

The impact of the slow solutions in the winds of massive stars

Michel Curé Departamento de Física y Astronomía, Universidad de Valparaiso, Chile

Collaborators:

Lydia Cidale, Anahi Granada **et al**. Univ. Nac. de La Plata, Argentina Diego Rial, Univ. de Buenos Aires, Argentina Alfredo Santíllan, UNAM, Mexico Ignacio Araya, Universidad de Valparaíso

Astronomical Institute Ondrejov, 2-3-2011

Late '60: first UV spectral observations

ROCKET OBSERVATIONS OF MASS LOSS FROM HOT STARS*

DONALD C. MORTON

Princeton University Observatory, Princeton, N.J., U.S.A.

Abstract. Rocket observations have shown that the far-ultraviolet resonance lines have P-Cygni profiles in the spectra of many hot stars, including of and Wolf-Rayet stars and OB supergiants. Velocity shifts as high as $-3000 \text{ km sec}^{-1}$ have been measured for the short-wavelength edges of some of the lines. Estimates of the rates of mass loss range from 10^{-8} to $10^{-6} M_{\odot}$ year⁻¹.

Astronomical Institute Ondrejov, 2-3-2011

Fig. 1. Densitometer tracing, on an intensity scale, of the far-ultraviolet spectrum of ζ Orionis, photographed by Princeton on September 10, 1966. The distribution of intensity with wavelength includes the unknown response of the spectrograph. Wavelengths increase towards the right from 1140 to 1630 Å. The HI line is interstellar, but all the other identified absorption features are circumstellar with large Doppler shifts to shorter wavelengths.

Astronomical Institute Ondrejov, 2-3-2011

Fig. 1. Densitometer tracing, on an intensity scale, of the far-ultraviolet spectrum of ζ Orionis, photographed by Princeton on September 10, 1966. The distribution of intensity with wavelength includes the unknown response of the spectrograph. Wavelengths increase towards the right from 1140 to 1630 Å. The HI line is interstellar, but all the other identified absorption features are circumstellar with large Doppler shifts to shorter wavelengths.

Astronomical Institute Ondrejov, 2-3-2011

Theory

Only known Theory:

Parker's Model for the Solar Wind (Parker, E.N.: 1960, ApJ 132, 821)

For O stars \Rightarrow Teff $= 10^7$ K

But at this Temperature C IV - N V - Si IV Don't Exist

Destroyed by collisional ionization

Astronomical Institute Ondrejov, 2-3-2011

Radiation Driven Winds

Lucy & Solomon (1970, ApJ, 159, 870): Wind driven by resonance lines Obtained only mass loss rates of about 1/100th of the observed values

Castor, Abbott & Klein (1975, ApJ, 195, 157) Wind driven by an ensemble of lines (scattering) They obtained a qualitative agreement with the observational values

Astronomical Institute Ondrejov, 2-3-2011

Radiation Driven Winds

Lucy & Solomon (1970, ApJ, 159, 870): Wind driven by resonance lines Obtained only mass loss rates of about 1/100th of the observed values

Castor, Abbott & Klein (1975, ApJ, 195, 157) Wind driven by an ensemble of lines (scattering) They obtained a qualitative agreement with the observational values

The Standard Model (m-CAK)

Astronomical Institute Ondrejov, 2-3-2011

Michel Curé Universidad de Valparaíso

1D - Hydrodynamics

Assumptions: Stationary - Low viscosity - Spherical symmetry - No Mag. Fields.

From Mass and Momentum Conservation laws:

Astronomical Institute Ondrejov, 2-3-2011

1D - Hydrodynamics

Assumptions: Stationary - Low viscosity - Spherical symmetry - No Mag. Fields.

From Mass and Momentum Conservation laws:

$$4\pi r^2 \rho v = \dot{M},$$

$$v\frac{dv}{dr} = -\frac{1}{\rho}\frac{dp}{dr} - \frac{GM(1-\Gamma)}{r^2} + g^{\text{line}}\left(\rho, \frac{dv}{dr}, n_E\right)$$

