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1 Introduction

The code TERMO serves for the solution of the discrete form of nonstation-
ary heat equations in 3D. The initial-boundary value problem is discretized
by finite elements in space and finite differences in time. Corresponding
linear system of algebraic equations in each time step are solved by the pre-
conditioned conjugate gradient method with the preconditioning based on
the additive overlapping Schwarz methods.

The specific feature of the code TERMO is the using of regular structured
grids which, simply speaking, are the grids arising as a result of deformation
of some regular rectangular grid (the pattern grig). The discretization is
given by the decomposition of the domain into eight-node bricks and conse-
quently into tetrahedral finite elements. Hence the corresponding matrices
have all nonzero entries within a 27 node regular stencil. Supposing the
symmetry of the matrix, we can additionally store only the upper triangular
part of the matrix. It can be done row-by-row by using regular 14 element
stencil for the storage of the nonzero matrix entries.

We assume that material is anisotropic and heterogeneous and is not de-
pendent on temperature changes. The heat radiation is not included. The
heat source is assumed to descent exponentially with time (special case is a
constant heat source). The time is measured in years. The details see next
parts.

The whole program is written using Fortran 95, for parallelization OpenMP
paradigm is used. The code was tested on symmetric multiprocessor IBM
e-server xSeries 455, 8 processors Intel Itanium 2/1300, shared memory 16
GB, RAID controller with disk capacity 2 x 72 GB under UNIX operating
system.

1



2 Code distribution

Code TERMO is available from the web site

http//www.ugn.cas.cz/,

questions can be sent to roman.kohut@ugn.cas.

The code Termo is free software distributed under the terms of the GNU
General Public License as published by the Free Software Foundation.

3 Numerical methods and algorithms

The nonstationary heat conduction problem is concerned with finding the
temperature τ = τ(x, t),

τ : Ω × (0, T ) → R,

that fulfills the following equation

κρ
∂τ

∂t
= k

∑

i

∂2τ

∂xi
2

+ q(t) in Ω × (0, T ) (1)

together with the corresponding boundary and initial conditions.

The initial-boundary value problem (1) is discretized by the finite elements
in space and the finite differences in time. Using the linear finite elements
and the time discretization, it leads to the computation of a vector τ j of
nodal temperatures at the time levels tj , j = 1,N, with the time steps
∆tj = tj − tj−1. It gives the following time stepping algorithm:

find τ0 : Mh τ0 = τ0,
for j=1,...,N:

find τ j : B
(j)
h τ j = [Mh + θ∆tj Kh] τ j = cj .

enddo

Above, Mh is the capacitance matrix, Kh is conductivity matrix, cj =
[Mh − (1 − θ)∆tjKh]τ j−1 + ∆tjφj , φj = θq(tj) + (1 − θ)q(tj−1) and τ0 is
from the initial condition. Here parameter θ ∈< 0, 1 > . In means that in
each time level we have to solve the system of linear equations

[Mh + θ∆tjKh]τ j = [Mh − (1 − θ)∆tjKh]τ j−1 + ∆tjφj . (2)
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For θ = 0 we obtain the explicit Euler scheme, for θ = 1 we obtain the
backward Euler (BE) scheme, θ = 0.5 gives Crank-Nicholson (CN) scheme.
In our case we will use the BE scheme. If we substitute τ j = τ j−1 + ∆τ j

into (2), we obtain

[Mh + ∆tjKh]∆τ j = ∆tj(q
j
h − Khτ j−1). (3)

To ensure accuracy and not waste the computational effort, it is important to
adapt the time steps to the behaviour of the solution. We use the procedure
based on local comparison of the backward Euler (BE) and Crank-Nicholson
(CN) scheme ([1]). We solve the system (2) only using BE scheme. If this
solution τ j = τ j−1 + ∆τ j is considered as the initial approximation for the
solution of system (2) for θ = 0.5 (CN scheme), then the first iteration of
the Richardson’s method presents an approximation of the solution of the
system (2) for θ = 0.5. Thus τ j

CN
∼= τ j − rj, where

rj = (Mh + 0.5∆tjKh)τ j
− (Mh − 0.5∆tjKh)τ j−1

− 0.5q
h
(tj) − 0.5q

h
(tj−1).

(4)

The time steps can be controlled with the aid of the ratio η = ‖rj‖
‖τ j‖

. If

η < εmin then we continue with time step ∆t = 2 × ∆t, if η > εmax then
we continue with time step ∆t = 0.5×∆t, where εmin, εmax are given values.

