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Prefa
eSeminar on Numeri
al Analysis 2011 (SNA'11) is the eighth meeting in a series of events startedin Ostrava 2003 and devoted to numeri
al methods ne
essary for mathemati
al modelling ofproblems in s
ien
es and engineering. For the �rst time SNA'11 will be held in Roºnov pod Rad-ho²t¥m, a beautiful town with many attra
tions and friendly Beskydy mountains surrounding.Sin
e 2005, a part of SNA has been devoted to the so-
alled Winter s
hool with tutorial le
-tures devoted to sele
ted topi
s within the 
onferen
e s
ope. In this year, the s
hool part in-
ludes invited le
tures devoted to operator splitting te
hniques for mutiphysi
s problems (Ax-elsson), s
alable FETI algorithms for 
onta
t problems (Dostál, Kozubek, Vondrák, Brzobohatý,Markopoulos), ill posed problems in image pro
essing (Hn¥tynková, Ple²inger, Strako²), prin
i-ples of algebrai
 multigrid based on smoothed aggregations (Van¥k) and analysis and numeri
alapproximation of non-lo
al damage me
hani
s models (Zeman, Mielke, Roubí£ek).The Winter s
hool is 
omplemented by 
ontributed le
tures devoted to many topi
s as aggrega-tion based methods, 
omputational me
hani
s, domain de
omposition, e�
ient iterative solvers,�nite element method, formulation of mathemati
al models, modelling of transport problems,parallel 
omputations, et
.We would like to wish SNA'11 to be, similarly to the previous SNA meetings, a fruitful event,providing interesting le
tures, showing new ideas and starting or strengthening 
ollaboration andfriendship.On behalf of the Programme and Organizing Committee of SNA'11,Radim Blaheta and Ji°í Starý
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An overview of aggregation te
hniques for two-level methodsR. Blaheta, V. SokolInstitute of Geoni
s AS CR, OstravaV�B - Te
hni
al University of Ostrava
1 Introdu
tionThis paper is an e�ort to do an overview of aggregation te
hniques and 
ompare their e�
ien
yon model problem with heterogeneity when used for 
onstru
tion of 
oarse spa
e for two-levelS
hwarz method. Aggregation te
hniques are usually used in 
ontext of multilevel and multigridmethods for 
onstru
tion of 
oarse levels. Initially 
oarse levels were obtained from hierar
hyof meshes with di�erent dis
retization parameters. Aggregation over
omes the need for thishierar
hy of meshes and needs little or no information besides the matrix of the problem to besolved.Aggregation te
hniques presented in this paper 
an be divided into two groups: node-wise andelement-wise aggregations. The �rst group is somewhat larger and widely used, most likelybe
ause node-wise aggregations don't need any information about the mesh used for dis
retizationof the method.2 AggregationsIn this paper for the sake of simpli
ity we will restri
t ourselves to the 
ase of two-level methodsonly, multilevel methods 
an be devised by re
ursive use of the two-level s
heme.2.1 Two-level method with aggregationLet us 
onsider a problem dis
retized on triangulation Th by �nite element method and des
ribedby the linear system

Ahuh = bh, (1)solved by a two-level method. One iteration of two-level method is des
ribed in Algorithm 1.On lines 5 and 10 there are k1 and k2 steps of pre-smoothing and post-smoothing respe
tivelyby operator S, usually realized by one iteration of Gauss-Seidel or Ja
obi method. In the 
ase of
lassi
al multigrid methods, the prolongation operator P and restri
tion operator R are naturallyindu
ed by the hierar
hy of triangulations Th and TH and the matrix AH 
orresponds to thedis
retization on TH . However in the 
ase of algebrai
 multigrid methods, the prolongation andrestri
tion operators and the 
oarse spa
e matrix AH are 
reated only by using a little informationbesides the matrix Ah thus avoiding the need to 
onstru
t hierar
hy of nested meshes.
7



Algorithm 1 One iteration of two-level method1: Input:Ah, bh, u
i
h2: Output:ui+1

h3: u = ui
h4: for j = 1 to k1 do5: u = S(Ah, bh, u)6: end for7: rH = R (bh −Ahu)8: u = u+ P

(
A−1

H rH
)9: for j = 1 to k2 do10: u = S(Ah, bh, u)11: end for12: ui+1

h = uAggregation te
hnique divides set of unknowns N = {1, . . . , n} into disjoint subsets Ci of aggre-gates of unknowns, so that N =
⋃k

i=1Ci , Ci
⋂

i6=j Cj = ∅. Then the prolongation and restri
tionoperators are de�ned R = R, P = RT by boolean matrix R:
(R)i,j

{
= 1 if j ∈ Ci

= 0 otherwise (2)2.2 Node-wise aggregationsIn this subse
tion we fo
us on aggregation te
hniques that exploits the information dire
tly storedin the matrix Ah, these in
lude algorihms by Van¥k et al. [3℄, by S
hei
hl and Vainikko [2℄ and byNotay [1℄. The aggregation algorithm by Notay was primarily designed to work with algebrai
multilevel s
heme based on a blo
k approximate fa
torization of matrix, however it 
an also beused for algebrai
 multilevel methods. The algorithm �rstly de�nes set of nodes Si, to whi
hnode i is strongly negative 
onne
ted:
Si(ε) =

{
j ∈ N : j 6= i, aij < −ε max

aik<0
|aik|

}
, (3)where parameter ε is used as threshold for strong 
oupling. The sets Si(ε) are used 
o 
onstru
tpairs of nodes that are most strongly negative 
onne
ted, and then used re
ursively for thosepairs (and possibly few singletons) to 
reate generalized quadruplets.The algorithm by Van¥k et al. starts by de�ning strongly-
onne
ted neighborhood similar to (3)with thresholding parameter ε:

Si(ε) =
{
j ∈ N : |aij| ≥ ε

√
aiiajj

}
, (4)and then separates nodes that are not strongly 
onne
ted to any other nodes. These nodes areisolated from others and are not aggregated. Rest of the nodes is used for initial 
overing bytentative aggregates Ci, the remaining nodes that does not belong to tentative aggregates formsset R. The main part of the algorithm 
an be des
ribed as follows:step 1: enlarge aggregates Cimove node j from R to aggregate Ci if there is strong 
onne
tion8



step 2: pro
ess unaggregated nodes
reate new aggregates: Ci = Sj(ε) ∩R, R = R \ CiGiven this aggregation, tentative prolongation is 
reated from (2), whi
h 
an be further smoothedto get the �nal prolongation and restri
tion operators. To get the smoothed prolongation oper-ator, simple damped Ja
obi smoother was proposed in the form
Ps = (I − ω (diagAh)−1AF )P , (5)where ω is damping parameter and AF is �ltered matrix.The last aggregation of this subse
tion is that of S
hei
hl and Vainikko. The algorithm againstarts by de�ning strongly 
onne
ted nodes. Node j is strongly 
onne
ted to i if the following
ondition is satis�ed: ∣∣∣Âij

∣∣∣ ≥ εmax
k 6=i

∣∣∣Âik

∣∣∣ , (6)where Â = (diagAh)−
1
2 Ah (diagAh)−

1
2 and ε is again thresholding parameter for strong 
on-ne
tion. To 
reate set of aggregates {Ci} strongly-
onne
ted graph r-neighborhood Sr,ε(i) isused. Sr,ε(i) is set of node i and all nodes j for whi
h there exists a path of length r of strongly-
onne
ted nodes to node i. The algorithm 
reates aggregates by �nding strongly-
onne
ted graphr-neighborhood of 
hosen seed node. To 
hoose a good seed node advan
ing front in the graphindu
ed by nodes and edges of triangulation Th is used. Smoothed aggregation 
an be againobtained by applying damped Ja
obi smoother with �ltered matrix AF (5).2.3 Element-wise aggregationsThe only aggregation of this subse
tion is of Fish and Belsky [4℄. It uses the 
on
ept of sti� andweak element whi
h is utilized in 
onstru
tion of aggregates. The element ei is 
onsidered sti� ifthe spe
tral radius ki of its sti�ness matrix is relatively large 
ompared to other elements. Thespe
tral radius is estimated by Gershgorin theorem. This sti� and weak 
on
ept is element-wise
ounterpart of strong and weak 
onne
tion of node-wise approa
h. The algorithm tries to pla
eweak elements on the interfa
e between aggregates of sti� elements.start-up:set EA of elements to aggregate (less elements on boundary)set EI of interfa
e elements, EI = ∅seed element es with minimum number of neighboring elementsstep 1: 
reate sti� aggregate Ai

Ai = {es} ∪ {ej : el ∈ neighbor(es) ∩ EA; kj ≥ εks}step 2: update sets EI , EA

EI = EI ∪ {ek : (ek ∈ neighbor(ej), ej ∈ Ai) ∩ (ek /∈ Ai)}
EA = EA \ {ek : (ek ∈ neighbor(ej), ej ∈ Ai) ∪Ai}step 3: �nd new seed element es
EF = {ek : (ek ∈ neighbor(ej), ej ∈ Ai) ∩ EA}�nd seed element es : es ∈ EF , ks ≥ ki ∀ei ∈ EFstopping 
riteria:if EF = ∅ then stopelse i = i+ 1, go to step 2The parameter ε is used as threshold for determining the sti�ness of elements.9



3 Model problem and two-level S
hwarz pre
onditionerThe model problem on whi
h we will test aggregation te
hniques will be Dar
y �ow des
ribedby following equations:
v = −k∇u

∇ · v = f

} in Ω (7)The heterogeneity will be indu
ed by the permeability 
oe�
ient k. In our model problem, the
oe�
ient will be sto
hasti
ally generated with log-normal distribution.The method 
hosen to test aggregations will be two-level S
hwarz pre
onditioner for CG. It usesde
omposition of 
omputational domain Ω into overlapping subdomains Ωδ
i . The subdomainsare then used to de�ne de
omposition of �nite element spa
e Vh:

Vh = V0 + V1 + . . . + Vk

Vi =
{
v ∈ Vh, v ≡ 0 in Ω \ Ωδ

i

}
,∀i ∈ {1 . . . k} ,where the FE spa
e V0 
orresponds to a 
oarse triangulation TH . Then it is possible to 
on-stru
t various S
hwarz-type pre
onditioners, the simplest and most 
ommonly used is additivepre
onditioner (BAS),

BAS =
k∑

i=0

RT
i A

−1
i Ri,where {Ri}k

i=1 are restri
tion operators mapping nodes from Ω to Ωδ
i and Ai is FE matrix
orresponding to problem on subdomain Ωδ

i with homogeneous Diri
hlet boundary 
ondition onboundary. The multipli
ative and various hybrid pre
onditioners 
an be found in [5℄. The matrix
A0 
orresponds to auxiliary 
oarse spa
e V0 with restri
tion operator R0. This is the pla
e whereaggregation 
omes in the play, the restri
tion operator R0 is de�ned by (2) and matrix A0 byterm A0 = R0AhR

T
04 Con
lusionIn this paper overview of some aggregation te
hniques was presented. The aggregations wereused for 
onstru
tion of 
oarse spa
e for two-level S
hwarz pre
onditioner for CG method. Themotivation for using model problem with strong heterogeneity is development of robust solverswith respe
t to heterogeneity. These solvers are needed for e.g. investigation of (geo)
ompositeswhere strong heterogeneity is present. When using two-level method as a pre
onditioner, thequality of auxiliary 
oarse spa
e dramati
ally in�uen
es the number of iterations needed to solvethe problem. The aggregation te
hniques represent one possible approa
h to get the 
oarse spa
eof desired qualities. Note that an e�
ient appli
ation of a parallel aggregation-based solver formi
rostru
ture analysis is in [6℄.A
knowledgement: This work has been supported by the grants GA �R number 103/09/H078and 105/09/1830.Referen
es[1℄ Y. Notay. Aggregation-Based Algebrai
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[2℄ R. S
hei
hl, E. Vainikko. Additive S
hwarz with Aggregation-Based Coarsening for Ellipti
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Ma
ros
opi
 tra�
 �ow models: requiem and ressure
tionM. Brandner, J. Egermaier, H. Kopin
ováNTIS � New Te
hnologies for Information So
ietyDepartment of Mathemati
s University of West Bohemia in Pilsen
1 Introdu
tionWe shortly des
ribe basi
 ideas of ma
ros
opi
 tra�
 �ow modeling, dis
uss the features of thesemodels 
riti
ally, and give proposals for their improvements. We also propose three numeri
als
hemes based on the �nite volume approa
h and 
ompare them.2 First order ma
ros
opi
 modelsTra�
 �ow modeling has be
ome a major problem in many 
ountries after the Se
ond World War.We 
an get di�erent types of mathemati
al models depending on what s
ale we 
hoose: fromthe mi
ros
opi
 to the ma
ros
opi
 through the kineti
 one. The �rst ma
ros
opi
 mathemati
almodels were developed in the 50's of the 20th 
entury. The basi
 �rst order model (i.e., themodel 
ontaining one equation) was formulated by Lighthill in 1955 and Whitham and Ri
hardsin 1956 as presented in [6℄ (LWR model). It is based on the analogy between vehi
les in tra�
�ow and parti
les in a �uid. The basi
 equation represents the 
onservation law for the vehi
les

̺t + [f(̺)]x = 0, (1)where ̺ = ̺(x, t) is the density of vehi
les, f = f(̺) = v̺ is the �ux, v = v(̺) is the velo
ity.The fun
tion f = f(̺) represents a 
onstitutive relation and it is 
alled the fundamental diagram.For example, we 
an put
f(̺) = vmax

(
1 − ̺

̺max

)
, (2)where vmax is a given maximal velo
ity and ̺max is a given maximal density. This model isidenti
al to the �rst-order �uid dynami
s models of water �ow in rivers and gas �ow through pipes(ex
ept for the spe
i�
 form of f = f(̺) � see [3℄). Daganzo [3℄ summarizes the short
omingsof this type of models: they are not suitable for light tra�
, they are not des
ribe 
orre
tly themotion of a vehi
le through a sho
k, they don't predi
t some instabilities. Newell shows (see [12℄),however, that the ma
ros
opi
 LWR model is in agreement with some mi
ros
opi
 
ar-followingmodels. LeVeque shows in [11℄ that problems 
an o

ur when the �ux fun
tion f = f(̺) isneither 
on
ave nor 
onvex (the night time tra�
 �ow). In this 
ase the entropy solution of theRiemann problem (see [11℄) does not address the real tra�
 �ow. In this situation it is ne
essaryto pay spe
ial attention to the anisotropy of the model, i.e., to the fa
t that the drivers makede
i
ions a

ording to the situation ahead of the vehi
le, not behind it. Daganzo also arguesthat the 
on
ept of relaxation time or vis
osity e�e
ts (and we add: numeri
al vis
osity e�e
ts)is not a self-evident property of the tra�
 �ow.

12



3 Se
ond order ma
ros
opi
 modelsSome resear
hers have tried to eliminate the short
omings of the above models so that theyimproved them by introdu
ing relations that are analogous to the 
onservation of momentum in�uids. They obtained the se
ond order models, i.e., the models 
ontaining two partial di�erentialequations. For example, the Payne-Whitham model (1971, 1974) 
an be written as (for brevity,we present the simpli�ed version without the relaxation term)
̺t + (̺v)x = 0,

(̺v)t + [̺v2 + p(̺)]x = 0,
(3)where ̺ = ̺(x, t) is the density, v = v(x, t) is the velo
ity and p = p(̺) is a given 
onstitutiverelation. Daganzo [3℄ shows three basi
 weaknesses of this type of models:1. A �uid parti
le responds to stimuli from the front and from behind, but a 
ar is ananisotropi
 parti
le that mostly responds to frontal stimuli.2. The width of a tra�
 sho
k only en
ompasses a few vehi
les.3. Unlike mole
ules, vehi
les have personalities.Other Daganzo's 
omments are also signi�
ant. The model des
ribed above is a system of twohyperboli
 partial di�erential equations (for a suitable 
hoi
e of p = p(̺)). But a 
hara
teristi
speed 
an be greater than the ma
ros
opi
 �uid velo
ity (future vehi
le behavior is determinedby what happened behind it). Furthermore, one must re
ognize the basi
 observation that thenumber of mole
ules in the �uid and the number of 
ars on road are radi
ally di�erent.Another major 
ontribution to this resear
h is the work of Aw, Klar, Materne and Ras
le [1, 2℄.They propose the following model (again for brevity, we present a simpli�ed version without therelaxation term):

̺t + [q − ̺p(̺)]x = 0,
qt + [q2/̺− p(̺)q]x = 0,

(4)where ̺ = ̺(x, t) is the density, v = v(x, t) is the velo
ity and p = p(̺) is a given 
onstitutiverelation. This model has two very interesting properties:1. The eigenvalues of the Ja
obi matrix of the �ux ve
tor are λ1(̺, v) = v − ̺p′(̺) and
λ2(̺, v) = v. It means that if the fun
tion p = p(̺) is in
reasing then the maximal
hara
teristi
 speed is v.2. The system (4) 
an be transformed into Lagrangian mass 
oordinates. If we use the Go-dunov method (or even the �nite volume method with the Roe or HLL solver) to solvethe transformed problem we obtain dis
rete relations that 
orrespond to the mi
ros
opi
follow-the-leader model (see [1℄). In other words, we get a dire
t link between the 
ontin-uous and dis
rete model. Noti
e that the previous model (3) is based on analogy with thedes
ription of �uid �ow only.4 Numeri
al s
hemes and experimentsWe use three numeri
al methods to solve (4) � the 
entral s
heme (see [9℄), 
entral-upwind s
heme(see [7℄) and the s
heme based on the Roe approximate Riemann solver (see [10℄). It should be13



Figure 1: Solution of the Riemann problem 1 
ompared with the mi
ros
opi
 model representedby the Godunov method in Lagrangian 
oordinates (overall situation and a detailed view).

Figure 2: Solution of the Riemann problem 2 (overall situation and a detailed view).noted that in the 
ase of the Roe linearization we must determine the appropriate Roe matrixfor the di�erent 
onstitutive relations p = p(̺) separately. This itself may be a very di�
ultproblem. We 
onsider two Riemann problems with1. left and right states given by ̺L = 0.5, ̺R = 1, vL = 10, vR = 3. The dis
retization stepsare 
hosen as ∆x = 10, ∆t = 0.25 and T = 250 (initial number of 
ars: 7500);2. left and right states given by ̺L = 0.5, ̺R = 0.5, vL = 6, vR = 12. The dis
retizationsteps are 
hosen as ∆x = 5, ∆t = 0.1 and T = 100 (initial number of 
ars: 5000). Theva
uum state appears during the time evolution. In the 
ase of the Roe method we 
ansee instability 
aused by linearization.5 Con
lusionThe 
entral and 
entral-upwind s
hemes are Riemann-free methods. The 
entral-upwind s
hememay be interpreted as a method that uses the HLL solver. The HLL solver is based on thede
omposition of the jump into two waves. Moreover, it does not use linearization, and thus it
an be shown that the method that is based on this solver is positive. The s
heme based on theRoe solver uses a spe
ial type of linearization - in the 
ase of the single wave it approximatesthe sho
k speed exa
tly (in other 
ases, it is only an approximation). It seems therefore that inthe 
ase of the model based on two nonlinear partial di�erential equations the 
entral-upwindmethod is the best approximation of the dis
rete follow-the-leader model. In 
on
lusion, we notethat it is very important to distinguish what is the error of model, the error of numeri
al methods14



and how to interpret the results of numeri
al simulations 
orre
tly. In the near future, we plan to
ompare our simulations with data obtained in real experiments, to use phase transition modelsand to develop numeri
al models for road networks.A
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An e�
ient solution of elasto-plasti
 problems in me
hani
sM. �ermák, T. Kozubek, A. MarkopoulosV�B - Te
hni
al University of Ostrava1 Introdu
tionThe goal of this paper is to present an e�
ient algorithm for the numeri
al solution of elasto-plasti
 problems in me
hani
s. These problems with hardening lead to the so-
alled quasistati
problems, where ea
h nonlinear and nonsmooth time step problem is solved by the semismoothNewton method. In ea
h Newton iteration we have to solve an auxiliary (possibly of large size)linear system of algebrai
 equations. In this paper, we propose a new approa
h how to solve su
hsystem e�
iently using in a sense optimal algorithm based on our Total-FETI variant of FETI(Finite Element Tearing and Inter
onne
ting) domain de
omposition method. The e�
ien
y isillustrated by the results of 3D elasto-plasti
 model ben
hmark.2 TFETI domain de
ompositionTo apply the TFETI domain de
omposition, we tear ea
h body from the part of the boundarywith the Diri
hlet boundary 
ondition, de
ompose ea
h body into subdomains, assign ea
h sub-domain a unique number, and introdu
e new �gluing� 
onditions on the arti�
ial intersubdomainboundaries and on the boundaries with imposed Diri
hlet 
ondition. For the arti�
ial intersub-domain boundaries, we introdu
e the following notation: Γpq
G denotes the part of Γp that is gluedto Ωq and Γp

G denotes the part of Γp that is glued to the other subdomains. Obviously Γpq
G = Γqp

G .An auxiliary de
omposition of the problem with renumbered subdomains and arti�
ial intersub-domain boundaries is in Fig. 1. The gluing 
onditions require 
ontinuity of the displa
ementsand of their normal derivatives a
ross the intersubdomain boundaries.
Ω1

Ω1 Ω2

Ω3 Ω4

H h

λ

Figure 1: TFETI domain de
omposition with subdomain renumbering.The �nite element dis
retization of Ω = Ω
1 ∪ . . .∪Ω

s with a suitable numbering of nodes resultsin the quadrati
 programming (QP) problem
1

2
u⊤Ku− f⊤u → min subje
t to Bu = c, (1)16



where K = diag(K1, . . . ,Ks) denotes a symmetri
 positive semide�nite blo
k-diagonal matrix oforder n, B denotes an m× n full rank matrix, f ∈ R
n, and c ∈ R

m.The diagonal blo
ks Kp that 
orrespond to the subdomains Ωp are positive semide�nite sparsematri
es with known kernels, the rigid body modes. The blo
ks 
an be e�e
tively de
omposedusing Cholesky fa
torization [1℄. The ve
tor f des
ribes the nodal for
es arising from the volumefor
es and/or some other imposed tra
tion.The matrix B with the rows bi and the ve
tor c with the entries ci enfor
e the pres
ribeddispla
ements on the part of the boundary with imposed Diri
hlet 
ondition and the 
ontinuityof the displa
ements a
ross the auxiliary interfa
es. The 
ontinuity requires that biu = ci = 0,where bi are ve
tors of the order n with zero entries ex
ept 1 and −1 at appropriate positions.Typi
ally m is mu
h smaller than n.Even though (1) is a standard 
onvex quadrati
 programming problem, its formulation is notsuitable for numeri
al solution. The reasons are that K is typi
ally ill-
onditioned, singular,and the feasible set is in general so 
omplex that proje
tions into it 
an hardly be e�e
tively
omputed.The 
ompli
ations mentioned above may be essentially redu
ed by applying the duality theoryof 
onvex programming (see, e.g., Dostál [2℄). The Lagrangian asso
iated with problem (1) is
L(u,λ) =

1

2
u⊤Ku− f⊤u + λ⊤(Bu − c). (2)It is well known [2℄ that (1) is equivalent to the saddle point problem

L(u,λ) = sup
λ

inf
u
L(u,λ). (3)For more details how to solve e�
iently the resulting saddle-point system we re
ommend [2, 5℄.3 Elasto-plasti
ityElasto-plasti
 problems are the so-
alled quasi-stati
 problems, where the history of loadingis taken into a

ount. We 
onsider the von Mises elasto-plasti
ity with the strain isotropi
hardening and in
remental �nite element method with the return mapping 
on
ept. More detailsare in [3℄.The elasto-plasti
 deformation of an body Ω after loading is des
ribed by the Cau
hy stresstensor σ, the small strain tensor ε, the displa
ement u, and the nonnegative hardening param-eter κ. Symmetri
 tensor is represented by the ve
tors and their deviatori
 part is denoted bythe symbol dev.Let us denote the spa
e of 
ontinuous and pie
ewise linear fun
tions 
onstru
ted over a reg-ular partition of Ω into tetrahedrons with the dis
retization norm h by Vh ⊂ V , where V ={

v ∈ [H1(Ω)]3 : v = 0 on ΓU

}. Let
0 = t0 < t1 < . . . tk < . . . < tN = t∗ (4)be a partition of the time interval [0, t∗]. Then the solution algorithm after time and spa
edis
retization has the form: 17



Algorithm 3.1. Initial step: u0
h = 0, σ0

h = 0, κ0
h = 0,2. for k = 0, . . . , N − 1 do (load step)3. From previous step we have: uk
h, σk

h, κk
h and 
ompute △uh, △σh, △κh

△εh = ε(△uh), △uh ∈ Vh (5)
△σh = Tσ(σk

h, κk
h, △εh), (6)

△κh = Tκ(σk
h, κk

h, △εh), (7)4. Solution △σh(σk
h, κk

h, ε(△uh)) is substituted into equation of equilibrium:
∫

Ω
△σT

h (σk
h, κk

h, ε(△uh))ε(vh)dx = 〈△Fk, vh〉, ∀vh ∈ Vh (8)leads to a nonlinear system of equations with unknown △uh whi
h is solved using theNewton method [4℄. The linearized problem arising in ea
h Newton step is solved byTFETI algorithmi
 s
heme proposed above.5. Then we 
ompute new aproximations: uk+1
h = uk

h + △uh, σk+1
h = σk

h + △σh, κk+1
h =

κk
h + △κh.6. enddoAbove we 
onsider the following notation. Let C denote the Hook's matrix, E represent linearoperator dev, µ, λ be the Lamé 
oe�
ients, △fk

h be the in
rement of the right hand side and
σt

h = σk
h + C△εh. For return mapping 
on
ept we de�ne

△σh = TRM
σ (σk

h,κ
k
h,△εh) =

{
C△εh if P (σt

h,κ
k
h) ≤ 0,

C△εh − γRn̂ if P (σt
h,κ

k
h) > 0,

(9)
△κh = TRM

κ (σk
h,κ

k
h,△εh) =

{
0 if P (σt

h,κ
k
h) ≤ 0,

γz = γR‖Cp‖−1z if P (σt
h,κ

k
h) > 0,

(10)where
γR =

3µ

3µ+Hm

√
2

3
P (σt

h,κ
k
h), n̂ =

dev(σt
h)

‖dev(σt
h)‖ , ‖Cp‖ = 2µ

√
3

2
, z = 1 (11)and plasti
ity fun
tion

P (σt
h,κ

k
h) =

√
3

2
‖dev(σt

h)‖ − (Y +Hmκk
h), Y,Hm > 0. (12)The fun
tion γRn̂ is semismooth and potential. The derivative of TRM

σ is
(TRM

σ )
′

(△ε) = C − 2µ 3µ
3µ+Hm

[E+

+
√

2
3

Y0+Hmκk
h

‖dev(σk
h
+C△ε)‖

(
dev(σk

h
+C△ε)(dev(σk

h
+C△ε))T

‖dev(σk
h
+C△ε)‖2 − E

)]
.

(13)If we represent a fun
tion vh ∈ Vh by the ve
tor v ∈ R
n and omit index k then (8) 
an berewritten as the system of nonlinear equations

F (△u) = △f , (14)where
〈F (v),w〉 =

∫
Ω〈TRM

σ (ε(vh)), ε(wh)〉dx, ∀v,w ∈ R
n

〈△f ,w〉 = △fh(vh), ∀w ∈ R
n.

(15)18



4 Numeri
al experimentsLet us 
onsider a 3D plate with a hole in the 
enter (due to symmetry only a quatre of the wholestru
ture is used) with the geometry depi
ted in Fig. 2. Boundary 
onditions are spe
i�ed inFig. 3. Symmetry 
onditions are pres
ribed on the left and lower sides of Ω. The surfa
e load
g(t) = 450 sin(2πt) [MPa℄, t ∈ [0, 1

4 ] [se
℄, is applied to the upper side of Ω. The elasto-plasti
material parameters are E = 206900 [MPa℄, ν = 0.29, Y = 450, Hm = 100 and the time interval
[0, 1

4 ] [se
℄ is divided into 50 steps. We 
onsider a mesh with 9471 nodes and 48000 tetrahedrons.In the nth Newton iteration we 
ompute an approximation △un by solving the linear problemof the form Kn△un = △fn − B⊤λn using the TFETI algorithmi
 s
heme proposed above. Westop the Newton method in every time step if ‖△un+1−△un‖/ (‖△un+1‖+‖△un‖) is less than
10−9.Noti
e that the maximum number of the Newton iterations is small for all time steps, therefore themethod is suitable for the problem. In remaining �gures, we depi
t plasti
 and elasti
 elements,von Mises stress in the xy plane 
ross-se
tion with the z 
oordinate -0.5 [mm℄ 
orresponding tothe 
enter of Ω. In Figs. 4, 5 6, we 
an see whi
h elements are plasti
 (gray 
olor) and whi
hare elasti
 (white 
olor). Parti
ularly, in time steps 1-12 we observe only elasti
 behavior, andin time steps 13-50 plasti
 behavior of some elements. The von Mises stress on deformed meshs
aled 10x for better illustration is showed in Fig. 7.
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Figure 2: 3D plate geometry in [mm℄.
Ω

Figure 3: 2D plate geometry in [mm℄and boundary 
onditions.

Figure 4: Plasti
 and elasti
 ele-ments after 1 time step. Figure 5: Plasti
 and elasti
 ele-ments after 35 time steps.19



Figure 6: Plasti
 and elasti
 ele-ments after 50 time steps. 0 2 4 6 8 10
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Figure 7: Von Mises stress on thedeformed mesh.5 Con
lusionWe have presented an e�
ient algorithm for the numeri
al solution of elasto-plasti
 problems.These problems lead to the quasi-stati
 problems, where ea
h nonlinear and nonsmooth timestep problem is solved by the semismooth Newton method. In ea
h Newton iteration we haveto solve an auxiliary (possibly of large size) linear system of algebrai
 equations. We proposeda new approa
h how to solve su
h system e�
iently using in a sense optimal algorithm basedon our Total-FETI variant of FETI domain de
omposition method. The algorithm has beenadapted also to the solution of 
onta
t problems [1℄.A
knowledgement: This work has been supported by the grant GA �R 103/09/H078.Referen
es[1℄ T. Brzobohatý, Z. Dostál, P. Ková°, T. Kozubek, A. Markopoulos: Cholesky de
ompositionwith �xing nodes to stable 
omputation of a generalized inverse of the sti�ness matrix of a�oating stru
ture. A

epted for publishing in IJNME.[2℄ Z. Dostál: Optimal quadrati
 programming algorithms, with appli
ations to variational in-equalities. 1st edition, SOIA 23, Springer US, New York, 2009.[3℄ R. Blaheta: Numeri
al methods in elasto-plasti
ity. Do
umenta Geoni
a 1998, PERES Pub-lishers, Prague, 1999.[4℄ S. Sysala: Appli
ation of the modi�ed semismoth Newton method to some elasto-plasti
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On optimally 
onditioned 
ubi
 spline wavelets on the intervalD. �erná, V. Fin¥kDepartment of Mathemati
s and Dida
ti
s of Mathemati
s, Te
hni
al University of Libere

1 Introdu
tionWavelets are by now a widely a

epted tool espe
ially in signal and image pro
essing. In the�eld of numeri
al mathemati
s, methods based on wavelets are su

essfully used for pre
ondi-tioning of large systems arising from dis
retization of ellipti
 partial di�erential equations, sparserepresentations of some types of operators and adaptive solving of operator equations. Quanti-tative properties of these methods depends on the 
hoi
e of the wavelet basis, in parti
ular onits 
ondition number.Constru
tion of wavelet bases on a bounded domain usually starts with the 
onstru
tion ofwavelets on the real line. Then these wavelets are adapted to the interval and by tensor produ
tto the n-dimensional 
ube. Finally splitting the domain into subdomains whi
h are imagesof (0, 1)n under appropriate parametri
 mappings one obtains wavelet bases on fairly generaldomains. Thus, the properties of the employed wavelet basis on the interval are 
ru
ial for theproperties of the resulting bases on general domain.The �rst biorthogonal spline-wavelet bases on the unit interval were 
onstru
ted in [5℄. Howeversome of them are badly 
onditioned. Then several modi�
ations were proposed. We will men-tion here only the re
ent 
onstru
tion by M. Primbs [6℄ whi
h seems to outperform the previous
onstru
tions with respe
t to the 
ondition number along with spe
tral properties of the 
or-responding sti�ness matri
es for linear and quadrati
 spline-wavelets. In this 
ontribution, wepresent 
onstru
tion of 
ubi
 spline wavelets on the unit interval with a nearly optimal 
onditionnumber (
omparable with the 
ondition number of the spline wavelet bases on the real line).First of all, we summarize the desired properties:

• Riesz basis property. The fun
tions form a Riesz basis of the spa
e L2 (〈0, 1〉).
• Lo
ality. The basis fun
tions are lo
al. Then the 
orresponding de
omposition and re
on-stru
tion algorithms are simple and fast.
• Biorthogonality. The primal and dual wavelet bases form a biorthogonal pair.
• Polymial exa
tness. The primal bases have polynomial exa
tness of order N and the dualbases have polynomial exa
tness of order Ñ . As in [4℄, N + Ñ has to be even and Ñ ≥ N .
• Smoothness. The smoothness of primal and dual wavelet bases is another desired property.It ensures the validity of norm equivalen
es.
• Closed form. The primal s
aling fun
tions and wavelets are known in the 
losed form. It isrequested property for the fast 
omputation of integrals involving primal s
aling fun
tionsand wavelets.
• Well-
onditioned bases. Our obje
tive is to 
onstru
t wavelet bases with improved 
onditionnumber, espe
ially for larger values of N and Ñ .21



From the viewpoint of numeri
al stability, ideal wavelet bases are orthogonal wavelet bases.However, they are usually avoided in numeri
al treatment of partial di�erential and integralequations, be
ause they are not a

essible analyti
ally, the 
omplementary boundary 
onditions
an not be satis�ed and it is not possible to in
rease the number of vanishing wavelet momentsindependent from the order of a

ura
y. Moreover, su�
iently smooth orthogonal waveletstypi
ally have a large support.2 Constru
tion of wavelet bases on the intervalMajority of 
onstru
tions of wavelets start with the 
onstru
tion of the primal s
aling bases. Here,we use the primal s
aling bases designed in [1℄, be
ause they are known to be well-
onditioned.Let N be the desired order of polynomial exa
tness of the primal s
aling basis and let tj =
(tjk)

2j+N−1
k=−N+1 be a sequen
e of knots de�ned by

tjk = 0 for k = −N + 1, . . . , 0,

tjk =
k

2j
for k = 1, . . . 2j − 1,

tjk = 1 for k = 2j , . . . , 2j +N − 1.The 
orresponding B-splines of order N are de�ned by
Bj

k,N (x) :=
(
tjk+N − tjk

) [
tjk, . . . , t

j
k+N

]
t
(t− x)N−1

+ , x ∈ [0, 1] , (1)where (x)+ := max {0, x} and [t1, . . . tN ]t f is the N -th divided di�eren
e of f . The set Φj ofprimal s
aling fun
tions is then simply de�ned as
φj,k = 2j/2Bj

k,N , for k = −N + 1, . . . , 2j − 1, j ≥ 0. (2)The inner fun
tions are translations and dilations of a fun
tion φ whi
h 
orrespond to the pri-mal s
aling fun
tions 
onstru
ted by Cohen, Daube
hies, Feauveau in [4℄. In the following, we
onsider φ from [4℄ whi
h is shifted so that its support is [0,N ].The desired property of the dual s
aling basis Φ̃ is biorthogonality to Φ and polynomial exa
tnessof order Ñ . Let φ̃ be dual s
aling fun
tion designed in [4℄ whi
h is shifted so that its support is[
−Ñ + 1, N + Ñ − 1

]. Then inner s
aling fun
tions are its translations and dilations of φ̃:
θj,k = 2j/2φ̃

(
2j · −k

)
, k = Ñ − 1, . . . 2j −N − Ñ + 1. (3)Further, there will be two types of basis fun
tions at ea
h boundary. Basis fun
tions of the �rsttype are de�ned to preserve polynomial exa
tness in the same way as in [5℄:

θj,k = 2j/2
Ñ−2∑

l=−N−Ñ+2

〈
pÑ−1

k+N−1, φ (· − l)
〉
φ̃
(
2j · −l

)
|[0,1], k = 1 −N, . . . , Ñ −N, (4)where pÑ−1

k are Bernstein polynomials de�ned by
pÑ−1

k (x) := b−Ñ+1

(
Ñ − 1

k

)
xk (b− x)Ñ−1−k , k = 0, . . . , Ñ − 1. (5)22



The reason for the 
hoi
e of Bernstein polynomials 
onsists in their well-
onditionality on [0, b]relative to the supremum norm. In our numeri
al experiments, the 
onstant b = 10 seems to beoptimal.The basis fun
tions of the se
ond type are de�ned as
θj,k = 2

j+1
2

N+Ñ−1∑

l=Ñ−1−2k

h̃lφ̃
(
2j+1 · −2k − l

)
|[0,1], k = Ñ −N + 1, . . . , Ñ − 2, (6)where h̃l are s
aling 
oe�
ients 
orresponding to φ̃. Then they are as mu
h as possible similarto the inner fun
tions.The boundary fun
tions at the right boundary are de�ned to be symmetri
al with the leftboundary fun
tions:

θj,k = θj,2j−N+1−k (1 − ·) , k = 2j −N − Ñ + 2, . . . , 2j − 1. (7)Sin
e the set Θj :=
{
θj,k : k = −N + 1, . . . , 2j − 1

} is not biorthogonal to Φj, we derive a newset Φ̃j from Θj by biorthogonalization. Let Aj = (〈φj,k, θj,l〉)2
j−1

j,l=−N+1, then viewing Φ̃j and Θjas 
olumn ve
tors we de�ne
Φ̃j := A−T

j Θj, (8)assuming that Aj is invertible, whi
h was the 
ase for all tested 
hoi
es of N , Ñ .The �nal step is to determine the 
orresponding wavelets. This problem 
an be transformedfrom fun
tional analysis to linear algebra by a general prin
iple 
alled stable 
ompletion whi
hwas proposed in [2℄. The initial stable 
ompletion was found by the method from [5℄ with somesmall 
hanges.For more details on the 
onstru
tion, the adaptation to 
omplementary boundary 
onditions,properties of 
onstru
ted bases, and the 
omparison of the quantitative behaviour in the adaptivewavelet method for 
ubi
 wavelet bases from [3℄ and [6℄, we refer to [3℄.A
knowledgement: This work has been supported by the Ministry of Edu
ation, Youth andSports of the Cze
h Republi
 through the Resear
h Center 1M06047.Referen
es[1℄ C.K. Chui, E. Quak: Wavelets on a bounded interval. In Numeri
al Methods of Approxima-tion Theory, D. Braess and L. L. S
humaker (Eds), Birkhäuser, 1992, 53�75.[2℄ J.M. Carni
er, W. Dahmen, J.M. Peña: Lo
al de
ompositions of re�nable spa
es. Appl.Comp. Harm. Anal. 3, 1996, 127�153.[3℄ D. �erná, V. Fin¥k: Constru
tion of optimally 
onditioned 
ubi
 spline-wavelets on theinterval. Advan
es in Computational Mathemati
s, DOI: 10.1007/s10444-010-9152-5, 2010.[4℄ A. Cohen, I. Daube
hies, J.C. Feauveau: Biorthogonal bases of 
ompa
tly supported wavelets.Comm. Pure and Appl. Math. 45, 1992, 485�560.[5℄ W. Dahmen, A. Kunoth, K. Urban: Biorthogonal spline wavelets on the interval - stabilityand moment 
onditions. Appl. Comp. Harm. Anal. 6, 1999, 132�196.[6℄ M. Primbs: New stable biorthogonal spline-wavelets on the interval. Results in Mathemati
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On averaging in the domain de
omposition methodsM. �ertíková, P. Burda, J. Novotný, J. �ístek
1,2,3 Cze
h Te
hni
al University in Prague
4 Institute of Mathemati
s AS CR, Prague