Astronomical Institute Ondrejov, 2-3-2011

Michel Curé Universidad de Valparaíso

Contribution by **one** line i at frequency v_i

Astronomical Institute Ondrejov, 2-3-2011

Michel Curé Universidad de Valparaíso

Contribution by **one** line i at frequency v_i

Michel Curé Universidad de Valparaíso

Contribution by **one** line i at frequency v_i

 $dm = 4\pi r^2 \rho dr$

Michel Curé Universidad de Valparaíso

Contribution by **one** line i at frequency v_i

$$\frac{L}{c} \frac{L_{\nu_i} (1 - e^{-\tau_i}) d\nu^{\text{WIDTH}}}{L} = \frac{L}{c^2} \frac{\nu_i L_{\nu_i}}{L} (1 - e^{-\tau_i}) dv.$$

Astronomical Institute Ondrejov, 2-3-2011

Michel Curé Universidad de Valparaíso

Contribution by **one** line i at frequency v_i

$$\frac{L}{c} \frac{L_{\nu_i} (1 - e^{-\tau_i}) d\nu^{\text{WIDTH}}}{L} = \frac{L}{c^2} \frac{\nu_i L_{\nu_i}}{L} (1 - e^{-\tau_i}) dv.$$

total photon momentum rate provided by the star

Astronomical Institute Ondrejov, 2-3-2011

Michel Curé Universidad de Valparaíso

Contribution by **one** line i at frequency v_i

Astronomical Institute Ondrejov, 2-3-2011

Michel Curé Universidad de Valparaíso

Contribution by **one** line i at frequency v_i

optical thickness

Astronomical Institute Ondrejov, 2-3-2011

Contribution by **one** line i at frequency v_i

optical thickness

Astronomical Institute Ondrejov, 2-3-2011

Michel Curé Universidad de Valparaíso

Contribution by **one** line i at frequency v_i

optical thickness

 $dm = 4 \pi r^2 \rho dr$

Astronomical Institute Ondrejov, 2-3-2011

Thursday, March 3, 2011

Contribution by **one** line i at frequency v_i

optical thickness

Astronomical Institute Ondrejov, 2-3-2011

Contribution by **one** line i at frequency v_i

Dependence on the Velocity gradient

 $g_{rad}^{Th}(r) = \frac{n_e \sigma_e L}{c4\pi r^2 \rho}$

FORCE MULTIPLIER

Astronomical Institute Ondrejov, 2-3-2011

Michel Curé Universidad de Valparaíso

Line Force

VIII

Contribution from an ensemble of lines Currently: 4.2 Mega lines, 150 ionization stages (H –Zn),

Line Force

Logarithmic plot of line-strength distribution function for an O-type wind at 40,000 K and corresponding power-law fit (Puls et al. 2000, A&AS 141)

Astronomical Institute Ondrejov, 2-3-2011

Line Force

Logarithmic plot of line-strength distribution function for an O-type wind at 40,000 K and corresponding power-law fit (Puls et al. 2000, A&AS 141)

Astronomical Institute Ondrejov, 2-3-2011

Castor, Abbott & Klein (1975), Abbott (1982), Friend & Abbott (1986), Pauldrach et al. (1986)

Astronomical Institute Ondrejov, 2-3-2011

Michel Curé Universidad de Valparaíso

Castor, Abbott & Klein (1975), Abbott (1982), Friend & Abbott (1986), Pauldrach et al. (1986)

$$g^{\text{line}} = \frac{C}{r^2} CF\left(r, v, \frac{dv}{dr}\right) \left(r^2 v \frac{dv}{dr}\right)^{\alpha} \left[\frac{n_E}{W(r)}\right]^{\delta}$$

Astronomical Institute Ondrejov, 2-3-2011

Michel Curé Universidad de Valparaíso

Castor, Abbott & Klein (1975), Abbott (1982), Friend & Abbott (1986), Pauldrach et al. (1986)

Astronomical Institute Ondrejov, 2-3-2011

Castor, Abbott & Klein (1975), Abbott (1982), Friend & Abbott (1986), Pauldrach et al. (1986)

Astronomical Institute Ondrejov, 2-3-2011

Castor, Abbott & Klein (1975), Abbott (1982), Friend & Abbott (1986), Pauldrach et al. (1986)

Changes in Ionization

Astronomical Institute Ondrejov, 2-3-2011

Castor, Abbott & Klein (1975), Abbott (1982), Friend & Abbott (1986), Pauldrach et al. (1986)

Castor, Abbott & Klein (1975), Abbott (1982), Friend & Abbott (1986), Pauldrach et al. (1986)

