phys. Rev.C **61** (2000) 064910

- where $\langle k_T^2 \rangle_0 = 0.2$ GeV² for quarks and $\langle k_T^2 \rangle_0 = 2.0$ GeV² for gluons
- In all calculations we took the scale $Q^2 = \mu_F^2 = p_T^2/z_c^2$
- The PDF and FF were taken from MSTW2008 and DSS, respectively

Results: pp cross section

M. Krelina, 25th Indian-Summer School of Physics

CZECH TECHNICAL UNIVERSITY IN PRAGUE

Cross section for *pA* collisions

pA cross section is modification of pp cross section

$$E \frac{d^{3}\sigma^{pA \to h+X}}{d^{3}p} = K \sum_{abcd} \int d^{2}b T_{A}(b) \int d^{2}k_{Ta} d^{2}k_{Tb} \frac{dx_{a}}{x_{Ra}} \frac{dx_{b}}{x_{Rb}} dz_{c} g_{A}(k_{Ta}, Q^{2}, b) g_{p}(k_{Tb}, Q^{2})$$
$$\times f_{a/p}(x_{a}, Q^{2}) f_{b/A}(x_{b}, Q^{2}, b) D_{h/c}(z_{c}, \mu_{F}^{2}) \frac{\hat{s}}{z_{c}^{2}\pi} \frac{d\hat{\sigma}^{ab \to cd}}{d\hat{t}} \delta(\hat{s} + \hat{t} + \hat{u}),$$

where

 $T_A(b)$ is nuclear thickness function $f_{b/A}(x, Q^2)$ is nuclear parton distribution function (NPDF) $f_{b/A}(x, Q^2) = R_{b/A}(x, Q^2) \left[\frac{z}{A} f_{b/p}(x, Q^2) + \left(1 - \frac{z}{A}\right) f_{b/n}(x, Q^2) \right]$ where for $R_{b/A}(x, Q^2)$ we use EPS09 and nDS nuclear modification factor including the nuclear shadowing

Cross section for *pA* collisions

- Nuclear broadening represents propagation of the highenergy parton through a nuclear medium that experiences multiple soft scatterings
- Nuclear initial transverse momenta distribution

•
$$g_A(k_T, Q^2, b) = \frac{e^{-k_T^2/\langle k_T^2(b) \rangle_A}}{\pi \langle k_T^2 \rangle}$$

where

•
$$\langle k_T^2(b) \rangle_A = \langle k_T^2 \rangle_N + \Delta k_T^2(b)$$

and

•
$$\Delta k_T^2(b) = 2CT_A(b)$$

M. B. Johnson, B. Z. Kopeliovich and A. V. Tarasov, Phys. Rev. C63, 035203 (2001).

The variable C is defined as

•
$$C = \frac{d\sigma_{q\bar{q}}^{N}}{dr^{2}}\Big|_{r^{2}=0}$$

10

Color dipole cross sections

- We use three parameterizations
- for low c.m. energy:
 - Kopeliovich-Schäfer-Tarasov (KST)
 - B. Z. Kopeliovich, A. Schäfer and A. V. Tarasov,, Phys. Rev. D62 (2000) 054022.
- for high c.m. energy:
 - Golec-Biernat Wüsthoff (GBW)
 - K. Golec-Biernat and M. Wüsthoff, Phys. Rev. D59, 014017 (1998).
 - Impact-Parameter dependent Saturation Model (IP-Sat)
 - A. H. Rezaeian, at al., Phys. Rev. D87, 034002 (2013).

Initial State Interactions (ISI)

ZECH ECHNICAL NIVERSITY I PRA<u>GUE</u>

• Initial State Interactions for $\xi \to 1$, where $\xi =$

 $\sqrt{x_F^2 + x_T^2}$, with $x_F = 2p_L/\sqrt{s}$ and $x_T = 2p_T/\sqrt{s}$, can be treated as a large rapidity gap (LRG) process where no particle is produced within rapidity interval $\Delta y = -\ln(1 - \xi)$

- The suppression factor as a survival probability for LRG was evaluated as $S(\xi) \approx 1 \xi$
- Modification of the PDF $f_{a/p}^{(A)}(x,Q^2,b) = C_v f_{a/p}(x,Q^2) \frac{e^{-\xi \sigma_{eff} T_A(b)} - e^{-\sigma_{eff} T_A(b)}}{(1-\xi)(1-e^{-\sigma_{eff} T_A(b)})},$

where

• $\sigma_{eff} = 20 \text{ mb}$, C_v is fixed by the Gottfried sum rule

B.Z. Kopeliovich, J. Nemchik, I.K. Potashnikova, M.B. Johnson and I. Schmidt, Phys.Rev.C 72 (2005) 054606

Results: FNAL

M. Krelina, 25th Indian-Summer School of Physics

Results: RHIC

CZECH TECHNICAL UNIVERSITY IN PRAGUE

Results: LHC

Conclusions

- Hadron production cross sections were calculated within the QCD improved parton model with k_T -smearing
- We included nuclear broadening evaluated within the color dipole formalism and corrections for energy conservation
- At the FNAL energy
 - Reasonable agreement with data, no effects of shadowing
- At the RHIC energy
 - The magnitude and shape of the Cronin effect is described in accordance with data
 - ISI effects cause a strong suppression at large- p_{T} and lead so to violation of the QCD factorization
- At the LHC energy
 - The effect of shadowing ~10-30% dominates at small and medium p_T
 - $R_{pA}(p_T) \rightarrow 1$ at y = 0 in accordance with QCD factorization
 - We predict a strong suppression at forward rapidities and large- p_T that can be verified by the measurements at LHC

CZECH TECHNICAL UNIVERSITY IN PRAGUE

Thanks for your attention.

M. Krelina, 25th Indian-Summer School of Physics