1 Introdu
tionSubstru
turing Domain De
ompositon (DD) methods [1℄ are widely used as pre
onditioners forsolving large systems of linear algebrai
 equations obtained by �nite element dis
retization ofse
ond order ellipti
 problems. There are two main 
lasses of the substru
turing methods: primalmethods (like 
lassi
al Neumann-Neumann method, BDD or BDDC) and dual ones (like FETIor FETI-DP methods). Both 
lasses 
an be regarded as equivalent in a sense that they 
an bedes
ribed in a 
ommon framework and that a primal method and the 
orresponding dual one hasthe same 
onvergen
e properties (see [2℄). Both 
lasses also use some sort of weighted averaging(or weighted distribution) of values a
ross the interfa
e.Although we 
on
entrate on BDDC in this paper, we believe that our ideas 
an be used for otherprimal and dual substru
turing DD methods as well. It 
an be found in [2℄ that a primal (BDDC)and the 
orrespondig dual (FETI-DP) method 
an be determined by a 
hoi
e of two operators:the inje
tion R and the averaging E, whi
h also appear in the estimate of the 
ondition numberof the pre
onditioned operator. Operator R represents 
ontinuity 
onditions a
ross the interfa
eand thus also the 
hoi
e of the 
oarse spa
e. A lot of work has been devoted to investigation ofin�uen
e of di�erent 
hoi
es of R on 
onvergen
e properties. For signi�
ant results of this e�ortsee for instan
e [1℄ or [3℄. In this paper we fo
us on the averaging operator E, whi
h seems tobe left out of main dire
tion of resear
h so far. We introdu
e a general framework for derivationof the averaging operator, from whi
h we re
over the standard 
hoi
e of the operator E found inliterature and suggest some new proposals.2 Primal and dual substru
turing methodsLet us 
onsider a boundary value problem with a self-adjoint operator de�ned on a domain
Ω ⊂ R

2 or R
3. If we dis
retize the problem by means of the standard �nite element method(FEM), we arrive at the solution of a system of linear equations in the matrix form

Ku = f , (1)where K is large, sparse, symmetri
 positive de�nite (SPD) matrix and f represents the loadve
tor. Let us de
ompose the domain Ω into N non-overlapping subdomains Ωi, i = 1, . . . ,N .Unknowns 
ommon to at least two subdomains form the global interfa
e denoted as Γ. Remainingunknowns are 
lassi�ed as belonging to subdomain interiors. The global interfa
e Γ 
an beexpressed as union of lo
al interfa
es Γi, i = 1, . . . ,N , 
ontaining interfa
e unknowns involvedjust in subdomain Ωi.
24



The �rst step typi
al for substru
turing DD methods is the redu
tion of the problem tothe interfa
e . Without loss of generality, suppose that unknowns are ordered so that interiorunknowns form the �rst part and the interfa
e unknowns form the se
ond part of the solutionve
tor, i.e. u =
[

uo û
]T , where uo stands for all interior unknowns and û for unknowns atinterfa
e. System (1) now 
an be formally rewritten to blo
k form

[
Koo Kor

Kro Krr

] [
uo

û

]
=

[
fo

f̂

]
. (2)The hat symbol (̂ ) is used to denote global interfa
e quantities. If we suppose the interiorunknowns ordered subdomain after subdomain, then the submatrix Koo is blo
k diagonal withea
h diagonal blo
k 
orresponding to one subdomain. After eliminating all the interior unknownsfrom (2), we arrive at S
hur 
omplement problem for the interfa
e unknowns

Ŝ û = ĝ, (3)where Ŝ = Krr − KroK
−1
oo Kor is the S
hur 
omplement of (2) with respe
t to interfa
e and

ĝ = f̂ − KroK
−1
oo fo is sometimes 
alled 
ondensed right-hand side. Interior unknowns uo aredetermined by interfa
e unknowns û via the system of equations Koouo = fo − Korû, whi
hrepresents N independent subdomain problems with Diri
hlet boundary 
ondition pres
ribed onthe interfa
e and 
an be solved in parallel. The main obje
tive represents the solution of problem(3), whi
h is solved by the pre
onditioned 
onjugate gradient method (PCG).The main idea of the primal DD substru
turing methods 
an be expressed as splitting thegiven residual of PCG method to subdomains, solving subdomain problems and proje
ting theresult ba
k to the global domain. A primal additive pre
onditioner of the Neumann-Neumanntype 
an be written as MP = ES−1ET , where operator ET represents splitting of the residualto subdomains, S−1 stands for solution of subdomain problems, and E represents proje
tion ofsubdomain solutions ba
k to the global problem by some averaging. The 
ondition number κ ofthe pre
onditioned operator MP Ŝ is bounded by

κ ≤ ||RE||2S = ||I −RE||2S , (4)where operator R splits the global interfa
e into subdomains and relation ER = I is assumed,whi
h means that if the problem is split into subdomains and then proje
ted ba
k to the wholedomain, the original problem is obtained. The energeti
 norm on the right-hand side of (4) isde�ned by the s
alar produ
t as ||u||2S = 〈Su, u〉. The estimate (4) 
an be found in [2℄.The main idea of the BDDC ([2℄) is to introdu
e a global 
oarse problem by imposing 
ontinuity
onditions a
ross the interfa
e in sele
ted 
oarse unknowns, in order to a
hieve better pre
ondi-tioning and to �x `�oating subdomains' to guarantee invertibility of S. R now represents splittingof the global interfa
e into subdomains ex
ept the 
oarse unknowns and ET distributes residualamong neighbouring subdomains only in those interfa
e unknowns whi
h are not 
oarse. Thus inBDDC, only part of the global residual is split into subdomains; residual at the 
oarse unknownsis left undivided � it is pro
essed by the global 
oarse problem.Dual methods 
an be des
ribed using the 
omplementary proje
tion to proje
tion RE. It isusually expressed by 
omposition of other two operators as I−RE = BT
DB. Operator B spe
i�esjump at interfa
e values 
oming from adja
ent subdomains and operator BT

D (determined by E)distributes a given jump a
ross the interfa
e among adja
ent subdomains. Relationship BBT
D = Iis assumed. Instead of solving (3), linear system BS−1BT λ = BS−1ET f̂ is solved for unknown λusing pre
onditioner MD = BDSBD

T . For the 
ondition number of the pre
onditioned operator
MDS

−1, the same upper estimate as for primal method is valid, see [2℄: κ ≤ ||BT
DB||2S =

||I −RE||2S = ||RE||2S . 25



3 Choi
e of the averaging operator EWe assume that the operator R is given and our goal is to design the averaging operator E sothat it in some sense minimizes the energeti
 norm on the right hand side of the estimate (4).Let us show the main ideas on the simple example derived from some s
alar equation solved onthe domain splitted to just two subdomains, without 
oarse unknowns (more detailed analysis
an be found in [4℄). In this 
ase R and a standard 
hoi
e of E have the matrix form
R =

[
I

I

]
, E =

[
A I − A

]
, (5)where A = diag(α1, α2, . . . , αn) is a diagonal matrix of weights αi at interfa
e nodes of the �rstsubdomain.Our approa
h is to start with some �xed u = (u1, u2)

T with the interfa
e jump d = u2−u1 andtry to �nd E so that it minimizes energy norm of the proje
tion (I−RE)u of the given ve
tor u.The square of the energy norm 
an be expressed as ||(I − RE)u||2S = uT (I−RE)TS(I−RE)u =

dT (AT ŜA − ATS1 − S1A + S1 )d , where Si are lo
al S
hur 
omplements and we use the fa
tthat S = diag(S1,S2) and Ŝ = S1 + S2 in the 
ase of two subdomains. The formula above 
anbe seen as a quadrati
 fun
tion of variables αi, whi
h 
an be minimised by 
omputing all partialderivatives and equating them to zero:
∂

∂αi
||(I − RE)u||2S = 2di


∑

j

ŝijαjdj −
∑

j

s1ijdj


 = 0 ∀ i . (6)Here di stands for the i-th 
omponent of the jump ve
tor d and elements of the matri
es Ŝ and

S1 are denoted as ŝij and s1ij , respe
tively. Values of αi obtained from (6) are tailored to theinterfa
e jump d of the given u. Let us take d as a test ve
tor whi
h 
an un
over hidden featuresof Ŝ and R and, moreover, whi
h 
an be 
hosen so that it simpli�es the system (6). One option isto 
hoose all the 
artesian basis ve
tors ek, one after another, whi
h leads to the popular 
hoi
eof
αi = s1ii/(s

1
ii + s2ii) . (7)For less elementary test ve
tors d we make an additional simpli�
ation: Let us assume that all αiare equal to the same value of α for some set of nodes (so we are going to �nd some averagevalue). Then, after adding all equations (6) together, we get

α = dTS1 d/dT (S1 + S2)d . (8)This formula 
an be generalized to more than 2 subdomains. Our proposition is to 
hoose severaltest ve
tors with nonzero values at some sele
ted nodes only, typi
ally fa
e or edge, and 
ompute
orresponding value of α for that fa
e or edge.3.1 Numeri
al results and 
on
lusionFor a simple preliminary test a 2D Poisson equation on a re
tangular domain was 
hosen. Thedomain was divided into two re
tangular subdomains of the same size and shape, both of whi
htou
h the boundary with pres
ribed Diri
hlet boundary 
ondition. The problem was dis
retizedby FEM with bilinear elements. BDDC was used just as an iteration method, not as a pre
on-ditioner 
ombined with PCG. Four di�erent methods for 
hoi
e of E were tested:26



iter. Method I Method II Method III Method IV αwithout 
oarse nodes1. 1.5001 1.4966 0.4235 1.5001 0.5002. 0.3872 0.3854 0.0806 0.0001 0.2763. 0.0999 0.0992 0.0153 2e-06 0.4244. 0.0258 0.0255 0.0029 1e-09 0.4925. 0.0066 0.0066 0.0006 4e-15 0.2762 
oarse nodes1. 0.7349 0.7332 0.2402 0.7349 0.5002. 0.0929 0.0925 0.0140 0.0211 0.3763. 0.0117 0.0117 0.0008 0.0012 0.3764. 0.0015 0.0015 5e-05 7e-05 0.3765. 0.0002 0.0002 3e-06 4e-06 0.376Table 1: Comparisson of dis
ussed methods.I : arithmeti
 average, i.e. α = 0.5 ,II : weighted average (7), i.e. αi = s1ii/ (s1ii + s2ii) ,III : proposition (8) with d = (1, . . . , 1), i.e. α =
∑

i,j s
1
ij/
∑

i,j(s
1
ij + s2ij) ,IV : proposition (8) with d 
hosen as a
tual interfa
e jump.Table 1 
ontains norms of errors (di�eren
es from exa
t solution) at �rst 5 iterations. Thereare two di�erent 
hoi
es of 
oarse unknowns: either none (�rst part of the table), or 2 nodesat the opposite ends of the interfa
e (se
ond part). For Method II, 
omputed values of αiwere between 0.4997 and 0.5000 in both 
ases (i.e. very 
lose to the arithmeti
 average). ForMethod III, value of α was 0.276 for the �rst 
ase and 0.397 for the se
ond. For Method IV,values of α were re
omputed in every step and are presented in the last 
olumn. Very similarresults were obtained also in the 
ase of two re
tangular subdomains di�erent in size.For the simple test problem, it seems that Methods III and IV outperform Methods I and II. Aninteresting observation is that for the �rst three methods, using 
oarse unknowns leads to betterperforman
e (as one would expe
t), while it slightly worsens the 
onvergen
e of Method IV.These are just preliminary results and numeri
al tests will be performed for 2D and 3D problemswith more subdomains.A
knowledgement: This resear
h has been supported by the grant No. 106/08/0403 of theCze
h S
ien
e Foundation and by proje
t MSM 6840770010.Referen
es[1℄ A. Toselli, O. Widlund: Domain de
omposition methods�algorithms and theory. SpringerSeries in Computational Mathemati
s, vol. 34, Springer-Verlag, Berlin, 2005.[2℄ J. Mandel, B. Sousedík: BDDC and FETI-DP under minimalist assumptions. Computing81, 2007, 269�280.[3℄ J. Mandel, B. Sousedík: Adaptive sele
tion of fa
e 
oarse degrees of dreedom in the BDDCand the FETI-DP iterative substru
turing methods Comput. Methods Appl. Me
h. Engrg.196 (8), 2007, 1389�1399.[4℄ M. �ertíková, P. Burda, J. Novotný, J. �ístek: Some remarks on averaging in the BDDCmethod. Pro
eedings of PANM'15, Horní Maxov, 2010. To appear.27



On two variants of in
remental 
ondition estimationJ. Duintjer Tebbens, M. T·maInstitute of Computer S
ien
e AS CR, Prague
1 Introdu
tionClassi
al 2-norm 
ondition estimators often assume a given triangular fa
torization and estimatethe 
ondition numbers of the triangular fa
tors. For instan
e, if the matrix A is symmetri
positive de�nite and A = LLT is its Cholesky de
omposition, then κ(A) = κ(L)2 is used.So-
alled in
remental 
ondition estimation for (lower) triangular matri
es was proposed at thebeginning of the nineties [1℄, [2℄. It 
omputes a sequen
e of approximate 
ondition numbers ofthe leading upper left submatri
es of growing dimension. The approximation for the 
urrentsubmatrix is obtained from an approximate singular ve
tor 
onstru
ted without a

essing theprevious submatri
es. This makes the pro
edure relatively inexpensive and parti
ularly suitedwhen a triangular matrix is 
omputed one row at a time. A similar strategy was proposed later [5℄and re
ommended for sparse matri
es.In our talk we show that the two te
hniques may di�er 
onsiderably with respe
t to their abilityto �nd a

urate approximations of either the minimal or the maximal singular value, althoughthere is no general superiority of one te
hnique for the 
ondition number. We will also explainhow the di�eren
es 
an be exploited when the inverse of the triangular matrix is 
omputed alongwith the triangular matrix itself. This 
an be done at low expenses; see [4℄ for a dis
ussionof well-known implementations and [3℄ for a re
ent strategy. Using the inverse, we obtain anin
remental 
ondition estimator whi
h is signi�
antly better than the estimators of [1℄ and [5℄.In this extended abstra
t we give a brief des
ription of the original in
remental te
hnique from [1℄and a new interpretation of the alternative te
hnique from [5℄. Then we present experiments
ombining both te
hniques when the inverse of the triangular matrix is available.2 The original in
remental 
ondition estimation te
hniqueThe in
remental 
ondition estimation of [1℄ for lower triangular matri
es 
an be des
ribed asfollows. Assume we have given a ve
tor x whi
h 
omes 
lose to a maximum norm solution of
Lx = d with ‖d‖ = 1. Then σmin(L) ≈ 1/‖x‖ and σ̃min(L) = 1/‖x‖ is used as an approximation.To �nd an approximation to the minimal singular value of

L′ =

(
L 0
vT γ

)
, (1)one sear
hes for s ≡ sinφ and c ≡ cosφ su
h that

(
L 0
vT γ

)(
sx

c−sα
γ

)
=

(
sd
c

)
, (2)
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where α = vTx. The parameters s and c are 
hosen su
h that the new approximate singularve
tor ( sx
c−sα

γ

) has maximal norm. In other words, s and c solve
max
c,s

s2‖x‖2 +
(c− sα)2

γ2
subje
t to c2 + s2 = 1. (3)The solution to this maximization problem 
an be found in [1℄. With the 
hosen c and s, theresulting approximate minimal singular value is

σ̃min(L′) =
1√

s2‖x‖2 + (c−sα)2

γ2

≈ σmin(L′).One 
an estimate the largest singular value similarly. Assume we have given a ve
tor x whi
h
omes 
lose to a minimum norm solution of Lx = d with ‖d‖ = 1. Then σmax(L) ≈ 1/‖x‖ and
σ̃max(L) = 1/‖x‖ is used as an approximation. To �nd an approximation of σmax(L′), solve theminimization problem

min
c,s

s2‖x‖2 +
(c− sα)2

γ2
subje
t to c2 + s2 = 1, (4)and de�ne, with the resulting c and s, the estimate as

σ̃max(L′) =
1√

s2‖x‖2 +
(

c−sα
γ

)2
≈ σmax(L′).3 An alternative in
remental 
ondition estimation te
hniqueNow suppose we want to estimate the 
ondition number of an upper triangular matrix

R′ =

(
R v
0 γ

)
. (5)Of 
ourse, one may apply the te
hnique mentioned above to (R′)T , exploiting the fa
t thatsingular values are invariant under transposition. This would amount to approximating theextremal right singular ve
tors of (R′)T , although in some 
ases the extremal left singular ve
torsof (R′)T may be easier to approa
h. To �nd left singular ve
tors (i.e. right singular ve
torsof R′), we set up the problem as follows. With an approximate singular ve
tor x satisfying

Rx = d, ‖d‖ = 1, we will sear
h for numbers α, β su
h that
R′ =

(
R v
0 γ

)(
βx
α

)
=

(
βd+ αv
γα

)
. (6)Then we ask the numbers α, β to satisfyoptc,s β2‖x‖2 + α2 subje
t to β2 + α2‖v‖2 + 2αβvT d+ γ2α2 = 1, (7)where opt stays for maximization if we approa
h σmin(R′) and for minimization if we approa
h

σmax(R′). 29



Introdu
e the abbreviations a = ‖v‖2 + γ2 and b = vT d. A

ording to elementary geometrythe numbers α, β satisfying the 
onstraint in (7) lie on an ellipse with the origin as 
enter andsemi-axes rotated by an angle of
φ = 1/2 arctan

2b

1 − a
;the lengths of the semi-axes a′ and b′ are

a′ = a cos2 φ− 2b cos φ sinφ+ sin2 φ, b′ = a sin2 φ+ 2b cosφ sin φ+ cos2 φ.A parametrization of the ellipse (and of α and β) is
(
α
β

)
=

(
cos φ√

a′
cos(t) + sin φ√

b′
sin(t)

cos φ√
b′

sin(t) + sinφ√
a′

cos(t)

)
, 0 ≤ t ≤ 2π, (8)and (7) 
an be written asopt0≤t≤2π

(
sin(t) cos(t)

)(m11 m12

m21 m22

)(
sin(t)
cos(t)

)
, where

(
m11 m12

m21 m22

)
=

(
cos2 φ

b′ ‖x‖2 + sin2 φ
b′

cos φ√
b′

sin φ√
a′
‖x‖2 + sinφ√

b′
cos φ√

a′

cos φ√
b′

sinφ√
a′
‖x‖2 + sinφ√

b′
cos φ√

a′

sin2 φ
a′ ‖x‖2 + cos2 φ

a′

)
.In 
ase the optimization problem is a minimization problem for approximating the largest sin-gular value, one determines the smallest eigenvalue of the matrix M = (mij)1≤i,j≤2 and the
orresponding normalized eigenve
tor is substituted in (8), yielding a solution of (7). Whenapproximating the smallest singular value one determines the largest eigenvalue of M and the
orresponding normalized eigenve
tor is substituted in (8), yielding a solution of (7). The eigen-values of M are

λ± =
m11 +m22 ±

√
(m11 −m22)2 + 4m2

12

2and the 
orresponding normalized eigenve
tors are
1√

1 + (λ+ −m11)2

(
1

λ+ −m11

)
,

1√
1 + (λ+ −m22)2

(
1

−λ+ +m22

)
.The te
hnique of this se
tion was proposed in [5℄. Our des
ription di�ers from [5℄ and representsan alternative derivation of this te
hnique.4 Combination of the two te
hniquesClearly, the two des
ribed te
hniques do not give identi
al results in general. It is hard to saywhi
h one is better. The 
on
lusion in [5℄ is that the newer te
hnique is more suitable for sparsematri
es, but otherwise superiority of a parti
ular variant is not observed in the experiments.In the spe
ial 
ase where besides the triangular fa
torization the inverses of these fa
tors areavailable, we 
an derive an improved in
remental 
ondition estimator. Inverse fa
tors are 
om-puted, for example, as a by-produ
t of the re
ently introdu
ed BIF method [3℄. At �rst sightit may seem trivial that 
ondition estimation works better when the inverse of the matrix isavailable. This is, however, not the 
ase; in fa
t, the improvement 
onsists of a 
arefully sele
ted30



0 10 20 30 40 50
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Figure 1: The values of κ̃(L)2

κ(A) (lower 
urve) and κ̂(L,L−1)2

κ(A) (upper 
urve) for 50 random s.p.d.matri
es of dimension 100.
ombination of the te
hniques from [1℄ and [5℄. Details on this 
ombination are to be publishedin a forth
oming paper. Here we only present a numeri
al experiment.We generated 50 random matri
es B of dimension 100 with the 
ommand B = randn(100, 100)in Matlab and we 
omputed the Cholesky de
ompositions LLT of the 50 symmetri
 positivede�nite matri
es A = BBT with the BIF method, hen
e the fa
tor L−1 was also 
omputed.We �rst 
omputed the 
ondition number estimations κ̃(L) obtained with the �rst te
hnique(with (3)-(4)) from the fa
tor L and then the improved 
ondition number estimations κ̂(L,L−1)obtained with our 
ombination of both te
hniques [1℄ and [5℄ from the fa
tors L and L−1. InFigure 1 we display the quality of these estimations through the number
κ̃(L)2

κ(A)
, resp. κ̂(L,L−1)2

κ(A)where κ(A) is the true 
ondition number. Clearly, κ̂(L,L−1) is a mu
h more a

urate approxi-mation.A
knowledgement: This work is part of the Institutional Resear
h Plan AV0Z10300504 andis supported by the proje
t IAA100300802 of the Grant Agen
y of the A
ademy of S
ien
es ofthe Cze
h Republi
.
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Worst-
ase GMRES: 
hara
terization and examplesV. Faber, P. Ti
hý, J. Liesen
2 Institute of Computer S
ien
e AS CR, Prague

Introdu
tionLet a nonsingular matrix A ∈ R
n×n and a ve
tor b ∈ R

n be given. Suppose that we apply theGMRES method with the initial guess x0 = 0 to the linear system Ax = b. Then this method
omputes a sequen
e of iterates xk ∈ Kk(A, b), so that the kth residual rk ≡ b−Axk satis�es
‖rk‖ = min

p∈πk

‖ p(A)b ‖ . (1)Here πk denotes the set of polynomials of degree at most k and with value one at the origin, ‖ · ‖denotes the Eu
lidean norm, and Kk(A, b) ≡ span{b,Ab, . . . Ak−1b} is the kth Krylov subspa
egenerated by A and b. Without loss of generality we will assume that ‖b‖ = 1.A 
ommon approa
h for investigating the GMRES 
onvergen
e behavior is to bound (1) inde-pendently of b, and thus to study the algorithm's worst-
ase behavior. In parti
ular, for ea
hiteration step k one may analyze the worst-
ase GMRES approximation
ψk(A) ≡ max

‖b‖=1
min
p∈πk

‖ p(A)b ‖ . (2)It is 
lear that there exists a starting ve
tor w = w(A, k) and the 
orresponding GMRES poly-nomial pk,w ∈ πk su
h that ψk(A) = ‖pk,w(A)w‖. Su
h a ve
tor and polynomial will be 
alleda worst-
ase GMRES starting ve
tor and a worst-
ase GMRES polynomial for A and step k.Using the submultipli
ativity of the Eu
lidean norm (or by 
hanging the order of maximizationand minimization in (2)), we 
an easily �nd the following upper bound on (2),
ψk(A) ≤ min

p∈πk

‖p(A)‖ = min
p∈πk

max
‖b‖=1

‖ p(A)b ‖ ≡ ϕk(A) . (3)The quantity ϕk(A), 
alled the kth ideal GMRES approximation, has been introdu
ed by Green-baum and Trefethen [4℄. The polynomial for whi
h the minimum is attained in (3) is 
alled the
kth ideal GMRES polynomial of A.After the 1994 paper [4℄, several studies have been devoted to the problem of 
hara
terizing therelation between ψk(A) and ϕk(A), and in parti
ular the tightness of the inequality (3). Thebest known result is that (3) is an equality for all k ≥ 0, whenever A is normal [3, 5℄. Somenonnormal matri
es A are known for whi
h ψk(A) < ϕk(A), even ψk(A) ≪ ϕk(A), for 
ertain k,see [1, 8℄. However, it is still an open problem whether for larger 
lasses of nonnormal matri
esthe quantity ϕk(A) indeed represents the essen
e of the GMRES pro
ess.In this 
ontribution we 
on
entrate mainly on 
hara
terization of the worst-
ase GMRES problem(2), and present results of our re
ent paper [2℄. We will show that worst-
ase starting ve
torshave some spe
ial properties. In parti
ular, they satisfy the so 
alled 
ross-equality and theyare always right singular ve
tors of the matrix equal to the 
orresponding worst-
ase GMRESpolynomial in the variable A. While the ideal GMRES polynomial is always unique, we will showthat a worst-
ase GMRES polynomial need not be unique.33



Spe
ial properties of worst-
ase starting ve
torsThe following theorem shows that if we apply GMRES to A and a worst-
ase starting ve
tor w,and afterwards GMRES to AT and the previous (normalized) residual ve
tor, we obtain againthe original starting ve
tor w (up to a s
aling fa
tor). To emphasize that rk is the kth GMRESresidual for the matrix A and the starting ve
tor b, we use the notation rk = GMRES(A, b, k).Theorem. Let A ∈ R
n×n be a nonsingular matrix, and k a positive integer, k < d(A) where

d(A) denotes the degree of the minimal polynomial of A. Let b(0) be a unit norm worst-
aseGMRES starting ve
tor for A and step k and 
onsider the following pro
ess:
rk = GMRES(A, b(0), k)

b(1) =
rk

‖rk‖
sk = GMRES(AT , b(1), k)

b(2) =
sk

‖sk‖
.Then

b(0) = b(2) and ‖sk‖ = ‖rk‖ = ψk(A).This is an example of what we 
all the 
ross-equality (this term has been 
oined by Zavorin inan unpublished te
hni
al report [9℄). Next, we will present and dis
uss the following result.Theorem. Let A ∈ R
n×n be a nonsingular matrix, and k a positive integer, k < d(A). If w isa unit norm worst-
ase GMRES starting ve
tor for A and step k and pk,w ∈ πk the 
orrespondingGMRES polynomial, then ψk(A) is a singular value of pk,w(A) and w is a 
orresponding rightsingular ve
tor of pk,w(A).UniquenessWe �rst summarize the known results on uniqueness of the solution of the worst-
ase GMRESproblem (2) and the ideal GMRES problem (3).Lemma. Let A ∈ R

n×n be a nonsingular matrix, and k a positive integer, k < d(A). Then1. the kth ideal GMRES polynomial is unique [4, 6℄;2. if ψk(A) = ϕk(A), then the kth worst-
ase GMRES polynomial is unique, and it is equalto the kth ideal GMRES polynomial of A [7℄.Based on the results of the previous theorems we will show that the kth worst-
ase GMRESpolynomial need not be unique, if ψk(A) < ϕk(A). Note that the 
ondition ψk(A) < ϕk(A) isa ne
essary but not a su�
ient 
ondition for the non-uniqueness of the kth worst-
ase GMRESpolynomial. This phenomenon will be demonstrated numeri
ally on a 4 × 4 matrix from [8℄.A
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Ba
kward error in linear least squares problems:estimates and their a

ura
yS. Gratton, P. Jiránek, D. Titley-PeloquinINPT-IRIT, University of Toulouse and ENSEEIHTCERFACS, ToulouseMathemati
al Institute, University of OxfordWe 
onsider a linear least squares (LS) problem�nd x̂ ∈ R
n su
h that ‖b−Ax̂‖2 = min

x∈Rn
‖b−Ax‖2, (1)where A ∈ R

m×n, m and n are positive integers, b ∈ R
m, both A and b are nonzero, and

‖v‖2 =
√
vT v denotes the Eu
lidean norm. The ve
tor x̂ is a solution of the LS problem (1) ifand only if x̂ satis�es the system of normal equations ATAx = AT b and provided that A has full
olumn rank the problem (1) is uniquely solvable with x̂ = (ATA)−1AT b ≡ A†b, where A† is thepseudo-inverse of A. For more information, see, e.g., [1, 3, 10℄.Let x ∈ R
n be an approximation to the solution x̂ of the LS problem (1). We are interested in
omputing the ba
kward error asso
iated with the approximation x, i.e., we want to �nd the sizeof �smallest� perturbations E and f of the data A and b, respe
tively, su
h that x is the solutionof the perturbed LS problem with the matrix A + E and the right-hand side b + f . In [16℄Waldén, Karlson, and Sun provide an expli
it expression for the ba
kward error µ de�ned by

µ ≡ min
E,f

{‖[E, θf ]‖F ; (A+ E)T [b+ f − (A+ E)x] = 0}, (2)where θ is a given positive weighting parameter and ‖ · ‖F denotes the Frobenius matrix norm.We denote by
ω ≡ min

E,f
{‖[E, θf ]‖F ; (A+ E)x = b+ f} =

θ‖r‖2√
1 + θ2‖x‖2

2

, r ≡ b−Ax, (3)the ba
kward error of x asso
iated with the linear equations Ax = b (see, e.g., [2, Theorem 2.2℄,[7, Problem 7.8℄) and by σmin(M) the minimal singular value of a matrix M . Then
µ = min{ω, σmin(M)}, (4)where
M ≡

[
AT

ω(I − rr†)

]
, (5)see [16, Corollary 2.1℄ or [7, Theorem 20.5℄. If the LS problem (1) is not 
ompatible, then

µ = σmin(M) < ω.Computing the minimal singular value of the matrix M 
an be expensive and one 
an be ratherinterested in its good and 
heaply 
omputable estimate. First bounds of µ were given by Stew-art [13, 14℄, whi
h 
an be interpreted as Rayleigh quotient approximations to the minimal singularvalue of the matrix M in (5). The ba
kward error µ 
an be bounded from above by µ̄1 and µ̄2de�ned bȳ
µ1 ≡ ‖Mr‖2

‖r‖2
=

‖AT r‖2

‖r‖2
, µ̄2 ≡ min

06=s⊥R(A)

‖Ms‖2

‖s‖2
=

‖Mr̂‖2

‖r̂‖2
=

θ‖PAr‖2√
1 + θ2‖x‖2

2

, (6)36



where r̂ ≡ b−Ax̂ is the residual asso
iated with the solution of the LS problem (1) and PA ≡ AA†is the pseudo-inverse of A. Neither µ̄1 nor µ̄2 is however guaranteed to be a good estimate of theba
kward error µ. We have the bounds
1√

σ2
max(A)/ω2 + 1

µ̄1 ≤ µ ≤ µ̄1,
1√

ω2/σ2
min(A) + 1

µ̄2 ≤ µ ≤ µ̄2.Therefore min{µ̄1, µ̄2} is 
lose to the ba
kward error µ if the s
aled residual norm ω is eitherlarger than σmax(A) or smaller than σmin(A) (or at least of the same order of magnitude).The literature suggests that the quantity
ν ≡ ω

‖r‖2
‖(ATA+ ω2I)−1/2AT r‖2 =

ω

‖r‖2

∥∥∥∥∥

[
A
ωI

] [
A
ωI

]† [
r
0

]∥∥∥∥∥
2proposed by Karlson and Waldén [9℄ 
an be also used as an estimate of the ba
kward error µ.In [6℄ Gu studies its a

ura
y and obtains (for A having full 
olumn rank and r 6= 0) the bounds,whi
h 
an be expressed in the form

‖r̂‖2

‖r‖2
≤ ν

µ
≤ 1 +

√
5

2
(7)(see also [5, Equation (1.5)℄). In [4℄ Gr
ar shows that ν is asymptoti
ally equal to µ in the sensethat

lim
x→x̂

ν

µ
= 1.Methods of 
omputing ν were 
onsidered by Gr
ar, Saunders, and Su [5℄ (see also [15℄) and itse�
ient 
omputation in the LSQR method [12, 11℄ was proposed in [8℄.The bounds (7) show that ν is a good approximation to the ba
kward error µ provided that xis a good approximation to x̂ in the sense that the norms of their 
orresponding residuals are
lose to ea
h other. The lower bound in (7) 
ould suggest that ν might be a poor approximationof µ if ‖r̂‖2 is mu
h smaller than ‖r‖2. Numeri
al experien
e however shows that ν is a verygood approximation of the LS ba
kward error µ; see, e.g., [5, 15, 8℄. Indeed, it appears that theestimate ν satis�es

1√
2
≤ 1√

2 −
(
‖r̂‖2

2

‖r‖2
2

)2
≤ ν

µ
≤ 1.Therefore the quantity ν is always an a

urate estimate of the ba
kward error µ.Referen
es[1℄ Å. Björ
k: Numeri
al methods for least squares problems. SIAM, Philadelphia, 1996.[2℄ X.-W. Chang, C.C. Paige, and D. Titley-Peloquin: Chara
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omputations. The Johns Hopkins University Press,Baltimore, third edition, 1996.[4℄ J.F. Gr
ar: Optimal sensitivity analysis of linear least squares. Te
hni
al Report LBNL-52434, Lawren
e Berkeley National Laboratory, 2003.37
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Numeri
ké metody vy²²ího °ádu pro °e²ení transportní
h úlohM. Hanu², M. SmitkováKatedra matematiky, Západo£eská univerzita, Plze¬
1 ÚvodNumeri
ké modelování transportní
h pro
es· £i v obe
nej²í rovin¥ zákon· za
hování se stále te²ívelké pozornosti, a to jak uºivatel· (od biolog· zajímají
í
h se o proud¥ní krve v 
évá
h aº nap°.po jaderné fyziky simulují
í ²í°ení neutronového zá°ení), tak v¥de
ko-výzkumný
h pra
ovník·.Ti vytvá°ejí stále efektivn¥j²í a p°esn¥j²í numeri
ké metody s
hopné za
hytit i sloºité fyzikálníjevy, jimiº jsou úlohy tohoto typu £asto doprovázeny. Velmi oblíbené v této oblasti byly a stálejsou metody kone£ný
h objem·, v sou£asnosti zejména moderní s
hémata s vysokým rozli²ením.Dnes jiº v²ak jeji
h dominantní postavení není zdaleka tak výrazné a do pop°edí se dostávajíalternativní metody, jimiº se budeme zabývat v tomto p°ísp¥vku.2 Testova
í úlohaPro ú£ely testování a porovnání dále zmín¥ný
h metod byla vybrána úloha z £l. [2℄ a bylo pro nimetodou 
harakteristik sestrojeno p°esné °e²ení.

• Oblast: £tvere
 Ω = [0, 1] × [0, 1], s hrani
í ∂Ω = Γ− ∪ Γ+, kde
Γ− = {x ∈ ∂Ω : a(x) · n(x) < 0} (vtoková hrana),
Γ+ = {x ∈ ∂Ω : a(x) · n(x) ≥ 0} (odtoková hrana),

n zna£í vektor vn¥j²í normály k ∂Ω a x = (x, y).
• Rovni
e:

∇ ·
(
a(x)u(x)

)
+ c(x)u(x) = 0 v Ω, u(x) = g(x) na Γ−. (1)

• Parametry:
a(x) =

[
10y2 − 12x+ 1

1 + y

]
, c(x) = −∇ · a(x) ≡ 11.

• Okrajové podmínky:
g(x) =





0 pro (x = 0 ∧ 0.5 < y ≤ 1) ∨ (0.5 < x ≤ 1 ∧ y = 0),

1 pro (x = 0 ∧ 0 < y ≤ 0.5) ∨ (0 ≤ x ≤ 0.5 ∧ y = 0),

sin2(πy) pro x = 1 ∧ 0 ≤ y ≤ 1.