For the solution of the linear system Bh∆τ j = (Mh + ∆jKh)∆τ j = fj (3)
we shall use the preconditioned CG method where the preconditioning is
given by the additive overlapping Schwarz method. In this case the domain
is divided into m subdomains Ωk (in our case the domain is divided only in
z direction), nonoverlaping subdomains Ωk are then extended to domains
Ω′

k in such a way that overlaping between the subdomains are given by
two or more layers of elements. If B′

kk are the FE matrices corresponding
to problems on Ω′

k, I ′k and R′
k = (I ′k)

T are the interpolation and restric-
tion matrices, respectively, then introduced matrices B′

kk = R′
kBI ′k allow to

define one-level additive Schwarz preconditioner G,

g = Gr =
m∑

k=1

I ′kB
′
kk

−1
R′

kr.

The system matrix Bh is composed from two matrices, the matrix Mh which
is not M-matrix (all matrix elements are positive for linear FE basis func-
tions) and the matrix ∆tjKh which is M-matrix in many practical situations,
e.g. if the heat flow is isotropic and the inner angles of tetrahedra do not
exceed π/2. For small values of ∆j the matrix Mh +∆tjKh is not M-matrix
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and the incomplete factorization fails for preconditioning. But it is possible
to apply the incomplete factorization to the matrix ML

h +∆tjKh, where ML
h

is the lumped matrix to the matrix Mh, which means that its diagonal has
diagonal elements equal to the sum of the elements on the corresponding
row.

4 The storage of the files

As was written in the first part, a specific feature of our code is the using of
regular structured grids. If nx, ny, nz represent the the numbers of nodes
in corresponding directions, the nodes can be easily indexed by the triples
(i,j,k),

1 ≤ i ≤ Nx, 1 ≤ j ≤ Ny, 1 ≤ k ≤ Nz

or enumerated by 1D numbers

Indn = i + (j − 1) ∗ Nx + (k − 1) ∗ Nx ∗ Ny.

It means that enumeration is done first in the direction x, then in direction
y and finally in direction z.

a) matrix storage

Supposing the symmetry of the matrix, we can store only the upper trian-
gular part of the matrix. It can be done row-by-row by using regular 14
element stencil. The row numbers are given by the order of the records,
column numbers have not to be stored due to the regular stencil. More
exactly, the column numbers for the regular stencil and for the row index i
will be the following:

If i is the row number, then the column numbers used in the 14 element
stencil are subsequently:

j = i, i + 1

j = i + nx − 1, i + nx, i + nx + 1

j = i + nx ∗ ny − nx − 1, i + nx ∗ ny − nx, i + nx ∗ ny − nx + 1

j = i + nx ∗ ny − 1, i + nx ∗ ny, i + nx ∗ ny + 1

j = i + nx ∗ ny + nx − 1, i + nx ∗ ny + nx, i + nx ∗ ny + nx + 1
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For opening and reading files with stored matrices we use folowing instruc-
tions:

open(1,file=filename, access=’direct’, recl=56),

if the matrix is stored in real ∗ 4 or

open(1,file=filename, access=’direct’, recl=112),

if the matrix is stored in real ∗ 8.

The files are read as follows:
do i=1,nn

read(1,rec=i) a
do j=1,14

mh(j+(i-1)*14)=a(j)
enddo

enddo

Vector storage

Vectors contain some nodal values. A value corresponding to the triples of
indeces (i,j,k) is in position v(Indn), Indn = i+(j−1)∗Nx+(k−1)∗Nx∗Ny.
For opening and reading files with stored vectors we use following instructios:

open(1,file=filename, form=’unformatted’),

read(1) (v(i)=1,nn),

where nn is the number of nodes.

Input data storage

Files containing input data are text files with a free format.

5 Routines used in code TERMO

Routines used in code TERMO are inserted in folowing files:
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term IS.for - the main routine for controling the runing of the code.
mxv t IS.for - the subroutine for the multiplication of matrix A

by vector v.
mxv ns IS.for - the subroutine for the multiplication of matrix

(a ∗ A + b ∗ B) by vector v.
pcond IS.for - two subroutines for the realization of preconditioning

based on the additive overlapping Schwarz methods.
. rmat t IS.for - subroutine for reading of matrix K h (see 3).
rmatmh t IS.for - subroutine for reading of matrix M h (see 3).
georens IS - subroutine for modification of matrices and rhs

according to boundary conditions.
nstcin IS.for - subroutine for reading of input parameters

for given task.
pcg IS.for - subroutine for realization of preconditioned

conjugate gradients.
load IS.for - subroutine for the determination of a nodal vector

given by heat source in time point t.
rtime IS - subroutine for measuring of CPU time.