Radiation Driven Wind Hydrodynamics

Astronomical Institute Ondrejov, 2-3-2011

Michel Curé Universidad de Valparaíso

Mass Conservation $\longrightarrow 4\pi r^2 \rho v = \dot{M}$

Astronomical Institute Ondrejov, 2-3-2011

Michel Curé Universidad de Valparaíso

60

Mass Conservation
$$\longrightarrow 4\pi r^2 \rho v = \dot{M}$$

$$v\frac{dv}{dr} = -\frac{1}{\rho}\frac{dp}{dr} - \frac{GM(1-\Gamma)}{r^2} + g^{\text{line}}\left(\rho, \frac{dv}{dr}, n_E\right)$$

Astronomical Institute Ondrejov, 2-3-2011

Michel Curé Universidad de Valparaíso

Mass Conservation
$$\longrightarrow 4\pi r^2 \rho v = \dot{M}$$

First Topological Analysis

Non-Rotating Solution Schema

Astronomical Institute Ondrejov, 2-3-2011

Michel Curé Universidad de Valparaíso

First Topological Analysis

Non-Rotating Solution Schema

Singularity Condition

Michel Curé Universidad de Valparaíso
First Topological Analysis

Non-Rotating Solution Schema

Singularity Condition

Regularity Condition

Michel Curé Universidad de Valparaíso

CAK Model

Astronomical Institute Ondrejov, 2-3-2011

Michel Curé Universidad de Valparaíso

m-CAK Model

modified-CAK Theory: Finite Disk Correction Factor

Friend & Abbott ApJ, 311,701,1986

Pauldrach, Puls & Kudritzki A&A, 164,86, 1986

Astronomical Institute Ondrejov, 2-3-2011

m-CAK Model

m-CAK: better agreement with observations

Astronomical Institute Ondrejov, 2-3-2011

Michel Curé Universidad de Valparaíso

The effect of Rotation in 1D models

Fig. 4. The dependence of \dot{M} (dashed) and v_{∞} (fully drawn) on $v_{\rm rot}$ for the 05f-star

Pauldrach et al. A&A, 164,86, 1986

Friend & Abbott ApJ, 311,701,1986

....

Astronomical Institute Ondrejov, 2-3-2011

The effect of Rotation in 1D models

Fig. 4. The dependence of \dot{M} (dashed) and v_{∞} (fully drawn) on $v_{\rm rot}$ for the 05f-star

Pauldrach et al. A&A, 164,86, 1986

Friend & Abbott ApJ, 311,701,1986

**

Astronomical Institute Ondrejov, 2-3-2011

The effect of Rotation in 1D models

Friend & Abbott ApJ, 311,701,1986

rotational velocities were used the mass-loss rate might become very large. We were unable to find solutions for larger rotational velocities, mainly because of numerical difficulties involving the finite disk factor when the effective escape speed falls below some critical value. In a study of Be star winds, Poe and Friend (1986) have pushed the rotational velocity closer to the breakup value, and they find that the mass-loss rate does

506 F. X. de Araújo, J. A. de Freitas Pacheco and D. Petrini

 $\chi = 0.7$ respectively. We have encountered severe numerical difficulties for models with $\chi \ge 0.8$. When we used $\alpha = 0.56$ we managed to obtain the solutions v(r) until a certain radius $r \le 5R$, but for the $\alpha = 0.4$ model we could not find the localization of the critical point. Somewhat analogous problems

Astronomical Institute Ondrejov, 2-3-2011

with Rotation: Revisited

Mass Conservation $\longrightarrow 4\pi r^2 \rho v = \dot{M}$

Astronomical Institute Ondrejov, 2-3-2011

Michel Curé Universidad de Valparaíso

with Rotation: Revisited

Mass Conservation
$$\longrightarrow 4\pi r^2 \rho v = \dot{M}$$

$$v\frac{dv}{dr} = -\frac{1}{\rho}\frac{dp}{dr} - \frac{GM(1-\Gamma)}{r^2} + \frac{v_{\phi}^2(r)}{r} + g^{\text{line}}\left(\rho, \frac{dv}{dr}, n_E\right)$$