• P°esné °e²ení: znázorn¥no na obr. 1.
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Obrázek 1: P°esné °e²ení vyhodno
ené ve 100 × 100 bode
h £tver
e Ω.3 Metody kone£ný
h prvk· (MKP)MKP, populární zejména pro °e²ení diferen
iální
h úloh druhého a vy²²ího °ádu, nebyly zpo£átkupro transportní výpo£ty p°íli² atraktivní. P°edpokládají totiº hladkost °e²ení, kterou nelzeobe
n¥ v p°ípad¥ par
iální
h diferen
iální
h rovni
 hyperboli
kého typu o£ekávat. Pr·lom u£inilaº £lánek [3℄, v n¥mº byla p°edstavena metoda nespojitý
h kone£ný
h prvk· ("Dis
ontinuousGalerkin Method", dále jen DGM). P°estoºe DGM umoº¬uje vyuºít p°íznivé vlastnosti MKP(geometri
ká �exibilita, snadno pouºitelná aproxima
e vysokého °ádu atd.) i pro úlohy s nehlad-kým °e²ením, její pouºití je obvykle spojeno s v¥t²ími výpo£etními nároky neº u klasi
ké MKP.Zárove¬ proto probíhal vývoj tzv. stabilizovaný
h metod kone£ný
h prvk· (SMKP), v ni
hº je za-
hována globáln¥ spojitá aproxima
e °e²ení a problémy s jeho nízkou regularitou jsou adresoványúpravami diskrétní formula
e.DGM i SMKP vyuºívají standardní rozklad (triangula
i) Ω = ∪K∈τh
K oblasti Ω na mnoºinu

τh disjunktní
h element· (v této prá
i £tver
·) K a p°ibliºné °e²ení uh vyjad°ují jako lineárníkombina
i kone£ného po£tu nad nimi de�novaný
h bázový
h funk
í. Dosazením tohoto rozvojedo rovni
e (1) a aplika
í Galerkinovy metody je p·vodní spojitá úloha v obou p°ípade
h p°eve-dena na °e²ení soustavy lineární
h rovni
 pro neznámé koe�
ienty rozvoje. Prakti
ké provedenítohoto postupu a tvar výsledné soustavy se v²ak pro oba typy metod li²í.Z prostorový
h d·vod· se zde budeme v¥novat pouze nespojité Galerkinov¥ metod¥. Prostorbázový
h funk
í je pro ni de�nován jako
Vh = {v ∈ L2(Ω); v|K ∈ P p(K) ∀K ∈ τh},kde P p p°edstavuje prostor polynomu stupn¥ nejvý²e p de�novaný
h na elementu K. Klasi
kýGalerkin·v postup pro získání diskrétní verze dané úlohy vede v tomto p°ípad¥ (kdy je kv·linedostate£né globální hladkosti funk
í z Vh nutné pro pouºití Greenovy v¥ty integrovat po ele-mente
h) k jejímu následují
ímu zn¥ní: Najdi uh ∈ Vh tak, aby ∀vh ∈ Vh platilo:

∑

K∈τh

∫

K
(−uha · ∇vh + cuhvh) dx +

∑

e 6⊂Γ−

∫

e
{auh}a · [vh] ds = −

∑

e⊂Γ−

∫

e
(a · n)gvh ds,

{auh}a =





auL
h , kdyº a · nL > 0,

auR
h , kdyº a · nL < 0,

a
uL

h
+uR

h

2 , kdyº a · nL = 0,

[vh] =

{
vhn

L + vhn
R pro e 6⊂ ∂Ω,

vhn pro e ⊂ ∂Ω,kde e zna£í postupn¥ hrany v²e
h element· τh a L, R sousední elementy na jeji
h straná
h.40



Na funk
e vh ∈ Vh se nekladou ºádné poºadavky z hlediska spojitosti mezi elementy a teoreti
-ky ani z hlediska maximálního stupn¥ p. To umoº¬uje relativn¥ snadnou implementa
i adap-tivního zjem¬ování sít¥ (h-adaptivita) a zvy²ování °ádu aproxima
e (p-adaptivita) bez starostio konformitu element·. P°edb¥ºné výsledky adaptivního výpo£tu jsou na obr. 2. Byla pouºitajednodu
há automati
ká adaptivita, °ízená velikostí L2 normy rozdílu °e²ení na dané síti a jehoL2-projek
e na globáln¥ zhrubenou sí´. Na obráz
í
h je patrná dostate£ná s
hopnost h-adaptivityza
hytit nespojitosti v °e²ení. P°i pouºití element· vy²²ího °ádu je lépe aproximováno °e²ení naokolí nespojitosti blízko odtokové hrany, objevují se v n¥m v²ak nerealisti
ké os
ila
e a ukazujese, ºe upwinding zahrnutý v de�ni
i {·}a zde sám o sob¥ k zaru£ení stability nesta£í.
(a) p = 0, h-adapt. → 83680 NDOF (b) hp-adaptivita → 85220 NDOFObrázek 2: Adaptivní DGM. NDOF . . . po£et neznámý
h po konvergen
i adapta£ního pro
esu.�ísla p°íslu²ná barvám element· odpovídají °ádu na ni
h def. bázový
h funk
í.4 Residual distribution s
hemes (RDS)Dal²í skupinou metod, jimº je v poslední dob¥ v¥nována zna£ná pozornost, jsou metody typuRDS. Ty vznikly na základ¥ my²lenek inspirovaný
h p°ístupy metody kone£ný
h objem· i MKPa p°irozen¥ se snaºí za
hovat dobré vlastnosti obou. Z prvn¥ jmenované tak nap°. robustnostdanou silným vztahem k fyzikální podstat¥ °e²eného problému, z druhé nap°. kompaktnostdiskretiza
e i pro aproxima
i vy²²ího °ádu, jeº umoº¬uje vývoj efektivní
h impli
itní
h °e²i£·a jednodu
hou paraleliza
i (viz [1℄).Pro °e²ení testova
í úlohy nesta
ionárním s
hématem typu RDS pouºijeme metodu ustalování.Pro nesta
ionární °e²ení vy²²ího °ádu p°esnosti v £ase by bylo nutné pouºít konzistentní £asovoudiskretiza
i, zde sta£í nekonzistentní £asová diskretiza
e (detaily viz [1℄).Uvaºujme skalární zákon za
hování ut + ∇ · (au) = 0 a libovolnou triangula
i oblasti Ω. �e²eníje, obdobn¥ jako v MKP 1. °ádu, aproximováno spojitou funk
í lineární na kaºdém trojúhelníku,

u(x, y, t) ≈ ∑
i ui(t)Ni(x, y), kde ui(t) je hodnota funk
e u v uzlu i a Ni jsou standardní P1bázové funk
e.De�nujeme reziduum na trojúhelníku K jako

φK = −
∫

K
ut dx =

∮

∂K
(au) · dn, kde a =

1

K

∫

K
a dx.Metoda RDS je zaloºena na distribu
i £ástí tohoto rezidua na sousední uzly. Vyjdeme-li z nekon-zistentní formula
e a Eulerovy expli
itní integra
e v £ase, získáme následují
í s
héma

un+1
i = un

i − ∆t

Si

∑

T

βK
i φ

K = un
i − ∆t

Si

∑

T

φK
i ,41



Φi

K4

Φi

K3

Φi

K2
Φi

K1

Φi

K5

i

Si

Obrázek 3: Geometri
kéznázorn¥ní základní
h prvk·RDS.
kde Si je obsah duální bu¬ky okolo uzlu i, tj. 1/3 obsahu v²e
htrojúhelník· se spole£ným vr
holem v uzlu i. Pro daný trojúhel-ník poºadujeme, aby βK

1 + βK
2 + βK

3 = 1 (konzervativita). Dis-tribu£ní koe�
ienty β mohou být stanoveny r·znými zp·sobys ohledem na poºadované vlastnosti monotónnosti a p°esnosti°e²ení, kompaktní sten
il z·stává za
hován. Formáln¥ de�nujemedistribuovaná rezidua jako φK
i = βK

i φ
K .Z metod typu RDS jsme vybrali N (Narrow) s
héma s φK,N

i =

− k+
iP

j k+
j

∑
j k

−
j (qn

i − qn
j ) (monotónní lineární 1. °ádu). �ísla ki,de�novaná jako ki = 1
2a ·ni, nám dovolují rozli²it mezi vtokovýmia odtokovými stranami a vr
holy trojúhelníka. Vektory ni jsoude�nované jako vnit°ní normály trojúhelníku o velikosti rovnédél
e p°íslu²né strany. Pro ví
e informa
í viz [1℄.
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Obrázek 4: Numeri
ké výsledky pro N s
héma.5 Záv¥rP°edb¥ºné výsledky prezentované vý²e slibují pouºitelnost RDS i DGM pro °e²ení netriviální
htransportní
h úloh. Ob¥ metody v²ak mají své neduhy (patrné p°i porovnání obr. 2 a 4 s obr. 1,na jeji
hº odstran¥ní auto°i textu v sou£asné dob¥ pra
ují. Na seminá°i pak budou RDS, DGMi SMKP d·kladn¥ji porovnány.Referen
e[1℄ H. De
onin
k, M. Ri

hiuto, K. Sermeus: Introdu
tion to residual distribution s
hemes and
omparison with stabilized �nite elements. In: H. De
onin
k (Ed.), 33rd VKI Le
ture SeriesCFD. Von Karman Institute, Sint-Genesius-Rode, 2003.[2℄ P. Houston, R. Ranna
her, E. Süli: A posteriori error analysis for stabilised �nite elementapproximations of transport problems. In: Comput. Methods Appl. Me
h. Engrg. 190, 2000,1483�1508.[3℄ W.H. Reed, T.R. Hill: Triangular mesh methods for the neutron transport equation. Te
h.Report LA-UR-73-479, Los Alamos S
ienti�
 Laboratory, 1973.42



Shape optimization in 2D 
onta
t problems with givenfri
tion and a solution-dependent 
oe�
ient of fri
tionJ. Haslinger, J. V. Outrata, R. Pathó
1,3 Charles University in Prague

2 Institute of Information Theory and Automation AS CR, Prague
1 Introdu
tionThe 
ontribution deals with shape optimization of elasti
 bodies in unilateral 
onta
t. We aimat extending existing results (see [1℄ and [2℄) to the 
ase of 
onta
t problems, where the 
o-e�
ient of fri
tion depends on the solution. To this end, let us 
onsider the two-dimensionalSignorini problem, 
oupled with the physi
ally less a

urate model of given fri
tion, but assumea solution-dependent 
oe�
ient of fri
tion. For analysis of the shape optimization problem inthe 
ontinuous, in�nite-dimensional setting, its �nite-dimensional approximation based on the�nite-element method and for 
onvergen
e analysis the reader is kindly referred to [4℄. Our pre-sentation starts with the so-
alled mixed formulation of the algebrai
 state problem, involvingLagrange multipliers for the normal 
onta
t displa
ement. It 
an be shown that if the 
oe�
ientof fri
tion is Lips
hitz 
ontinuous with a su�
iently small modulus, then the algebrai
 state prob-lem is uniquely solvable and its solution is a Lips
hitz 
ontinuous fun
tion of the 
ontrol variable,des
ribing the shape of the elasti
 body. In [2℄ its authors proposed the impli
it programmingapproa
h (ImP) 
ombined with sensitivity analysis based on the generalized di�erential 
al
ulusof Mordukhovi
h (see [5℄) for the numeri
al solution of 
onta
t shape optimization problemsinvolving the Coulomb law of fri
tion. We shall adapt their approa
h to our 
ase and point outthe di�eren
es and di�
ulties 
ompared to [2℄.2 The state problemLet an elasti
 body be represented by a domain Ω ⊂ R

2 with Lips
hitz boundary ∂Ω. Let ∂Ωbe split into three non-empty, disjoint parts Γu, ΓP and Γc with di�erent boundary 
onditions:on Γu the body is �xed, while surfa
e tra
tions of density P = (P1, P2) a
t along ΓP . On Γc,representing the 
onta
t part of ∂Ω, the body is unilaterally supported by the rigid foundation
O = {(x1, x2) ∈ R

2 |x2 ≤ 0}. In addition to the non-penetration 
onditions, we shall 
onsidere�e
ts of fri
tion between Ω and O. We use the fri
tion law of Tres
a type, i.e. with an a-priorigiven slip bound g : Γc → R+, but with a 
oe�
ient of fri
tion F whi
h depends on the solution.Thus the fri
tion 
onditions on Γc read as follows:
u1 = 0 =⇒ |T1(u)| ≤ F(0)g
u1 6= 0 =⇒ T1(u) = −sgn(u1)F(|u1|)g

} on Γc,where T1(u) : ∂Ω → R stands for the �rst 
omponent of the stress ve
tor asso
iated with u. Theequilibrium state of Ω is 
hara
terized by a displa
ement ve
tor u : Ω → R
2 whi
h satis�es thesystem of linear equilibrium equations in Ω, the 
lassi
al boundary 
onditions on Γu, ΓP and theunilateral and fri
tion 
onditions on Γc.Let the 
onta
t boundary Γc be pie
ewise linear, given by a ve
tor α ∈ Uad , where Uad ⊂ R

p
+ isthe set of admissible 
ontrol variables (p 
orresponds to the number of 
onta
t nodes). Following43



the �nite element approximation as des
ribed in [4℄, we de�ne the dis
retized Signorini problemwith given fri
tion and a solution-dependent 
oe�
ient of fri
tion as follows:Find (u,λ) ∈ R
n × R

p
+ su
h that:

〈A(α)u,v − u〉n +

p∑

i=1

ωi(α)F(|(uτ )i|)
(
|(vτ )i| − |(uτ )i|

)

≥ 〈L(α),v − u〉n + 〈λ,vν − uν〉p ∀v ∈ R
n,

〈µ − λ,uν + α〉p ≥ 0 ∀µ ∈ R
p
+,





(M(α))where vν ∈ R
p stands for the subve
tor of v ∈ R

n 
onsisting of the se
ond 
omponents ofthe displa
ement ve
tor v at all 
onta
t nodes. Analogously, vτ ∈ R
p 
onsists of the �rst
omponents of v at the 
onta
t nodes. Further, A ∈ C1(Uad ; Rn×n) and L ∈ C1(Uad ; Rn) denotethe matrix and ve
tor-valued fun
tions asso
iating with any α ∈ Uad the sti�ness matrix A(α)and the load ve
tor L(α), respe
tively. Let us note that the fun
tions ωi depend on the weightsof a quadrature rule and on the values of g at the 
onta
t nodes, as well. We assume that

ωi ∈ C1(Uad; (0,∞)) ∀i = 1, . . . , p.In the rest of this paper we shall be working with the redu
ed form of the state problem only.The redu
tion of (M(α)) 
onsists in eliminating all 
omponents of the displa
ement �eld u
orresponding to the non-
onta
t nodes of the �nite element partition of the domain Ω(α). Oneobtains a variational inequality in terms of the state variable y = (uτ ,uν ,λ)T ∈ (Rp)3, de�nedon the 
onta
t zone, whi
h may be formulated as the following generalized equation (GE):
0 ∈ F (α,y) +Q(α,y), (1)where

F (α,y) :=




Aττ (α) Aτν(α) 0
Aντ (α) Aνν(α) −I

0 I 0


y −




Lτ (α)
Lν(α)
−α


 , Q(α,y) :=



Q1(α,y1)

0
NR

p

+
(y3)


 .The multifun
tion Q1 : Uad × R

p ⇉ R
p is de�ned as:

(
Q1(α,uτ )

)
i
:= ωi(α)F(|(uτ )i|)∂|(uτ )i| ∀i = 1, . . . , p,where �∂� denotes the subdi�erential of 
onvex fun
tions, NR

p

+
(·) is the normal 
one in the senseof 
onvex analysis and the submatri
es Aττ , Aτν , Aνν ∈ R

p×p are parts of the S
hur 
omplementto the sti�ness matrix.Note, that the multivalued part Q of our state problem (1) depends on the 
ontrol variable α aswell. This is a major di�eren
e 
ompared to the problem investigated in [2℄, making sensitivityanalysis more involved.Let us 
on
lude this se
tion with the following result 
on
erning solvability of (1).Theorem 1. Let S : α 7→ {y ∈ (Rp)3 |0 ∈ F (α,y) + Q(α,y)} denote the 
ontrol-to-statemapping and let F : R+ → R+ be Lips
hitz 
ontinuous with a su�
iently small modulus. Then
S is single-valued and Lips
hitz 
ontinuous in Uad .Proof. It follows from Theorem 10 and Theorem 11 in [4℄.
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3 ImP and sensitivity analysisLet J : Uad × (Rp)3 → R be a 
ontinuously di�erentiable 
ost fun
tional. Then the shapeoptimization problem reads as:minimize J(α,y)subj. to 0 ∈ F (α,y) +Q(α,y)
α ∈ Uad.



 (P)In the sequel we shall assume that the assumptions of Theorem 1 are satis�ed. The ImP method
onsists in reformulating (P) as the nonlinear program:minimize J (α) := J(α, S(α))subj. to α ∈ Uad ,

} (P̃)whi
h may be solved by standard algorithms of nonsmooth optimization. Su
h algorithms, how-ever, require knowledge of some subgradient information, usually in the form of one (arbitrary)subgradient from the Clarke subdi�erential ∂J at ea
h iteration step. Following [2℄, we are notgoing to use Clarke's 
al
ulus (
f. [3℄) to obtain the desired subgradient, but the substantiallyri
her 
al
ulus developed by B. Mordukhovi
h. A straightforward appli
ation of this theory isthe next result. For the rest of this se
tion let ᾱ ∈ Uad be arbitrary and put ȳ := S(ᾱ).Lemma 1. ∂J (ᾱ) ⊂ ∇αJ(ᾱ, ȳ) +D∗S(ᾱ)(∇yJ(ᾱ, ȳ)).Therefore, we immediately see that it su�
es to determine one element of the (limiting) 
oderiva-tive D∗S(ᾱ)(∇yJ(ᾱ, ȳ)) = {p∗ ∈ R
p | (p∗,−∇yJ(ᾱ, ȳ)) ∈ NGr S(ᾱ)}, where NGrS stands forthe (limiting) normal 
one to the graph of S. To fa
ilitate the 
omputation of this quantity, wehave the following result at hand:Theorem 2. For every p∗ ∈ D∗S(ᾱ)(∇yJ(ᾱ, ȳ)) there exists a ve
tor v∗ ∈ (Rp)3 su
h that

(p∗,v∗) is a solution of the (limiting) adjoint GE:
(

p∗

−∇yJ(ᾱ, ȳ)

)
∈ ∇F (ᾱ, ȳ)T v∗ +D∗Q(ᾱ, ȳ,−F (ᾱ, ȳ))(v∗). (AGE)Proof. See Lemma 8 and Theorem 13 in [4℄.The assertion of Theorem 2 is analoguos to that of Theorem 4.1 in [2℄, but for its derivation wehad to verify a 
almness 
ondition ([4, Lemma 8℄) instead of strong regularity of theGE ([2, Theorem 3.13℄).In the rest of this se
tion we show how one may express the 
oderivative D∗Q in terms of thedata of the problem. First of all, note that the 
omponents of Q are de
oupled (this fa
t isa 
onsequen
e of the assumed model of given fri
tion), hen
e its 
oderivative 
an be 
omputed
omponentwise:

∀q∗ ∈ (Rp)3 : D∗Q(ᾱ, ȳ, q̄)(q∗) =



D∗Q1(ᾱ, ȳ1, q̄1)(q

∗
1)

0
D∗NR

p
+
(ȳ3, q̄3)(q

∗
3)


 ,at any referen
e point (ᾱ, ȳ, q̄) ∈ GrQ. The third 
omponent is standard, therefore we shalldeal with the �rst 
omponent only. Let us write the multifun
tion Q1 : R

p × R
p ⇉ R

p asa 
omposition of an outer multifun
tion Z1 and an inner single-valued, smooth mapping Ψ:
Q1(α,u) = (Z1 ◦ Ψ)(α,u), (2)45



where
Ψ = (Ψ1, . . . ,Ψp) : R

p × R
p →

(
(0,∞) × R

)p
, Ψj(α,u) :=

(
ωj(α), uj

)
,and Z1 is a 
omposite multifun
tion itself:

Z1 :
(
(0,∞) × R

)p
⇉ R

p, y 7→
(
Z(y1), . . . , Z(yp)

)
,with

Z : (0,∞) × R ⇉ R, (x1, x2) 7→ x1F(|x2|)∂|x2|.Now the 
hain rule from [6, Theorem 10.40℄ allows us to 
ompute the 
oderivative of the 
ompositemultifun
tion (2) as follows:Theorem 3. Let (ᾱ, ū, q̄) ∈ GrQ1 be su
h that the following 
ondition holds:Ker∇Ψ(ᾱ, ū)T ∩D∗Z1(Ψ(ᾱ, ū), q̄)(0) = {0}. (3)Then:
∀q∗ ∈ R

p : D∗Q1(ᾱ, ū, q̄)(q∗) ⊂ ∇Ψ(ᾱ, ū)TD∗Z1(Ψ(ᾱ, ū), q̄)(q∗) (4)Sin
e the 
omponents of Z1 are also de
oupled, one may 
ompute the 
oderivative on the right-hand side of (4) 
omponentwise, i.e. in terms of 
oderivatives of the mapping Z. This is donein detail in Se
tion 6.2 of [4℄, from whi
h the validity of the quali�
ation 
ondition (3) follows aswell.A
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�e²ení ben
hmarkové úlohy transportu látkyv diskrétní puklinové sítiM. Hokr, J. Havlí£ekTe
hni
ká univerzita v Liber
i
1 ÚvodTéma £lánku vy
hází z pot°eb studia vlastností horninového prost°edí pro hodno
ení bezpe£nostihlubinného úloºi²t¥ vyho°elého jaderného paliva, hlavními výzvami pro matemati
ké modelovánív této oblasti jsou sdruºené fyzikální pro
esy a sloºitost geometri
ké struktury prost°edí.Jedním z hlavní
h faktor· na bezpe£nost úloºi²t¥ izola£ní s
hopnost horniny, která je obvyklehodno
ena p°es její (ekvivaletní) hydrauli
kou vodivost, tj. 
elkový pr·tok vody p°es ur£itý pr·-°ez. Skute£nou hodno
enou veli£inou je ale ry
hlost pr·
hodu rozpu²t¥ný
h radionuklid·, kteráje si
e pro porézní prost°edí úm¥rná pr·toku, ale pro nehomogenity typu puklin závisí na rozlo-ºení toku v objemu - ry
hle proudí
í �kanály� proti mén¥ vodivým puklinám s pomalým tokem.v této prá
i jsou na modelové úloze puklinové sít¥ ur£ovány pr·nikové k°ivky a st°ední hodnotaa rozptyl tzv. doby zdrºení � srovnány jsou výpo£ty pomo
í sledování £ásti
 (parti
le tra
king)a pomo
í rovni
e advek£ního transportu.2 Popis úlohy a °e²eníÚloha byla de�nována v projektu De
ovalex [4℄, kde je tímto zp·sobem hodno
en vliv napja-tosti na 
harakter toku a dobu zdrºení £ásti
. Výpo£ty navazují na d°íve prezentované výpo£typroud¥ní pro r·zné stavy napjatosti [1, 2, 3℄, mimojiné i srovnáním zp·sobu hodno
ení pomo
íekvivalentní vodivosti a pomo
í ry
hlosti pr·
hodu látky. V tomto textu se nezabýváme p°ímovlivem napjatosti, jednotlivé varianty jsou 
hápány jako r·zné parametry puklinové sít¥ provyhodno
ení proud¥ní a transportu (v prezenta
i bude popsáno v plném kontextu).Geometrie úlohy je zadána seznamem 7797 puklin se sou°adni
emi kon
ový
h bod· a velikostírozev°ení (²í°ky) ve £tver
i v rozsahu −10 < x < 10, −10 < y < 10. Okrajové podmínky proproud¥ní jsou zadány hodnotami tlaku (Diri
hlet) po 
elém obvodu nebo na protilehlé st¥ny tak,aby generoval konstantní gradient 104 Pa/m (dv¥ varianty: vodorovn¥ zprava doleva a svisle shoradol·) � obrázek 1. Úloha transportu látky je zadána okamºitým pulsním vstupem (vtok daného
elkového mnoºství látky za velmi krátký £as) do v²e
h puklin na p°ítokové stran¥ modelového£tver
e.Úlohy proud¥ní i transportu byly vypo£teny softwarem FLOW123D vyvíjeným na pra
ovi²tiautor· [6℄. Rovni
e proud¥ní je °e²ena smí²enou-hybridní metodou kone£ný
h prvk·, jejíº vý-sledkem jsou diskrétní toky jednotlivými puklinami. Segmenty puklin mezi pr·se£íky jsou zárove¬elementy diskretiza
e (z d·vod· linearity v 1D segmente
h není dal²í d¥lení pot°ebné). Rovni
eadvektivního transportu je °e²ena metodou kone£ný
h objem·, s upwind váºením a expli
itními£asovými kroky. Volba £asový
h krok· je °ízena CFL podmínkou. Doba zdrºení je ur£ena jakováºený pr·m¥r z £asu pro jednotlivé £ásti hmoty (=váhy) na výstupu za kaºdý £asový krokvýpo£tu. 47



Srovnáva
í výpo£ty pomo
í softwaru NAPSAC vyuºívají standardní metodu kone£ný
h prvk·pro proud¥ní (srovnání nap°. z hlediska spln¥ní bilan
e hmoty je provedeno v [3℄) a výpo£ettransportu byl proveden pomo
í metody sledování £ásti
 (parti
le tra
king). Doba zdrºení jep°ímo výsledkem výpo£tu pro kaºdou jednotlivou £ásti
i. Jednotlivé výsledky byly zpra
oványautory výpo£t· ve zprává
h [7, 5℄.3 VýsledkyVýsledné pr·nikové k°ivky jsou ur£ovány jako pr·b¥h v £ase pro podíl hmoty (resp. po£tu £ásti
)proteklé odtokovými hranami modelového £tver
e a 
elkové zadané hmoty (resp. po£tu £ásti
).Výsledky pro horizontální gradient jsou uvedeny na obrázku 2, kde jsou porovnány jednotlivémetody a softwary. Je vid¥t dobrá vzájemná shoda krom¥ výsledk· IC. Zajímavým výsledkemje, ºe se ve sklonu k°ivky nijak neprojevuje numeri
ká difuze z upwind metody (Flow123D) proti£ásti
ovým metodám (NAPSAC), 
oº lze vysv¥tlit tím, ºe dominantním difuzním jevem je míseníroztoku resp. £ásti
 mezi r·zn¥ �ry
hlými� trajektoriemi v síti puklin.Na obr. 3 je dal²í srovnání � hodno
ení horniny p°es 
elkový pr·tok a p°es dobu zdrºení (£astransportu). Jiný zp·sob vyjád°ení doby zdrºení je moºné dostat p°ímo z pr·toku jako dobaideální vým¥ny 
elkového objemu vody (
elkový objem ku pr·toku). P°estoºe tok se m¥ní mezijednotlivými variantami v mnohem vy²²ím pom¥ru, ob¥ vyjád°ení £asu zdrºení dávají podobnýpr·b¥h (m¥ní se výrazn¥ objem vody mezi variantami). Výsledky potvrzují p°edpoklad vznikuvodivý
h kanál· z n¥kolika konkrétní
h puklin, které i p°i sníºení toku sniºují dobu zdrºení (tzv.
hanneling).
Obrázek 1: S
héma okrajový
h podmínek ur£ují
í
h tlakový gradient pro úlohu proud¥ní � dv¥varianty s propustnými nebo nepropustnými bo£ními st¥nami.

1 0 0 1 0 0 0 1 0 0 0 0 1 0 0 0 0 0c a s [ s ]00 . 20 . 40 . 60 . 8 1
podílh mot ynaodt ok u[1] I C N A P S A CK T H U D E CT U L F l o w 1 2 3 DP r o G e o N A P S A C

Obrázek 2: Porovnání pr·nikový
h k°ivek (závislost hmoty na výstupu na £ase) mezi jednotlivýmimodely a °e²itelskými týmy De
ovalex. 48



Obrázek 3: Porovnání doby zdrºení (£asu transportu) ur£ené p°ímo z výpo£tu transportu a ur£enéz 
elkového pr·toku, proti pr·toku samotnému, pro r·zné varianty parametr· puklin (vlivemnapjatosti).Pod¥kování: Tato prá
e byla realizována za podpory státní
h prost°edk· �eské republikyv rám
i projektu VaV �Pokro£ilé sana£ní te
hnologie a pro
esy� £. 1M0554 v programu M�MTVýzkumná 
entra a v rám
i projektu £. FR-TI1/362 v programu MPO TIP. Dále byla �nan
o-vána SÚRAO, smlouva £. 2010/019/Slo.Prá
e popsané v tomto £lánku byly provedeny v rám
i mezinárodního projektu DECOVALEX(DEmonstration of COupled models and their VALidation against EXperiments). Názory vyjád-°ené v tomto £lánku jsou v²ak názory autor· a nemusí být nutn¥ názory �nan
ují
í
h organiza
í.Referen
e[1℄ A. Baghbanan, L. Jing: Hydrauli
 properties of fra
tured ro
k masses with 
orrelated fra
turelength and aperture. Int. J. Ro
k Me
h. Min. S
i. 44, 2007, 704�719.[2℄ M. Hokr, J. Kopal, J. Havlí£ek: �e²ení úlohy proud¥ní v rozsáhlé diskrétní síti puklin v kon-textu sdruºený
h úloh proud¥ní-me
hanika. In: SNA'09 Modelling and Simulation of Chalen-ging Engineering Problems (Blaheta, Starý, eds.), Ústav geoniky AV �R, Ostrava, 2009.[3℄ M. Hokr, J. Kopal, J. B°ezina, P. Rálek: Sensitivity of results of the water �ow problem ina dis
rete fra
ture network with large 
oe�
ient di�eren
es. In: I. Dimov, S. Dimova, andN. Kolkovska (Eds.): NMA 2010, LNCS 6046, pp. 420�427, 2011. Springer-Verlag BerlinHeidelberg 2011.[4℄ J. Hudson, L. Jing, I. Neretnieks: Te
hni
al de�nition of the 2-D BMT problem for Task C,DECOVALEX-2011 proje
t, 5 May 2008.[5℄ PROGEO s.r.o.: Simula
e transportu pomo
í metody parti
le tra
king. Te
hni
ká zpráva 2010.[6℄ O. Severýn, M. Hokr, J. Králov
ová, J. Kopal, M. Tau
hman: Flow123D: Numeri
al simu-lation software for �ow and solute transport problems in 
ombination of fra
ture network and
ontinuum. Te
hni
al Report, TU Libere
, 2008.[7℄ J. Hudson, L. Jing (eds.): Task C: Integrated assessment of THMC 
oupled pro
esses insingle fra
tures and fra
tured ro
ks. DECOVALEX-2011 Proje
t Progress Report, Stage2(in preparation).
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Parallel implementations of Total-FETI-1 algorithmfor 
onta
t problems using PETS
D. Horák, Z. DostálV�B-Te
hni
al University of Ostrava
1 Introdu
tionDomain de
omposition method is one of the most su

essful methods of solution of ellipti
partial di�erential equations des
ribing many te
hni
al problems, whi
h is based on �divide and
onquer� strategy. The FETI (Finite Element Tearing and Inter
onne
ting) method proposedby Farhat and Roux turned out to be one of the most su

essful algorithms for parallel solutionof these problems. The FETI-1 method is based on the de
omposition of the spatial domaininto non-overlapping subdomains that are "glued" by Lagrange multipliers. E�
ien
y of theFETI-1 method was further improved by introdu
ing spe
ial proje
tors and pre
onditioners. Byproje
ting the Lagrange multipliers in ea
h iteration onto an auxiliary spa
e to enfor
e 
ontinuityof the primal solutions at the 
rosspoints, Farhat, Mandel and Tezaur obtained a faster 
onvergingFETI method for plate and shell problems - FETI-2. Similar e�e
t was a
hieved by a variant
alled the Dual-Primal FETI method FETI-DP, introdu
ed by Farhat et al., where the 
ontinuityof the primal solution at 
rosspoints is implemented dire
tly into the formulation of the primalproblem. The FETI-DPC algorithm for nonlinear problems is based on a
tive set strategies andadditional planning steps. Total-FETI-1 (TFETI-1) by Dostal simpli�es the inversion of sti�nessmatri
es of subdomains by using Lagrange multipliers not only for gluing the subdomains alongthe auxiliary interfa
es, but also for implementation of the Diri
hlet boundary 
onditions. Thismethod may be even more e�
ient than the original FETI-1.FETI methods are even more su

essful for the solution of variational inequalities. The reasonis that duality redu
es not only large primal problem to smaller dual, relatively well 
ondi-tioned stri
tly 
onvex iteratively solved QP problem but also transforms the general inequality
onstraints into the nonnegativity 
onstraints so that e�
ient algorithms that exploit 
heap pro-je
tions and other tools may be exploited. Our resear
h 
on
erns development of the s
alableFETI-based methods for 
onta
t problems 
ombining FETI approa
h with algorithms for bound
onstrained quadrati
 programming problems with a known rate of 
onvergen
e given in termsof the spe
tral 
ondition number (QPMPGP, SMALBE) and their testing in parallel environ-ment. The most di�
ult part - solution of subdomain problems - may be usually 
arried outin parallel without any 
oordination, so that high parallel s
alability is enjoyed. The in
reas-ing number of subdomains de
reases the subdomain problem size resulting in shorter time forsubdomain sti�nes matrix fa
torizations and subsequently forward and ba
kward substitutionsduring pseudoinverse appli
ation, but on the other hand the in
reasing number of subdomainsassuming �xed dis
retization parameter in
reases the dual dimension and 
oarse problem sizeresulting in longer time for all dual ve
tor operations and proje
tor appli
ation. Three types ofparallelization strategies and their impa
t to parallel s
alability level will be dis
ussed.
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2 FETI-1 and TFETI-1Let us 
onsider 
onta
t boundary value problem. To apply the FETI-1 based domain de
ompo-sition let us partition domain Ω into Ns subdomains Ωs and we denote by Ks, f s, us and Bs,respe
tively the subdomain sti�ness matrix, the subdomain for
e and displa
ement ve
tors andthe signed matrix with entries -1, 0, 1 des
ribing the subdomain inter
onne
tivity (gluing ornonpenetration). We shall get the dis
retized problem
min

1

2
uTKu− uT f s. t. Bu ≤ 0 (1)

K =



K1 . . .

KNs


 , f =




f1...
fNs


 , u =




u1...
uNs


 , B = [B1, . . . , BNs ]. (2)The basi
 idea of TFETI is to keep all the subdomain sti�ness matri
es Ks as if there wereno pres
ribed displa
ements and to enhan
e the pres
ribed displa
ements into the matrix of
onstraints B. To enhan
e the boundary 
onditions like ui = 0, just append the row b with allthe entries equal to zero ex
ept bi = 1. The pres
ribed displa
ements will be enfor
ed by theLagrange multipliers whi
h may be interpreted as for
es. An immediate result of this pro
edureis that all the subdomain sti�ness matri
es will have known and typi
ally the same defe
t. Theremaining pro
edure is exa
tly the same as des
ribed for FETI-1, the key point is that thekernels Rs of the lo
all sti�ness matri
es Ks are known and 
an be formed dire
tly. We 
aneasily assemble the blo
k�diagonal basis R of the kernel of K as

R =



R1 . . .

RNs


 . (3)Let's establish following notation

F = BK†BT , G̃ = RTBT , d̃ = BK†f, ẽ = RT f, G = TG̃, e = T ẽwhere K† denotes matrix satisfying KK†K = K su
h as generalized inverse or Moore-Penrosepseudoinverse, T denotes a nonsingular matrix, that de�nes the orthonormalization of the rowsof G̃. The 
riti
al point of evaluation ofK†, the determination of the ranks of the subdomain sti�-ness matri
es Ks is trivial when the TFETI-1 pro
edure is applied. Our minimization problemreads
min

1

2
λTFλ− λT d̃ s.t. λI ≥ 0 and G̃λ = ẽ. (4)The problem of minimization on the subset of the a�ne spa
e is transformed to the problem onsubset of ve
tor spa
e by means of arbitrary λ̃ whi
h satis�es Gλ̃ = e while the solution is lookedfor in the form λ+ λ̃. Using old notation and denoting d = d̃−Fλ̃, the problem (4) is equivalentto

min
1

2
λTFλ− λTd s.t. λI ≥ −λ̃I and Gλ = 0. (5)Further improvement is based on the observation, that the augmented Lagrangian for problem (5)
an be de
omposed by orthogonal proje
tors

Q = G̃T (G̃G̃T )−1G̃ = GTG and P = I −Q51



on the kernel of G and on the image spa
e of GT (ImQ = KerG and ImP = ImGT ), so that the�nal problem reads
min

1

2
λTPFPλ− λTPd s.t. λI ≥ −λ̃I and Gλ = 0, (6)and may be solved e�e
tively by a s
alable algorithm SMALBE (Semi-Monotoni
 AugmentedLagrangians with Bound and Equality) using QPMPGP (Quadrati
 Programming with Modi�edProportioning and Gradient Proje
tion) in inner loop or just by QPMPGP for 
onvex quadrati
programming problems with simple bounds enfor
ing equality 
onstraint by dual penalty as theproof of the 
lassi
al estimate by Farhat, Mandel and Roux

κ(PFP |ImP ) ≤ C
H

h
(7)of the spe
tral 
ondition number κ of the restri
tion of PFP to the range of P by the ratio ofthe de
omposition parameter H and the dis
retization parameter h remains valid for TFETI-1.3 Parallelization strategiesProgrammes were implemented using PETS
 3.0.0 (Portable Extensible Toolkit for S
ienti�
Computation), developed by Argonne National Laboratory. PETS
 is a suite of data stru
turesand routines that provide the building blo
ks for the implementation of large-s
ale appli
ation
odes on high-performan
e 
omputers.The super
omputer for numeri
al experiments was HECToR at EPCC. Its ar
hite
ture: two Craysuper
omputing fa
ilities: the phase 2a (XT5h) ma
hine and the phase 2b (XT6) ma
hine; andan ar
hiving fa
ility, the main servi
e (phase 2a) uses a Cray XT4 system as its major 
omputeengine o�ering a total of 3072 AMD 2.3 GHz quad-
ore Opteron pro
essors - 12,288 
ores o�eringa theoreti
al peak performan
e of 113 T�ops, 8 GB of main memory available per Opteronpro
essor, whi
h is shared between its four 
ores, HECToR's total memory is 24.6 TB, pro
essorsare 
onne
ted with a high bandwidth inter
onne
t using Cray SeaStar2 
ommuni
ation 
hips.
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Most of 
omputations appearing in these programmes are purely lo
al and therefore parallelizable(subdomains problems), but some operations require data transfers. The level of 
ommuni
ationdepends �rst of all on distribution of B and R, G and GGT 
omputation and GGT fa
torizationor G orthonormalization (see Figure 1).A
knowledgement: This resear
h has been supported by the grants: GA CR 101/09/P601,Ministry of Edu
ation of the CR No. MSM 6198910027 and EU proje
t PRACE-1IP.Referen
es[1℄ Z. Dostál, D. Horák: S
alability and FETI based algorithm for large dis
retized variationalinequalities. Math. and Comp. in Simulation 61, (3-6), 2003, 347�357.[2℄ Z. Dostál, D. Horák, R. Ku£era: Total FETI � an easier implementable variant of the FETImethod for numeri
al solution of ellipti
 PDE. Commun. in Num.Methods in Eng. 22, 2006,1155�1162.
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A remark on the optimal mesh and the optimal polynomialdegree distribution in solving 1D boundary value problemsby the hp-FEMJ. ChlebounFa
ulty of Civil Engineering, Cze
h Te
hni
al University in Prague1 Introdu
tionThis 
ontribution deals with an optimal distribution of mesh nodes as well as an optimal distri-bution of polynomial degrees in the hp-version of the �nite element method (FEM) applied tosolving 
on
rete 1D boundary value problems.Unlike the h-version of the FEM, where the polynomial degree distribution is �xed and only themesh 
an be adaptively 
hanged to improve the a

ura
y of the FE solution, the hp-FEM o�ersmore �exibility in the pro
ess of minimizing the di�eren
e between the exa
t and the FE solution.Indeed, one 
an add and/or redistribute mesh nodes as well as 
hange p, the degree of polynomialsforming the FE basis fun
tions. Moreover, the degree need not be uniformly distributed overthe mesh. Although this diversity of 
hanges is advantageous, it also re
oils upon the analystwho then fa
es the problem of establishing a good (or, better, an optimal) strategy of mesh andpolynomial degree modi�
ations.An extensive literature on adaptive methods in the hp-FEM shows that many e�orts have beenmade to minimize the error of approximation. Nevertheless, even for 1D boundary value prob-lems, results on optimal meshing and optimal FE basis are rather limited and dire
ted towardsasymptoti
al optimality, see [1, 2, 3℄, whi
h is not the topi
 we will pursue.This work does not deal with general purpose error estimate approa
hes and h or p adaptivityalgorithms. We will fo
us on the optimal use of a �xed number of degrees of freedom (DOF) in agiven 1D boundary value problem. The obtained optimal h and p distributions then 
an serve inde�ning ben
hmark problems for pra
ti
al hp-adaptive algorithms in one and (in spe
ial 
ases)more spatial dimensions.2 hp-FEM in 1DLet us 
onsider a boundary value problem de�ned on an interval (α, β), that is,
−u′′(x) + c(x)u(x) = f(x) in (α, β), (1)

u(α) = 0, u(β) = 0, or u′(α) = 0, u′(β) = 0, (2)where the fun
tion c is su
h that the bilinear form
a(u, v) ≡

∫ β

α
(u′(x)v′(x) + c(x)u(x)v(x))dxis 
ontinuous and V -ellipti
 for u, v ∈ V . The spa
e V is a subspa
e of the Sobolev spa
eH1(α, β)and it is determined by the boundary 
onditions (2) (mixed boundary 
onditions 
ould also beintrodu
ed in (2)). 54



Assuming f ∈ L2(α, β), we arrive at the weak formulation of (1)-(2): Find u ∈ V su
h that
a(u, v) =