Time is measured by Fortran inner subroutine itime.
lin IS.mki - information for compiler
termo IS.mk - Makefile

6 Makefile for compilation

The compilation is done in two steps:

1.step: make -f termo IS.mk clean
The files ∗.f, ∗.fo, ∗.o are deleted.

2. step make -f termo IS.mk
The compilation is done.

7 Input files needed for running of the code TERMO

The code uses two matrices as input( see 3):
the matrix Mh (capacitance matrix) is stored in the file mh.g32
the matrix Kh (conductivity matrix) is stored in the file fkbct.g32.
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The structure of these files was desrcibed in Section 4. Note that rows cor-
responding to nodes in emty area ( nodes inside holes, tunnels ) have all
elements equal to zero. The code replaces in matrix Mh corresponding zero
element in position of diagonal element with value one.

The code uses four vectors as input. The structure of these files was desribed
in Section 4. The part of rhs in j time step (see 3) presents vector qh

j . In

our code this vector is distributed to two vectors, qh
j = rh + rqh

j . The nodal

vector rh is generated from boundary conditions (the given temperature on
part of boundary, heat transfer to emty area on part of inner boundary)
and is constant during the computation. This vector is saved in file frt.g32.
The second part forms the vector rqh

j corresponding to a heat source which

is changing with time. We assume that this part of the vector qh
j descents

exponentially with time and has in the time point tj value

qh
j = qh

0 (a ∗ e−a1∗tj + b ∗ e−b1∗tj + c ∗ e−c1∗tj ), (5)

where a, a1, b, b1, c, c1 are input parameters that must fullfil equality a+ b+
c = 1. The initial value in time t = 0 (the vector qh

0 ) is saved in file frq.g32.

The initial value conditions are saved in file ft0.g32, the Dirichlet boundary
conditions are saved in file fbct.g32. The file fbct.g32 contains the nodal
vector bc that has following nodal values:

bc(nodei) - vi for nodei with prescribed value vi

bc(nodei) - 1e9 for free nodei

The input file nstc IS.in contains input data for code TERMO. The file is
text file with data in free format. The data are stored in following order:
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npro npr npro - the number of processors (subdomains)
npr - the number of overlapping layers

nx, ny, nz the number of nodes in directions x,y,z
a, a1 parameters for heat source descent(a ∗ e−a1∗t+
b, b1 parameters for heat sourse descent b ∗ e−b1∗t+
c, c1 parameters for heat sourse descent b ∗ e−c1∗t), see (5)
ir ir = 0 for input files in real*4, ir=1 for real*8
eps the accuracy for the solution of linear system

in each time step
imax max. number of pcg iterations for each time step
dt, tt dt - initial size of time step,

tt - the whole time period
ad ad=0 - constant time step dt,

ad=n - adaptive change of time step,
the test, if to change, is after each n iterations,
ad=-1 - time steps are prescribed
(saved in file t point.in (see below))

emin, emax parameters for adaptivity,
can differ for various task,
usual values emin=0.0001, emax=0.001.

n we can save solution vectors in various time
points (fut 1,...,fut n). n presents
the number of such time points. For n=0
the list of time points is missing. The final
solution is in file fut.g32

tmu(1)
. list of time points
tmu(n)
m after each time step we can save values of the

solution vectors in prescribed nodes. m is the
number of such nodes. The values are saved in file
temp points.rep. The first row contains the value of
time steps, next rows contain the temperatures in
given points. For nn=0 the list of nodes is missing.

i(1),j(1),k(1)
. the list of triplets of nodes.
i(m), j(m),k(m)
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8 Output files

The vectors of nodal temperatures in given time points t1, t2, ... (see input
file nstc IS.in) are saved in files fut 1.g32, fut 2.g32, ..., the final solution
in time ct is saved in file fut.g32. The structure of these files is the same as
the structure of input files of nodal vectors (see Section 4). The behaviour
of temperatures in given points (see input file nstc IS.in) is stored into text
file temp points.rep. The structure of this file is following:

t0 initial time t = 0
τ1
0

τ2
0 the temperatures in time t = 0 in given nodes

.