Astronomical Institute Ondrejov, 2-3-2011

with Rotation: Revisited

Mass Conservation
$$\longrightarrow 4\pi r^2 \rho v = \dot{M}$$

Astronomical Institute Ondrejov, 2-3-2011

Michel Curé Universidad de Valparaíso

Equation of Motion

Astronomical Institute Ondrejov, 2-3-2011

Michel Curé Universidad de Valparaíso

Equation of Motion

$$u = \frac{-R_*}{r},$$
$$w = \frac{v}{a},$$
$$w' = \frac{dw}{du},$$

Astronomical Institute Ondrejov, 2-3-2011

Michel Curé Universidad de Valparaíso

Equation of Motion

Astronomical Institute Ondrejov, 2-3-2011

$$u = \frac{-R_*}{r},$$

$$w = \frac{v}{a},$$

$$w' = \frac{dw}{du},$$

Equation of Motion

F(u, w, w') = 0 $F(u, w, w') \equiv \left(1 - \frac{1}{w^2}\right) w \frac{dw}{du} + A + \frac{2}{u} + a_{\text{rot}}^2 u$ $- C' CFg(u)(w)^{-\delta} \left(w \frac{dw}{du}\right)^{\alpha} = 0$

Astronomical Institute Ondrejov, 2-3-2011

$$u = \frac{-R_*}{r},$$

$$w = \frac{v}{a},$$

$$w' = \frac{dw}{du},$$

Equation of Motion

F(u, w, w') = 0 $F(u, w, w') \equiv \left(1 - \frac{1}{w^2}\right) w \frac{dw}{du} + A + \frac{2}{u} + a_{\text{rot}}^2 u$ $- C' CFg(u)(w)^{-\delta} \left(w \frac{dw}{du}\right)^{\alpha} = 0$

$$A = \frac{GM(1 - \Gamma)}{a^2 R_*} = \frac{v_{\rm esc}^2}{2a^2},$$

$$C' = C \left(\frac{\dot{M}D}{2\pi} \frac{10^{-11}}{aR_*^2}\right)^{\delta} (a^2 R_*)^{(\alpha - 1)},$$

$$g(u) = \left(\frac{u^2}{1 - \sqrt{1 - u^2}}\right)^{\delta},$$

$$a_{\rm rot} = \frac{v_{\rm rot}}{a},$$

Astronomical Institute Ondrejov, 2-3-2011

Michel Curé Universidad de Valparaíso

$$u = \frac{-R_*}{r},$$

$$w = \frac{v}{a},$$

$$w' = \frac{dw}{du},$$

Equation of Motion

F(u, w, w') = 0 $F(u, w, w') \equiv \left(1 - \frac{1}{w^2}\right) w \frac{dw}{du} + A + \frac{2}{u} + a_{\text{rot}}^2 u$ $- C' CFg(u)(w)^{-\delta} \left(w \frac{dw}{du}\right)^{\alpha} = 0$

$$A = \frac{GM(1-1)}{a^2 R_*} = \frac{v_{esc}^2}{2a^2},$$

$$C' = C \left(\frac{\dot{M}D}{2\pi} \frac{10^{-11}}{aR_*^2}\right)^{\delta} (a^2 R_*)^{(\alpha-1)},$$

$$g(u) = \left(\frac{u^2}{1-\sqrt{1-u^2}}\right)^{\delta},$$

$$a_{rot} = \frac{v_{rot}}{a},$$

Astronomical Institute Ondrejov, 2-3-2011

Michel Curé Universidad de Valparaíso

$$u = \frac{-R_*}{r},$$

$$w = \frac{v}{a},$$

$$w' = \frac{dw}{du},$$

Astronomical Institute Ondrejov, 2-3-2011

Michel Curé Universidad de Valparaíso

$$Y = w w'$$
$$Z = w/w'$$

Astronomical Institute Ondrejov, 2-3-2011

Michel Curé Universidad de Valparaíso

$$\begin{pmatrix} 1 - \frac{1}{YZ} \end{pmatrix} Y + A + 2/u + a_{rot}^2 u - C' f_1(u, Z) g(u) Z^{-\delta/2} Y^{\alpha - \delta/2} = 0 \\ \begin{pmatrix} 1 - \frac{1}{YZ} \end{pmatrix} Y - C' f_2(u, Z) g(u) Z^{-\delta/2} Y^{\alpha - \delta/2} = 0 \\ \begin{pmatrix} 1 + \frac{1}{YZ} \end{pmatrix} Y - 2Z/u^2 + a_{rot}^2 Z - C' f_3(u, Z) g(u) Z^{-\delta/2} Y^{\alpha - \delta/2} = 0 \\ \end{pmatrix}$$