∫ β

α
f(x)v(x)dx ∀v ∈ V ; (3)by virtue of the assumptions, (3) is uniquely solvable.To �nd an approximate solution, we substitute a �nite-dimensional subspa
e V Pn

n,Xn
⊂ V for Vin (3). The spa
e V Pn

n,Xn
is 
onstru
ted as follows: (i) a mesh determined by nodes x0 = α <

x1 < · · · < xn+1 = β is de�ned; (ii) a set of basis fun
tions is introdu
ed. For ea
h interval
Ii ≡ [xi−1, xi], a maximum polynomial degree pi is given, i = 1, . . . , n. Let us de�ne Xn, a ve
tor
omprising xi (inner mesh nodes), and Pn, a ve
tor 
omprising pi; in both 
ases i = 1, . . . , n.The support of ea
h basis fun
tion is either [xi, xi+2] (hat fun
tion) or [xi, xi+1] (Lobatto poly-nomials of degree two up to pi; see [4℄ for the details). The dimension of V Pn

n,Xn
is also known asthe number of DOF (NDOF).3 Mesh and polynomial degree optimizationLet us assume that the NDOF is equal to N . Let us de�ne FN

n,Xn,Pn
, a family of all FE spa
es

V Pn

n,Xn
whose NDOF equals N . To avoid formal and 
omputational di�
ulties 
aused by de-generated mesh intervals, FN

n,Xn,Pn
is 
onstrained through a positive minimum length the meshintervals must not break through. Ea
h spa
e V Pn

n,Xn
is determined by a 
on�guration of n, Xn,and Pn, that is, by the total number of mesh intervals, by their length and position, and by therespe
tive maximum polynomial degree on ea
h interval. A 
on�guration is 
alled N -admissibleif the related FE spa
e has dimension N .The di�eren
e between the solution of (3) and its FE 
ounterpart un,Xn,Pn is measured by

Ψ(n,Xn, Pn) = ‖u− un,Xn,Pn‖H1(α,β).The optimization problem is set as follows: For a �xed positive integer N ,minimize Ψ(n,Xn, Pn) over FN
n,Xn,Pn

. (4)The 
ore of solving problem (4) lies in solving a 
ontinuous optimization subproblems. Indeed,for a �xed N , n, and Pn, we minimize Ψ(n,Xn, Pn) via sear
hing for the optimal position of thenodes x1, . . . , xn. These subproblems have to be solved for ea
h N -admissible 
on�guration of nand Pn, that is, for ea
h 
on�guration that results in N degrees of freedom. Thus problem (4)has 
ombinatorial features and, as a 
onsequen
e, it is 
omputationally demanding.Numeri
al experiments were performed for a few low values of N . To this end, a 
hosen fun
tionwas substituted for u in (1), the right-hand side f was 
al
ulated, and then used as the knownright-hand side in the FE problems determined by (3) and the N-admissible 
on�gurations. The
al
ulations were performed in the MATLABR© environment.A
knowledgement: This work has been supported by grant No. P105/10/1682 of the Cze
hS
ien
e Foundation.
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Bézier form of S�Pat
hesA. Kol
unInstitute of Geoni
s AS CR, Ostrava
1 Introdu
tionParametri
 Cartesian surfa
e, e.g. [1℄, is a wide-spread tool for data interpolation and approx-imation. However, for simple modeling systems there is not strong requirement to 
ontrol allpossible geometri
 parameters of resulting surfa
e. Moreover, due to the fa
t, that nonplanarre
tangular pat
hes are very often tessellated to triangles, it is useful to require the same degreeof all boundary 
urves of tessellated triangles. In [3℄ the 
on
ept of Smart-pat
hes (S�Pat
hes)is introdu
ed. Its main bene�ts are:1. the same degree of both diagonal and boundary 
urves,2. the number of independent 
ontrol points is smaller than n2.In this paper the main properties for the biquadrati
 
ase of S�Pat
hes are des
ribed. Bézierform of pat
hes is used. It gives us the possibility to �nd the 
orrelation between triangularand quadrilateral pat
hes. Condition for smooth 
on
atenation of biquadrati
 BS�Pat
hes isformulated. Proves 
an be �nd in [2℄.2 S�Pat
hLet us 
onsider biquadrati
 parametri
 pat
h

X(u, v) = u R vT = (1 u u2)




R00 R01 R02

R10 R11 R12

R20 R21 R22


 (1 v v2)T (1)It is obvious that all boundary 
urves are quadrati
 polynomial ones.Let us 
onsider S�Pat
h [3℄, i.e. su
h pat
h where both main diagonals D1(u), D2(u)

D1(u) = X(u, u) = u R uT

D2(u) = X(u, 1 − u) = u R(1-u)T = u R 1 0 0
1 −1 0
1 −2 1


uTare quadrati
 polynomial 
urves too.Theorem 1. Biquadrati
 pat
h (1) is S�Pat
h i� R12 = R21 = R22 = 0 .Corollary. All parametri
 lines of biquadrati
 S�Pat
h L(u) = X(u, a+bu) are 
urves of degree

d ≤ 2 . 57



Cartesian Bézier pat
h is de�ned as
B(u, v) = (b0,n(u) . . . bn,n(u))




P00 . . . P0n... ...
Pn0 . . . Pnn


 (b0,n(v) . . . bn,n(v))Twhere bi,n(u) =

(
n
i

)
(1−u)n−iui are the Bernstein polynomials and Pij are the 
ontrol pointsof the pat
h. Let us express the biquadrati
 S�pat
h in Bézier form. Control points Pij 
an befound a

ording to the relations below.P =




P00 P01 P02

P10 P11 P12

P20 P21 P22


 =




1 0 0
−2 2 0

1 −2 1




−1


R00 R01 R02

R10 R11 0
R20 0 0






1 −2 1
0 2 −2
0 0 1




−1 (2)3 BS�Pat
hLet us analyze the relations between main diagonals D1(u),D2(u) of S�Pat
h and proper Bézierdiagonals � i.e. the 
urves de�ned on the set of diagonal 
ontrol points P00, P11, P22 and
P20, P11, P02 respe
tively

D1B(u) = u 1 0 0
−2 2 0

1 −2 1






P00

P11

P22


 , D2B(u) = u 1 0 0

−2 2 0
1 −2 1






P20

P11

P02


 ,where P and R are 
onne
ted with relation (2).These relations 
an be formulated as the theorem below.Theorem 2. D1(u) = D1B(u) if and only if R11 = 0 . Moreover, equality of these diagonalsautomati
ally implies the equality of D2(u) = D2B(u) .On the base of the Theorem 2 we 
an introdu
e biquadrati
 BS�Pat
h, i.e. pat
h in the form asfollows

X(u, v) = u R00 R01 R02

R10 0 0
R20 0 0


vT .In this 
ase mutual relations among Bézier 
ontrol points Pij and S�pat
h 
ontrol points Rijare valid

(P00P01P02P10P11P12P20P20P21P22) = (R00R01R10R02R20)
1

2




2 2 2 2 2 2 2 2 2
0 1 2 0 1 2 0 1 2
0 0 0 1 1 1 2 2 2
0 0 2 0 0 2 0 0 2
0 0 0 0 0 0 2 2 2



.We 
an see that in this 
ase the pat
h is de�ned by 5-element set of 
ontrol points. Examples ofnon independent and independent 5-element sets of 
ontrol points of BS�Pat
hes are presentedin Fig. 1.The rest of 
ontrol points e.g. for the independent pentad P01, P11, P21, P10, P20 from Fig. 1e)may be represented as follows

P00 = P01 + P10 − P11 P02 = P01 + P12 − P11

P20 = P21 + P10 − P11 P22 = P21 + P12 − P11 (3)58



a) b) 
) d) e) f) g) .Figure 1: 5-element sets of 
ontrol-points. a),b) non independent sets, 
)�g) independent sets.4 BS�Pat
h and Bézier trianglesAs both diagonal and boundary 
urves of BS�Pat
hes are B ezier 
urves, it is meaningful toanalyze the triangle pat
hes. There is a very 
lose 
onne
tion between the Cartesian BS�pat
hand a pair of triangular Bézier pat
hes. Let us 
onsider triangular mesh of nodes
Pijk, 0 ≤ i, j, k ≤ n, i+ j + k = n ,where nodes Pi1j1k1, Pi2j2k2 are neighbour, if | i1 − i2 | + | j1 − j2 | + | k1 − k2 |= 2 .Bézier triangular pat
h is de�ned as
B△(u, v,w) =

∑

(i,j,k)

n!

i!j!k!
uivjwkPijkwhere 0 ≤ u, v,w ≤ 1, u+ v = w = 1, 0 ≤ i, j, k ≤ n, i+ j + k = n .Let us 
onsider Cartesian and triangular indexing of 
ontrol points a

ording to Fig. 2.

Figure 2: Cartesian and triangular indexing of 
ontrol nodes for n = 2.Theorem 3. BS�Pat
h de�ned on 
ontrol points Pij , 0 ≤ i, j ≤ 2 is the same surfa
e as thepair of triangular Bézier pat
hes, de�ned on the sets of proper 
ontrol points.This theorem gives us generalization of the trivial fa
t that bilinear pat
h 
an be de
omposed totwo triangles i� the quaternion of 
ontrol points is planar.5 Smooth 
on
atenation of BS�Pat
hesLet us 
onsider 5-element set of independent 
ontrol points from Fig. 1e). Condition (3) saysthat the set of 
ontrol points 
reates four rhomboids, see Fig. 3. Here we 
an distinguish threetypes of 
ontrol points: 
entral 
rosswise and dependent.The 
onditions for 
on
atenation of the pat
hes 
an be formulated in the following way.De�nition. Let there are two open polylines Λ1 = (P0P1 . . . Pn) and Λ2 = (R0R1 . . . Rm) . Leta) m+ 1 
opies of polyline Λ1 are 
reated, ea
h of it started in a node of Λ2,b) n+ 1 
opies of polyline Λ2 are 
reated, ea
h of it started in a node of Λ1 .59



Figure 3: Control points for BS�Pat
h. Di�erent types of them are distinguished: bla
k � 
entralone, dark � 
rosswise ones, light � dependent ones.Resulting set of rhomboids we 
all 'produ
t of polylines' Λ1 • Λ2 .Theorem 4. Surfa
e is set of smooth BS�pat
hes i� the set of 
entral 
ontrol points ofBS�Pat
hes is a produ
t of polylines.Constru
tionGiven two polylines given two sets (sets of ratios)
π = (p0, p1, . . . , pn−1), ρ = (r0, r1, . . . , rm−1), 0 < pi, rj < 1 ,we 
an 
onstru
t smooth 
on
atenation of BS�Pat
hes a

ording to the steps below.a) The 
entral 
ontrol points of BS�Pat
hes are the produ
t of polylines Λ1 • Λ2 .b) Crosswise 
ontrol points 
an be found as a ratios of neighbour 
entral 
ontrol points.
) Dependent 
ontrol points (
orners of BS�pat
hes) are found a

ording to the (3).d) Con
atenation 
onsists of full-de�ned BS�pat
hes.Fig. 4 demonstrates the above des
ribed 
onstru
tion.

Figure 4: Smooth 
on
atenation of BS�pat
hes a

ording to the steps a)�d) above.A
knowledgement: This work is supported by grant GACR 105/09/1830 of the Grant Agen
yCR and the resear
h plan AVOZ 30860518 of the A
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es of the Cze
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Orthogonalization with a non-standard inner produ
tand approximate inverse pre
onditioningJ. Kopal, M. Rozloºník, M. T·ma
1 Institute of Novel Te
hnologies and Applied Informati
s, Te
hni
al University of Libere


2,3 Institute of Computer S
ien
e AS CR, Prague
1 Introdu
tionOne of the most important and frequently used pre
onditioning te
hniques for solving symmetri
positive de�nite systems Ax = b is based on 
omputing the approximate inverse fa
torizationin the form A−1 = ZZT , where Z is upper triangular [1℄. It is also a well-known fa
t that the
olumns of the fa
tor Z 
an be 
omputed by means of the A-orthogonalization pro
ess appliedto the unit basis ve
tors e1, . . . , en. As noted in [3℄ su
h A-orthogonalization also produ
es theCholesky fa
tor of the matrix A = UTU , where U−1 = Z. This fa
t has been exploited to
onstru
t e�
ient sparse approximate inverse pre
onditioners [1, 2, 3℄. In a more general setting,given the symmetri
 positive de�nite matrix A and the nonsingular matrix Z(0), we look forthe fa
tors Z and U so that Z(0) = ZU with ZTAZ = I and the upper triangular matrix U isa Cholesky fa
tor of the matrix (Z(0))TAZ(0) = UTU .2 Ortogonalization te
hniquesOne 
an use a lot of algorithms to 
al
ulate matri
es Z and U . Straightforward and probably themost expensive way is the 
omputation based on spe
tral de
oposition. Assume spe
tral de
om-position of the matrix A in the form A = V ΛV T . We 
an get the fa
tor U as the upper triangularfa
tor from QR de
omposition (with standard inner produ
t) of the matrix Λ1/2V TZ(0) = QUand the fa
tor Z 
an be then obtained simply as the produ
t Z = V Λ−1/2Q. This approa
h(
alled EIG here) is due to 
omputation 
ost useful only for small dimensional matri
es. Forthe real-world problems it is more suitable and likely the most 
ommon way to 
ompute matri-
es Z and U using on the generalized Gram-S
hmidt orthogonalization (the A-orthogonalization),whi
h forms the 
olumns of the matrix Z. The orthogonalization 
oe�
ients form the upper tri-angular fa
tor U . There are several versions of the Gram-S
hmidt algorithm, whi
h lead to thesame result in exa
t arithmeti
. The 
lassi
al Gram-S
hmidt (CGS) algorithm employs a lot ofparallelism, be
ause the s
alar produ
ts 
an be 
omputed separately. Rearraging of this s
hemehas led to the modi�ed Gram-S
hmidt algorithm (MGS), whi
h partly lost parallel properties,but provides better numeri
al results. Ex
ept CGS and MGS algorithms there is a spe
i�
 
om-bination of these s
hemes, whi
h originates from AINV pre
onditoner [3℄. This s
heme will befurther referred as the AINV orthogonalization. The papers on approximate inverse fa
toriza-tion are mainly fo
used on the 
onstru
tion of the algorithms and do not study their numeri
alproperties. Therefore it is ne
essary to study in
omplete algorithms also from the numeri
alpoint of view and understand well their numeri
al behavior. The development of algorithms for
onstru
ting approximate inverse has led from oblique proje
tions based AINV and CGS orthog-onalizations [3℄ to their stabilized version represented by SAINV algorithm [2℄, whi
h uses MGSorthogonalization algorithm. 61



3 Theoreti
al analysisAssume 
omputed quantitie Z̄ whi
h approximate Z so that A−1 ≈ Z̄Z̄T . Our analysis hasfo
used in parti
ular on the bound for the loss of orthogonality whi
h 
an be 
ompletely di�erentfor various algorithm as it will be presented later. With the loss of orthogonality we mean the2-norm of the matrix Z̄TAZ̄ − I. The orthogonality between 
omputed ve
tors has a 
ardinalsigni�
an
e for the quality of the pre
onditioner 
omputed by the orthogonalization pro
ess. Itis a well-known fa
t that the eigenvalues of Z̄TAZ̄ a�e
t the 
onvergen
e rate of pre
onditioned
onjugate gradient method applied to Z̄TAZ̄y = Z̄b, where x = Z̄y. Therefore our primary goalis to solve the orthogonal basis problem in this appli
ation. There exist 
omplete rounding erroranalysis [4, 5, 7℄ for all main s
hemes for the QR de
omposition with the standard inner produ
t,but the situation is 
ompletely di�erent for the non-standard inner produ
t (indu
ed by matrix
A).In this 
ontribution we review the most important s
hemes used for orthogonalization with re-spe
t to the non-standard inner produ
t and give the worst-
ase bounds for 
orresponding quan-tities 
omputed in �nite pre
ision arithmeti
. We formulate our results on the loss of orthogo-nality, on the fa
torization error, and on Cholesky fa
torization error (measured by ‖Z̄TAZ̄−I‖,
‖Z(0) − Z̄Ū‖, and ‖A − ŪT Ū‖) in terms of quantities proportional to the roundo� unit u, interms of the 
ondition number κ(A) whi
h represents an upper bound for the relative error in
omputing the A-inner produ
t as well as the 
ondition number of the matrix A1/2Z(0) whi
hplays an important role in the fa
torization (Z(0))TAZ(0) ≈ ŪT Ū .4 Numeri
al experimentsWe 
onsider a test problem de�ned as a sequen
e of matri
es Ai with dimension n = 10 whi
hare generated as powers of the Pas
al matrix A = pas
al(10) = V ΛV T (κ(A) ≈ 109) su
h that
Ai = V Λi/9V T with κ(Ai) ≈ 10i, i = 0, . . . , 17. The matrix Z(0)

i is equal to Z(0)
i = I.We 
an see from �gure 1, that the loss of orthogonality for all these algorithms is proportionalto uκ(A). This problem does not rea
h the worst-
ase bound, obtained by CGS, AINV, andMGS in the form ‖Z̄AZ̄ − I‖ ≤ O(u)κ3/2(A). The fa
torization error 
orresponds to theoreti
alanalysis ‖I−Z̄Ū‖; its bound for the algorithms is proportional to uκ1/2(A) [6℄. On �gure 2 we 
ansee the Cholesky fa
torization error ‖A− ŪT Ū‖, for the EIG implementation it is proportionalto u‖A‖ and for other algorithms it is proportional to uκ1/2(A)‖A‖, that are worst-
ase boundsfor Cholesky fa
torization error [6℄.
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Figure 1: Loss of orthogonality and fa
torization error for the test problem.62
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torization error for the test problem.5 Con
lusionAs it was noted, from all given Gram-S
hmidt algorithms we 
an get signi�
antly di�erent numer-i
al results, but the fa
torization error is essentially the same. The bound for the loss of orthogo-nality depends linearly on the 
ondition number κ(A) for the 
ase of eigenvalue based implemen-tation (EIG) and 
lassi
al Gram-S
hmidt with reorthogonalization (CGS2). For the modi�edGram-S
hmidt it is also true, although, also besides κ(A) it depends on the 
ondition number

κ(A1/2Z(0)). The loss of orthogonality is similar for the 
lassi
al Gram-S
hmidt (CGS) and AINVorthogonalization, no matter that theoreti
ally the bound depends on κ(A)κ(A1/2Z(0))κ(Z(0)).From the numeri
al point of view and due to the 
omputation 
ost, MGS seems to be a good
ompromise between all these algorithms. For all these results and details we refer to [6℄. Webelieve that these results may initialize a detailed resear
h of the s
hemes whi
h leads to somesparse approximation of the matri
es Z and U . For a overview of su
h s
hemes we refer to [1℄.A
knowledgement: This work has been supported by Grant Agen
y of the A
ademy of S
i-en
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h Republi
 under the proje
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Numeri
al algorithms on multi
ore ar
hite
turesP. KotasV�B - Te
hni
al University of Ostrava
1 Introdu
tionMany tools su
h as Matlab (and its open-sour
e 
ounterpart, O
tave) are often used for algorithmprototyping and development. Matlab & O
tave have easy to learn syntax and provide the easiestway of implementing numeri
al algorithms. However both Matlab & O
tave share problems thatlimits their usefulness. The problems in
lude :

• Matlab is a proprietary software with an expensive li
ense. This fa
t limits the use ofprograms written in Matlab. O
tave partially solves this problem, however not all Matlabfun
tionality is yet implemented in O
tave.
• Both Matlab & O
tave are weakly dynami
ally typed languages, whi
h means type 
he
kingis performed at runtime as opposed to 
ompile-time. As su
h, it is possible to writetype unsafe programs that 
ould break during deployment stage. Furthermore, there isperforman
e penalty asso
iated with runtime 
he
k.
• It is possible to 
all fun
tion written in other languages (su
h as C and Fortran) fromMatlab. However fun
tions written in Matlab 
an not be easily 
alled from other languages.
• In
reasing availability of multi-
ore CPUs has opened a possibility to in
rease performan
evia parallelization. However parallelization is non-trivial within Matlab, whi
h is in 
ontrastto the ease of parallelization via OpenMP or Thread building blo
ks.Due to above issues, most programs (or algorithms) written in Matlab are often 
onverted toanother programming language (C++, Java, et
.), when targeting 
ommer
ial deployment orlarge s
ale parallel environments. This leads to another set of problems, su
h as reimplementingMatlab fun
tions that are ne
essary requirement for run of implemented algorithm.This work 
onsiders alternative approa
h to algorithm prototyping. The main area of my resear
hare parallel algorithms for 
omputer vision. Therefore, I fo
used on libraries for 
omputer vision,linear algebra pa
kages and parallel libraries.2 Computer vision librariesThere are two suitable image libraries, OpenCV [1℄ and 
Img [2℄. CImg library is basi
ally theonly template providing basi
 routines for handling images. Be
ause I need a repla
ement of theMatlab image pro
essing toolbox I have 
hosen the OpenCV library. OpenCV is an extensiveset o fun
tions for image pro
essing and 
omputer vision with neat implementation of matrixoperations. OpenCV also possess basi
 implementation of graphi
al user interfa
e.65



3 Linear algebra pa
kagesArmadillo [3℄ is easy to learn linear algebra pa
kage. It is build on top of LAPACK and ATLASand it is designed to have syntax similar to Matlab. This features makes Armadillo perfe
tlibrary for numeri
al algorithm prototyping.4 Parallel librariesThere are two widely used libraries for parallelization on multi-
ore ar
hite
tures. Thread build-ing blo
ks (TBB) is library developed by Intel. It is suited for developing parallel algorithms inC++. TBB uses obje
t oriented approa
h and is based on template algorithms. On the otherhand, OpenMP is set of 
ompiler pragmas and set of parallel instru
tion is built-in most todays
ompilers. OpenMP is well suited for parallelization of existing sequential algorithms that spentmost of the time iterating over arrays.5 Dis
ussionBoth OpenMP and TBB are reliable libraries and 
ould do similar job. Be
ause my work is donein C++ and all algorithms are mainly iterating over large arrays, the 
hoi
e of parallel library isnot simple. Also library needs to in
orporate with OpenCV. Therefore 
hoi
e of parallelizationlibrary will be based on experien
e with implementing simple image pro
essing algorithm. TheArmadillo and OpenCV integration will also be tested.Referen
es[1℄ G. Bradski: The OpenCV library. Dr. Dobb's Journal of Software Tools, 2000.[2℄ 
Img library. http://
img.sour
eforge.net/[3℄ C. Sanderson: Armadillo: An open sour
e C++ linear algebra library for fast prototypingand 
omputationally intensive experiments. NICTA Te
hni
al Report, 2010.[4℄ J. Reinders: Intel threading building blo
ks: out�tting C++ for multi-
ore pro
essor paral-lelism. Sebastopol: O'Reilly Media, 2007.[5℄ B. Chapman, G. Jost, R. van der Pas: Using OpenMP: portable shared memory parallelprogramming. MIT Press, 2008.
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Solution of non-linear algebrai
 systemsin 
oupled thermo-me
hani
al analysisJ. Kruis, T. KoudelkaFa
ulty of Civil Engineering, Cze
h Te
hni
al University in Prague
1 Introdu
tionThis 
ontribution 
on
entrates on me
hani
al analyses based on damage models 
oupled withheat transfer. The damage models are used for des
ription of 
on
rete and ro
k materials.Typi
al feature of su
h models is softening bran
h after the peak stress value. In order to followthe softening behaviour, the methods of ar
-length are used [1℄, [2℄. Three of them are 
omparedin this paper.2 Solution of non-linear algebrai
 systems of equationsThe equilibrium 
ondition of a stru
ture after dis
retization by the �nite element method hasthe form

f int(d) = f c + λfp (1)where d denotes the ve
tor of nodal displa
ements, f int denotes the ve
tor of internal for
es,
f c denotes the ve
tor of 
onstant pres
ribed for
es, λfp denotes the ve
tor of proportionally
hanging for
es and λ denotes the s
alar load-level multiplier. The ve
tor of unbalan
ed for
eshas the form

r(d, λ) = f c + λfp − f int(d) (2)and it is the residual. The dependen
e of d on λ has to be obtained by an iterative pro
ess. Letthe i-th step be known, i.e. the ve
tor di and the parameter λi are known and r(di, λi) = 0.Expansion of the residual has the form
r(di+1, λi+1) = r(di, λi) +

∂r(di, λi)

∂d
δdi +

∂r(di, λi)

∂λ
δλi = −Ki,0δdi,1 + fpδλi,1 = 0 (3)where the following notation

∂r(di, λi)

∂d
= −Ki,0 (4)

∂r(di, λi)

∂λ
= fp (5)is used. Let the ve
tor δdi,1 be in the form

δdi,1 = δλi,1vi,1 (6)67
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∆l

δdi,1

∆di,1

δλi,1fp

δdi,2

∆di,2Figure 1: Load�de�e
tion 
urve.Substitution of the assumption (6) to (3) leads to the expression
vi,1 = K−1

i,0 fp (7)The length of ar
 
an be written
(δdi,1)

T δdi,1 + ψ2(δλi,1)
2fT

p fp = (δλi,1)
2vT

i,1vi,1 + ψ2(δλi,1)
2fT

p fp = (∆l)2 (8)where the s
aling parameter ψ was de�ned. The in
rement of the s
alar load multiplier has theform
δλi,1 = ± ∆l√

vT
i,1vi,1 + ψ2fT

p fp

(9)Substitution of (9) and (7) to the assumption (6) leads to the modi�ed ve
tor of displa
ements.Generally, the residual is not equal to the zero ve
tor
r(di + δdi,1, λi + δλi,1) = f c + (λi + δλi,1)fp − f int(di + δdi,1) 6= 0 (10)and new system has to be solved
r(di+1, λi+1) = ri,1 − Ki,1δdi,2 + fpδλi,2 = f c + (λi + δλi,1)fp − (11)

− f int(di + δdi,1) − Ki,1δdi,2 + fpδλi,2 = 0where the notation
ri,1 = r(di + δdi,1, λi + δλi,1) (12)is used.Cumulative quantities are de�ned

∆di,j = ∆di,j−1 + δdi,j (∆di,1 = δdi,1) (13)
∆λi,j = ∆λi,j−1 + δλi,j (∆λi,1 = δλi,1) (14)68



and they are s
hemati
ally depi
ted in Figure 1. Equation (11) 
an be rewritten to the form
Ki,1δdi,2 = f c + (λi + ∆λi,1)fp − f int(di + ∆di,1) + fpδλi,2 (15)The system of equations (15) 
an be split into two systems

Ki,1ui,2 = f c + (λi + ∆λi,1)fp − f int(di + ∆di,1) (16)
Ki,1vi,2 = fp (17)and the de
omposition

δdi,2 = ui,2 + δλi,2vi,2 (18)is assumed. The length of ar
 has now the form
‖∆di,1 + ui,2 + δλi,2vi,2‖2 + ψ2‖∆λi,1fp + δλi,2fp‖2 = (∆l)2 (19)whi
h is the quadrati
 equation

a1(δλi,2)
2 + a2(δλi,2) + a3 = 0 (20)with 
oe�
ients

a1 = vT
i,2vi,2 + ψ2fT

p fp (21)
a2 = 2vT

i,2(∆di,1 + ui,2) + 2∆λi,1ψ
2fT

p fp (22)
a3 = (∆di,1 + ui,2)

T (∆di,1 + ui,2) + (∆λi,1)
2ψ2fT

p fp − (∆l)2 (23)The in
rement δλi,2 is obtained from the quadrati
 equation (20) and it is substituted to (18).New values are again substituted to the residual and equality to the zero ve
tor is 
he
ked. Thealgorithm is summarized in Table 1 and it is 
alled the spheri
al ar
-length method. If the s
alingparameter ψ is equal to zero, the method is 
alled the 
ylindri
al ar
-length method.Solution of the quadrati
 equation (20) is straightforward but only one root has to be used fornext 
omputation. One of the 
riteria used has the form
cos θ =

∆dT
i,j+1∆di,j

(∆l)2
→ max (24)Substitution of (13) and (18) leads to the form

cos θ =
1

(∆l)2
∆dT

i,j(∆di,j + ui,j+1 + δλi,j+1vi,j+1) (25)New notation
a4 = ∆dT

i,j(∆di,j + ui,j+1) (26)
a5 = ∆dT

i,jvi,j+1results to the 
on
ise form
cos θ =

a4 + δλi,j+1a5

(∆l)2
(27)Both roots of the equation (20) are substituted to the expression (27) and the root leading tothe larger value is sele
ted.Linearized form of the ar
-length leads to the expression

δλi,j+1 =
−1

2 li,j − ∆dT
i,jui,j+1

∆dT
i,jvi,j+1 + ψ2∆λi,jf

T
p fp

(28)and no root sele
tion pro
edure is needed. 69



λ0 = 0,d0 = 0For i = 0, 1, 2, . . .

∆λi,0 = 0, ∆di,0 = 0, ri,0 = 0For j = 0, 1, 2, . . .

ui,j+1 = K−1
i,j ri,j

vi,j+1 = K−1
i,j fp

a1 = vT
i,j+1vi,j+1 + ψ2fT

p fp

a2 = 2vT
i,j+1(∆di,j + ui,j+1) + 2∆λi,jψ

2fT
p fp

a3 = ‖∆di,j + ui,j+1‖2 + (∆λi,j)
2ψ2fT

p fp − (∆l)2

a1(δλi,j+1)
2 + a2(δλi,j+1) + a3 = 0 ⇒ δλi,j+1

δdi,j+1 = ui,j+1 + δλi,j+1vi,j+1

∆di,j+1 = ∆di,j + δdi,j+1

∆λi,j+1 = ∆λi,j + δλi,j+1

ri,j+1 = f c + (λi + ∆λi,j)fp − f int(di + ∆di,j)if ‖ri,j+1‖ < ε, stop
λi+1 = λi + ∆λi

di+1 = di + ∆diTable 1: Algorithm of the Ar
-length Method.3 Con
lusionsNumeri
al experiments based on damage models of ro
k show that the linearized version of thear
-length method 
onverges faster than the spheri
al or 
ylindri
al methods but on the otherhand, it sometimes performs spurious loading and unloading 
y
les.A
knowledgement: Finan
ial support for this work was provided by proje
t numberP105/10/1682 of Cze
h S
ien
e Foundation. The �nan
ial support is gratefully a
knowledged.Referen
es[1℄ Z. Bittnar, J. �ejnoha: Numeri
al Methods in Stru
tural Me
hani
s. ASCE Press, New York,USA, 1996.[2℄ M. A. Cris�eld: Non-linear Finite Element Analysis of Solids and Stru
tures. John Wiley &Sons Ltd, Chi
hester, UK, 1991.
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Constru
tion of higher-order basis fun
tionson meshes with hanging nodes in 3DP. K·sInstitute of Thermome
hani
s AS CR, Prague
1 Introdu
tionFinite element method using higher-order basis fun
tions and meshes with hangingnodes (hp-FEM) be
ame very popular thanks to it's ability to a
hieve fast (exponential) 
onver-gen
e. The reason of it's qualities is its ability to perform both h (division of element in spa
e)and p (in
rease of the polynomial order) re�nements in the adaptivity pro
ess. This approa
hhas been des
ribed in several books, see e.g. [1℄, [3℄.In a pra
ti
al 
omputer implementation, however, many serious te
hni
al and theoreti
al di�
ul-ties arise. In this presentation we want to address one of the 
ru
ial parts, whi
h is 
onstru
tionof 
onforming higher-order basis fun
tions on meshes with arbitrary-level hanging nodes.2 Arbitrary-level hanging nodesMain feature of introdu
tion of irregular meshes is that fa
es, edges or verti
es of elements 
anlie inside fa
es and edges of other elements in the mesh. This situation is not allowed in standardFEM, where adja
ent elements either share a single vertex, a single edge, or a single fa
e. Withthe te
hnique of arbitrary-level hanging nodes, very small elements 
an be neighbors of verylarge ones while keeping an undistorted regular shape � this is impossible in standard FEM.Further, this te
hnique makes element re�nements 
ompletely lo
al � re�nement of an elementnever 
auses re�nements in adja
ent elements.Some authors try to avoid implementational 
omplexity of fully irregular meshes by introdu
ing1-irregular mesh. It allows hanging nodes, but of only �rst level. Comparison 
an be seen in

Figure 1: Meshes resulting from an automati
 mesh adaptive pro
edure for problem with singu-larity slightly to the right and up from the square 
enter. Arbitrary-level hanging nodes (left),level-one hanging nodes (
enter), no hanging nodes � regular mesh (right).71
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Figure 2: The number of DOFs vs. the number of su

essive re�nement steps for the 2D 
ase ina square (left) and for the 3D 
ase in a 
ube (right).Figure 1 for 2D 
ase, for a 3D 
ase the 
onstru
tion is similar, but �gure would be di�
ult todraw. In Figure 2 we 
an see 
omparison of number of degrees of freedom in meshes obtained bysu

essive re�nement towards singularity as shown in Figure 1 and similar 
onstru
tion in 3D.Even though this 
onstru
tion is slightly arti�
ial, we 
an see, that mesh with arbitrary-levelhanging nodes has mu
h less degrees of freedom than two others. It is 
aused by the fa
t, thatno unne
essary re�nements are performed.For
ed re�nements slow down the 
onvergen
e, worsen the 
onditioning of sti�ness matri
es,and their algorithmi
 treatment is problemati
, be
ause they 
an �spread� through the mesh in are
ursive nature. Most existing adaptivity algorithms in both low- and higher-order FEM su�erfrom these drawba
ks.3 Constru
tion of basis fun
tionsIn the �nite element method, solution of the problem is sought as a 
ombination of basis fun
tions.In the 
on
ept of hierar
hi
al basis, ea
h basis fun
tion is related to an entity in the mesh, whi
hin the 
ase of three dimensional mesh 
an be vertex, edge, fa
e or element interior.Let us address spa
e H1, whi
h is used for dis
retization of ellipti
 problems. Conformity re-quirement of this spa
e is 
ontinuity. Therefore, all basis fun
tions has to be 
reated in su
h way,that they are 
ontinuous in all verti
es, edges and fa
es. In the presentation, a rather te
hni
aldes
ription of 
onstru
tion is shown. The idea is following. In the regular mesh, basis fun
tionsare 
onstru
ted simply by �gluing� pie
es together, as shown in Figure 3 for a vertex fun
tion.The pro
ess is similar for edge and fa
e fun
tions, even though here the situation is 
ompli
atedby a ne
essity of proper orientation handling. But still, when dealing with regular mesh, one hasto 
onsider only elements adja
ent to given vertex, edge or fa
e. On all other elements the basisfun
tion equals zero. Bubble (or interior) fun
tions are simple, they are lo
al to one element andzero elsewhere and therefore their 
ontinuity is 
lear.For the 
ase of meshes with hanging nodes, new problems arise. Here mu
h more elementsmay be involved and great e�ort has to be made to keep basis fun
tions 
onforming. A rathersophisti
ated algorithm has been des
ribed in [4℄ for two dimensional 
ase. We used the idea,but in the 3D setting everything is mu
h more 
ompli
ated. In Figure 4, an element after severalre�nements is shown and we 
an see, that mu
h more elements are involved in 
onstru
tion of72



Figure 3: Two elements with images of lo
al basis vertex fun
tion being �glued� together to formpart of a global vertex fun
tion.
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Figure 4: Example of one element of the 
oarse mesh with many re�nements. Numbers assignedto verti
es represent 
oe�
ients of 
ontributing lo
al basis fun
tions, when 
onstru
ting vertexbasis fun
tion (asso
iated to a vertex with number 1).a vertex basis fun
tion. For edges and fa
es the situation is even more 
ompli
ated, be
ause,for example, values on fa
e may 
onstrain values in many other fa
es, edges and verti
es inthe mesh. A detailed algorithm whi
h determines what lo
al basis fun
tions and with whi
h
oe�
ients should be in
luded to form global basis fun
tion will be presented.73



4 Con
lusionWe present algorithm of 
onstru
tion of 
onforming basis fun
tions of higher order in mesheswith arbitrary-level hanging nodes. It is part of more 
omplex work related to development of
hp-FEM software for 3D ellipti
, ele
tromagneti
 and other problems.In the future we want to fo
us on solving di�
ult 
oupled problems arising in engineering pra
ti
e.Su
h problems in 3D may lead to ne
essity of solving huge linear systems. Experiments in twospatial dimensions suggest, that when using hp-adaptive algorithms, su
h systems may be
omesigni�
antly smaller and therefore solvable in reasonable time.A
knowledgement: This work has been supported by the grant GAAV�R IAA100760702.Referen
es[1℄ L. Demkowi
z, J. Kurtz D. Pardo, M. Paszynski, W. Ra
howi
z� A. Zdunek: Computingwith hp-adaptive �nite elements, Volume 2. Chapman & Hall/CRC Press 2008.[2℄ P. K·s, P. �olín, I. Doleºel: Solution of 3D singular ele
trostati
s problems using adaptive

hp-fem. COMPEL, 27(4), 2008, 939�945.[3℄ P. �olín, K. Segeth, I. Doleºel: Higher-order �nite element methods. Chapman & Hall/CRCPress, 2004.[4℄ P. �olín, J. �ervený, I. Doleºel: Arbitrary-Level Hanging Nodes and Automati
 Adaptivity inthe hp-FEM. Math. Comput. Simulation, 2007.
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Geosyntheti
 tubes �lled with liquids with di�erent densitiesJ. MalíkInstitute of Geoni
s AS CR, Ostrava
1 Introdu
tionGeosyntheti
 tubes have found appli
ations in many bran
hes of engineering. The reader 
an�nd a des
ription of these appli
ations, for instan
e, in the monograph [7℄. Geosyntheti
 tubeshave been studied in many papers, but only the problems related to the tubes �lled with a singleliquid have been analyzed.The models of geosyntheti
 tubes on a rigid horizontal foundation are presented, for instan
e,in [3, 4, 6, 9℄. The mathemati
al models of geosyntheti
 tubes �lled with both liquid and air areinvestigated in [1℄.Appli
ation of sta
ked geosyntheti
 tubes attra
ts more and more attention. Su
h problems aresolved in [8℄, where the behavior of sta
ked tubes is analyzed both on a rigid foundation as well ason a deformable one. Mathemati
al problems 
onne
ted with existen
e, stability, and uniquenessare analyzed in [1, 5℄. The existing numeri
al methods are reviewed and 
ompared in [2℄.2 Formulation of the problemIn this se
tion we formulate the basi
 hypotheses and the di�erential equations of equilibriumfor a geosyntheti
 tube �lled with several liquids sitting on the rigid horizontal foundation.The 
ross-se
tion of the tube is depi
ted in Figure 1. Noti
e that the shape of the 
ross-se
tionis symmetri
 with respe
t to the y - axis.Our aim is to des
ribe the shape of the 
ross-se
tion and to �nd the 
orresponding tension t, thepressures p0, p1, . . . , pn with respe
t to the given perimeter l, the areas v1, . . . , vn and the den-sities ρ1, . . . , ρn. Noti
e that the given data 
annot be independent. Con
retely, hypothesis (v)formulated above yield the inequalities
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A
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A
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A
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rigid foundation OFigure 1: S
heme of the 
ross-se
tion of the tube.75



ρ1 > ρ2 > . . . > ρn .Moreover, the maximal area of the 
ross-se
tion related to the �x perimeter l 
orresponds to thearea of the 
ir
le. Thus the inequality
n∑

i=1

vi <
l2

4π
, (1)must hold. With respe
t to the theoreti
al results in [5℄, we 
an expe
t that this inequality alsoensures the solvability of the problem.Sin
e

pi = pi−1 − gρi(yi − yi−1), i = 1, . . . , n, (2)the pressures ful�ll the inequalities
p0 > p1 > . . . > pn,where p0 is the pressure on the bottom, pn is the pressure on the top. Due to hypothesis (vi), thepressure in the liquids a
ts in the perpendi
ular dire
tion to the syntheti
 fabri
. Moreover dueto hypotheses (ii) and (vii), the fri
tion between the tube and the foundation does not in�uen
ethe shape of the 
ross-se
tion. Thus there is no for
e in the tangential dire
tion, whi
h resultsin a 
onstant tension for
e in the fabri
.First of all, we will formulate the problem with respe
t to the parameter s. So we 
onsiderthe 
ontinuous fun
tions x(s), y(s), θ(s) to des
ribe the shape of the 
ross-se
tion 
urve. Theequations of equilibrium for the geosyntheti
 tube �lled with n liquids read

dx

ds
= cos θ(s) ,

dy

ds
= sin θ(s) ,

t
dθ

ds
= pi − gρi+1(y(s) − yi) , i = 0, 1, . . . , n− 1 ,

(3)where s ∈ (si, si+1). The equations (3) des
ribe the shape of the part of the 
ross-se
tional 
urvein the layer o

upied by the liquid with the density ρi+1. Moreover, the following 
onditions
xn ≡ x(sn) = 0 , y0 ≡ y(s0) = 0 , θ0 ≡ θ(s0) = 0 , θn ≡ θ(sn) = π (4)are satis�ed, whi
h is evident from Figure 1. With respe
t to the pres
ribed values of theperimeter l and the areas v1, . . . , vn, it holds the following equalities:

sn = l/2 (5)and
si∫

si−1

x
dy

ds
ds = vi , i = 1, . . . n . (6)To �nd the solution to our problem, we have to determine the parameters t, si, pi, i = 0, 1, . . . , n,and the 
ontinuous fun
tions x(s), y(s), θ(s) on the interval (s0, sn) so that the di�erentialequations (3), the 
onditions (4) and the relations (2), (5) and (6) are ful�lled.76



3 Numeri
al model problemsIn this se
tion we use the numeri
al algorithms des
ribed in the previous se
tion to solve a fewnumeri
al model problems. We analyze a geosyntheti
 tube �lled with two, three, and fourliquids with various densities. We use the perimeter 10 m in all the investigated examples. Westart with a tube �lled with two liquids with mass densities 1000 kg/m3 and 1300 kg/m3. Let us
onsider that the volumes of the liquids are divided in the proportion 1 : 1. Now we are lookingfor the mutual dependen
e between the whole area of the 
ross-se
tion and su
h quantities asthe length of the 
onta
t zone, the height of the tube, the pressure on the bottom and top ofthe tube and the tension in the geosyntheti
 fabri
. All these quantities are 
ompared with thesame quantities for the geosyntheti
 tube �lled with the single liquid with the average density
1150 kg/m3.The graph in Figure 2 des
ribes the dependen
e of the tube height �lled with two liquids on the
ross-se
tional area. Noti
e that the limit heights are 0 m and 10/π m whi
h 
orrespond to theheight of an empty tube and the diameter of the 
ir
le 
ross-se
tion of the tube, respe
tively.The di�eren
e between the tube heights for two liquids and for the single liquid with the averagedensity is depi
ted in Figure 3. The graph in Figure 3 shows that the tube height �lled with twoliquids is greater than the height of the tube �lled with the single liquid for all the values of the
ross-se
tional area. The maximal di�eren
e is approximately a
hieved for the same value of the
ross-se
tional area as in the 
ase of the 
onta
t zones.
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Figure 2: The height of the tube �lled with two liquids.
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The shape of the 
ross-se
tion of the tube �lled with two liquids (full line) and a modi�ed shapeof the 
ross-se
tion of the tube �lled a single liquid (dotted line) is depi
ted in Figure 4. Theshape for the single liquid is modi�ed so that the di�eren
e between the shapes is enlarged �fteentimes. The 
ross-se
tional area is 3.0 m2.
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Figure 4: The shape of the 
ross-se
tion of the tube �lled with two liquids (full line) and themodi�ed shape of the 
ross-se
tion of the tube �lled with a single liquid (dotted line). The
ross-se
tional area is 3.0 m2.A
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Some mathemati
al problems aroundthe GOOGLE sear
h engineI. MarekCze
h Te
hni
al University in Prague
1 Introdu
tionIt is known that the Google sear
h engine opened unusual interest for its fundamental prin
iples inmany areas of resear
h. Our 
ontribution is 
on
erned with the 
elebrated Google matrix whoseimportan
e in 
omputing the PageRank is undisputable. A worldwide dis
ussion 
on
erningmany aspe
ts of sear
h engines resulted in many journal publi
ations as well as a monograph [6℄.The above mentioned problem how to 
ompute the PageRank e�
iently led to an elementary butvery interesting result in Linear Algebra, to the so 
alled Google lemma. Within short periodmany proofs and generalizations of this lemma have been proposed and with large probabilitysome more will appear. An in
reasing interest to some spe
i�
 dis
iplines of Mathemati
s andComputer S
ien
e as well as many other areas of resear
h dire
tions should be wel
ome.2 GeneralitiesAll matri
e appearing in the next se
tions are N × N matri
es possibly expressed using theirblo
k stru
ture. As standard, we denote by ρ(C) the spe
tral radius of square matrix C, i.e.