.
τ1
1

τ2
1 the temperatures in time t1 in given nodes

.

.

The time points t1, t2, ... correspond to the ends of the used time steps.

The informations about the running of the code are written to text file ter-
moel.rep. For each time step the following informations are saved:

n it , tol the number of pcg it. for given time step,

the reached accuracy ‖rj‖
‖qj‖

it , dt, the global time the serial number of time step,
the size of the time step,
the reached time after n it time steps

max. dTau, max. temp. max. incr. of the temp. in this time step,
the max. temperature in this time step

computing time the CPU time

9 Test example and getting started

The code was tested on 3D benchmark probmlem BMT3 (Figure 1) sug-
gested within the frame of DECOVALEX project (see [2]). In this test case,
a repository tunnel is located at a depth of 500m and nuclear waste, which
is a source of heat, is disposed in a borehole below this tunnel. We suppose
that modelled area is the cube 50m×50m×50m, upper side has z-coordinate
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Figure 1: The BMT3 benchmark task.

z=0, bottom side has z-coorinate z=50, the tunnel is oriented in y direction,
the profile is squared, 5×5 metres, the length is 50m (throw the whole area),
the footwall is situated on the plane with z-coordinate z=25m. To compare
the results with results of DECOVALEX teams which solved the problem as
2D, we suppose that ”borehole” with heat source is block with coordinates
< 24.75, 25.25 >< 0, 50 >< 27.5, 32.5 > .

The initial thermal conditions consist of a constant initial temperature T0

(file ft0.g32) of 27oC throughout the model. The initial temperature is fixed
along the top surface of the model ( the value 27 in corresponding nodes in
file fbct.g32 ), while both vertical surfaces and the lower boundary surface
are assumed adiabatic (zero heat flux). The tunnel surface is assumed to
behave as a convective boundary (heat transfer) in which the flux condtition
is given as

q = H(Twall − Tg), (6)

where q is thermal flux across the tunel surface (W/m2), H = 7W/m2.oC
is the coefficient of surface heat transfer, Twall is the wall temperature and
Tg = 27oC is the constant tunnel temperature.

The heat source simulating the waste canister is assumed to decay exponen-
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tially with time according to the following relation

Q(t) = q0exp(−βt) (7)

where Q(t) is the heat flux at time t (W/m3)), Q0 = 470W/m3 is the initial
heat flux (file frq.g32 and β = 0.02 1/year is the heat decay coefficient.

We suppose the material is homogeneous and isotropic (the rock and the heat
source has the same properties), the specific heat capacity κ = 900J/kg.oC,
the thermal conductivity k = 3W/m.oC .

The structured rectangular FE grid consists of 45×51×45 nodes (105570
equations), the coordinates of nodes where the size in correponding direction
is changed is presented in following Table. The division of nodes between
these nodes is uniform.

direction x direction y direction z

nodes x x-coord. nodes y coord. nodes z coord.
dir. x dir. y dir. z z

1 0.00 1 0.00 1 0.00
6 10.00 17 22.00 7 12.00
11 17.50 21 24.00 12 12.75
16 22.50 24 24.75 32 27.50
21 24.75 28 25.25 38 33.50
25 25.25 31 26.00 46 50.00
30 27.50 35 28.00
35 32.50 51 50.00
40 40.00
45 50.00

Table 1: The coordinates of grid nodes

After grid generation we assemble matrices and vectors described in Section
7. The input file nstc IS.in for this task has following form:
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8 2
45 51 46
1.0 0.02
0.0 0.0
0.0 0.0
0
0.001
1000
0.00001 100
5
0.00001 0.0001
0
1
11 26 37

The behaviour of temperature during 100 years in the point A (indices
11,26,37, coordinates 17.5m, 25.0m, 32.5m) is presented in Figure 2. If

temperature in (17.5,25.0.32.5)

0 20 40 60 80 100
20

30

40

50
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70

80

90

Figure 2: The behaviour of temperature in pont A.

the time steps are prescribed (ad = −1) the code reads these values from
text file t point.in. The first number in the list is the number of the time
steps followed by the values of corresponding time steps. Each row contains
one number.
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This test example was computed with the code developed in COMSOL,
with code developed in MATLAB. The results obtained by these codes are
very close to resuls obtained by code TERMO. Very similar results were
obtained also by various codes used by teams in DECOVALEX project (see
([2]).
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