Astronomical Institute Ondrejov, 2-3-2011

Michel Curé Universidad de Valparaíso

$$\begin{pmatrix} 1 - \frac{1}{YZ} \end{pmatrix} Y + A + 2/u + a_{rot}^2 u - C' f_1(u, Z) g(u) Z^{-\delta/2} Y^{\alpha - \delta/2} = 0 \\ \begin{pmatrix} 1 - \frac{1}{YZ} \end{pmatrix} Y - C' f_2(u, Z) g(u) Z^{-\delta/2} Y^{\alpha - \delta/2} = 0 \\ \begin{pmatrix} 1 + \frac{1}{YZ} \end{pmatrix} Y - 2Z/u^2 + a_{rot}^2 Z - C' f_3(u, Z) g(u) Z^{-\delta/2} Y^{\alpha - \delta/2} = 0 \\ \end{pmatrix}$$

At the Singular Point: u_s,Y_s,Z_s,C' Universidad de Valparaíso

Thursday, March 3, 2011

Astronomical Institute Ondreiov. 2-3

Without any Approximation!

Astronomical Institute Ondrejov, 2-3-2011

Michel Curé Universidad de Valparaíso

Without any Approximation!

$$Y = \frac{1}{Z} + \left(\frac{f_2}{f_1 - f_2}\right) \left(A + \frac{2}{u} + a_{rot}^2 u\right)$$

$$C'(\dot{M}) = \frac{1}{gf_2} \left(1 - \frac{1}{YZ} \right) \ Z^{\delta/2} \ Y^{1-\alpha+\delta/2}$$

Astronomical Institute Ondrejov, 2-3-2011

Without any Approximation!

$$Y = \frac{1}{Z} + \left(\frac{f_2}{f_1 - f_2}\right) \left(A + \frac{2}{u} + a_{rot}^2 u\right)$$

$$C'(\dot{M}) = \frac{1}{gf_2} \left(1 - \frac{1}{YZ} \right) \ Z^{\delta/2} \ Y^{1-\alpha+\delta/2}$$

and

$$R(u,Z) \equiv -\frac{2}{Z} + \frac{2Z}{u^2} - a_{rot}^2 Z + f_{123}(u,Z) \left(A + \frac{2}{u} + a_{rot}^2 u\right)$$

Astronomical Institute Ondrejov, 2-3-2011

Michel Curé Universidad de Valparaíso

Astronomical Institute Ondrejov, 2-3-2011

Michel Curé Universidad de Valparaíso

Astronomical Institute Ondrejov, 2-3-2011

 $v_{\rm rot}/v_{\rm bkup} = 0.5$

Michel Curé Universidad de Valparaíso

Michel Curé Universidad de Valparaíso

Astronomical Institute Ondrejov, 2-3-2011

Michel Curé Universidad de Valparaíso

$v_{\rm rot}/v_{\rm bkup} = 0.5$

Astronomical Institute Ondrejov, 2-3-2011

Michel Curé Universidad de Valparaíso

0.8

Astronomical Institute Ondrejov, 2-3-2011

Michel Curé Universidad de Valparaíso

Thursday, March 3, 2011

Astronomical Institute Ondrejov, 2-3-2011

Michel Curé Universidad de Valparaíso

Michel Curé Universidad de Valparaíso

Michel Curé Universidad de Valparaíso

Rotating CAK and m-CAK solutions

Rotating CAK and m-CAK solutions

Applications of the Slow solution

Rotation: B[e] Supergiants

Astronomical Institute Ondrejov, 2-3-2011

Michel Curé Universidad de Valparaíso

Applications of the Slow solution

Rotation: B[e] Supergiants

Astronomical Institute Ondrejov, 2-3-2011

Michel Curé Universidad de Valparaíso

B[e]-Supergiant star

from Zickgraf 1986

Astronomical Institute Ondrejov, 2-3-2011

Michel Curé Universidad de Valparaíso

Bistability

Proposed by Lamers & Pauldrach (1991)

Vink et al. (1999) Theoreticaly showed: Bistability Jump T=25,000K due to Recombination of Fe IV to Fe III

Astronomical Institute Ondrejov, 2-3-2011

Michel Curé Universidad de Valparaíso

Bistability Jump

Observational determination of the Bistability Jump Lamers, Snow & Lindholm, ApJ, 455, 269, 1995