ρ(C) = max {|λ| : λ ∈ σ(C)} ,where σ(C) denotes the spe
trum of C. We 
all
γ(C) = sup {|λ| : λ ∈ σ(C), λ 6= ρ(C)} .the 
onvergen
e fa
tor of C. We de�ne quantity τ(C) by setting
τ(C) = max {|λ| : λ ∈ σ(C), |λ| < ρ(C)}and 
all it subspe
tral radius of C.2.1. Remark Let C be any N ×N matrix. Then obviously,

ρ(C) ≥ γ(C) ≥ τ(C).2.2. Remark Let T be a matrix whose elements are nonnegative real numbers. It is well knownthat
1)

lim
k→∞

T k = 0 ⇐⇒ ρ(T ) < 1;

2)
lim

k→∞

(
1

ρ(T )
T

)k

= T∞ 6= 0 =⇒ γ

(
1

ρ(T )
T

)
< 1;79



3 A short proof of the Google lemmaWe are going to examine the following system of problems parameterized by parameter α∈(1
2 , 1):

G(α) = αG(1) + (1 − α)G(2),where G(1) is a (
olumn) sto
hasti
 matrix and G(2) a suitable (low rank) irredu
ible sto
hasti
matrix.We establish the following result and present it as3.1. Lemma Suppose G(2) = veT , where v = (v1, ..., vN )T is a ve
tor whose all 
omponents arenonnegative reals and eT = (1, ..., 1), eT v = 1, i.e. G(2) represents a rank-one sto
hasti
 matrix.Then the 
onvergen
e fa
tor 
an be bounded as follows
γ(G(α)) ≤ α.Proof Let x̂(α) denote the Perron eigenve
tor. It is easy to see that ve
tor x̂(α) has all its
omponents nonnegative and it 
an be normalized by setting eT x̂(α) = 1. It follows that x̂(α) =

G(α)x̂(α) = αG(1)x̂(α) + (1 − α)v and hen
e
x̂(α) =

[
1

1 − α
(I − αG(1))

]−1

v.Thus, the Perron proje
tion ofG(α) readsQ(α) = x̂(α)eT .We 
he
k easily thatQ(α)G(α)Q(α)=
G(α)Q(α) = Q(α) and

(I −Q(α))G(2) (I −Q(α)) =
(
G(2) −Q(α)

)
(I −Q(α)) = G(2) (I −Q(α)) = 0. (1)The validity of the statement of Lemma 3.1 follows from the relation representing the uniquespe
tral de
omposition of matrix G(α) = Q(α) + (I −Q(α))αG(1) (I −Q(α)). The proof is
omplete.The above proof opens a way to generalizations. A 
ru
ial point in the above proof is a spe-
ial kind of relationship between the original transition matrix G(1) and the perturbation G(2)
onsisting of relations (1).4 A generalization of the GOOGLE lemmaA spe
iality of our proof of the GOOGLE lemma demonstrated in the previous se
tion 
onsistsof showing that the perturbation ve
tor is fully absorbed by the Perron proje
tion of the 
onvex
ombination. An appli
ation of this fa
t to more general situation would be possible if we �ndanother type of perturbation with the absorbtion property and a method o�ering a 
onvergentpro
edure to 
ompute a 
orresponding stationary probability ve
tor. We show that su
h a pairappears quite frequently.Let p ≥ 2 be a positive integer and

G(2) =
∑p

k=1 λ
k−1Qk, λ = exp{2πi

p

}
, i2 = −1,

Q
(2)
1 = x̂2e

T , Q
(2)
k Q

(2)
j = Q

(2)
j Q

(2)
k = δjk, j, k = 1, ..., p.

(1)80



Assume that G(2) is an irredu
ible blo
kwise 
y
li
 sto
hasti
 matrix of order p and (1) itsspe
tral de
omposition. We immediately see that both the blo
k index of 
y
li
ity as well asrank of G(2) equal p.4.1. Theorem Assume G(1) is a sto
hasti
 matrix, G(2) is de�ned in (1), both of order N ×N ,and G(α) = αG(1) + (1 − α)G(2), α ∈ (1
2 , 1). If also G(α) is p-
y
li
, then
τ (G(α)) = α. (2)Proof Sin
e obviously
G(3) = Q

(2)
1 eTis an irredu
ible rank-one sto
hasti
 matrix the GOOGLE lemma 4.1 implies that a uniquePerron proje
tion of matrix αG(1) + (1 − α)G3) reads as follows

Q(1)(α) =

(
1

1 − α

(
I − αG(1)

))−1

x̂2.

p-Cy
li
ity of matrix G(α) then implies that its peripheral part possesses the following spe
tralde
omposition (see [1℄)
x̂(α)eT +

p∑

k=2

λj−1Qj(α), Qj(α) = yjf
T ,where x̂(α)T =

(
x̂T

(1), ..., x̂
T
(p)

), and
yT

j =
(
λj−1x̂T

(1), ..., λ
(j−1)px̂T

(p)

)
,

fT
j =

(
λ

j−1
e(n1)

T
(1), ..., λ

(j−1)p
e(np)

T
(p)

)
,

e(nj) = (1, ..., 1)T ∈ Rnj , j = 2, ..., p,
∑p

k=1 nk = N

ξ = x1 − ix2, for ξ = x1 + ix2, x1, x2 ∈ R1.The 
on
lusion of Theorem 4.1 follows from the fa
t that [9℄
Qj(α) = lim

m→∞
1

m

m∑

k=1

(
1

λj−1
G(α)

)k

, λ = exp{2πi/p}, j = 1, ..., p.5 An appli
ationIn this se
tion we present an appli
ation of the generalized GOOGLE lemma. It 
onsists of
onvergen
e of a two-level 
omputation method for a problem with data of restri
ted pre
ision.5.1. Theorem Assume B is an irredu
ible sto
hasti
 matrix being 
y
li
 of index p. Furtherwe assume that the elements of B are known exa
tly but with some error, say B = B(1) + Cwith some sto
hasti
 B(1) and an error matrix ‖C‖ ≤ η with η �xed. To 
ompute the appropriatestationary probability ve
tor of B(1) we utilize Algorthm 4.1. SPV(B(α);T ; t, s = 1; y(0); ε), where
B(α) = αB(1) + (1 − α)B(2), I − B(α) = M(I − T ), T = M−1W, (1/2) < α < 1, as formulatedin[10℄. Here B(2) =

∑p
j=1 λ

j−1Q
(2)
j , λ = exp{2πi/p}. Then Algorithm 4.1 returns a sequen
e ofiterants {y(k)} su
h that ∥∥∥y(k) − ŷ

∥∥∥ ≤ κ (τ(T ))k , k = 0, 1, ...where ŷ = B(α)ŷ, ŷeT = 1, e = (1, ..., 1)T and κ is independent of k.81



5.2. RemarkWe see that the data i.e B(1) is perturbed by a term proportional to C =
∑p

j=1Q
(2)
jand we insist relation ‖(1 − α)C‖ ≤ η with 0 < η to hold.A
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Fast solver based on Fourier transformfor linear elasti
ity problemL. Mo
ekV�B - Te
hni
al University of Ostrava1 Introdu
tionThe main goal of this paper is to brie�y show how to solve ellipti
 boundary value problems forlinear elasti
ity using �
titious domain method and e�
ient solvers based on dis
rete Fouriertransform and the S
hur 
omplement redu
tion using orthogonal proje
tors. We start from the�
titious domain formulation of a given problem. We brie�y mention the main ideas and we alsomention the new �
titious domain approa
h based on de�nition of new auxiliary boundary, whi
his used to get smoother solution on origin domain. Using mixed �nite element dis
retization weget the dis
rete algebrai
 saddle-point system, whi
h 
an be solved e�e
tively by 
ombinationof the S
hur 
omplement redu
tion and the Fourier transform. For evaluation of the sti�nessmatrix we use spe
tral de
omposition of the sti�ness matrix by the Dis
rete Fourier transformand for its produ
t with a ve
tor whi
h is used later for �nding the solution, we use Fast Fouriertransform. For this evaluation it is not ne
essary to store the whole sti�ness matrix whi
h is bigadvantage, be
ause the order of sti�ness matrix is usually large. For solving of whole algebrai
saddle-point system we use the S
hur 
omplement redu
tion. Be
ause the sti�ness matrix issingular, the algebrai
 system is going to be redu
ed to the other one and afterwards we 
ombinemethod based on the S
hur 
omplement redu
tion with using of orthogonal proje
tors. Finallythe proposed method is illustrated on numeri
al examples.2 Fi
titious domain methodBefore we formulate linear elasti
ity problem we brie�y explain the basi
s of �
titious domainmethod. Let ω be bounded domain in R2 with the Lip
hitz boundary ∂ω. On this domain wede�ne an ellipti
 boundary value problem. The main idea is to embed the real domain of ouroriginal problem with possibly 
ompli
ated geometry ω to a new simple shaped domain Ω (forexample re
tangle) 
alled �
titious domain, see Fig. 1. The original problem is reformulatedto a new one de�ned in the �
titious domain Ω. The advantage of this method is that we 
anuse spe
ial partition on Ω, whi
h enable us to apply e�e
tive solvers for evaluation of resultingalgebrai
 system. We 
an 
onsider the original boundary 
onditions as a 
onstraint. In elasti
approa
h, we enfor
e this 
onstraint by the Lagrange multipliers de�ned on the boundary γ ofthe original domain ω. Therefore the �
titious domain solution has a singularity on γ that 
anresult in an intrinsi
 error of the 
omputed solution.PSfrag repla
ements
Ω

ω

γ

ν

Figure 1: FDM
PSfrag repla
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To remove the above problem we propose a new approa
h [3℄, in whi
h we move singularity awayfrom boundary γ. This modi�
ation is based on introdu
tion a new 
ontrol variable instead ofthe Lagrange multiplier de�ned on the other auxiliary boundary Γ lo
ated outside of the domain
ω, see Fig. 2. The boundary Γ satis�es the 
ondition δ = dist(Γ, γ) > 0. This new 
ontrolvariable enfor
es the original boundary 
ondition on γ. Be
ause the singularity is moved from
ω, the solution is smoother in ω.3 Formulation of the linear elasti
ity problemWe 
onsider elasti
 body whi
h is represented by domain ω ⊂ R2 with smooth boundary γ =
γu ∪ γp, divided into two disjoint parts. The zero displa
ement is imposed on γu while surfa
etra
tions of density p ∈ (L2(γp))

2 on γp. Let us formulate linear elasti
ity problem:
−div σ(u) = f in ω,

u = 0 on γu,
σ(u)ν = p on γp,



 (1)where σ(u) is the stress tensor in ω, ν = (ν1, ν2) is the unit outward normal ve
tor to γ,

u = (u1, u2) and we pres
ribe for
es of density f |ω ∈ (L2
loc(R

2))2 in ω. The stress tensor isrelated to the linearized strain tensor ε(u) := 1/2(∇u+∇T u) by Hooke's law for linear isotropi
materials:
σ(u) := λ tr(ε(u))I + 2µ ε(u) in ω,where "tr" denotes the tra
e of matri
es, I ∈ R2×2 is the identity matrix and λ, µ > 0 are theLamè 
onstants.We de�ne operator div σ(u) as

div σ(u) =




(λ+ 2µ)
∂2u1

∂x2
1

+ µ
∂2u1

∂x2
2

(λ+ µ)
∂2u2

∂x1∂x2

(λ+ µ)
∂2u1

∂x1∂x2
µ
∂2u2

∂x2
1

+ (λ+ 2µ)
∂2u2

∂x2
2


 , (2)and the spa
e

V (Ω) = (H1
per(Ω))2, H1

per(Ω) = {v ∈ H1(Ω)|v is periodic on ∂Ω}.The modi�ed �
titious domain formulation of (1) is following:
Find (û, λ) ∈ V (Ω) × Λ(Γ) such that

aΩ(û, v) + 〈v, λ〉Γ =

∫

Ω
fv dx ∀v ∈ V (Ω),

〈µu, û〉γu = 0 ∀µu ∈ Λ(γu),
〈µp, σ(û)ν〉γp = 〈µp, p〉γp ∀µp ∈ Λ(γp),





(3)where Λ(Γ) = (H−1/2(Γ))2, Λ(γu) = (H−1/2(γu))2, Λ(γp) = (H−1/2(γp))
2, and 〈 , 〉Γ, 〈 , 〉γu ,and 〈 , 〉γp stand for the duality pairings betweenH1/2(Γ) andH−1/2(Γ), H1/2(γu) andH−1/2(γu),

H1/2(γp) and H−1/2(γp) respe
tively. Finally aΩ : V (Ω) × V (Ω) → R and 〈v, λ〉Γ : V (Ω) ×
Λ(Γ) → R are two bounded bilinear forms.The di
retization of (3) using �nite element method [1℄ leads to the following algebrai
 saddlepoint system: (

A BT
Γ

Bγ 0

)(
u

λ

)
=

(
f

g

)
, (4)84



where A ∈ R
2n×2n is the sti�ness matrix, the matri
es BΓ ∈ R

2m×2n and Bγ = (Bγu , Cγp)
T ∈

R
2m×2n are determined by geometries of Γ and γ, respe
tively, and by the imposed boundary
onditions, they have full row-ranks and also they are highly sparse. The ve
tors f and g aregiven as f ∈ R

2n, g = (0, p)T ∈ R
2m, respe
tively. We solve this algebrai
 system with themethod based on S
hur 
omplement redu
tion.Due to the 
hoi
e of the spa
e with periodi
 boundary 
ondition on ∂Ω, the matrix A is singularbut the advantage is that A has a blo
k 
ir
ulant stru
ture whi
h allows to use the highlye�
ient solver based on the Fourier transform. For this reason we 
an use Dis
rete FourierTransform for spe
tral de
omposition of sti�ness matrix A and after that easily evaluate A†y byFast Fourier Transform without storing A and it is big advantage against other algebrai
 solvers.We denote A† as generalized inverse of A and y ∈ R2n. This produ
t appears in multiplyingpro
edure of Shur 
omplement redu
tion whi
h is used to solve this problem.4 Solver for linear elasti
ity problem based on DFTLet us des
ribe this multiplying pro
edure in more details. We solve our problem in �
titiousdomain Ω. On the sides of Ω = (0, Lx) × (0, Ly) we 
onsider equidistant partitions into nxand ny segments with stepsizes hx = Lx/nx and hy = Ly/ny, respe
tively. Domain Ω is de
om-posed into n = nxny partitions. On this re
tangulation we introdu
e the �ne element subspa
e

Vh, whi
h is formed by pie
ewise bilinear fun
tions. Then the sti�ness matrix A reads as follows:
A =

(
(λ+ 2µ)Ax ⊗My + µMx ⊗Ay (λ+ µ)Bx ⊗By

(λ+ µ)Bx ⊗By µAx ⊗My + (λ+ 2µ)Mx ⊗Ay

)
, (5)where symbol ⊗ stands for the Krone
ker tensor produ
t and Ak, Mk, Bk ∈ Rnk×nk , k = x, yare 
ir
ulants with the �rst 
olumns

ak = (1/hk)(2,−1, 0, . . . , 0,−1)T ∈ Rnk , k = x, y,

mk = (hk/6)(4, 1, 0, . . . , 0, 1)
T ∈ Rnk , k = x, y,

bk = (1/2)(0,−1, 0, . . . , 0, 1)T ∈ Rnk , k = x, y,respe
tively. Eigenvalues of any 
ir
ulant 
an be obtained by the DFT of its �rst 
olumn whileeigenve
tors are 
olumns of the inverse to the DFT matrix. Based on this observation we 
anwrite:
Ak = X−1

k DAk
Xk, Mk = X−1

k DMk
Xk, Bk = X−1

k DBk
Xk, k = x, y,where DAk

, DMk
, DBk

, k = x, y are the respe
tive diagonal matri
es of eigenvalues and Xk,
k = x, y are DFT matri
es. Substituing these expressions into (5) and using properties of theKrone
ker tensor produ
t, we obtain

A =

(
X−1 0

0 X−1

)(
D11 D12

D21 D22

)(
X 0

0 X

)
, (6)where X = Xx ⊗Xy, D11 = (λ+ 2µ)DAx ⊗DMy +µDMx ⊗DAy , D22 = µDAx ⊗DMy + (λ+ 2µ)

DMx ⊗DAy , D12 = (λ+ µ)DBx ⊗DBy , D21 = D12. Let us denote D the se
ond matrix on theright hand-side of (6). Then we 
an obtain generalized inverse of A† repla
ing D by D† in (6).We 
an rewrite D by the following fa
torization:
D =

(
I 0

D21D
†
11 I

)(
D11 0

0 D22 −D21D
†
11D12

)(
I D†

11D12

0 I

)
, (7)85



where D†
11 = diag(d†1, · · · , d†n) with d†i = 1/di, if di 6= 0, and d†i = 0 if di = 0 and denote

D22m := D22 −D21D
†
11D12, then we de�ne

D† =

(
I D†

11D12

0 I

)−1
(
D†

11 0

0 D†
22m

)(
I 0

D21D
†
11 I

)−1

, (8)�nally we get
A† =

(
X−1 0

0 X−1

)
D†
(
X 0

0 X

)
. (9)We 
an obtain from (8) and (9) the produ
t A†y, y = (y1, y2).5 S
hur 
omplement redu
tionFrom the reason that the sti�ness matrix A is singular, the �rst 
omponent u of (4) 
annot be
ompletely eliminated. It follows that the S
hur 
omplement redu
tion leads to another algebrai
system with two unknowns. The �rst uknown λ from the previous saddle point system and newunknown α, whi
h 
orresponds to the null-spa
e of A. We 
an formulate this new algebrai
system with unkowns (λ, α):

(
BγA

†BT
Γ −BγN

−MTBT
Γ 0

)(
λ
α

)
=

(
BγA

†f − g
−MT f

)and the �rst unknown u of the algebrai
 system (4) is given as u = A†(f −BT
Γλ) +Nα. We 
ansimplify this algebrai
 system to the following redu
ed system

(
F GT

1

G2 0

)(
λ
α

)
=

(
d
e

)
, (10)where F := BγA

†BT
Γ , G1 := −NTBT

γ , G2 := −MTBT
Γ ,

d := BγA
†f − g e := −MT f.Now we de�ne two orthogonal proje
tors P1 and P2 onto the null-spa
es of G1 and G2. The �rstproje
tor splits the saddle-point algebrai
 stru
ture of the redu
ed system, the se
ond proje
torde
omposes the unknown λ ∈ R2m into two 
omponents λR and λN as

λ := λR + λN,where λR belongs to the range-spa
e of G2 (λR ∈ R(GT
2 )) and λN belongs to the null-spa
e of

G2 (λN ∈ N(G2)). Then λ is the �rst 
omponent of the solution to the algebrai
 system (10) if
λR = GT

2 (G2G
T
2 )−1eand λN satis�es the following equation:

P1FλN = P1(d− FλR).The 
omponent λN is solved by a proje
ted Krylov subspa
e method for non-symmetri
 operators(see [3℄). Finally the se
ond 
omponent of algebrai
 system (10) is given by
α = (G1G

T
1 )−1G1(d− Fλ).86



6 Numeri
al experimentsLet us show some numeri
al experiments. Let us de�ne the domain ω as interior of the elipse
ω = {(x, y) ∈ R2|(x− 0.5)2

0.42
+

(y − 0.5)2

0.22
< 1},whi
h is embeded into the �
titious domain Ω = (0, 1) × (0, 1) (see Fig. 3). The righthandsides of (1) are f = −div σ(û) and p = σ(û)ν, where û(x, y) = (0.1xy, 0.1xy), (x, y) ∈ R2. Theauxiliary boundary Γ is 
onstru
ted by shifting γ in the dire
tion of outward normal ve
tor. InFig. 4 we 
an see original and deformed geometries of ω and the di�eren
e between exa
t and
omputed solution is shown in Fig. 5. In Table 1 we 
an see the number of primal and 
ontrolvariables, number of iterations, 
omputational time and relative errors of approximate solution

ûh to exa
t solution in these norms:
Erel,(L2(ω))2 =

‖ûh − û‖(L2(ω))2

‖û‖(L2(ω))2
, Erel,(H1(ω))2 =

‖ûh − û‖(H1(ω))2

‖û‖(H1(ω))2
.
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Figure 5: |ûh − û| in ω.Step h prim/
ontrol Iter Time(s) Erel,(L2(ω))2 Erel,(H1(ω))21/64 8450/44 43 0.312 4.1269e-003 1.8750e+0001/128 33282/68 25 0.468 5.2323e-004 6.8257e-0011/256 132098/112 37 2.215 1.0882e-004 3.1294e-0011/512 526338/180 52 16.36 8.2582e-005 2.7259e-001Table 1: Computational results.Referen
es[1℄ F. Brezzi, M. Fortin: Mixed and hybrid �nite element methods. Springer-Verlag, New York,1991.[2℄ G.H. Golub, C.F. Van Loan: Matrix 
omputation. 3rd ed. The Johns Hopkins UniversityPress, Baltimore 1996.[3℄ J. Haslinger, T. Kozubek, R. Ku
era, G. Pei
hl: Proje
ted S
hur 
omplement method forsolving non-symmetri
 systems arising from a smooth �
titious domain approa
h. Lin. Alge-bra Appl. 14, 2007, 713�739.[4℄ J. Haslinger, T. Kozubek, R. Ku
era: Fi
titious domain method for linear elasti
ity. SNA2009. 87



On numeri
al behavior of the Arnoldi algorithm in �nitepre
ision arithmeti
 for matri
es with 
lose eigenvaluesG. Ok²a, M. RozloºníkInstitute of Mathemati
s SAS, BratislavaInstitute of Computer S
ien
e AS CR, PragueLet A be a symmetri
 matrix of order n. Our numeri
al example uses the Strako² matrix oforder n = 30, whi
h is diagonal, positive de�nite. Its minimal eigenvalue is λ1 = 0.1, maximal
λn = 100, and λi = λ1 + (i− 1)/(n − 1) 0.9n−i(λn − λ1) for 2 ≤ i ≤ n − 1. The eigenve
tors xiare 
olumns of the identity matrix of order n. Let us 
hoose a small positive 
onstant ν ≪ 1;our numeri
al example is for ν = 1.11× 10−12. Now modify λn−1 as to get a very 
lose pair with
λn: λn−1 = λn − 2ν (so that ν = (λn − λn−1)/2), and let µ ≡ (λn + λn−1)/2.Let v1 =

√
n(1, 1, . . . , 1)T be the initial unit ve
tor and 
ompute (in �nite pre
ision arithmeti
)two Krylov bases Vk and Wk by two implementations of the Arnoldi algorithm, whereby bothof them ensure the orthogonality of 
omputed basis ve
tors up to O(ǫ), where ǫ is the round-o� unit (ǫ ≈ 1.11 × 10−16 in double pre
ision arithmeti
). We have used the Householderorthogonalization (HH) and the Iterated Modi�ed Gram-S
hmidt orthogonalization (IMGS).The bases were generated by following re
urren
es for 1 ≤ k ≤ n− 1:

AVk = Vk+1H
(1)
k+1,k + F

(1)
k , with ‖F (1)

k ‖ ≤ ‖A‖O(k3/2n)ǫ,

AWk = Wk+1H
(2)
k+1,k + F

(2)
k , with ‖F (2)

k ‖ ≤ ‖A‖O(k3/2n)ǫ,where H(i)
k+1,k, i = 1, 2, are 
omputed upper Hessenberg matri
es of order (k + 1) × k.When looking at the 
orrelation 
oe�
ient ci = |wT

i vi|, 1 ≤ i ≤ n, one 
an observe the lossand re
apture of 
orrelation between iterations 17�24 (see Fig. 1). This surprising observation is
losely related to the 
onvergen
e behavior of two maximal Ritz values (see Fig. 2). First, themaximal Ritz value θk
k 
onverges to µ and remains in its vi
inity for iterations 14�25. Se
ond,

Figure 1: Loss and re
apture of 
orrelation: |1 − ci|.88
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Figure 2: Convergen
e of two largest Ritz values.
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Figure 3: Angles between the ve
tors a, b, and the subspa
e span(Vk).the next-to-maximal Ritz value θk

k−1 approximates λn−2 up to the iteration k = 21 and onlyafter that it starts to move towards λn−1. When both eigenvalues are well approximated by their
orresponding Ritz values, the 
orrelation is fully re
aptured after the iteration k = 25.Perhaps more insight 
an be gained by answering the question of how the two-dimensionaleigenspa
e X2 ≡ span(xn−1, xn) is approximated during the 
omputation. De�ne two mutuallyorthogonal ve
tors: a ≡ (xn−1 +xn)/
√

2, b ≡ (xn−1−xn)/
√

2, so that X2 = span(a, b), i.e., (a, b)is another orthonormal basis of X2. Noti
e that a is the unit orthogonal proje
tion of the startingve
tor v1 into X2, but bT v1 = 0. In other words, at the beginning of 
omputation the Krylovspa
e 
ontains only information w.r.t. one dimension of X2 (along a) and the other dimension(along b) has to be built up starting from zero.Angles between span(Vk) and the ve
tors a and b are depi
ted in Fig. 3, while the 
omponents
|aT vk| and |bT vk| are depi
ted in Fig. 4. Starting with |bT v1| = 0, the b-
omponent in
reasesup to the iteration k = 22. At the same time, |bT vk| di�ers from |bTwk| more and more, so that89
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| a T v k || b T v k |Figure 4: Components |aT vk| and |bT vk|.when |bT vk| >
√
ǫ ≈ 10−8 the 
orrelation starts to deteriorate signi�
antly. Re
all that at theiteration k = 22 the se
ond largest Ritz pair appears with θk

k−1 > λn−2 so that the approximationof the whole X2 �nally begins. Noti
e that |aT vk| rea
hes its maximum at k = 2 and then almoststeadily de
reases.It turns out that it is the b-
omponent of basis ve
tors, whi
h is sensitive in both implementationsof the Arnoldi method. To understand this, we analyze two steps of the Arnoldi pro
ess atiteration k + 1 in exa
t arithmeti
 regardless to its 
omputer implementation:
1. yk = Avk,

2. βk+1vk+1 = (I − VkV
T
k )yk.

(1)Working with the orthonormal basis (x1, x2, . . . , xn−2, a, b), where xi, 1 ≤ i ≤ n − 2, are theeigenve
tors of A, one 
an express vk as
vk =

n−2∑

i=1

(xT
i vk)xi + (aT vk)a+ (bT vk)b,so that

Avk =

n−2∑

i=1

λi(x
T
i vk)xi + [µ(aT vk) + ν(bT vk)]a+ [µ(bT vk) + ν(aT vk)]b.We see immediately, that be
ause the ve
tors a and b are not the eigenve
tors of A, Av1 hasa (small) b-
omponent ν(aT v1) even when bT v1 = 0! When ν ≪ 1 and 
omputations are made in�nite pre
ision arithmeti
, the b-
omponent of Av1 
an be severely a�e
ted by rounding errors.The se
ond step from (1) 
an be written as follows:

βk+1vk+1 =

n−2∑

i=1

λi(x
T
i vk)(I − VkV

T
k )xi

+ [µ(aT vk) + ν(bT vk)](I − VkV
T
k )a

+ [µ(bT vk) + ν(aT vk)](I − VkV
T
k )b.

(2)
90



Let us de�ne the subspa
e Vk = span(Vk) and its orthogonal 
omplement V⊥
k . Then:

(I − VkV
T
k )xi = sin ∠(xi,Vk)n

(k)
i , where n

(k)
i ∈ V⊥

k , ‖n
(k)
i ‖ = 1,

(I − VkV
T
k )a = sin ∠(a,Vk)n

(k)
a , where n(k)

a ∈ V⊥
k , ‖n(k)

a ‖ = 1,

(I − VkV
T
k )b = sin ∠(b,Vk)n

(k)
b , where n

(k)
b ∈ V⊥

k , ‖n
(k)
b ‖ = 1.

(3)The set of equations in (3) de�nes the normal ve
tors n(k)
i , n

(k)
a , n

(k)
b that 
an be again de
om-posed in our orthonormal basis. Now we 
an use this de
omposition together with (3) in (2),but we will write the expression only for the b-
omponent:

βk+1(b
T vk+1) = [µ sin ∠(b,Vk)(b

Tn
(k)
b ) + ν sin ∠(a,Vk)(b

Tn(k)
a )] (bT vk)

+ [µ sin ∠(a,Vk)(b
Tn(k)

a ) + ν sin ∠(b,Vk)(b
Tn

(k)
b )] (aT vk)

+

n−2∑

i=1

λi sin∠(xi,Vk)(x
T
i vk)(b

Tn
(k)
i ).

(4)To analyze (4) in general seems to be di�
ult. However, when b remains perpendi
ular to Vk,i.e., b ∈ V⊥
k (see Fig. 3 for all iterations ≤ 21), one gets:

bT vk+1 =
µ

βk+1
(bT vk) +

ν

βk+1
(aT vk). (5)When µ/βk+1 > 1, (5) suggests an ampli�
ation of previous b-
omponent and its subsequentslight modi�
ation (sin
e ν is very small).In �nite pre
ision arithmeti
, bT v1 = 0 and bT v2 is very small (regardless to the implementation)so that it is prone to rounding errors (whi
h depend on implementation). This small di�eren
ein b-
omponent of v2 between two implementations is ampli�ed a

ording to (5), when the b-
omponent in
reases. Hen
e, the loss of 
orrelation between two bases starts right from thebeginning of 
omputation and be
omes evident when |bT vk| ≈

√
ǫ ≈ 10−8. On the other hand,the re
apture of 
orrelation is possible only when the whole eigenspa
e X2 is well approximatedby the last two Ritz ve
tors. This is equivalent to the fast de
rease of |bT vk| after the iteration

k = 22 and to the tight approximation of both λn−1 and λn by two largest Ritz values.When A has an exa
tly double maximal eigenvalue, the last Ritz ve
tor 
onverges again to a, i.e.,to the orthogonal proje
tion of v1 into X2. However, sin
e now any linear 
ombination of ve
tors
a and b is an eigenve
tor, there arises no `spurious' 
omponent along b in the matrix-ve
tormultipli
ation. Therefore, the whole eigenspa
e X2 is approximated only in the last iteration
k = n and there is no loss of 
orrelation between two 
omputed Arnoldi bases.A
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Parameter estimation of rea
tion-di�usion model basedon spatio-temporal FRAP images of thylakoid membranes�. Papá£ek, D. �tys, R. Ka¬a, C. Matonoha
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ien
e AS CR, Prague

1 Introdu
tionThe determination of phy
obilins di�usivity in thylakoid lumen from �uores
en
e re
overy afterphotoblea
hing (FRAP) experiments was usually done by analyti
al models [5, 3℄. However, theanalyti
al models need some unrealisti
 
onditions to be supposed. This study des
ribes thedevelopment and validation of a method based on �nite di�eren
e simulation of di�usion pro
essgoverning by the Fi
kian di�usion equation and on the minimizing of an obje
tive fun
tionrepresenting the disparity between the experimental and simulated time-varying 
on
entrationpro�les.2 Model development2.1 TheoryDuring a FRAP experiment, a sample either 
ontaining a �uores
ent solute or having the nat-ural 
apa
ity for �uores
ent signal emission, is brie�y exposed to intense laser illumination toblea
h a target region of a spe
i�ed geometry (in our 
ase, the 
omputational domain is anEu
lidian 2D re
tangular domain). For an arbitrary blea
h spot and assuming (i) lo
al homo-geneity (assuring that the 
on
entration pro�le is smooth), (ii) isotropy (di�usion 
oe�
ient isspa
e-invariant), (iii) an unrestri
ted supply of unblea
hed parti
les outside of the target region,and (iv) negligible out-of-domain 
on
entration gradients, the re
overy of unblea
hed parti
le
on
entration C as a fun
tion of spatial 
oordinate ~r and time t is modelled with a followingdi�usion-rea
tion equation on two-dimensional domain Ω:
∂C

∂t
−∇ · (D∇C) = R(C) , (1)where D is the �uores
ent parti
le di�usivity in domain Ω (i.e. in some sele
ted part of thylakoidlumen), and R(C) is a rea
tion term modelling the binding of parti
les.The initial 
ondition, and time varying Diri
hlet boundary 
onditions are:

C0 = C(t0) on Ω, C(t) = g(~r, t) on ∂Ω. (2)The rea
tion term R(C) is often viewed as negligible under assumptions that the �uores
entmole
ules do not bind to the medium and that photoblea
hing of these mole
ules during re
overyis negligible. Consequently, if R(C) is negle
ted, (1) be
omes the Fi
kian di�usion equation. In92




ontrast, under 
ontinual photoblea
hing during image a
quisition, this rea
tion term 
ould bedes
ribed as a �rst order rea
tion:
R(C) = −kS C , (3)where kS is a rate 
onstant des
ribing blea
hing during s
anning [2℄.Another sour
e of error, often negligible, is the time dependen
e of the �uores
ent signal φemitted by �uores
ent parti
les. Although within (1) and within obje
tive fun
tion J , 
f. (8),we use the 
on
entrations C, in fa
t we measure the �uores
en
e level and not dire
tly C. If thefollowing relation holds: C = kFφ, where kF is a 
onstant, than we 
an work with the measuredsignal without ne
essity of any re
al
ulation (e.g. by a normalization of the overall signal). Onthe 
ontrary, if kF is time dependent, then we should design an experiment and estimate thisdependen
e, in order to have a 
orre
t form of (1).2.2 One dimensional modelFor a linear blea
h spot perpendi
ular to a longer axis (let this axis be denoted as r) andassuming lo
al homogeneity and isotropy, an unrestri
ted supply of unblea
hed solute outside ofthe target region and negligible out-of-domain 
on
entration gradients, re
overy of unblea
hedparti
le 
on
entration as a fun
tion of spatial 
oordinate and time t is modeled with a linear,di�usion-rea
tion equation:

∂C

∂t
−D

∂2C

∂r2
= R(C) , (4)Furthermore, adopting the form of rea
tion term a

ording to (3), and after introdu
ing thedimensionless spatial 
oordinate x, the dimensionless di�usion 
oe�
ient p, the dimensionlesstime τ and the dimensionless 
on
entration y by

r := xL , D := p D0 , t := τ
L2

D0
, y :=

C

cm
, (5)where L is the length of our spe
imen in dire
tion perpendi
ular to blea
h spot, D0 is a 
onstantwith some 
hara
teristi
 value (unit: m2s−1), and cm is a 
hara
teristi
 (e.g. maximal) 
on
en-tration of C, we �nally have the following form of dimensionless di�usion-rea
tion equation onone-dimensional domain, i.e. for x ∈ [0, 1]

