Results on jets in p-p and Pb-Pb data with ALICE

Vít Kučera^{1,2,3}

¹Nuclear Physics Institute, The Academy of Sciences of the Czech Republic

> ²Faculty of Mathematics and Physics, Charles University in Prague

³Institut Pluridisciplinaire Hubert Curien, Université de Strasbourg

25th Indian-Summer School "Understanding Hot & Dense QCD Matter"

Outline

- Motivation
- Measurement of jets with the ALICE detector
- Results in p-p collisions @ $\sqrt{s} = 7 \text{ TeV}$
- Results in p-p collisions @ $\sqrt{s} = 2.76 \text{ TeV}$
- Results in Pb-Pb collisions @ $\sqrt{s_{\rm NN}} = 2.76 \, {\rm TeV}$
- Summary and outlook

Motivation

- heavy-ion collisions
 - probing phase diagram of hadronic matter
 - Quark-Gluon Plasma (QGP)
- jets
 - origin in hard scattering at early stage of collision
 - ▶ in p-p: test of pQCD, models, MC generators, reference for jets in Pb-Pb
 - ▶ in Pb-Pb: suffer modifications by interactions with medium (energy, shape,...)
 - \rightarrow "jet quenching"

Motivation

Medium-induced suppression of hadron production in heavy-ion collisions

expressed by the spectrum in A-A collisions scaled to one binary nucleon collision, compared to the spectrum in p-p collisions

$$R_{
m AA} = rac{1}{N_{
m coll}} rac{{
m d}^2 N^{
m AA}/{
m d} p_{
m T} {
m d} \eta}{{
m d}^2 N^{
m pp}/{
m d} p_{
m T} {
m d} \eta}$$

- $R_{\rm AA} < 1$ in large range of $p_{\rm T}$
- $R_{AA}^{LHC} < R_{AA}^{RHIC}$
- excludes some models

CMS-PAS-HIN-10-005

Measurement of jets with the ALICE detector

- Inner Tracking System (ITS): silicon pixels, drift and strips, $|\eta| <$ 0.9
- Time Projection Chamber (TPC): gas detector, $|\eta| < 0.9$
- Electromagnetic sampling calorimeter (EMCal): Pb + scintillator, $|\eta| <$ 0.7, $1.4 < \phi < \pi$

Jet reconstruction & background treatment

- Jet reconstruction
 - ▶ momenta of charged tracks from ITS & TPC, $p_T > 150 \text{ MeV}/c$
 - ► clusters from EMCal, *E*_T ≥ 300 MeV, correction for charged-particle contamination
 - ▶ signal jets found with anti-k_t algorithm, (R = 0.2, 0.3, ...)
 - charged/full-jet reconstruction
- Correction for *p*_T from background in Pb-Pb
 - $\mathbf{p}_{\mathsf{T},\mathsf{jet}} = \mathbf{p}_{\mathsf{T},\mathsf{jet}}^{\mathsf{rec}} \rho \mathbf{A}_{\mathsf{jet}} \pm \sigma_{\rho} \sqrt{\mathbf{A}_{\mathsf{jet}}}$
 - average density ρ from k_t jets, determined and subtracted event-by-event
 - correction for non-uniformity (σ_ρ)
 via unfolding (δp_T)

M. Cacciari, G. P. Salam and G. Soyez, Eur. Phys. J. C 72 (2012) 1896

ALICE, JHEP 1203 (2012) 053

Fully corrected inclusive charged-jet cross section in p-p collisions @ $\sqrt{s} = 7$ TeV

important reference for other jet measurements and for comparison with other experiments and calculations

Vít Kučera (NPI ASCR, MFF UK, IPHC)

Fragmentation function of charged particles in charged jets in p-p collisions @ $\sqrt{s} = 7$ TeV

$$R=0.4\ \xi=\ln(p_{
m T}^{
m jet}/p_{
m T}^{
m track})$$

MC/data

20 GeV/c < p_T^{jet} < 30 GeV/c

"hump-backed plateau", ξ of maximum increases with $p_{\rm T}^{\rm jet}$, good agreement with Pythia in large range of $p_{\rm T}^{\rm jet}$

 $\xi = \log(p^{pet}/p^{trac})$

40 GeV/ $c < p_{\mathrm{T}}^{\mathrm{jet}} <$ 60 GeV/c

Radial distribution of $p_{\rm T}$ in charged jets in p-p collisions @ $\sqrt{s} = 7$ TeV

$$R = 0.6$$

 $20 \ {
m GeV}/c < p_{
m T}^{
m jet} < 30 \ {
m GeV}/c$

60 GeV
$$/c < p_{
m T}^{
m jet} <$$
 80 GeV $/c$

 $p_{\rm T}$ density is largest near the jet axis, jets are more collimated at larger $p_{\rm T}^{\rm jet}$

Full-jet cross section in p-p collisions @ $\sqrt{s} = 2.76$ TeV

hadronisation needed for good agreement of pQCD calculations with data

Inclusive charged-jet spectra in Pb-Pb collisions $Q_{\sqrt{s_{NN}}} = 2.76 \text{ TeV}$

Inclusive charged-jet R_{CP} in Pb-Pb collisions @ $\sqrt{s_{NN}} = 2.76$ TeV

strong suppression of jets in central collisions relative to more peripheral collisions

Full-jet spectra and R_{AA} in Pb-Pb collisions @ $\sqrt{s_{NN}} = 2.76 \text{ TeV}$

Leading-charged-track $p_{\rm T}$ bias reduces contribution of fake combinatorial jets. R= 0.2, 0–10 %

Jets in Pb-Pb collisions vs p-p @ $\sqrt{s_{NN}} = 2.76 \text{ TeV}$

Ratio of cross sections for different radii provides information about transverse structure of jets.

full jets in p-p, 0.2/0.4

good agreement with the "NLO + hadronisation" calculation

consistent with vacuum jets within errors

Summary and outlook

- Results of measurements of properties of charged and full jets in Pb-Pb and p-p collisions with the ALICE detector enable to acquire a more detailed insight into properties of hot and dense strongly interacting matter.
- Other analyses are in progress
 - spectra of recoil jets
 - jets in p-Pb collisions
 - identified particles in jets
 - ▶ ...
- Combination of particle-identification performance of ALICE with the jet measurement may bring unique results that will improve our understanding of QCD.

Thank you for your attention.