Bistability Jump

Bistability Jump

B[e] Supergiant Wind

m-CAK

- Bistability line force parameters (T_{eff}=25,000K): one set for polar latitudes and other set for equatorial latitudes
- Fast (polar) and Slow (equatorial) solutions (m-CAK)
- Rotation parameter Ω

B[e] Supergiant Wind

Stellar Parameters

 $T_{\rm eff} = 25\,000\,{\rm K},$ $M/M_{\odot} = 17.5,$ $L/L_{\odot} = 10^5$

form Pelupessy et al. (2000)

Line-Force Parameters

T [K]	α	k	δ	
30 000	0.65	0.06	0	
17 500	0.45	0.57	0	

form Pelupessy et al. (2000)

Table 17. Escape velocities, effective gravity and rotational velocities derived from $v_{\infty}/v_{esc} = 1.3$ and stellar parameters given in Tab. 14. M_{ZAMS} values are from Zickgraf et al. (1986).

Star	$M_{\rm ZAMS}$	$M_{\rm B[e]}$	$v_{\rm esc}[\rm kms^{-1}]$	$\log g_{\rm eff}$	Г	$\Gamma_{\rm rad}$	$\Gamma_{\rm rot}$	$v_{\rm rot} [\rm kms^{-1}]$	$v_{ m crit}[m kms^{-1}]$	Ω
Hen S22	52	35	60	0.72	0.98	0.56	0.42	240	318	0.75
R 82	30	20	55	0.65	0.98	0.32	0.66	224	283	0.79
R 50	45	30	40	0.15	0.99	0.40	0.59	204	277	0.74

Fig. 3. m-CAK model: density (in g cm⁻³) versus $r/R_* - 1$. Polar density is in dotted-line; equatorial density for $\Omega = 0.6$ (fast solution) is in dashed-line and equatorial densities for $\Omega = 0.7$, 0.8, 0.9, 0.99 are in continuous-line, the higher is Ω , the higher is the density.

density contrast Observational 10^{4} values 10³ Pe/Pp 10^{2} 10¹ 10^{2} 10^{-2} 10⁰ r/R.-1

Fig. 4. m-CAK model: density contrast versus $r/R_* - 1$, dashed-line is for $\Omega = 0.6$ and continuous-line are for $\Omega = 0.7$, 0.8, 0.9, 0.99. The higher is Ω , the higher is the density contrast.

Astronomical Institute Ondrejov, 2-3-2011

"2D" Wind

Astronomical Institute Ondrejov, 2-3-2011

richel Curé Universidad de Valparaíso

"2D" Wind

ichel Curé Universidad de Valparaíso

Disk Aperture Angle HD 206165

Astronomical Institute Ondrejov, 2-3-2011

Michel Curé Universidad de Valparaíso

Applications of the Slow solution

Rotation: Be Stars

Astronomical Institute Ondrejov, 2-3-2011

Michel Curé Universidad de Valparaíso

Rotating Stars OBJECTS

Be-Star

from Lamers & Pauldrach 1991

Astronomical Institute Ondrejov, 2-3-2011

Michel Curé Universidad de Valparaíso

Be Star Wind

Thursday, March 3, 2011

Michel Curé Universidad de Valparaíso

Be Star Wind

Von Zeippel Effect - Gravity Darkening

Rotational Velocity

Astronomical Institute Ondrejov, 2-3-2011

Michel Curé Universidad de Valparaíso

Oblate Disk Correction Factor

Be Star Wind

Oblate Disk Correction Factor

Astronomical Institute Ondrejov, 2-3-2011

Michel Curé Universidad de Valparaíso

Be Star Wind

Oblate Disk Correction Factor Velocity field

Astronomical Institute Ondrejov, 2-3-2011

Michel Curé Universidad de Valparaíso

Oblate Disk Correction Factor Density contrast

Astronomical Institute Ondrejov, 2-3-2011

Michel Curé Universidad de Valparaíso

Applications of the Slow solution

Changes in ionization: (OB)A Supergiants

Astronomical Institute Ondrejov, 2-3-2011

Michel Curé Universidad de Valparaíso

A Supergiants

NGC3621

Astronomical Institute Ondrejov, 2-3-2011

Michel Curé Universidad de Valparaíso

$H\alpha$ dependence on the mass loss rate

O5 Ia

Figure 3 H_{\alpha} line profile of the extreme A-supergiant 41-3654 (A3 Ia-O) in the Andromeda Galaxy M31 taken with the Keck HIRES spectrograph compared with two unified model calculations adopting $\beta = 3$, $v_{\infty} = 200$ km/s and $\dot{M} = 1.7$ and 2.1×10^{-6} M_{\overline{O}}/year. Note the P-Cygni profile shape of H_{\alpha}. From McCarthy et al (1997).