∂y

∂τ
− p

∂2y

∂x2
= −kSL

2

D0
y . (6)The initial 
ondition, and time varying Diri
hlet boundary 
onditions are:

y0 = y(x, τ0) for x ∈ [0, 1], y(0, τ) = g0(τ), y(1, τ) = g1(τ). (7)2.3 Experimental dataBased on FRAP experiments, see Fig. 1, we have not a smooth fun
tion for the initial 
ondition,but a ve
tor of values yexp(xi, t0), i = 1, ...N . Similarly, for the boundary 
onditions we havetwo ve
tors, ea
h one 
omposed from M values, M is the number of time points in the timeaxis, where the measurements were taken: yexp(0, tj), j = 1, ...M , on the left, and
yexp(1, tj), j = 1, ...M , on the right edge of interval [0,1℄. The resting experimental data, in fa
t
hara
terizing the di�usion pro
ess, form a 2D matrix of dimension (N,M), whi
h 
an be read by
olumns as the 
on
entration pro�les (along x axis) in M dis
rete time points. The forth
omingtask is the analysis of measurement noise and its 
orre
t �ltering.93



Figure 1: An example of time series of FRAP measurements with photosyntheti
 proteins.2.4 Determination of di�usivity as a single parameter estimation problemThe problem of phy
obilins di�usivity determination based on time series of experimental datawill be further formulated as a single parameter estimation problem. We 
onstru
t an obje
-tive fun
tion J representing the disparity between the experimental and simulated time-varying
on
entration pro�les, and then within a suitable method we look for su
h a value p minimiz-ing J . The usual form of an obje
tive fun
tion is the sum of squared di�eren
es between theexperimentally measured and numeri
ally simulated time-varying 
on
entration pro�les:
J =

N∑

i=1

M∑

j=1

[yexp(xi, τj) − ysim(xi, τj)]
2 , (8)where ysim(xi, τj) are the simulated values resulting from the solution of PDE (6) with the initialand boundary 
onditions (7). The implementation of both dire
t problem, i.e. the solution ofPDE (6) with the initial and boundary 
onditions (7) for the known parameter p, and a singleparameter estimation problem is des
ribe in the following se
tion.3 ImplementationFirstly we started negle
ting the rea
tion term (i.e. we put kS = 0). Hen
e, we are minimizing Jwith respe
t to p, whi
h represents a one-dimensional optimization problem. We have useda suitable optimization method from the UFO system whi
h generates a sequen
e of iterates

{pk, k > 0} leading to a value whi
h minimizes J (see [4℄). In order to 
ompute a fun
tion valueof Jk in (8) for a given pk in the k-th iteration, we need to know both the values of yexp(xi, τj),
i = 1, ..., N , j = 1, ...,M, and the simulated values ysim(xi, τj), i = 1, ...,N , j = 1, ...,M, fora given pk as well. It means that in ea
h iteration we need to solve the problem (6)-(7) for theinitial and boundary 
onditions de�ned by the 
urrent value of pk and the experimental data:
y0 = yexp(x, τ0) for x ∈ [0, 1], y(0, τ) = yexp(0, τ), y(1, τ) = yexp(1, τ).This 'dire
t' problem was solved numeri
ally using the �nite di�eren
e s
heme for uniformlydistributed nodes with the spa
e steplength ∆h and time steplength ∆τ . We have used anexpli
it s
heme, 
f. [1℄, whi
h 
an be generally written in the form

y(xi, τj + ∆τ) = βy(xi − ∆x, τj) + (1 − 2β)y(xi, τj) + βy(xi + ∆x, τj),94



where (xi, τj) is an inner node of the di�eren
e s
heme and β = pk
∆τ
∆h2 (pk is the value in the

k-th iteration). It is known that in this 
ase the 
ondition β ≤ 1/2 has to be satis�ed.Taking into a

ount the biologi
al reality residing in possible time dependen
e of phy
obilinsdi�usivity, we further 
onsider two 
ases. First, we 
an take both sums for i and j in (8)together. In this 
ase, the s
alar p is a result of minimization problem for J . Se
ondly, we 
an
onsider ea
h i-th spa
e row separately. In this 
ase, the N solutions p(1), ..., p(N) 
orrespond toea
h minimization problem for �xed i in the sum (8) and we have a 'dynami
s' of di�usivity pevolution.Our program is a
tually under testing, however, for the previously known di�usion 
oe�
ientand the data simulated by the random walk model it 
omputes 
orre
t results. Afterward,we determined the di�usivities for the real data of FRAP measurements (with the red algaePorphyridium 
ruentum). The range of result 10−14 m2s−1 is in agreement with referen
e values.4 Con
lusionOur method for di�usion parameter estimation from FRAP data improves on other models bya

ounting for experimentally measured post-blea
hing �uores
en
e pro�les and time-varyingboundary 
onditions, and 
an in
ludes a rea
tion term to a

ount for the time varying �uores-
en
e signal (maybe due to the detrimental e�e
ts of low level photoblea
hing produ
ed by imagea
quisition during re
overy). Analysis of simulated FRAP data demonstrate the advantages ofthis method over 
ommon analyti
al approa
hes, in
luding a low sensitivity to variations in thespot radius and to the e�e
ts of photoblea
hing during s
anning.A
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Error estimates and domain de
omposition methodsI. PultarováFa
ulty of Civil Engineering, Cze
h Te
hni
al University in Prague1 Introdu
tionDuring a pro
ess of numeri
al solution of partial di�erential equations using domain de
ompo-sition methods, a good error indi
ator 
ould help us to de
ide whether the error of a 
urrentapproximation is su�
iently low or not on a parti
ular subdomain. If we use the domain de
om-position method balan
ed by 
onstraints (BDDC) [2℄, we 
an de
rease or in
rease the numberof 
oarse degrees of freedom (DOF) on su
h subdomains. We derive our further 
onsiderationsfrom the equilibrated residual strategy whi
h is des
ribed in [1℄ and developed e.g. in [3℄. Thea posteriori error estimation te
hniques 
an be used though the 
urrent solution is not the exa
tsolution of the underlying linear system. In this 
ontribution we dis
uss how the estimates 
anbe applied to BDDC methods without mu
h additional e�ort.Let us suppose a se
ond order ellipti
 partial di�erential equation in a two-dimensional domain Ωwith homogeneous Diri
hlet boundary 
onditions on the boundary ∂Ω. Let the weak formulationbe to �nd uW ∈W su
h that
B(uW , v) = (f, v),

v ∈ W , where W is an appropriate fun
tion spa
e. Ordinary and energy s
alar produ
ts (u, v)and B(u, v) are de�ned as usual. Let V be a spa
e of �nite element (FE) linear or bilinearfun
tions on triangular or quadrilateral mesh satisfying the boundary 
onditions. Let us denoteby uV the solution in V
B(uV , v) = (f, v)for all v ∈ V . This dis
retized problem 
an be represented by a system of linear equations

Ku = b.Partition Ω into subdomains Ωm, m = 1, . . . , n, yields n separate problems, some of theminde�nite. Let the subs
ript o denote DOFs belonging to internal nodes of all subdomains andlet the DOFs of nodes on internal boundaries of all subdomains have subs
ript r. After reorderingthe nodes and after assembling the blo
ks by integrating only over individual subdomains, weget a new matrix of the system of algebrai
 equations
(

Ko Kor

KT
or Kr

)(
uo

ur

)
=

(
fo

fr

)
. (1)Submatrix Ko is blo
k diagonal and positive de�nite, its dimension equals to the number of allinternal nodes. Matrix Kr is positive semide�nite and its dimension is larger than the numberof nodes on interfa
es be
ause ea
h of the interfa
e DOFs belongs to more than one subdomain.After elimination of KT

or we get a S
hur 
omplement formulation for the interfa
e unknowns ur

Sur = fS, (2)where
S = Kr −KT

orK
−1
o Kor, fS = fr −KT

orK
−1
o fo.In the BDDC methods, a 
oarse problem is built and solved of a dimension mu
h lower than thatof S in order to transfer the information among the subdomains and to provide the subproblemswith the Diri
hlet boundary 
ondition. 96



2 Equilibrated residual method for subdomainsThe equilibrated residual method for a posteriori error estimates is des
ribed in [1℄. Fluxes overelement edges are 
al
ulated and smoothed on every pat
h of elements whi
h share a single vertex.Then the energy norm of the error is 
omputed from the solution of Neumann problems on allelements. In our approa
h, we exploit this basi
 idea, but there are two main di�eren
es. First,instead of pat
hes of elements we use subdomains and moreover, only the interfa
e unknownsare 
al
ulated with. Se
ond, we 
an 
ompute the estimates in every BDDC iteration, it meansthat we do not need the exa
t solution of the linear systems (1) or (2).For the error of an approximate solution ui in step i, we have e = ui − uW ∈ W . Then theenergy norm of the error |||e||| is
|||e||| = sup

v∈W, |||v|||=1
B(e, v) = sup

v∈W, |||v|||=1
B(ui − uW , v) = sup

v∈W, |||v|||=1
(B(ui, v) − (f, v)).The involved s
alar produ
ts 
an be 
omputed over the individual subdomains. Let us 
onsidera set of fun
tions g de�ned on boundaries of subdomains inside Ω su
h that

∑

m

∫

∂Ωm

gv ds = 0.Then we have
|||e||| = sup

v∈W, |||v|||=1

∑

m

(
B(uim, v) − (f, v) +

∫

∂Ωm

gv ds) , (3)where uim is ui restri
ted to Ωm. The right hand side of (3) 
an be substituted by
|||e||| = sup

v∈W, |||v|||=1

∑

m

B(φm, v),where φm ∈Wm is a solution of
B(φm, v) = B(uim, v) − (f, v) +

∫

∂Ωm

gv ds (4)on Ωm, v ∈ Wm, where Wm is an appropriate fun
tion spa
e on Ωm, m = 1, 2, . . . , n. If somedomain Ωm does not 
oin
ide with ∂Ω, then the asso
iated problem has only Neumann boundary
onditions given by g on ∂Ωm. When g are the outer normal derivatives of the exa
t solution on
∂Ωm, we obtain the exa
t error em on Ωm. In any 
ase we have

|||e||| ≤
∑

m

|||φm|||. (5)After dis
retization of (4), we have
B(φm, v) = B(uim, v) − (f, v) +

∫

∂Ωm

gv ds, (6)where φm and v are from FE fun
tion spa
es on Ωm, m = 1, 2, . . . , n. Then of 
ourse insteadof (5) we obtain only an error indi
ator.Let us stress that there are only two 
onditions that must be ful�lled: a) the sum of the 
hosen�uxes g have to be zero, b) the problems on interior subdomains must be solvable.Matrix representation of the introdu
ed 
onsiderations 
an be as follows. Let the systems
Kmu = rm (7)97



represent the dis
retized equations (6) and let
Smu = rSm (8)are the asso
iated S
hur 
omplement representations. Adding �uxes g on subdomains meansadding ve
tors r̃m to right hand sides of (7) or equivalently r̃Sm to (8) to the positions of theinterfa
e unknowns.Condition a) is ful�lled for example whenever the �uxes have zero sums on every interfa
e ofa pair of subdomains. Condition b) is ful�lled if for interior subdomains the equations (7) orequivalently (8) are solvable. We 
an 
al
ulate the �uxes for pat
hes of subdomains, but we 
analso equilibrate the residuals at the same time for all edges by solving one system of equations.Of 
ourse, su
h set of �uxes g or equivalently of ve
tors r̃Sm (or r̃m) is not unique. In ourexperiments we 
hoose ve
tors r̃Sm like multiples of residuals rSm on ea
h interfa
e edge. Wefollow the idea of [1℄ and minimize the distan
es of the resulting right hand sides rSm + r̃Smfrom averages of residuals whi
h belong to opposite sides of an interfa
e shared by any twosubdomains. We 
an simplify the equilibrating of residuals in su
h manner that only the sumsof �uxes over whole interfa
es are balan
ed and not over the individual elements. Then thedimension of this problem is equal to the number of interfa
es between subdomains.Instead of a posteriori error estimates, this method rather yields suggestions of residual parti-tioning for the BDDC method. The estimate is an indi
ator of |||ui − uV |||, where uV is theexa
t FE solution of the problem.3 Numeri
al exampleLet us solve the equation

∂2u

∂x2
+ 10−3 ∂

2u

∂y2
= 1in Ω = (0, 1)× (0, 1) with u = 0 on ∂Ω. Let Ω be partitioned into 3× 3 re
tangular subdomains.We solve this problem by the 
onjugate gradient method whi
h is pre
onditioned by BDDCmethod and use bilinear FEs on re
tangular elements.Error estimates in energy norm after the forth step of the 
onjugate gradient method are displayedin Figure 1 for di�erent 
hoi
es of the mesh resolution and 
ompared with the exa
t error andwith the error 
omputed from residuals rSm on subdomains

|||er||| = rT
SmS

#
mrSm,where S#

m is the Moore-Penrose pseudoinverse of Sm. The estimates for the overall errors arepresented on the left, while on the right, the estimates are shown only for the 
entral subdomainwhi
h does not 
oin
ide with the boundary ∂Ω. The mesh resolutions are from 5 to 15 nodesin every subdomain in ea
h dire
tion. In this example, the BDDC method uses all 
orner nodesand one average on ea
h interfa
e edge as 
oarse DOFs.A
knowledgement: This work has been supported by the proje
t CEZ MSM 6840770001and by the Grant Agen
y of The Cze
h Republi
 under the 
ontra
t No. 201/09/P500 andNo. 201/09/1544. 98
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Figure 1: Error estimates in energy norm for di�erent meshes after the forth step of the 
onjugategradient method pre
onditioned by BDDC. True error (simple line), residual estimate (
roses)and equilibrated residual based estimate (
ir
les). Error estimates on Ω (left) and on the 
entralsubdomain (right).Referen
es[1℄ M. Ainsworth, J.T. Oden: A posteriori error estimation in �nite element analysis. JohnWiley & Sons, In
., 2000.[2℄ J. Mandel, B. Sousedík, C.R. Dohrmann: Multispa
e and multilevel BDDC. In: Computing83, 2008, 55�85.[3℄ T. Vej
hodský: Guaranteed and lo
ally 
omputable a posteriori error estimate. In: IMAJournal of Numeri
al Analysis 26, 2006, 525�540
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On a posteriori error estimates for biharmoni
 problemsK. SegethTe
hni
al University of Libere

1 Introdu
tionIn this survey 
ontribution, we present and 
ompare, from the viewpoint of adaptive 
omputation,several re
ently published error estimation pro
edures for the numeri
al solution of biharmoni
and some further fourth order problems mostly in 2D, in
luding 
omputational error estimates.In the hp-adaptive �nite element method, there are two possibilities to assess the error of the
omputed solution a posteriori: to 
onstru
t a 
lassi
al analyti
al error estimate (see their 
lassi-�
ation in [8℄) or to obtain, by the same pro
edure as the approximate solution, a 
omputationalerror estimate. In the latter 
ase, a referen
e solution is 
omputed on a systemati
ally re�nedmesh and, at the same time, with the polynomial degree of all elements in
reased by 1.We use 
ommon notation based primarily on the book [3℄. For the la
k of spa
e, we sometimesonly refer to the notation introdu
ed in the papers quoted. The 
omplete hypotheses of thetheorems presented should be also looked for there.2 Diri
hlet and se
ond problems for biharmoni
 equation2.1. Diri
hlet problem. Let Ω ⊂ R2 have a polygonal boundary Γ . We 
onsider the2D biharmoni
 problem

∆2u = f in Ω, (1)
u =

∂u

∂n
= 0 on Γ (2)with f ∈ L2(Ω) that models, e.g., the verti
al displa
ement of the mid-surfa
e of a 
lampedplate subje
t to bending.We use the standard formulation of the weak solution u ∈ X = H2

0 (Ω) and approximate solution
uh ∈ Xh written in the form 〈F (u), v〉 = 0 and 〈Fh(uh), vh〉 = 0. Denote by k, k ≥ 1, themaximum degree of polynomials in Xh. Further, put fh =

∑
T∈Th

πl,T f , where T is a triangleof the triangulation Th, Eh is the set of all its edges, Pl, l ≥ 0 �xed, is the spa
e of polynomialsof degree at most l and πl,S, S ∈ Th ∪ Eh, is the L2 orthogonal proje
tion of L1(S) onto Pl(S).Put εT = ‖f − fh‖0;T . Let hT be the diameter of the triangle T . De�ning the lo
al residuala posteriori error estimator ηV,T for all T ∈ Th, we have the following theorem [8℄.Theorem 2.1. Let u ∈ X be the unique weak solution of the problem (1), (2) and let uh ∈ Xhbe an approximate solution of the 
orresponding dis
rete problem. Then we have the a posterioriestimates
‖u− uh‖2 ≤ c1


∑

T∈Th

η2
V,T




1/2

+ c2


∑

T∈Th

h4
T ε

2
T




1/2

+ c3‖F (uh) − Fh(uh)‖ + c4‖Fh(uh)‖100



and
ηV,T ≤ c5‖u− uh‖2;ωT

+ c6


 ∑

T ′⊂ωT

h4
T ′ε2T ′




1/2for all T ∈ Th. The quantities c1, . . . , c6 depend only on hT /ρT , and the integers k and l. Here
ωT is the set of all neighbors of the triangle T and ρT the diameter of the 
ir
le ins
ribed to T .The proof is given in [8℄.The same problem is treated in, e.g., [9℄ with a residual error estimator giving similar results.2.2. Diri
hlet problem in mixed formulation. Let Ω ⊂ R2 be a 
onvex polygon withboundary Γ . Again, we 
onsider the biharmoni
 problem (1), (2) with f ∈ H−1(Ω). The problemis 
on
erned in pra
ti
e with both linear plate analysis and in
ompressible �ow simulation.We employ the Ciarlet-Raviart weak formulation of the problem (1) and (2) for the solution
{w = ∆u, u} and the 
orresponding 
onforming se
ond order approximate solution {wh, uh}.Let us put fh = π0,T f on T ∈ Th.The lo
al residuals PT , RT , PE , and RE are de�ned in [2℄. We introdu
e the lo
al residuala posteriori error estimators ηC,T and η̃C,T 
omputed from the lo
al residuals. We put eh(u) =
u− uh and eh(w) = w − wh. Then the following theorem holds [2℄.Theorem 2.2. Let {w, u} be the unique mixed weak solution of the problem (1) and (2), and let
{wh, uh} be an approximate solution of the 
orresponding dis
rete problem. For T ∈ Th we thenhave the a posteriori estimates

‖eh(u)‖1 + h‖eh(w)‖0 ≤ C1





∑

T∈Th

η2
C,T




1/2

+ h2


∑

T∈Th

η̃2
C,T




1/2

 ,

ηC,T + h2η̃C,T ≤ C2


|eh(u)|1;ωT

+ hT ‖eh(w)‖0;ωT
+ h3

T

∑

T ′⊂ωT

εT ′


with some positive 
onstants C1 and C2 independent of h = maxT∈Th

hT .The proof is given in [2℄.The se
ond problem for the biharmoni
 equation is treated in mixed formulation in [5℄ witha gradient re
overy error estimator.2.3. Kir
hho� plate bending problem. A similar problem des
ribing the bending of anisotropi
 linearly elasti
 plate is studied in [1℄. The non
onforming �nite element approximationof the problem is 
onstru
ted in the dis
rete Morley spa
e and the residual error estimator isused.3 Diri
hlet problem for fourth order ellipti
 equation3.1. Diri
hlet problem in 1D. Put Ω = (0, 1) ⊂ R1. Let all the fun
tions 
on
erned bes
alar-valued fun
tions of a s
alar variable. We 
onsider the one dimensional boundary valueproblem for the ordinary fourth order equation101



(au′′)′′ = f in Ω (3)with the boundary 
onditions
u(0) = u′(0) = 0, u(1) = u′(1) = 0. (4)This is a model for the verti
al displa
ement of a beam 
lamped on both ends and subje
tto bending. In the model, a(x) = E(x)I(x) is a positive, bounded, and Lips
hitz 
ontinuousfun
tion in Ω, where E is Young's modulus of elasti
ity and I the moment of inertia. Thedistributed transverse load is denoted by f ∈ L2(Ω).We use the standard formulation of the weak solution u ∈ X = H2

0 (Ω) and uh ∈ Xh, i.e.,
a(u, v) =

∫
Ω fv and a(uh, vh) =

∫
Ω fvh, Xh being the spa
e of pie
ewise 
ubi
 Hermite polyno-mials. Moreover, we use the 
orresponding energy norm |||v|||2 = a(v, v).In [6℄, a re
overy operator Gvh for the se
ond derivative of vh ∈ Xh is introdu
ed. Now we 
ande�ne the lo
al re
overy a posteriori error estimator ηP,T for all triangles T of the triangulation Thand have the following theorem [6℄.Theorem 3.1. Let u ∈ H2

0 (Ω) be the unique weak solution of the problem (3), (4) and let
uh ∈ Xh be an approximate solution of the 
orresponding dis
rete problem. Then we have theglobal a posteriori estimate

∣∣∣∣∣∣∣


∑

T∈Th

η2
P,T




1/2

− |||u− uh|||

∣∣∣∣∣∣∣
≤
∥∥∥∥a

1/2

(
Ghuh − d2u

dx2

)∥∥∥∥
0

≤ Ch3for the di�eren
e of the global error estimator and the energy norm of the true error. C isa 
onstant that may depend on u. The global error estimator is asymptoti
ally exa
t.The proof is given in [6℄.3.2. Diri
hlet problem. Let Ω ∈ Rn be a bounded 
onne
ted domain and Γ its Lips
hitz
ontinuous boundary. We 
onsider the 4th order ellipti
 problem for a s
alar-valued fun
tion u,
div Div(γ∇∇u) = f in Ω, (5)with the boundary 
ondition (2) and f ∈ L2(Ω), γ = [γijkl]

n
i,j,k,l=1 and γijkl = γjikl = γklij ∈

L∞(Ω).We de�ne the energy norm |||Φ||| in L2(Ω,R
n×n) and the global a posteriori error estimator

ηR(β,Φ, ū) like in [7℄, where β is an arbitrary positive real number and Φ an arbitrary smoothmatrix-valued fun
tion. The estimator depends on the 
onstant from the Friedri
hs inequalityfor ∇∇ on H2
0 (Ω). We then have the following theorem [7℄.Theorem 3.2. Let u ∈ H2

0 (Ω) be the weak solution of the problem (5), (2) and ū ∈ H2
0 (Ω) anarbitrary fun
tion. Then

|||∇∇(ū− u)|||2 ≤ ηR(β,Φ, ū) (6)for any positive number β and any matrix-valued fun
tion Φ ∈ H(div Div, Ω).The proof of the theorem is based on a more general statement proven in [7℄. There is aninteresting question of optimizing the inequality (6) with respe
t to β and Φ.A similar 2D nonlinear Diri
hlet problem is solved in [4℄. A global error estimator is introdu
edand similar results are obtained there. 102



4 Con
lusionThe quantitative properties of the estimators 
annot be easily assessed and 
ompared analyt-i
ally. There are, however, global analyti
al error estimates for some 
lasses of problems (see,e.g., [4℄, [7℄) that require as few unknown 
onstants as possible. The a posteriori estimateswith unknown 
onstants, however, are not optimal for the pra
ti
al 
omputation. They 
an bee�
ient if they are asymptoti
ally exa
t.The 
omputation of the referen
e solution is rather time-
onsuming but the refen
e solutionis obtained by the same software that is used to 
ompute the approximate solution. We usereferen
e solutions as robust error estimators with no unknown 
onstants to 
ontrol the adaptivestrategies in the most 
omplex �nite element 
omputations.A
knowledgement: This work has been 
arried out under the state subsidy to the resear
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hnologies and Pro
esses Center 1M0554 ofthe Programme of Resear
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h Republi
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Experimental grid for numeri
al linear algebraI. �ime£ek, J. Hladík, J. Krupka, M. HovorkaFa
ulty of Information Te
hnologies, Cze
h Te
hni
al University in Prague
1 Introdu
tionTime is very often the limiting fa
tor in s
ienti�
 
odes. These 
odes 
an be a

elerated byparallel exe
uting on spe
ial distributed systems (grids). This is usual but very di�
ult solution.In this paper, we des
ribe a design of the new heterogenous grid for the numeri
al linear algebrawith maximal ratio between prize and 
omputational power. Contributions of this paper istwofold: 1) a design of new parallel routines 2) an approa
h for parallelization of s
ienti�
 
odesby 
onverting lo
al numeri
al library 
alls into remote grid 
alls.1.1 GPU 
omputingNowadays, there is a new trend in the high-performan
e 
omputing to a

elerate 
omputationsby means of Graphi
s Pro
essing Units (GPU). This trend re
ently emerged into a new resear
harea 
alled General-Purpose Computing on Graphi
s Pro
essing Units (shortly GPGPU). This isa 
onsequen
e of the fa
t that the GPUs of modern graphi
 
ards over
ome modern CPUs in thememory bandwidth, the number of 
omputational units, and possibilities of the ve
tor exe
ution.The GPGPU programming is simpli�ed by several existing APIs (Appli
ation ProgrammingInterfa
es), the most popular and well-established ones are CUDA [1, 2℄ and OpenCL [3℄. Thanksthese APIs the GPGPU 
omputations are widespread and used in many s
ienti�
 proje
ts.The 
omputational abilities of single GPU are very impressive, but some problems, espe
iallywith large memory requirements, are still hard to solve. Although the amount of memory onGPUs is in
reasing rapidly, it is still mu
h less than we need and this leads to the limitedappli
ation of GPGPU in many s
ienti�
 problems. Possible solution to that problem 
ould beto 
onne
t graphi
 
ards into a GPGPU 
luster to distribute 
omputing and memory demandsa
ross all available GPU. The bene�t of this approa
h is that it allows us to inter
onne
t GPUsfrom various vendors but naturally there arise a new problem known as load balan
ing of GPUsthat we have to fa
e to retain high 
omputational performan
e.1.2 Sparse matrix storage formatsThe sparse matrix storage s
heme (format) have great impa
t on performan
e and s
alabilityof the sparse matrix-ve
tor multipli
ation operation and other iterative algorithms for sparsematrix 
omputations. Ideal format ensures minimal memory storage requirements, maximumutilization of �oating point ve
tor units, maximum utilization of 
a
he memories, and enablesload balan
ed parallelization of the algorithms on massively parallel systems.Several sparse matrix formats have been proposed and some are due to their simpli
ity widelyused, su
h as Compressed Sparse Row/Column (CSR/CSC) or Jagged Diagonal Storage (JDS)formats. The feasibility of parti
ular format is given mainly by the sparsity pattern of a matrix.Sparse matri
es often 
ontain dense submatri
es (blo
ks). Therefore, some formats use blo
king104



te
hniques whi
h exploit knowledge about 
lustering of matrix non-zero entries. These blo
kingformats like SPARSITY, CARB, or M-CARB, may give signi�
antly better performan
e of thealgorithms on sparse matri
es than allows the CSR format, due to eliminating memory readstalls, 
onsuming less memory, allowing a better use of registers, and improving ve
tor unitutilization.But these spe
ialized and e�
ient formats have also some drawba
ks. They su�er from a largetransformation overhead, are designed only for a limited set of matrix operations, or do notsupport fast adding or removing nonzero elements.2 Goals of proje
tThe s
hedule of this proje
t 
onsist of these steps
• Initial installation of HW and SW,
• Parallel GPU routines using sparse matrix storage formats
• Implementation of remote grid 
alls.that are dis
ussed in details later.2.1 Initial installation of HW and SWThere are a lot of grids di�er in their sizes, 
apabilities and purposes. We want to design thegrid with the maximal ratio between prize and 
omputational power. To a
hieve this goal withlimited budget, we must maximize GPU usage for 
omputation.2.1.1 Grid ar
hite
tureWe assume that system (grid) is divided into 
luster of 
omputers (nodes) with graphi
 
ards (notne
essarily of the same type) 
onne
ted by Internet network. For the 
ommuni
ation among thenodes inside one 
luster we will assume a MPI (Message Passing Interfa
e) library. Ea
h 
lusterhas exa
tly one server of servi
e. Server will manage other (slave) parts (CPUs and GPUs) andmonitor their workload.2.1.2 Current HW 
on�gurationCurrent HW 
on�guration in
ludes: �ve Gefor
e 470, one Tesla C2050, two Tesla C1060, oneGeFor
e 280. All GPUs are borrowed by Prague CUDA Tea
hing Centre (PCTC). In our grid"new" and "old" GPUs are mixed, this requires good load-balan
ing strategy.2.1.3 Current SW 
on�gurationWe also install third-party routines for shared memory or distributed CPU 
omputing:S
aLAPACK (library of high-performan
e linear algebra routines for distributed-memorymessage-passing MIMD 
omputers), PARDISO, SuperLU, and so on.105



2.2 Parallel GPU routines using sparse matrix storage formatsCurrently, several vendor supported libraries in CUDA that e�
iently implement Basi
 LinearAlgebra Subroutines (BLAS) and Fast Fourier Transformation (FFT) are available, these areCUBLAS and CUFFT. Many existing linear algebra libraries fo
us on e�
ient implementationof basi
 ve
tor and matrix operations while the support for the sparse matrix 
omputations is notin
luded. We will over
ome this limitation by implementation of new variant of these routines.The proje
t's goal is to over
ome this limitation and design sparse matrix operations with dataformats suitable for GPU ar
hite
ture and for GPU 
luster. This work will extend the ideas ofS
aLAPACK. We will 
on
entrate on these operations (for dense or sparse formats):
• matrix-matrix multipli
ation,
• Cholesky and LU fa
torization,
• eigensolvers.2.3 Implementation of remote grid 
alls2.3.1 IdeaUsually, only spe
ial variants of 
odes are exe
uted on the grid. This approa
h has seriousdrawba
k that 
ode must be modi�ed for grid 
omputing. We want to over
ome this limitationand extend the utilization of the grid. To do this, we rewrite interfa
e for some routines fornumeri
al linear algebra (shortly NLA, like BLAS or LAPACK). So, most of 
odes without anymodi�
ations 
an used the 
omputational power of the grid.The di�eren
e will o

ur when 
lient (
omputer outside the grid) want to pro
eed any NLAroutine. A heuristi
 on 
lient side �rstly estimate if it will be faster to 
ompute this routinelo
ally or send it to the grid for exe
ution.If the 
ondition is true, the 
lient do a remote 
all of this NLA routine by sending a demand toany server of grid. The server 
onsider this demand and 
hoose one of following a
tions:
• Compute this demand by itself (one node of 
luster is used)
• Compute this demand by its 
luster (all nodes of 
luster are used)
• Re-send this demand to other server (nodes of di�erent 
luster are used)
• Refuse this demand (grid is full). Client is for
ed to do the lo
al 
omputation.After the remote grid 
all is exe
uted, results are send ba
k to the 
lient.2.3.2 Dis
ussion
• Advantages of remote grid 
alls1. Time: program 
an be faster exe
uted be
ause most time-
onsuming parts are movedto more powerful 
omputer than user's one.2. Implementation: some parts of program 
an be exe
uted in parallel without anyadditional modi�
ations 106



3. Administration: all mathemati
al libraries 
an be installed on the server of servi
e.4. E
onomi
al: the proposed grid is not very expensive, but it provides very good per-forman
e.
• Drawba
ks1. The server of servi
e must have a good 
onne
tivity and fast and reliable 
onne
tionsto other servers of grid are also required.2. Network laten
y and bandwidth must be taken in a

ount.3. The servi
e is suitable only from some algorithms ( most time-
onsuming parts areNLA 
alls, without GUI, input parameters 
an be given 
ommand line.)4. Algorithms must have 
omputational demands greater than the 
ommuni
ation over-head (matrix-matrix multipli
ation is a good example).3 Con
lusionsWe propose the design of a the new distributed system for numeri
al linear algebra. The usedgrid and new approa
h (remote grid 
alls) allow the parallel exe
ution of many of 
odes withoutany modi�
ations.4 Future works
• Non-blo
king remote grid 
alls.
• Nodes 
an be dynami
ally 
onne
ted or dis
onneted from the grid. This is great advantagebe
ause also 
lassroom 
omputer 
an join the grid.
• Support for another libraries like GMP, PETS
 and so on.
• Compression of the 
omuni
ation.
• Heuristi
 for a predi
tion of a workload and an exe
ution time for some operationsA
knowledgement: This resear
h has been supported by M�MT under resear
h programMSM6840770014, by CESNET Development Fund (proje
t 390/2010), and by Prague CUDATea
hing Centre(PCTC).Referen
es[1℄ D.B. Kirk, W. mei W. Hwu: Programming massively parallel pro
essors: a hands-on approa
h.Morgan Kaufmann, 2010.[2℄ J. Sanders, E. Kandrot: CUDA by example: an introdu
tion to general-purpose GPU pro-gramming. Addison-Wesley Professional, 2010.[3℄ R. Tsu
hiyama, T. Nakamura, T. Iizuka, A. Asahara, S. Miki: The OpenCL programmingbook. Fixstars Corporation, 2010. 107
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1 Introdu
tionThe Balan
ing Domain De
omposition based on Constraints (BDDC) method by Dohrmann [2℄is one of the most advan
ed methods of iterative substru
turing for the solution of large systemsof linear algebrai
 equations arising from dis
retization of boundary value problems.In the 
ase of many substru
tures, solving the 
oarse problem exa
tly be
omes a bottlene
k.This has been observed also for the FETI-DP method (e.g. in [3℄), whi
h is 
losely related toBDDC. For this reason, re
ent resear
h in the area is dire
ted towards inexa
t solutions of the
oarse problem. Klawonn and Rheinba
h in [3℄ use algebrai
 multigrid to obtain an approximate
oarse 
orre
tion within FETI-DP method and a
hieve ex
ellent s
alability with the resultingimplementation.We follow a di�erent approa
h. As was mentioned already in [2℄, for BDDC method, it isstraightforward to substitute the exa
t solution of the 
oarse problem by another step of BDDCmethod with subdomains playing the role of elements. In this way, the algorithm of three-levelBDDC method is obtained (studied e.g. in [6℄). One may try even re
ursive appli
ations ofthe method 
alled Multilevel BDDC [4℄. Unlike for other methods, su
h extension is natural forBDDC, sin
e the 
oarse problem has the same stru
ture as the original problem.It is our long-term goal to develop an e�
ient parallel implementation of the Multilevel BDDCmethod and make it publi
ly available. In this paper, we present results of the re
ently developedparallel implementation of the three-level BDDC method, and its 
omparison with standard (two-level) BDDC method. Even these preliminary results suggest whi
h drawba
ks of the two-levelimplementation might be over
ome by the extension to more levels.2 BDDC algorithm with two and three levelsThe BDDC method provides a pre
onditioner to the redu
ed interfa
e problem Ŝ û = ĝ, where Ŝis a S
hur 
omplement with respe
t to interfa
e and ĝ is sometimes 
alled 
ondensed right handside. This problem is solved by the pre
onditioned 
onjugate gradients (PCG) method by meansof iterative substru
turing (details may be found e.g. in [5℄).Let us begin with des
ription of the standard (two-level) BDDC method. Let Ki be the lo
alsubdomain matrix, obtained by the sub-assembling of element matri
es of elements 
ontained in
i-th subdomain. We introdu
e the 
oarse spa
e basis fun
tions on ea
h subdomain representedby 
olumns of matrix Ψi, whi
h is the solution to the saddle point problem with multiple righthand sides [

Ki CT
i

Ci 0

] [
Ψi

Λi

]
=

[
0

I

]
. (1)108



Matrix Ci represents 
onstraints on fun
tions Ψi, one row per ea
h. These 
onstraints enfor
e
ontinuity of approximate solution at 
orners and of averages over some subsets of interfa
e(edges or fa
es) between adja
ent subdomains. The lo
al 
oarse matrix KCi = ΨT
i KiΨi = −Λiis 
onstru
ted for ea
h subdomain. Let RCi realize the restri
tion of global 
oarse degrees offreedom to lo
al 
oarse degrees of freedom. Using this matrix, we 
an 
onstru
t the global 
oarsematrix by the assembly pro
edure, formally written as KC =

∑N
i=1 RT

CiKCiRCi.Suppose r̂ = ĝ − Ŝ û is a residual within the PCG method. The residual assigned to i-th sub-domain is 
omputed as ri = ET
i r̂, where matri
es ET

i distribute r̂ to subdomains (see [5℄ fordetails). The subdomain 
orre
tion is now de�ned as the solution to system
[

Ki CT
i

Ci 0

] [
zi

λi

]
=

[
ri

0

]
. (2)The residual for the 
oarse problem is 
onstru
ted using the 
oarse basis fun
tions subdomainby subdomain and assembling the 
ontribution as rC =

∑N
i=1 RT

CiΨ
T
i ET

i r̂. The 
oarse 
or-re
tion is de�ned as the solution to problem KC zC = rC . Both 
orre
tions are then addedtogether and averaged on the interfa
e by matri
es Ei to produ
e the pre
onditioned residual
ẑ =

∑N
i=1 Ei (ΨiRCizC + zi).In the Three-level BDDC method, the matrix KC is not 
onstru
ted on the se
ond level. Instead,subdomains of the basi
 (�rst) level are grouped into subdomains of the se
ond level in the sameway as elements of the original mesh are grouped into subdomains of the �rst level. The wholepro
edure des
ribed in this se
tion is now repeated for the se
ond level and thus the �nal 
oarseproblem represents the third level. The only di�eren
e between the �rst and the se
ond levelis the interior pre-
orre
tion and post-
orre
tion applied on the se
ond level. These 
orre
tionswere used also for the two-level method in the original paper [2℄, in whi
h BDDC was formulatedfor global (i.e. not redu
ed to interfa
e) problem. Details of the three-level BDDC algorithm (asa spe
ial 
ase of the Multilevel BDDC algorithm) 
an be found in [4℄.3 Parallel implementationOur implementation of the two- and three- level BDDC methods is written in Fortran 95 pro-gramming language using MPI library. It relies heavily on the sparse dire
t solver MUMPS:a sequential instan
e of MUMPS is used for solving ea
h subdomain problem, another sequentialinstan
e is used to solve interior problems (
alled dis
rete Diri
hlet problems [5℄) at ea
h sub-domain, and �nally a parallel instan
e of MUMPS is used to solve the resulting 
oarse problemat the highest level. The program passes the matrix of the 
oarse problem to MUMPS in thedistributed assembled form, i.e. the lo
al 
oarse matri
es KCi reside at the pro
essor where theyare 
reated.Sin
e division into subdomains has a signi�
ant impa
t on the e�
ien
y of the method, it is usefulto 
reate divisions independently of number of available pro
essors. Thus, the solver supportsassignment of several subdomains to ea
h pro
essor.The implementation uses ParMETIS pa
kage to generate division of elements into subdomainson the �rst level and the METIS pa
kage to generate the division on the se
ond level.In Figure 1, simpli�ed s
hemes of the hierar
hy in the implementation of the pre
onditioner aregiven for two and three levels, respe
tively. 109
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Figure 1: S
hemes of parallel implementation of standard (two-level) BDDC (left) and three-levelBDDC (right).4 Numeri
al resultsThe implementation has been tested on a large 3D problem of linear elasti
ity. This problemrepresents me
hani
s of a geo
omposite and was analysed in [1℄. The problem is dis
retized usingunstru
tured grid of about 12 million linear tetrahedral elements, resulting in approximately6 million unknowns.The mesh was divided into 1,024 subdomains on the �rst level and 128 subdomains on these
ond level in the three-level version. Resulting 
oarse problems (using 
orners and averages onall edges and fa
es) 
ontain 86,094 unknowns on the �rst level and 11,265 on the se
ond level.Table 1 
ontains strong s
aling test with implementation using two and three levels. The itera-tions of PCG were stopped when the relative residual ‖r̂‖/‖ĝ‖ de
reased bellow 10−6. All these
omputations were performed on the IBM SP6 
omputer at CINECA Super
omputing 
entre,Bologna. #pro
 64 128 256 512 1,0242 levels (1,024+1), 46 PCG iter, 
ond. est. 50.3set-up (se
) 61.0 37.7 25.7 23.2 39.5iter (se
) 22.3 19.9 27.8 44.9 97.5total (with I/O) (se
) 723.7 473.1 317.1 220.2 240.53 levels (1,024+128+1), 56 PCG iter, 
ond. est. 78.6set-up (se
) 49.5 29.0 18.4 12.6 11.0iter (se
) 28.5 22.6 16.7 14.7 13.2total (with I/O) (se
) 779.2 442.3 278.2 182.1 132.7Table 1: Strong s
aling using two and three levels.It has been 
on�rmed by our experiment, that the 
oarse problem solution 
auses problems withs
alability in both two-level and three-level 
ases. While most parts of the implementation s
alevery well, the 
oarse problem presents a bottlene
k for s
alability not only in the set-up phase, butmainly in the part of iterations. In other words, it be
omes 
ostly (with respe
t to ea
h iteration)to solve the 
oarse problem, whi
h is not extensive in size, on too many pro
essors and broad
astits solution to them. Slightly surprisingly, it appears more feasible for this implementation toleave some pro
essors idle and solve the problem on a smaller subset of pro
essors, pre
isely asit happens in the three-level implementation. One should note, that idle pro
essors appear inthe three-level 
ase on the se
ond and the third level when more than 128 pro
essors are used.110