A3 Ia

Astronomical Institute Ondrejov, 2-3-2011

Michel Curé Universidad de Valparaíso

Radiative Transport models do not use velocity (density) profile from CAK Hydrodynamic.

Instead: beta-profile

TABLE 2	Coefficients of the wind momentum-luminosity
relationship	for A/B-supergiants and O-stars of the solar neighborhood

	Sp. type	$\log D_0$	X	α′
	AI	14.22 ± 2.41	2.64 ± 0.47	0.38 ± 0.07
	Mid B I	17.07 ± 1.05	1.95 ± 0.20	0.51 ± 0.05
	Early B I	21.24 ± 1.38	1.34 ± 0.25	0.75 ± 0.15
	OI	20.69 ± 1.04	1.51 ± 0.18	0.66 ± 0.06
	O III, V	19.87 ± 1.21	1.57 ± 0.21	0.64 ± 0.06
Astronom				

Michel Curé Universidad de Valparaíso

Michel Curé

A-Supergiant Models Achmad, Lamers & Pasquini, A&A 320,196, 1997

Astronomical Institute Ondrejov, 2-3-2011

Michel Curé Universidad de Valparaíso

A-Supergiant Models Achmad, Lamers & Pasquini, A&A 320,196, 1997

Astronomical Institute Ondrejov, 2-3-2011

Michel Curé Universidad de Valparaíso

Fig. 2. Theoretical (dashed line) and observational (red solid line) WML-relationship by Kudritzki et al. (1999). Theoretical data (black circles) has been obtained from new slow wind models with $\Omega = 0.4$

Thursday, March 3, 2011

Vesc

Fig. 3. Relation between V_{∞}/V_{esc} vs V_{esc} corresponding to polar (black circles) and equatorial (black triangles) slow solutions. Down-triangles and crosses (red symbols) represent the observational data taken from Verdugo et al. (1998b); the crosses indicate terminal velocities obtained from saturated PCygni UV lines whereas the down-triangles correspond to values determined by means of discrete absorption components; up-triangles (green) correspond to terminal velocities from Kudritzki et al. (1999); squares (blue) represent the measurements provided by Achmad et al. (1997) with their error estimates. The slow wind solution follows the same trend of the observations

Michel Curé Universidad de Valparaíso

Time dependent Hydrodynamic

Astronomical Institute Ondrejov, 2-3-2011

Michel Curé Universidad de Valparaíso

Time dependent Hydrodynamic

$$\frac{\partial \rho}{\partial t} + \frac{1}{r^2} \frac{\partial (r^2 \rho v)}{\partial r} = 0,$$
$$\frac{\partial v}{\partial t} + v \frac{\partial v}{\partial r} = \frac{v_{\phi}^2}{r} - \frac{1}{\rho} \frac{\partial P}{\partial r} - \frac{GM_*(1 - \Gamma_e)}{r^2} + g_{\text{lines}}$$

Astronomical Institute Ondrejov, 2-3-2011

Michel Curé Universidad de Valparaíso

Time dependent Hydrodynamic

Michel Curé

ZEUS-3D CAK model

Time dependent Hydrodynamic

ZEUS-3D m-CAK model Fast Solutions

Time dependent Hydrodynamic

ZEUS-3D m-CAK model Slow Solutions

Conclusions

Slow wind solutions may solve some of the problems from massive stars hydrodynamic:

- Winds from B[e] Supergiants (outflowing disk)
- Winds from BA Supergiants (WML relationship)
- Classical Be Stars (Gravity Darkening)

Future Work

- Time dependent Calculations (bifurcation, oscillation, clumping?)
- 2D-calculations
- Observations (constrains to theory)
- Magnetic Fields

Astronomical Institute Ondrejov, 2-3-2011

F I N

Astronomical Institute Ondrejov, 2-3-2011

Michel Curé Universidad de Valparaíso