5 Con
lusionWe have presented a parallel implementation of the three-level BDDC pre
onditioner and 
om-pared it to the two-level version. Sin
e the implementation uses an e�
ient parallel sparse dire
tsolver (MUMPS), the 
oarse problem does not present a severe bottlene
k for fa
torization inthe set-up phase for the presented problem. However, its solution slows down the 
omputationin the phase of iterations.From our �rst experiments, it appears that the three-level pre
onditioner tends to s
ale betterin both parts - set-up and PCG. The worse approximation properties of the three-level method,whi
h are theoreti
ally analysed in [4℄ and demonstrated here by higher number of PCG iterations(Table 1), seem to be 
ompensated by faster solution of the 
oarse problem in ea
h iteration.We expe
t, that these advantages of the three-level BDDC method would pronoun
e further forlarger problems, where the bottlene
k presented by the 
oarse problem would be en
ounteredalso during fa
torization. Su
h problems as well as the extension to multiple levels will be thesubje
t of our further resear
h.A
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The problem of moments and its 
onne
tionsM. T·maFa
ulty of Ele
tri
al Engineering and Communi
ation, Brno University of Te
hnology
1 Introdu
tionThis 
ontribution is about the problem of moments. During the last 150 years many books andpapers have been published about this problem. Many mathemati
ians studied it from manydi�erent points of view. It is very interesting how many 
onne
tions between the di�erent partsof mathemati
s has been found in these works. One 
an see the 
lassi
al referen
es [9℄ and [2℄.An interesting histori
al review about the birth of the problem of moments 
an be found in [6℄.As the time went on, the problem of moments was used in order to solve various questions inmathemati
al statisti
s, theory of probability and mathemati
al analysis.2 Formulation of the problemGiven the sequen
e of real numbers {ξk}∞k=0. The problem is to �nd the following positivemeasure µ su
h that

ξk =

∫

I
xkdµ(x), k = 0, 1, .... (1)In the 
ase when I = [0,∞) we talk about the Stieltjes moment problem. The 
ase when I = R is
alled the Hamburger moment problem. The real numbers {ξk}∞k=0 are then 
alled the moments.The terminology was taken from me
hani
s. If the measure µ represents the distribution of themass over the real semi-axis, then the integrals

∫ ∞

0
xdµ(x),

∫ ∞

0
x2dµ(x)represent the �rst (stati
al) moment and the se
ond moment (moment of inertia).One 
an ask the following questions:

• Does the measure µ exist for the sequen
e of the moments {ξk}∞k=0?
• If the measure µ exists, is it determined uniquely?Now lets take a look on the similar problem. Given the same sequen
e of the moments {ξk}∞k=0.The problem is to �nd the following positive measure µn su
h that the �rst 2n moments aremat
hed, i.e.,

ξk =

∫

I
xkdµn(x), k = 0, 1, ...2n − 1. (2)The formulation above is often 
alled the trun
ated problem of moments, one 
an see e.g. [1℄.Sear
hing for this measure µn is 
losely 
onne
ted with many di�erent methods in the mathe-mati
s. The aim of this 
ontribution is to give an overview of many 
onne
tions one 
ould �nd.It will be shown how 
an the knowledge of these 
onne
tions lead to the new results.112



3 Conne
tionsIt is known for a long time that the �nding of the µn instead of µ is 
losely 
onne
ted with theGauss-Christo�el quadrature, see e.g. [11℄, [7℄. Under 
ertain settings the problem of moments
an be seen as the theoreti
al ba
kground for the Lan
zos method and the CG method. The
onne
tion with the CG and with the the Gauss-Christo�el quadrature is known sin
e the in-trodu
tion of the CG and it was well des
ribed by M. R. Hestenes and E. Stiefel in their jointpaper [4℄. In [8℄ the results about the sensitivity of the Gauss-Christo�el quadrature with respe
tto the small perturbations of the measure are given. Obtaining of these results would not bepossible without the deep knowledge of the 
onne
tion with the problem of moments.Russian mathemati
ian Yu V. Vorobyev presented the general problem of moments in the Hilbertspa
e in [12℄. Let z0, z1, ..., zn be n + 1 pres
ribed linearly independent elements of the Hilbertspa
e H. Consider the n-dimensional subspa
e Hn

Hn = span{z0, z1, ..., zn−1}.The linear operator An de�ned on the subspa
e Hn is 
onstru
ted in the following way
Anz0 = z1,

A2
nz0 = z2,

...

An−1
n z0 = zn−1,

An
nz0 = Enzn,

(3)where Enzn is the proje
tion of zn on Hn.Vorobyev applied his work about the moments on solving di�erential, integral and �nite di�eren
eequations and also on resolving spe
trum of bounded operators in the Hilbert spa
e. In the 
ase ofthe self-adjoint operators Vorobyev pointed out the 
onne
tion of his work with the CG method.The Vorobyev problem of moments was used by Z. Strako² and P. Ti
hý in their approa
h ofapproximating the s
attering amplitude, see [10℄.The problem of moments is 
losely 
onne
ted with the Sturm-Liouville problem. In [3℄ the
onne
tions between the singular Sturm-Liouville problem, Ja
obi matri
es and Hamburger mo-ment problem are des
ribed in an elegant way. The nature of the solutions of the singularSturm-Liouville problem is 
onne
ted with the determina
y of the asso
iated Hamburger mo-ment problem.There is also the relation between the model redu
tion in the linear dynami
al systems
z
′

(t) = Az(t) + bu(t),

y(t) = b∗z(t)
(4)and the problem of moments. In [7, pp. 101-108℄ an elegant des
ription of the 
onne
tion betweenthe model redu
tion of the above system and the problem of moments is given. Consider theexpansion of the transfer fun
tion T (λ) whi
h is 
onne
ted to the dynami
al system (4)

−T (λ) = λ−1b∗(I − λ−1A)−1b =

= λ−1(b∗b) + λ−2(b∗Ab) + ...+ λ−2n(b∗A2n−1b) + ....
(5)A redu
ed model of order n whi
h mat
hes the �rst 2n terms in the above expansion is known asthe minimal partial realization. The 
on
ept of the minimal partial realization was introdu
ed113



in the 
ontrol theory literature by R. E. Kalman in 1979, see [5℄. The idea to �nd the redu
edmodel is again nothing else than the problem of moments su
h that the �rst 2n moments aremat
hed, see (2).Referen
es[1℄ V.M. Adamyan, I.M. Tka
henko, M. Urrea: Solution of the stieltjes trun
ated momentproblem. Journal of Applied Analysis 9, 2003, 57�74.[2℄ N.I. Akhiezer: The 
lassi
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rete Sturm-Liouville problems, Ja
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i. Ser. 31, 1979, 9�32.[6℄ T.H. Kjeldsen: The early history of the moment problem. Historia Mathemati
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iples and analysis of Krylov subspa
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an Mathemati
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ient numeri
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Agresivní zhrubování v metod¥ zhlazený
h agrega
íP. Van¥kZápado£eská univerzita v PlzniD·leºitou partií výsledk· o metod¥ zhlazený
h agrega
í tvo°í výsledky týkají
í se agresivníhozhrubování. Zde, hrubý prostor je podstatn¥ men²í neº jemný prostor a tato skute£nost je kom-penzována mo
ným hladi£em. Metoda zhlazený
h agrega
í je mimo°ádn¥ vhodná pro agresivnízhrubování v kombina
i s polynomiálním hladi£em odvozeným od prolongátorového hladi£e.Zde hlazení prolongátoru pra
uje jako pre
onditioner. Tato skute£nost bude demonstrována najednodu
hé dvojúrov¬ové metod¥. Bude prezentován klí£ový dvojúrov¬ový výsledek ve dvouvariantá
h a obe
ný ví
eúrov¬ový výsledek.

115



Dis
rete Green's fun
tion � a 
loser lookT. Vej
hodskýInstitute of Mathemati
s AS CR, Prague
1 Introdu
tionFor linear ellipti
 problems the Green's fun
tion provides a solution operator. Similarly, in the
ontext of the �nite element method the dis
rete Green's fun
tion (DGF) provides the solutionoperator for the dis
rete problem. Therefore, 
ertain properties of the �nite element solution 
anbe dedu
ed form the properties of the DGF.Typi
al example of su
h a property is the dis
rete maximum prin
iple. It is satis�ed if and onlyif the 
orresponding DGF is nonnegative. In the lowest-order �nite element methods the DGF
an be equivalently repla
ed by the inverse of the sti�ness matrix. However, in the higher-ordermethods this repla
ement 
annot be done and the DGF plays the 
ru
ial role there.We 
hoose as a model problem the Possion equation with homogeneous Diri
hlet boundary
onditions, dis
retize it by the �nite element method of 
ertain order and study the nonnegativityof the 
orresponding DGF. Numeri
al experiments published re
ently in [2℄ indi
ate that forhigher-order approximations the DGF is nonnegative everywhere in the 
omputational domainin ex
eptional 
ases only. In this short 
ontribution we propose to study the nonnegativity in aninterior region of the 
omputational domain only. We present additional numeri
al experimentstrying to identify triangulations yielding this interior nonnegativity.2 Model problem, DGF, and dis
rete maximum prin
ipleLet Ω ⊂ R

2 be a polygonal domain. We 
onsider the Poisson equation in Ω and the homogeneousDiri
hlet boundary 
onditions on ∂Ω:
−∆u = f in Ω, u = 0 on ∂Ω. (1)This problem is dis
retized by the �nite element method of order p. Thus, we 
onsider a tri-angulation Th of Ω and introdu
e a spa
e Vh of pie
ewise polynomial and globally 
ontinuousfun
tions:

Vh = {vh ∈ C0(Ω) : vh|K ∈ P
p(K) ∀K ∈ Th},where C0(Ω) stands for the spa
e of 
ontinuous fun
tions on Ω whose values on ∂Ω vanish and

P
p(K) denotes the spa
e of polynomials of degree at most p in the triangle K ∈ Th.The �nite element formulation of problem (1) reads as follows: �nd uh ∈ Vh su
h that

a(uh, vh) = (f, vh) ∀vh ∈ Vh. (2)As usual, a(uh, vh) =
∫
Ω ∇uh · ∇vh dx stands the energeti
 bilinear form and (f, vh) =

∫
Ω fvh dxdenotes the L2(Ω) inner produ
t. 116



The DGF is de�ned as the approximate solution of the adjoint problem: for any y ∈ Ω we de�ne
Gh,y ∈ Vh as the unique solution of the Galerkin problem

a(vh, Gh,y) = vh(y) ∀vh ∈ Vh. (3)Instead of Gh,y(x) we will use the standard notation Gh(x, y) = Gh,y(x). It 
an be easily shown(see e.g. [1℄ or Lemma 1 below) that Gh is symmetri
 in the sense that Gh(x, y) = Gh(y, x) forall (x, y) ∈ Ω2. In addition, from the de�nition of the DGF (3) and from the de�nition of the�nite element solution (2), we immediately infer the well known representation formula
uh(y) =

∫

Ω
Gh(x, y)f(x) dx. (4)Furthermore, the DGF Gh(x, y) 
an be easily expressed in terms of any basis in Vh (see e.g. [1℄):Lemma 1. Let ϕ1, ϕ2, . . . , ϕn be a basis of Vh. Let A ∈ R

n×n be the 
orresponding sti�nessmatrix, i.e. Aij = a(ϕj , ϕi), i, j = 1, 2, . . . , n. Then
Gh(x, y) =

n∑

i=1

n∑

j=1

ϕi(y)(A
−1)ijϕj(x), ∀(x, y) ∈ Ω2. (5)In the experiments below, we use expression (5) to study the nonnegativity of the DGF Gh in Ω2.The interest in the nonnegativity of Gh is motivated by the dire
t 
onne
tion with the dis
retemaximum prin
iple. Given a �xed triangulation and the 
orresponding spa
e Vh, we say thatproblem (2) satis�es the dis
rete maximum prin
iple (DMP) if

f ≥ 0 a.e. in Ω ⇒ uh ≥ 0 in Ω. (6)The representation formula (4) immediately proves the fa
t that problem (2) satis�es the DMPif and only if the 
orresponding DGF Gh is nonnegative in Ω2.Numeri
al experiments presented in [2℄ indi
ate that for higher-order �nite elements the DGF Ghis nonnegative in an ex
eptional 
ase only. Namely, for p = 2 and for all elements in thetriangulation being 
lose to the equilateral triangle. These experiments also indi
ate that thenegative values of the DGF are usually 
lose to the boundary. Therefore, we de�ne 
ertain layer
B ⊂ Ω of points 
lose to the boundary ∂Ω. We denote the 
omplement of B in Ω as I = Ω\B andwe 
all B and I the boundary and the interior region, respe
tively. Sin
e the requirement (6) istoo strong to be satis�ed by the higher-order elements we 
an naturally ask if one of the followingweaker requirements is satis�ed:

f ≥ 0 a.e. in Ω ⇒ uh ≥ 0 in I, (7)
f ≥ 0 a.e. in I and f = 0 a.e. in B ⇒ uh ≥ 0 in I. (8)From the representation formula (4) we easily see that requirement (8) is satis�ed if and only if

Gh(x, y) ≥ 0 for all (x, y) ∈ I2. Similarly, requirement (7) is satis�ed if and only if Gh(x, y) ≥ 0for all (x, y) ∈ Ω × I. Due to the symmetry, the nonnegativity of Gh in Ω × I is equivalent tothe nonnegativity in Ω2 \ B2.3 Numeri
al experimentsIn the presented experiments we try to justify the meaningfulness of properties (7) and (8) forhigher-order �nite elements. We 
onsider Poisson problem (1) dis
retized on uniform triangula-tions of Ω and we test the nonnegativity of the DGF in Ω2, in Ω2 \ B2, and in I2. We study117



how this nonnegativity depends on the angles in the triangulations. Sin
e the triangulations areuniform, there are just two independent angles α and β (the third angle is γ = π − α − β).We systemati
ally test many pairs of angles α and β and display the results in a panel, wherea point with 
oordinates (α, β) is 
olored a

ording to the nonnegativity of the DGF in the testedregions. See Figure 2.In Experiment A, the domain Ω is a triangle. The 
orresponding �nite element mesh 
onsistsof 64 
ongruent triangles � see Figure 1 (left). The elements are enumerated in a spiral ways.Thus, the elements adja
ent to the boundary have indi
es 1, 2, . . . , 39 and they form the boundaryregion B. The interior elements with indi
es 40, 41, . . . , 64 form the interior region I. Finally,we stress that the shape of the triangle Ω (as well as the shape of any triangle in the mesh) isdetermined by the two angles α and β.The panels in Figure 2 show the results for polynomial degrees p = 2, 3, 4. Ea
h point in thesepanels 
orrespond to a pair of angles α and β. We 
onstru
t the triangle Ω with these two angles,we 
reate the uniform mesh in Ω, and we 
ompute the 
orresponding DGF Gh. If Gh(x, y) ≥ 0for all (x, y) ∈ Ω2 then the 
olor of point (α, β) is bla
k. Otherwise, if Gh(x, y) ≥ 0 for all
(x, y) ∈ Ω2 \ B2 then the 
olor is darker gray. Otherwise, if Gh(x, y) ≥ 0 for all (x, y) ∈ I2 thenthe 
olor is lighter gray. Otherwise, the DGF Gh has 
ertain negative values in all tested areasand the 
orresponding 
olor is almost white. Of 
ourse, 
he
king nonnegativity of a polynomialis a di�
ult task. Therefore, we introdu
e in ea
h element 153 sample points � see Figure 1(right) � and test the nonnegativity in these sample points only.We observe that the DGF Gh is nonnegative everywhere in Ω2 for p = 2 and for triangles 
loseto the equilateral one only. Nevertheless, the darker and the lighter gray regions 
orrespondingto the properties (7) and (8), respe
tively, are substantial in all 
ases. In addition, numeri
alexperiments for polynomial degrees up to p = 10 indi
ate that these areas 
orresponding to thevalidity of properties (7) and (8) in
rease with growing p. However, this in
rease is not monotone.Examining the DGF Gh in more details we �nd out that many negative values of Gh are 
ausedby the presen
e of three edges lying inside Ω and having both their end-points on ∂Ω (e.g. theedge between elements 1 and 22). Therefore, we remove the three 
orner elements (the one withindi
es 1, 8, and 15) � see Figure 1 (middle) � and perform the same tests as above. This isExperiment B. Its results are presented in the se
ond row of panels in Figure 2. In 
omparisonwith Experiment A, we observe substantial 
hanges of the dark gray regions 
orresponding toproperty (7). On the other hand, there is pra
ti
ally no in�uen
e on the light gray region
orresponding to property (8).
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Figure 1: Uniform triangulations of the triangle (left) and of the triangle without 
orners (mid-dle). Right panel shows the distribution of sample points in an element.
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Figure 2: Results of Experiment A (�rst row) and of Experiment B (se
ond row).4 Con
lusionsThe performed experiments indi
ate that the higher-order DGF is negative mostly in the bound-ary region. It seems that if the triangular elements have angles 
lose to 60◦ then the higher-orderapproximate solution uh is automati
ally nonnegative everywhere in the interior elements pro-vided the 
orresponding right-hand side f is nonnegative. Further, it seems that for triangleswith the minimal angle above roughly 30◦ and the maximal angle below roughly 120◦ the prop-erty (8) is satis�ed, i.e. if f vanishes in elements adja
ent to the boundary and if it is nonnegativeelsewhere then the �nite element solution uh is nonnegative everywhere in the interior elements.A
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Fast Fourier transform based method for modellingof heterogeneous materialsJ. Vond°ej
, J. Zeman, I. MarekFa
ulty of Civil Engineering, Cze
h Te
hni
al University in Prague
Problem settingWe 
onsider a 
omposite material represented by a periodi
 unit 
ell Y =

∏d
α=1(−Yα, Yα) ⊂ R

d.In the 
ontext of linear ele
trostati
s, the asso
iated unit 
ell problem reads as
∇ × e(x) = 0, ∇ · e(x) = 0, j(x) = L(x) · e(x), x ∈ Y (1)where e is a Y-periodi
 ve
torial ele
tri
 �eld, j denotes the 
orresponding ve
tor of ele
tri

urrent and L is a se
ond-order positive-de�nite tensor of ele
tri
 
ondu
tivity. In addition, the�eld e is subje
t to a 
onstraint e0 = 1

|Y|
∫
Y e(x)dx, where e0 denotes a pres
ribed ma
ros
opi
ele
tri
 �eld and |Y| represents the d-dimensional measure of Y.The original problem is equivalent to the periodi
 Lippmann-S
hwinger integral equation, for-mally written as

e(x) +

∫

Y
Γ0(x − y) ·

(
L(y) − L0

)
· e(y)dy = e0, x ∈ Y, (2)where the Γ0 operator is derived from the Green's fun
tion of the initial problem with L(x) = L0and e0 = 0 and 
an be expressed in Fourier spa
e as

Γ̂
0
(k) =

{
0, k = 0

ξ⊗ξ

ξ·L0·ξ , k = (kα)dα=1, ξ = (ξα)dα=1, ξα = kα

Yα
,k ∈ Z

N (3)Dis
retization of integral equationNumeri
al solution of the Lippmann-S
hwinger equation is based on a dis
retization of a unit
ell Y into a regular periodi
 grid with N1 × · · · × Nd nodal points and grid spa
ings h =
(2Y1/N1, . . . , 2Yd/Nd). The sear
hed �eld e(x),x ∈ Y, in (2) is approximated by a trigonometri
polynomial eN in the form (
f. [2℄)

e(x) ≈ eN(x) =
∑

k∈Z
N

ê(k)ϕk(x), Z
N

=

{
k ∈ Z

d : −Nα

2
< kα ≤ Nα

2
, α = 1, . . . , d

}where N = (N1, . . . , Nd), ê designates the Fourier 
oe�
ients and ϕk = exp
(
iπ
∑d

i=1 xiξi

) with
ξi = ki

Yi
are basis fun
tions.The trigonometri
 
ollo
ation method (e.g. [2℄) is based on the proje
tion of the Lippmann-S
hwinger equation (2) to the spa
e of the trigonometri
 polynomials {∑

k∈Z
N ckϕk, ck ∈ C

}leading to linear system of equations
Ae = e

0, (4)120



where e =
(
e
k
α

)k∈Z
N

α=1,...,d
∈ R

d×N and e0 =
(
(e0)kα

)k∈Z
N

α=1,...,d
∈ R

d×N store the 
orrespondingsolution and of the ma
ros
opi
 �eld, respe
tively. The a
tion of the linear operator (blo
kmatrix) A = [Akm
αβ ]k,l∈Z

N

α,β=1,...,d on ve
tor e produ
es ve
tor Ae ∈ Rd×N with 
omponents
(Ae)k

α =
d∑

β=1

∑

m∈Z
N

A
km
αβ e

m
β (5)Furthermore, the non-symmetri
 matrix A 
an be expressed as

A = I + B = I + F
−1

Γ̂F(L − L
0) (6)where I is the unit matrix of size d× d× N ×N , the expli
it forms of the individual terms 
anbe found in [3℄.Solution using 
onjugate gradientsThe original Fast Fourier Transform-based Homogenization (FFTH) s
heme formulated by Mou-line
 and Suquet in [1℄ is based on the Neumann expansion of the matrix inverse (I + B)−1, soas to yield the m-th iterate in the form

e
(m) =

m∑

j=0

(−B)j e
0. (7)We have proposed in [3℄ to solve the non-symmetri
 linear system using Conjugate gradients andpresented numeri
al experiments, whi
h suggest 
onvergen
e of CG algorithm.In this 
ontribution, we outline basi
 ideas of the 
onvergen
e proof. Without a loss of generality,we 
onsider the spe
ial form of referen
e 
ondu
tivity L0 = ρI with ρ > 0 and reformulate (4)in the form:

PELeE = e
0 (8)where PE = F

−1
Γ̂

0
F
(
L

0
)−1 is a proje
tion matrix on a subspa
e E = {PEx|x ∈ R

d×N} ⊂
R

d×N and the solution eE ∈ E. The linear system (8) 
an be alternatively reformulated asa minimization problem
e = e

0 + argmineE∈E φ(eE)where φ(eE) is a linear fun
tional de�ned as
φ(eE) =

1

2

(
LeE, eE

)
+
(
Le

0, eE

)where (·, ·) denotes s
alar produ
t on R
d×N , i.e.

(
u, v
)

=

d∑

α=1

∑

k∈Z
N

v
k
αv

k
α.The 
onvergen
e of the 
onjugate gradient method then follows from proje
tion properties of PE,whi
h implies symmetry of linear system (4) in subspa
e E .A
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y of theCze
h Te
hni
al University in Prague through proje
t No. SGS10/124/OHK1/2T/11.121



Referen
es[1℄ H. Mouline
, and P. Suquet: A fast numeri
al method for 
omputing the linear and nonlinearme
hani
al properties of 
omposites. Comptes rendus de lA
admie des s
ien
es. Série II,Mé
anique, physique, 
himie, astronomie 318, 11, 1994, 1417�1423.[2℄ G. Vainikko: Fast solvers of the Lippmann-S
hwinger equation. Dire
t and Inverse Problemsof Mathemati
al Physi
s, Gilbert, R.P., Kajiwara, J., and S. Xu, Y. (Eds.), InternationalSo
iety for Analysis, Appli
ations and Computation, vol. 5, Kluwer A
ademi
 Publishers,Dordre
ht, The Netherlands, 2000, 423�440.[3℄ J. Zeman, J. Vond°ej
, J. Novák, and I. Marek: A

elerating a �t-based solver for numeri
alhomogenization of periodi
 media by 
onjugate gradients. Journal of Computational Physi
s229, 21, 2010, 1865�1871.

122



Winter s
hool le
turesO. AxelssonOperator splittings for solving nonlinear 
oupled multiphysi
sproblems with an appli
ation for interfa
e modelingZ. Dostál, T. Kozubek, V. Vondrák, T. Brzobohatý, A. MarkopoulosS
alable FETI based algorithms for 
onta
t problems: theory,implementation, and numeri
al experimentsI. Hn¥tynková, M. Ple²inger, Z. Strako²Ill-posed inverse problems in image pro
essing: introdu
tion,stru
tured matri
es, spe
tral �ltering, regularization, noise revealingP. Van¥k:Základy algebrai
kého multigridu zaloºeného na zhlazený
h agrega
í
hJ. Zeman, A. Mielke, T. Roubí£ekAnalysis of a rate-independent model of non-lo
al damageand its numeri
al approximation



Operator splittings for solving nonlinear 
oupled multiphysi
sproblems with an appli
ation for interfa
e modelingO. AxelssonInstitute of Geoni
s AS CR, OstravaThe solution of multiphysi
s problems 
an be very demanding on 
omputer time. A possibleremedy for evolutionary problems is to use operator splittings. Some su
h methods are des
ribedand analyzed. To handle sti� problems an impli
it and stable time-stepping method of se
ondorder of a

ura
y is used. This allows bigger time-steps for the 
ontrol of the operator splittingerrors. For nonlinear problems, a Newton solution method is used for ea
h separate equation, andafter 
ompletion of some steps of the method the equations are updated, in this way preparingfor the start of additional iterations or of a new time-step.An appli
ation for a nonlinear interfa
e modeling problem arising in a moving �uid is des
ribed.Hereby an inner-outer iteration method is used to solve the arising linearized algebrai
 equations.There is no need to update the pre
onditioners used.



S
alable FETI based algorithms for 
onta
t problems:theory, implementation, and numeri
al experimentsZ. Dostál, T. Kozubek, V. Vondrák, T. Brzobohatý, A, MarkopoulosV�B - Te
hni
al University of OstravaWe report the results of our resear
h in development of the algorithms with both numeri
al andparallel s
alability for the solution of 
onta
t problems of elasti
ity. Our talk 
overs 2D and 3Dproblems dis
retized by the �nite element or boundary element method, possibly with ��oating�bodies, in
luding the multibody fri
tionless problems, both stati
 and dynami
, and the problemswith a given (Tres
a) fri
tion. A 
ommon feature of all the problems 
onsidered in our talk isa strong nonlinearity due to the interfa
e 
onditions. Sin
e even the algorithms for the solutionof linear problems have the linear 
omplexity at least, it follows that a s
alable algorithm for
onta
t problems has to treat the nonlinearity in a sense for free.After introdu
ing the variational inequalities that des
ribe the equilibrium of a system of elasti
bodies in mutual 
onta
t under the interfa
e 
onditions 
onsidered in our talk, we brie�y re-view the TFETI (total �nite element tearing and inter
onne
ting) based domain de
ompositionmethodology adapted to the solution of 
onta
t problems of elasti
ity, in
luding optimal esti-mates. Re
all that TFETI di�ers from the 
lassi
al FETI or FETI2 as introdu
ed by Farhatand Roux by imposing the pres
ribed displa
ements by the Lagrange multipliers and treating allsubdomains as ��oating�.Then we present our in a sense optimal algorithms for the solution of the resulting quadrati
programming and QPQC (quadrati
 programming - quadrati
 
onstraints) problems. A uniquefeature of these algorithms is their 
apability to solve the 
lass of su
h problems with homoge-neous equality 
onstraints and separable inequality 
onstraints in O(1) matrix�ve
tor multipli-
ations provided the spe
trum of the Hessian of the 
ost fun
tion is in a given positive interval[1℄, [2℄.Finally we put together the above results to develop s
alable algorithms for the solution of theabove problems [3℄, [4℄,[5℄, [6℄, [7℄. A spe
ial attention is paid to the 
onstru
tion of an initialapproximation whi
h is not far from the solution, so that the above results guarantee that the 
ostof the solution in
reases nearly proportionally with the dimension of the dis
retized problem andto e�e
tive implementation of generalized inverse matri
es of �oating subdomains. We illustratethe results by numeri
al experiments and by the solution of di�
ult real world problems, su
h asanalysis the roller bearings in Figure 1 with 73 bodies under nonsymmetri
 loading. We 
on
ludeby a brief dis
ussion of other results [8℄ and 
urrent resear
h.Referen
es[1℄ Z. Dostál, Optimal Quadrati
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Motivation. A gentle start ...
What is it an inverse problem?

Forward problem

Inverse problem

[Kjøller: M.Sc. thesis, DTU Lyngby, 2007].

observation b unknown xA(x) = b

A

A−1
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More realistic examples of ill-posed inverse problems
Computer tomography in medical sciences

Computer tomograph (CT) maps a 3D object of M × N × K

voxels by ℓ X-ray measurements on ℓ pictures with m × n pixels,

A(·) ≡ : R
M×N×K −→

ℓ⊗

j=1

R
m×n.

Simpler 2D tomography problem leads to the Radon transform.

The inverse problem is ill-posed. (3D case is more complicated.)

The mathematical problem is extremely sensitive to errors which

are always present in the (measured) data: discretization error

(finite ℓ, m, n); rounding errors; physical sources of noise

(electronic noise in semiconductor PN-junctions in transistors, ...).
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More realistic examples of ill-posed inverse problems
Transmision computer tomography in crystalographics

Reconstruction of an unknown orientation distribution function

(ODF) of grains in a given sample of a polycrystalline matherial,

A





 ≡ −→


 , . . .




︸ ︷︷ ︸
observation = data +noise

.

The right-hand side is a set of measured difractograms.

[Hansen, Sørensen, Südkösd, Poulsen: SIIMS, 2009].

Further analogous applications also in geology, e.g.:

◮ Seismic tomography (cracks in tectonic plates),

◮ Gravimetry & magnetometry (ore mineralization).
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More realistic examples of ill-posed inverse problems
Image deblurring—Our pilot application

Our pilot application is the image deblurring problem

A




 x = true image 
 −→

 b = blurred, noisy image

= data + noise.

It leads to a linear system Ax = b with square nonsingular matrix.

Let us motivate our tutorial by a “naive solution” of this system

A−1




 b = blurred, noisy image 
 =

 x = inverse solution

.

[Nagy: Emory University].
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More realistic examples of ill-posed inverse problems
General framework

In general we deal with a linear problem

Ax = b

which typically arose as a discretization of a

Fredholm integral equation of the 1st kind

y(s) =

∫
K (s, t)x(t)dt.

The observation vector (right-hand side) is contaminated by noise

b = bexact
+ bnoise, where ‖bexact‖ ≫ ‖bnoise‖.
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More realistic examples of ill-posed inverse problems
General framework

We want to compute (approximate)

xexact ≡ A−1bexact.

Unfortunatelly, because the problem is inverse and ill-posed

‖A−1bexact‖ ≪ ‖A−1bnoise‖,

the data we look for are in the naive solution covered by the

inverted noise. The naive solution

x = A−1b = A−1bexact
+ A−1bnoise

typically has nothing to do with the wanted xexact
.
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Outline of the tutorial

◮ Lecture I—Problem formulation:

Mathematical model of blurring, System of linear algebraic

equations, Properties of the problem, Impact of noise.

◮ Lecture II—Regularization:

Basic regularization techniques (TSVD, Tikhonov), Criteria

for choosing regularization parameters, Iterative

regularization, Hybrid methods.

◮ Lecture III—Noise revealing:

Golub-Kahan iteratie bidiagonalization and its properties,

Propagation of noise, Determination of the noise level, Noise

vector approximation, Open problems.
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References
Textbooks + software

Textbooks:

◮ Hansen, Nagy, O’Leary: Deblurring Images, Spectra, Matrices,

and Filtering, SIAM, FA03, 2006.

◮ Hansen: Discrete Inverse Problems, Insight and Algorithms,

SIAM, FA07, 2010.

Sofwtare (MatLab toolboxes):

◮ HNO package,

◮ Regularization tools,

◮ AIRtools,

◮ ...

(software available on the homepage of P. C. Hansen).
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Outline of Lecture I

◮ 1. Mathematical model of blurring:

Blurring as an operator on the vector space of matrices,

Linear and spatial invariant operator, Point-spread-function,

2D convolution, Boundary conditions.

◮ 2. System of linear algebraic equations:

Gaußian blur, Exploiting the separability, 1D Gaußian blurring

operator, Boundary conditions, 2D Gaußian blurring operator,

Structured matrices.

◮ 3. Properties of the problem:

Smoothing properties, Singular vectors of A, Singular values

of A, The right-hand side, Discrete Pickard condition (DPC),

SVD and Image deblurring problem, Singular images.

◮ 4. Impact of noise:

Violation of DPC, Naive solution, Regularization and filtering.
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1. Mathematical model of blurring
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1. Mathematical model of blurring
Blurring as an operator of the vector space of images

The grayscale image can be considered as a matrix, consider for

convenience black ≡ 0 and white ≡ 1.

Consider a, so called, single-pixel-image (SPI) and a blurring

operator as follows

A(X ) = A





 = = B ,

where X = [x1, . . . , xk ], B = [b1, . . . , bk ] ∈ R
k×k

.

The image (matrix) B is called point-spread-function (PSF).

(In Parts 1, 2, 3 we talk about the operator, the right-hand side is noise-free.)
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1. Mathematical model of blurring
Linear and spatial invariant operator

Consider A to be:

1. linear (additive & homogenous),

2. spatial invariant.

Linearity of A allows to rewrite A(X ) = B as a system of linear

algebraic equations

Ax = b, A ∈ R
N×N , x , b ∈ R

N .

(We do not know how, yet.)
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1. Mathematical model of blurring
Linear and spatial invariant operator

The matrix X containing the SPI has only one nonzero entry

(moreover equal to one).

Therefore the unfolded X

x = vec(X ) = [xT
1 , . . . , xT

k ]
T

= ej

represents an Euclidean vector.

The unfolding of the corredponding B (containing the PSF) then

represents jth column of A

A ej = b = vec(B) = [bT
1 , . . . , bT

k ]
T .

The matrix A is composed columnwise by unfolded PSFs

corresponding to SPIs with different positions of the nonzero pixel.

14 / 57

1. Mathematical model of blurring
Linear and spatial invariant operator

Spatial invariance of A ≡ The PSF is the same for all positi-

ons of the nonzero pixel in SPI. (What about pixels close to the

border?)

Linearity + spatial invariance:

↓ ↓ ↓ ↓ ↓ ↓

+ + + + =

+ + + + =

First row: Original (SPI) images (matrices X ).

Second row: Blurred (PSF) images (matrices B = A(X )).
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1. Mathematical model of blurring
Point—spread—function (PSF)

Linear and spatially invariant blurring operator A is fully described

by its action on one SPI, i.e. by one PSF. (Which one?)

Recall: Up to now the width and height of both the SPI and PSF

images have been equal to some k, called the window size.

For correctness the window size must be properly chosen, namely:

◮ the window size must be sufficiently large

(increase of k leads to extension of PSF image by black),

◮ the window is typically square (for simplicity),

◮ we use window of odd size (for simplicity), i.e.

k = 2ℓ + 1.
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1. Mathematical model of blurring
Point—spread—function (PSF)

The square window with sufficiently large odd size k = 2ℓ + 1

allows to consider SPI image given by the matrix

SPI = eℓ+1e
T
ℓ+1 ∈ R

k×k

(the only nonzero pixel is in the middle of SPI).

The corresponding PSF image given by the matrix

PSFA =




p1,1 · · · p1,k
.
.
.

. . .
.
.
.

pk,1 · · · pk,k


 =




p̄−ℓ,−ℓ · · · p̄−ℓ,+ℓ
.
.
.

. . .
.
.
.

p̄+ℓ,−ℓ · · · p̄+ℓ,+ℓ


 ∈ R

k×k

will be further used for the description of the operator A.

17 / 57

1. Mathematical model of blurring
Point—spread—function (PSF)

Examples of PSFA:

horizontal vertical out-of-focus Gaußian
motion blur motion blur blur blur
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1. Mathematical model of blurring
2D convolution

We have the linear, spatial invariant A given by PSFA ∈ R
k×k

.

Consider a general grayscale image given by a matrix X ∈ R
m×n

.

How to realize the action of A on X , i.e. B = A(X ), using PSFA?

Entrywise application of PSF:

1. X =
∑m

i=1

∑n
j=1 Xi ,j , where Xi ,j ≡ xi ,j(ei e

T
j ) ∈ R

m×n
;

2. realize the action of A on the single-pixel-image Xi ,j

Xi ,j =




0 0 0

0 xi ,jSPI 0

0 0 0


 −→ Bi ,j ≡




0 0 0

0 xi ,jPSFA 0

0 0 0


 ;

3. B =
∑m

i=1

∑n
j=1 Bi ,j due to the linearity of A.
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1. Mathematical model of blurring
2D convolution

Example: B =
∑m

i=1

∑n
j=1 Bi ,j = . . .

+x2,2




0 0 0 0 0

0 0 0 0 0

p3,1 p3,2 p3,3 0 0

p2,1 p2,2 p2,3 0 0

p1,1 p1,2 p1,3 0 0

 + x2,3




0 0 0 0 0

0 0 0 0 0

0 p3,1 p3,2 p3,3 0

0 p2,1 p2,2 p2,3 0

0 p1,1 p1,2 p1,3 0

 + x2,4




0 0 0 0 0

0 0 0 0 0

0 0 p3,1 p3,2 p3,3

0 0 p2,1 p2,2 p2,3

0 0 p1,1 p1,2 p1,3



+x3,2




0 0 0 0 0

p3,1 p3,2 p3,3 0 0

p2,1 p2,2 p2,3 0 0

p1,1 p1,2 p1,3 0 0

0 0 0 0 0

 + x3,3




0 0 0 0 0

0 p3,1 p3,2 p3,3 0

0 p2,1 p2,2 p3,3 0

0 p1,1 p1,2 p1,3 0

0 0 0 0 0

 + x3,4




0 0 0 0 0

0 0 p3,1 p3,2 p3,3

0 0 p2,1 p2,2 p2,3

0 0 p1,1 p1,2 p1,3

0 0 0 0 0



+x4,2




p3,1 p3,2 p3,3 0 0

p2,1 p2,2 p2,3 0 0

p1,1 p1,2 p1,3 0 0

0 0 0 0 0

0 0 0 0 0

 + x4,3




0 p3,1 p3,2 p3,3 0

0 p2,1 p2,2 p2,3 0

0 p1,1 p1,2 p1,3 0

0 0 0 0 0

0 0 0 0 0

 + x4,4




0 0 p3,1 p3,2 p3,3

0 0 p2,1 p2,2 p2,3

0 0 p1,1 p1,2 p1,3

0 0 0 0 0

0 0 0 0 0



+ . . . , where

PSFA =




p1,1 p1,2 p1,3

p2,1 p2,2 p2,3

p3,1 p3,2 p3,3


,

b3,3 = x2,2 p3,3 + x2,3 p3,2 + x2,4 p3,1

+ x3,2 p2,3 + x3,3 p2,2 + x3,4 p2,1

+ x4,2 p1,3 + x4,3 p1,2 + x4,4 p1,1

.
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1. Mathematical model of blurring
2D convolution

The entry bi ,j of B is influenced by the entry xi ,j and a few entries

in its surroundings, depending on the support of PSFA.

In general:

bi ,j =

∑ℓ

h=−ℓ

∑ℓ

w=−ℓ
xi−h,j−w p̄h,w .

The blured image represented by matrix B is therefore the

2D convolution

of X with PSFA.

Boundary: Pixels xµ,ν for µ ∈ Z \ [1, . . . ,m] or ν ∈ Z \ [1, . . . , n]

(“outside” the original image X ) are not given.
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1. Mathematical model of blurring
Boundary conditions (BC)

Real-world blurred image B is involved by the information which

is outside the scene X , i.e. by the boundary pixels xµ,ν .

For the reconstruction of the real-world scene (deblurring) we do

have to consider some boundary condition:

◮ Outside the scene is nothing, xµ,ν = 0 (black), e.g., in

astrononomical observations.

◮ The scene contains periodic patterns, e.g., in

micro/nanoscale imaging of matherials.

◮ The scene can be prolongated by reflecting.

Zero boundary Periodic boundary Reflexive boundary
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1. Mathematical model of blurring
Summary

Now we know “everything” about the simplest mathematical

model of blurring:

◮ We consider linear, spatial invariant operator A, which is

represented by its point-spread-function PSFA.

◮ The 2D convolution of true scene with the

point-spread-function represents the blurring.

◮ Convolution uses some information from the outside of the

scene, therefore we need to consider some boundary

conditions.
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2. System of linear algebraic equations
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2. System of linear algebraic equations
Basic concept

The problem A(X ) = B can be rewritten (emploing the 2D

convolution formula) as a system of linear algebraic equations

Ax = b, A ∈ R
mn×mn, x = vec(X ), b = vec(B) ∈ R

mn,

where the entries of A are the entries of the PSF, and

bi ,j =

∑ℓ

h=−ℓ

∑ℓ

w=−ℓ
xi−h,j−w p̄h,w .

In general:

◮ PSF has small localized support,

◮ each pixel is influenced only by a few pixels in its close

surroundings,

◮ therefore A is sparse.
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2. System of linear algebraic equations
Gaußian PSF / Gaußian blur

In the rest we consider Gaußian blur:

−4

−2

0

2

4

−4

−2

0

2

4

0

0.5

1

1.5

−3 −2 −1 0 1 2 3

0

0.5

1

1.5

Gaußian PSF G2D(h, w) G1D(ξ)

where (in a continuous domain)

G2D(h,w) = e−(h2+w2)
= e−h2

e−w2
, G1D(ξ) = e−ξ2

.

Gaußian blur is the simplest and in many cases sufficient model.

A big advantage is its separability G2D(h,w) = G1D(h)G1D(w).
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2. System of linear algebraic equations
Exploiting the separability

Consider the 2D convolution with Gaußian PSF in a continuous

domain. Exploiting the separability, we get

B(i , j) =

∫∫

R2

X (i − h, j − w) e−(h2+w2) dh dw

=

∫
∞

−∞

(∫
∞

−∞

X (i − h, j − w) e−h2
dh

)
e−w2

dw

=

∫
∞

−∞

Y (i , j − w)e−w2
dw ,

where Y (i , j) =

∫
∞

−∞

X (i − h, j) e−h2
dh.

The blurring in the direction h (height) is independent on the

blurring in the direction w (width).

In the discrete setting: The blurring of columns of X is

independent on the blurring of rows of X .
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2. System of linear algebraic equations
Exploiting the separability

As a direct consequence of the separability, the PSF matrix is a

rank one matrix of the form

PSFA = crT , c , r ∈ R
k .

The blurring of columns (rows) of X is realized by 1D (discrete)

convolution with c (r), the discretized G1D(ξ) = e−ξ2
.

Let AC , AR be matrices representing discete 1D Gaußian blurring

operators, where

◮ AC realizes blurring of columns of X ,

◮ AT
R realizes blurring of rows of X .

Then the problem A(X ) = B can be rewritten as a matrix

equation

AC X AT
R = B , AC ∈ R

m×m, AR ∈ R
n×n.
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2. System of linear algebraic equations
1D convolution

Consider the following example of an AC related 1D convolution:




β1

β2

β3

β4

β5

β6




=




c5 c4 c3 c2 c1

c5 c4 c3 c2 c1

c5 c4 c3 c2 c1

c5 c4 c3 c2 c1

c5 c4 c3 c2 c1

c5 c4 c3 c2 c1







ξ−1

ξ0

ξ1

ξ2

ξ3

ξ4

ξ5

ξ6

ξ7

ξ8




,

where b = [β1, . . . , β6]
T

, x = [ξ1, . . . , ξ6]
T

,

and c = [c1, . . . , c5]
T

is the 1D (Gaußian) point-spread-function.
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2. System of linear algebraic equations
Boundary conditions

The vector [x−1, x0|x1, . . . , ξ6|ξ7, ξ8]
T

represents the true scene. In

the reconstruction we consider:

[0, 0|ξ1, . . . , ξ6|0, 0]T ∼ zero boundary condition,

[ξ5, ξ6|ξ1, . . . , ξ6|ξ1, ξ2]
T ∼ periodic boundary condition, or

[ξ2, ξ1|ξ1, . . . , ξ6|ξ6, ξ5]
T ∼ reflexive boundary condition.

In general AC = M + BC , where

M =




c3 c2 c1

c4 c3 c2 c1

c5 c4 c3 c2 c1

c5 c4 c3 c2 c1

c5 c4 c3 c2

c5 c4 c3




,

and BC is a correction due to the boundary conditions.
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2. System of linear algebraic equations
Boundary conditions

Zero boundary condition:

ACx=




c5 c4 c3 c2 c1

c5 c4 c3 c2 c1

c5 c4 c3 c2 c1

c5 c4 c3 c2 c1

c5 c4 c3 c2 c1

c5 c4 c3 c2 c1







0

0

ξ1

ξ2

ξ3

ξ4

ξ5

ξ6

0

0




=




c3 c2 c1

c4 c3 c2 c1

c5 c4 c3 c2 c1

c5 c4 c3 c2 c1

c5 c4 c3 c2

c5 c4 c3







ξ1

ξ2

ξ3

ξ4

ξ5

ξ6



,

i.e. here BC = 0 and AC = M is a Toeplitz matrix.
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2. System of linear algebraic equations
Boundary conditions

Periodic boundary condition:

ACx=




c5 c4 c3 c2 c1

c5 c4 c3 c2 c1

c5 c4 c3 c2 c1

c5 c4 c3 c2 c1

c5 c4 c3 c2 c1

c5 c4 c3 c2 c1







ξ5

ξ6

ξ1

ξ2

ξ3

ξ4

ξ5

ξ6

ξ1

ξ2




=




c3 c2 c1 c5 c4

c4 c3 c2 c1 c5

c5 c4 c3 c2 c1

c5 c4 c3 c2 c1

c1 c5 c4 c3 c2

c2 c1 c5 c4 c3







ξ1

ξ2

ξ3

ξ4

ξ5

ξ6



,

i.e. here BC =




c5 c4

c5

c1

c2 c1




and AC = M + BC is a circulant matrix.
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2. System of linear algebraic equations
Boundary conditions

Reflexive boundary condition:

ACx=




c5 c4 c3 c2 c1

c5 c4 c3 c2 c1

c5 c4 c3 c2 c1

c5 c4 c3 c2 c1

c5 c4 c3 c2 c1

c5 c4 c3 c2 c1







ξ2

ξ1

ξ1

ξ2

ξ3

ξ4

ξ5

ξ6

ξ6

ξ5




=




c3+c4 c2+c5 c1

c4+c5 c3 c2 c1

c5 c4 c3 c2 c1

c5 c4 c3 c2 c1

c5 c4 c3 c2+c1

c5 c4+c1 c3+c2







ξ1

ξ2

ξ3

ξ4

ξ5

ξ6



,

i.e. here BC =




c4 c5

c5

c1

c1 c2




and AC = M + BC is a Toeplitz-plus-Hankel matrix.
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2. System of linear algebraic equations
Boundary conditions—Summary

Three types of boundary conditions:

◮ zero boundary condition,

◮ periodic boundary condition,

◮ reflexive boundary condition,

correspond to the three types of matrices AC and AR :

◮ Toeplitz matrix,

◮ circulant matrix,

◮ Toeplitz-plus-Hankel matrix,

in the linear system of the form

AC X AT
R = B .
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2. System of linear algebraic equations
2D Gaußian blurring operator—Kroneckerized product structure

Now we show how to rewrite the matrix equation AC X AT
R = B as

a system of linear algebraic equations in a usual form.

Consider AR = In. The matrix equation

AC X = B

can be rewritten as

(In ⊗ AC ) vec(X ) =




AC

. . .

AC







x1
.
.
.

xn


 =




b1
.
.
.

bn


 = vec(B),

where X = [x1, . . . , xn], B = [b1, . . . , bn],

and ⊗ denotes the Kronecker product.
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2. System of linear algebraic equations
2D Gaußian blurring operator—Kroneckerized product structure

Consider AC = Im. The matrix equation X AT
R = B can be

rewritten as

(AR ⊗ Im) vec(X ) =




aR
1,1Im · · · aR

1,nIm
.
.
.

. . .
.
.
.

aR
n,1Im · · · aR

n,nIm







x1
.
.
.

xn


 =




b1
.
.
.

bn


 = vec(B).

Consequently AC X AT
R = (AC X )AT

R gives

(AR ⊗ Im)vec(AC X ) = (AR ⊗ Im)(In ⊗ AC )vec(X ).

Using properties of Kronecker product, this system is equivalent to

Ax = (AR ⊗ AC ) vec(X ) = vec(B) = b,

where

A =




aR
1,1AC · · · aR

1,nAC

.

.

.
. . .

.

.

.

aR
n,1AC · · · aR

n,nAC


 ∈ R

mn×mn.
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2. System of linear algebraic equations
Structured matrices

We have

A = AR ⊗ AC =




aR
1,1AC · · · aR

1,nAC

.

.

.
. . .

.

.

.

aR
n,1AC · · · aR

n,nAC


 ∈ R

mn×mn,

where AC , AR are Toeplitz, circulant, or Toeplitz-plus-Hankel.

If AC is Toeplitz, then A is a matrix with Toeplitz blocks.

If AR is Toeplitz, then A is a block-Toeplitz matrix.

If AC and AR are Toeplitz (zero BC), then A is

block—Toeplitz with Toeplitz blocks (BTTB).

Analogously, for periodic BC we get BCCB matrix, for reflexie BC

we get a sum of four matrices BTTB+BTHB+BHTB+BHHB.
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3. Properties of the problem
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3. Properties of the problem
Smoothing properties

We have an inverse ill-posed problem Ax = b, a discretization of a

Fredholm integral equation of the 1st kind

y(s) =

∫
K (s, t)x(t)dt.

The matrix A is a restriction of the integral kernel K (s, t)
(the convolution kernel in image deblurring)

◮ the kernel K (s, t) has smoothing property,

◮ therefore the vector y(s) is smooth,

and these properties are inherited by the discretized problem.

Further analysis is based on the singular value decomposition

A = UΣV T , U ∈ R
N×N , Σ ∈ R

N×N , V ∈ R
N×N ,

(and N = mn in image deblurring).
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3. Properties of the problem
Singular vectors of A

Singular vectors of A represent bases with increasing frequencies:
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First 12 left singular vectors of 1D ill-posed problem SHAW(400)

[Regularization Toolbox].
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3. Properties of the problem
Singular values of A

Singular values decay without a noticeable gap (SHAW(400)):
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3. Properties of the problem
The right-hand side

First recall that b is the discretized smooth y(s), therefore

b is smooth, i.e. dominated by low frequencies.

Thus b has large components in directions of several first vectors

uj , and |uT
j b| on average decay with j .
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3. Properties of the problem
The Discrete Pickard condition

Using the dyadic form of SVD

A =

∑N

j=1
ujσjv

T
j , N is the dimension of the discretized K (s, t),

the solution of Ax = b can be rewritten as a linear combination of

right-singular vectors,

x = A−1b =

∑N

j=1

uT
j b

σj
vj .

Since x is a discretization of some real-world object x(t)

(e.g., an “true image”) the sequence of these sums converges to

x(t) with N −→ ∞.

This is possible only if |uT
j b| are on average decay faster than σj .

This property is called the (discrete) Pickard condition (DPC).
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3. Properties of the problem
The Discrete Pickard condition

The discrete Pickard condition (SHAW(400)):
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3. Properties of the problem
SVD and Image deblurring problem

Back to the image deblurring problem: We have

AC X AT
R = B ⇐⇒ (AR ⊗ AC ) vec(X ) = vec(B).

Consider SVDs of both AC and AR

AC = UC diag(sC )V T
C , AR = UR diag(sR)V T

R ,

sC = [σC
1 , . . . , σC

m]
T ∈ R

m, sR = [σR
1 , . . . , σR

n ]
T ∈ R

n.

Using the basic properties of the Kronecker product

A = AR ⊗ AC = (UR diag(sR)V T
R ) ⊗ (UC diag(sC )V T

C )

= (UR ⊗ UC )diag(sR ⊗ sC )(VR ⊗ VC )
T

= UΣV T ,

we get SVD of A (up to the ordering of singular values).
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3. Properties of the problem
SVD and Image deblurring problem

The solution of AC X AT
R = B can be written directly as

X = VC (

projections uT
j

b

︷ ︸︸ ︷
(UT

C B UR)⊘ (sC sT
R ) )︸ ︷︷ ︸

fractions (uT
j

b)/σj

V T
R ,

where K ⊘ M denotes the Hadamard product of K with the

componentwise inverse of M (using MatLab notation K./M).

Or using the dyadic expansion as

x =

∑N

j=1

uT
j vec(B)

σj
vj , X = mtx(x), N = mn,

where mtx(·) denotes an inverse mapping to vec(·).
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3. Properties of the problem
Singular images

The solution

x =

∑N

j=1

uT
j vec(B)

σj︸ ︷︷ ︸
scalar

vj , X = mtx(x), N = mn,

is a linear combination of right singular vectors vj .

It can be further rewritten as

X =

∑N

j=1

uT
j vec(B)

σj
Vj , Vj = mtx(vj) ∈ R

m×n

using singular images Vj (the reshaped right singular vectors).
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3. Properties of the problem
Singular images

Singular images Vj (Gaußian blur, zero BC, artificial colors)
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3. Properties of the problem
Note on computation of SVD

Recall that the matrices AC , AR are

◮ Toeplitz,

◮ circulant, or

◮ Toeplitz-plus-Hankel,

and often symmetric (depending on the symmetry of PSF).

Toeplitz matrix is fully determined by its first column and row,

circulant matrix by its first column (or row), and

Hankel matrix by the first column and the last row.

Eigenvalue decomposition (SVD) of such matrices can be

efficiently computed using discrete Fourier transform (DFT/FFT

algorithm), or discrete cosine transform (DCT algorithm).
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4. Impact of noise
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4. Impact of noise
Noise, Sources of noise

Consider a problem of the form

Ax = b, b = bexact
+ bnoise, ‖bexact‖ ≫ ‖bnoise‖,

where bnoise
is unknown and represents, e.g.,

◮ rounding errors,

◮ discretization error,

◮ noise with physical sources (electronic noise on PN-junctions).

We want to approximate

xexact ≡ A−1bexact,

unfortunately

‖A−1bexact‖ ≪ ‖A−1bnoise‖.
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4. Impact of noise
Violation of the discrete Pickard condition

The vector bnoise
typically resebles white noise, i.e. it has flat

frequency characteristics.

Recall that the singular vectors of A represent frequencies.

Thus the white noise components in left singular subspaces are

about the same order of magnitude.

White noise

violates the discrete Pickard condition.

Summarizing:

◮ bexact
has some real pre-image xexact

, it satifies DPC

◮ bnoise
does not have any real pre-image, it violates DPC.
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4. Impact of noise
Violation of the discrete Pickard condition

Violation of the discrete Pickard condition by noise (SHAW(400)):
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4. Impact of noise
Violation of the discrete Pickard condition

Violation the dicrete Pickard condition by noise (Image deb. pb.):
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4. Impact of noise
Violation of the discrete Pickard condition

Using b = bexact
+ bnoise

we can write the expansion

xnaive ≡ A−1b =

∑N

j=1

uT
j b

σj
vj

=

∑N

j=1

uT
j bexact

σj
vj

︸ ︷︷ ︸
xexact

+

∑N

j=1

uT
j bnoise

σj
vj

︸ ︷︷ ︸
amplified noise

.

Because σj decay and |uT
j bnoise| are all about the same size,

|uT
j bnoise|/σj grow for large j . However, |uT

j bexact|/σj decay with j

due to DPC. Thus the high-frequency noise covers all sensefull

information in xnaive
.

Therefore xnaive
is called the naive solution.

〈MatLab demo〉
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4. Impact of noise
Regularization and filtering

To avoid the catastrophical impact of noise we employ

regularization techniques.

In general the regularization can be understood as a filtering

xfiltered ≡
∑N

j=1
φj

uT
j b

σj
vj ,

where the filter factors φj are given by some

filter function φj = φ(j ,A, b, . . .).

〈Lecture II〉
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Summary

◮ We have an discrete inverse problem which is ill-posed. Our

observation is often corrupted by (white) noise and we want

to reconstruct the true pre-image of this observation.

◮ The whole concept was illustrated on the image deblurring

problem, which was closely introduced and described.

◮ It was shown how the problem can be reformulated as a

system of linear algebraic equations.

◮ We showed the typical properties of the corresponding matrix

and the right-hand side, in particular the discrete Pickard

condition.

◮ Finally, we illustrated the catastrophical impact of the noise

on the reconstruction on an example.
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Recapitulation of Lecture I
Linear system

Consider the problem

Ax = b, b = bexact
+ bnoise, A ∈ R

N×N , x , b ∈ R
N ,

where

◮ A is a discretization of a smoothing operator,

◮ singular values of A decay,

◮ singular vectors of A represent increasing frequencies,

◮ bexact
is smooth and satisfies the discrete Pickard condition,

◮ bnoise
is unknown white noise,

‖bexact‖ ≫ ‖bnoise‖, but ‖A−1bexact‖ ≪ ‖A−1bnoise‖.

We want to approximate

xexact
= A−1bexact.
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Recapitulation of Lecture I
Right-hand side

Smooth right-hand side (including noise):

right−hand side B
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Recapitulation of Lecture I
Violation of the discrete Pickard condition

Violation of the dicrete Pickard condition in the noisy b:
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Recapitulation of Lecture I
Solution

Using SVD A = UΣV T
the filtered solution is

xfiltered
=

∑N

j=1
φj

uT
j b

σj
vj , xfiltered

= V ΦΣ
−1UTb,

where Φ = diag(φ1, . . . , φN). Particularly in the image deblurring

problem

X filtered
=

∑N

j=1
φj

uT
j vec(B)

σj
Vj , where Vj are singular images.

The filter factors φj are given by some filter function

φj = φ(j ,A, b, . . .),

for φj = 1, j = 1, . . . ,N, we get the naive solution.
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Recapitulation of Lecture I
Singular images

Singular images Vj (Gaußian blur, zero BC, artificial colors):
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Recapitulation of Lecture I
Naive solution

The naive solution is dominated by high-frequency noise:

naive solution
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Outline of the tutorial

◮ Lecture I—Problem formulation:

Mathematical model of blurring, System of linear algebraic

equations, Properties of the problem, Impact of noise.

◮ Lecture II—Regularization:

Basic regularization techniques (TSVD, Tikhonov), Criteria

for choosing regularization parameters, Iterative

regularization, Hybrid methods.

◮ Lecture III—Noise revealing:

Golub-Kahan iteratie bidiagonalization and its properties,

Propagation of noise, Determination of the noise level, Noise

vector approximation, Open problems.
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Outline of Lecture II

◮ 5. Basic regularization techniques:

Truncated SVD, Selective SVD, Tikhonov regularization.

◮ 6. Choosing regularization parameters:

Discrepancy principle, Generalized cross validation, L-curve,

Normalized cumulative periodogram.

◮ 7. Iterative regularziation:

Landweber iteration, Cimmino iteration, Kaczmarz’s method,

Projection methods, Regularizing Krylov subspace iterations.

◮ 8. Hybrid methods:

Introduction, Projection methods with inner Tikhonov

regularization.
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5. Basic regularization techniques
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5. Basic regularization techniques
Truncated SVD

The simplest regularization technique is the truncated SVD

(TSVD). Noise affects xnaive
through the components

corresponding to the smalest singular values,

xnaive
=

∑k

j=1

uT
j b

σj
vj

︸ ︷︷ ︸
data dominated

+

∑N

j=k+1

uT
j b

σj
vj

︸ ︷︷ ︸
noise dominated

.

Idea: Omit the noise dominated part. Define

xTSVD(k) ≡
∑k

j=1

uT
j b

σj

vj =

∑N

j=1
φj

uT
j b

σj

vj ,

where

φj =

{
1 for j ≤ k

0 for j > k
.
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5. Basic regularization techniques
Truncated SVD

The TSVD filter function, k = 2983:
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12 / 59



5. Basic regularization techniques
Truncated SVD

The TSVD solution, k = 2983:

TSVD solution, k = 2983
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5. Basic regularization techniques
Truncated SVD

Advantages:

◮ Simple idea, simple implementation, simple analysis,

A is replaced by UΦ
†
ΣV T , Φ = diag(Ik , 0N−k),

i.e. the rank-k approximation of A.

Disadvantages:

◮ We have to compute the SVD of A (or the first k singular

triplets).

◮ Choice of the regularization parameter k is usualy based on

a knowledge of the norm of bnoise
which is

either revealed from the SVD analysis,

or given explictly as an additional information.

◮ The noise dominated part still contains some information

useful for reconstruction which is lost (step filter function).
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5. Basic regularization techniques
Selective SVD

Similar approach to TSVD is the selective SVD (SSVD).

Consider ‖bnoise‖ is known. Then

‖bnoise‖ =

(∑N

j=1
(uT

j bnoise
)
2

)1/2

≡ ∆
noise, |uT

j bnoise| ≈ ε ≡
∆

noise

N1/2
,

because uj represent frequencies and bnoise
represents white noise.

We define

xSSVD(ε) ≡
∑

|uT
j

b|>ε

uT
j b

σj
vj =

∑N

j=1
φj

uT
j b

σj
vj ,

where

φj =

{
1 for |uT

j b| > ε

0 for |uT
j b| ≤ ε

.
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5. Basic regularization techniques
Tikhonov approach

Classical Tikhonov approach is based on penalizing the norm of

the solution

xTikhonov(λ) ≡ arg min
x
{‖b − Ax‖ + λ‖Lx‖},

where

◮ ‖b − Ax‖ represents the residual norm,

◮ ‖Lx‖ represents (LT L)–(semi)norm of the solution,

often L = IN (we restrict to this case),

or it is a discretized 1st or 2nd order derivative operator,

◮ λ is the (positive) penalty parameter; clearly

lim
λ−→0

xTikhonov(λ)
= xnaive.
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5. Basic regularization techniques
Tikhonov approach

The Tikhonov minimization problem can be rewritten as

xTikhonov(λ)
= arg min

x
{‖b − Ax‖ + λ‖Lx‖}

= arg min
x
{‖b − Ax‖2

+ λ2‖Lx‖2}

= arg min
x

{∥∥∥∥
[

b

0

]
−

[
A

−λL

]
x

∥∥∥∥
2
}

,

i.e. to get the Tikhonov solution we solve a least squares (LS)

problem [
A

−λL

]
x =

[
b

0

]
.

In particular, we do not have to compute the SVD of A.
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5. Basic regularization techniques
Tikhonov approach

A solution of the Tikhonov LS problem

[
A

−λL

]
x =

[
b

0

]

can be analyzed through the system of normal equations

[
A

−λL

]T [
A

−λL

]
x =

[
A

−λL

]T [
b

0

]
,

(ATA + λ2LTL)x= ATb.

With the SVD of A, A = UΣV T
, and L = IN = VV T

we get

(Σ
2
+ λ2IN)y= ΣUTb,

where y = V T x and x = Vy .
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5. Basic regularization techniques
Tikhonov approach

Thus

xTikhonov(λ)
= V (Σ

2
+ λ2IN)

−1
ΣUTb,

which gives

xTikhonov(λ)
=

∑N

j=1

σj

σ2
j + λ2

(uT
j b)vj

=

∑N

j=1

σ2
j

σ2
j + λ2

uT
j b

σj

vj =

∑N

j=1
φj

uT
j b

σj

vj ,

where

φj =
σ2

j

σ2
j + λ2

≈

{
1 for σj ≫ λ
σ2

j /λ
2

for σj ≪ λ
, 0 < φj < 1.
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5. Basic regularization techniques
Tikhonov approach

The behavior of the Tikhonov filter function:
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5. Basic regularization techniques
Tikhonov approach

The Tikhonov filter function, λ = 8 × 10
−4

:
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5. Basic regularization techniques
Tikhonov approach

The Tikhonov solution, λ = 8 × 10
−4

:

Tikhonov solution, λ = 8*10−4
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5. Basic regularization techniques
Tikhonov approach

Advantages:

◮ Simple idea, with L = IN simple analysis,

A is replaced by UΦ
−1

ΣV T , Φ = (Σ
2
+ λ2IN)

−1
Σ

2.

◮ We do not have to compute SVD of A (compare with TSVD).

◮ The solution is given by some LS problem.

◮ The filter function is smooth (compare with TSVD).

Disadvantages:

◮ With L 	= IN the analysis is more complicated.

◮ We have to chose the penalty parameter λ

(at this moment it is not clear how to do it).
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5. Basic regularization techniques
Summary

We have two basic approaches:

◮ Truncated SVD (requires a part of the SVD of A)

xTSVD(k)
= V ΦΣ

−1UTb, Φ = diag(Ik , 0N−k),

where k is a truncation (regularization) parameter.

◮ Tikhonov regularization (leads to a LS problem)

xTikhonov(λ)
= V ΦΣ

−1UTb, Φ = (Σ
2
+ λ2In)

−1
Σ

2,

where λ is a penalty (regularization) parameter.

The question is:

How to choose the regularization parameters?
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5. Basic regularization techniques
Note on monotonicity (TSVD)

The norms of the TSVD solution and the residual

‖xTSVD(k)‖, ‖b − AxTSVD(k)‖

are nondecreasing and nonincreasing, respectively, with k.

Simply, using SVD,

‖xTSVD(k)‖2
=

∑k

j=1

(uT
j b)

2

σ2
j

is nondecreasing with k;

‖b − AxTSVD(k)‖2
= ‖(I − Φ)UTb‖2

=

∑N

j=k+1

(uT
j b)

2

σ2
j

is nonincreasing with k (here Φ = diag(Ik , 0N−k)).
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5. Basic regularization techniques
Note on monotonicity (Tikhonov)

Similarly the norms of the Tikhonov solution and the residual

ξ(λ) ≡ ‖xTikhonov(λ)‖2
=

∑N

j=1
φ2

j

(uT
j b)

2

σ2
j

,

ρ(λ) ≡ ‖b − AxTikhonov(λ)‖2
=

∑N

j=1
(1 − φj )

2
(uT

j b)
2

are increasing and decreasing, respectively, with λ.

Recall that 0 < φj < 1,

φj =
σ2

j

σ2
j + λ2

, thus (1 − φj ) =
λ2

σ2
j + λ2

.

Look at

ξ′(λ) =
dξ(λ)

dλ
, ρ′(λ) =

dρ(λ)

dλ
.
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5. Basic regularization techniques
Note on monotonicity (Tikhonov)

First

d

dλ
φ2

j = −
4

λ
(1 − φj)φ

2
j ,

d

dλ
(1 − φj)

2
=

4

λ
(1 − φj )

2φj .

Then

ξ′(λ) = −
4

λ

N∑

j=1

(1 − φj)φ
2
j

(uT
j b)

2

σ2
j

,

ξ′(λ) < 0 for λ > 0, i.e. ξ(λ) is decreasing with λ.

Analogously

ρ′(λ) =
4

λ

N∑

j=1

(1 − φj)
2φj(u

T
j b)

2,

ρ′(λ) > 0 for λ > 0, i.e. ρ(λ) is increasing with λ.
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6. Choosing regularization parameters

28 / 59

6. Choosing regularization parameters
Spectral filtering, Error analysis

In general

xfiltered
= V ΦΣ

−1UTb

= V ΦΣ
−1UTbexact

+ V ΦΣ
−1UTbnoise

= V ΦΣ
−1UTAxexact

+ V ΦΣ
−1UTbnoise

= (V ΦV T
)xexact

+ V ΦΣ
−1UTbnoise,

where V ΦV T
is called the resolution matrix.

The absolute error is

xexact − xfiltered
= (IN − V ΦV T

)xexact

︸ ︷︷ ︸
regularization error

−V ΦΣ
−1UTbnoise

︸ ︷︷ ︸
perturbation error

,

regularization error is caused by using filtered inverse,

perturbation error consists of the inverted and filtered noise.
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6. Choosing regularization parameters
Spectral filtering, Over- and undersmoothing

There is no universal approach for chosing the regularization

parameter (k or λ), the choice is always problem dependent!

In general:

◮ If Φ ≈ IN (V ΦV T ≈ IN), the regularization error is small, but

the perturbation error (caused by noise) is large.

The solution is undersmoothed.

◮ If Φ ≈ 0N (V ΦV T
is far from the identity), inverted noise is

heavily damped, but we lose a lot of original data.

The solution is oversmoothed.

A proper choice of the regularization parameter balances

these two types of errors.
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6. Choosing regularization parameters
Spectral filtering, A proper choice of the parameter

Regularization and perturbation error for TSVD method:
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6. Choosing regularization parameters
Discrepancy principle

The discrepancy principle: Let

‖bnoise‖ = ∆
noise

be known either from the nature of the problem, or we have some

approximation of it, see 〈Lecture III〉.

We look for a regularization parameter such that

‖b − Axfiltered‖ = τ∆
noise,

for some fixed τ .

Recall that for TSVD and Tikhonov regularization the norms of

the residuals are monotonic in k and λ, respectively.

[Morozov: ’66], [Morozov: ’84].
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6. Choosing regularization parameters
Generalized cross validation (GCV)

Using xfiltered
= V ΦΣ

−1UTb the residual satisfies

b − Axfiltered
=

(
IN − AV ΦΣ

−1UT
)

b =

(
IN − UΦUT

)
b.

Defining the generalized cross validation (GCV) functional

Gfiltered
(·) ≡

‖b − Axfiltered‖2

trace(IN − AV ΦΣ−1UT )2
=

‖(IN − Φ)UTb‖2

(N −
∑N

j=1 φj)
2

,

we look for its minimum.

(Note: The GCV functional depends on ordering of equations.)

[Chung, Nagy, O’Leary: ’04], [Golub, Von Matt: ’97], [Nguyen, Milanfar,

Golub: ’01].
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6. Choosing regularization parameters
Generalized cross validation (GCV)

In particular for the TSVD and Tikhonov method we have

GTSVD
(k) =

∑N
j=k+1(u

T
j b)

2

(N − k)2
,

GTikhonov
(λ) =

∑N
j=1

(
uT

j b

σ2
j
+λ2

)2

(∑N
j=1

1
σ2

j
+λ2

)2
.
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6. Choosing regularization parameters
Generalized cross validation (GCV)

The GCV functional for TSVD (left) and Tikhonov (right)

methods:

Note: The GCV functional is often flat close to the minimum.
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6. Choosing regularization parameters
L-curve

Both norms

‖xfiltered‖, ‖b − Axfiltered‖

are monotonic with respect to the regularization parameter k, λ in

TSVD and Tikhonov regularization, respectively.

We plot the norm of the regularized solution agains the norm of

the residual. For emphasizing the point where both norms are

ballanced, we use the log-log scale.

Criterion based on this approach is called the L-curve. The

L-curve-optimal parameter then corresponds to the point with

maximal curvature.

Note that for TSDV we have only discrete set of points (parameter

k is discrete). The curvature is defined using an interpolation.

[Calvetti, Golub, Reichel: ’99], [Calvetti, Morigi, Reichel, Sgallari: ’00],

[Calvetti, Reichel: ’04].
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6. Choosing regularization parameters
L-curve

Ideal L-curve for Tikhonov method (often the corner is not sharp).

Here λ grows from the upper left to the bottom right corner along

the curve:
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6. Choosing regularization parameters
Normalized cumulative periodogram (NCP)

The last criterion is based on the assumption that the residual

corresponding to the true solution

bnoise
= b − Axexact

represents white noise. We try to choose a regularization

parameter such that the residual

rfiltered
= b − Axfiltered

resembles white noise. See also 〈Lecture III〉.

The normalized cumulative periodogram (NCP) uses the

statistical properties of Fourier spectrum of white noise.

[Rust: ’98], [Rust: ’00], [Rust, O’Leary: ’08] (FFT-based),

[Hansen, Kilmer, Kjeldsen: ’06] (DCT-based).
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6. Choosing regularization parameters
Normalized cumulative periodogram (NCP)

The NCP transforms the residual rfiltered ∈ R
N

using the discrete

Fourier transform (DFT/FFT algorithm) to get its spectrum

pfiltered
= F(rfiltered

) = (p1, p2, . . . , pν+1)
T , ν = ⌊N/2⌋.

The periodogram is a vector Cfiltered
with coefficients

cj =
|p2| + . . . |pj+1|

|p2| + . . . |pν+1|
, j = 1, . . . , ν.

If the residual consists only of white noise, then by the definiton of

white noise the mean values satisfy

E [|p2|] = E [|p3|] = . . . = E [|pν |],

and by linearity of E [ · ], points (j ,E [cj ]) would be on a straight

line from (0, 0) to (ν, 1).
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6. Choosing regularization parameters
Normalized cumulative periodogram (NCP)

Thus we look for the regularization parameter (k or λ) such that

the coefficients of the periodogram cfiltered
lie (moreorless) on a

straight line,

mink or λ ‖C
filtered − Cwhite noise‖2, Cwhite noise

=
1

ν
(1, 2, . . . , ν)

T .

Note that the periodogram is normalized, i.e. cν = 1.
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6. Choosing regularization parameters
Normalized cumulative periodogram (NCP)

NCP for Tikhonov regularization:

[Hansen: SIAM, FA07, 2010].
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6. Choosing regularization parameters
Further notes

Discrepancy principle: Converges as noise tends to zero, requires

an explicite information about the norm of noise component of b,

the solution tends to be oversmooth.

Generalized cross validation (GCV): No convergence when noise

tends to zero, functional is flat close to the minimum, various

adaptations for structured matrices (BCCB, etc.).

L-curve: No convergence when noise tends to zero, various

adaptations (L-ribbon, etc.), well numericaly tracktable (it is

sufficient to compute only a few points of the L-curve), troubles

when using with TSVD because k is a discrete parameter.

Usually we need to solve one system with several values of

the regularization parameter to choose the optimal one.

See also [Björk: ’88], [Björk, Grimme, Van Dooren: ’94].

For comparison see [Hansen: 98], [Kilmer, O’Leary: ’01].
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7. Iterative regularization
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7. Iterative regularization
Introduction

Up to now we have considered direct regularization methods

suitable for small problems (SVD-based methods, Tikhonov

regularization leading to a LS problem which can be solved directly

only in small dimensions).

For solving large ill-posed problems, it is advatagous to use

iterative regularization methods. We briefly introduce several of

them:

◮ stationary iterative methods (Landweber iteration, Cimmino

iteration, Kaczmarz’s method (ART)),

◮ projection methods (regularizing Krylov subspace iterations).

In all iterative methods the number of iterations plays the role of

the regularization parameter.
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7. Iterative regularization
Stationary iterative methods, Landweber iteration

Simultaneous iterative reconstruction techniques (SIRT)

is a class of stationary iterative methods with a general scheme

x [ℓ]
:= x [ℓ−1]

+ ωATM(b − Ax [ℓ−1]
), ℓ = 1, 2, . . . , k,

where M is a symmetric positive definite (SPD) matrix and ω is a

relaxation parameter.

For example often used methods are:

◮ the Landweber iteration with M = IN , and

◮ the Cimminio iteration with M = D = diag(d1, . . . , dN),

dj =
1

N

1

‖aj‖
2

,

where aj is the (transposed) jth row of A (column vector).
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7. Iterative regularization
Stationary iterative methods, Landweber iteration

The Landweber method

x [ℓ]
:= x [ℓ−1]

+ ωAT
(b − Ax [ℓ−1]

), ℓ = 1, 2, . . . , k,

with 0 < ω < 2σ−2
1 (A) = 2‖AT A‖−1

gives the approximation

x [k]
= V Φ

[k]
Σ
−1UTb, Φ

[k]
= IN − (IN − ωΣ

2
)
k ,

i.e. φ
[k]
j = 1 − (1 − ωσ2

j )
k
.

Using the Taylor expansion for small σj ’s we get φ
[k]
j ≈ kωσ2

j .

Thus the Landweber filters decay with the same rate as the

Tikhonov filters (φj ≈ σ2
j λ

−2
).
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7. Iterative regularization
Stationary iterative methods, Kaczmarz’s method (ART)

Kaczmarz’s method or algebraic reconstruction technique

(ART) is an iterative algorithm given by the following scheme

x [ℓ−1,0]
:= x [ℓ−1],

for j = 1, . . . ,N

x [ℓ−1,j ]
:= x [ℓ−1,j−1]

+ ω aj

1

‖aj‖
2

(bj − aT
j x [ℓ−1,j−1]

),

end

x [ℓ]
:= x [ℓ−1,N], ℓ = 1, 2, . . . , k.

The ART method converges quite quickly in the first few

iterations, after this the convergence may become very slow.
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7. Iterative regularization
Stationary iterative methods, Kaczmarz’s method (ART)

Comparison of relative error decay for Landweber and Kaczmarz’s

(ART) method:

[Hansen: SIAM, FA07, 2010].
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7. Iterative regularization
Projection methods

In direct techniques we have looked for an approximation of xexact

which lies in a low dimensional subspace of R
N

spanned by the

first k right singular vectors of A (TSVD); or which is dominated

by several first right singular vectors of A (Tikhonov).

Thus the approximation is always dominated by the low

frequencies and the high frequecies are dumped.

We try to look for an approximation in an a-priori given low

dimensional subspace Wk dominated by low frequencies.
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7. Iterative regularization
Projection methods

Consider a subspace

Wk = span(w1, . . . ,wk) ⊂ R
N , Wk = [w1, . . . ,wk ] ∈ R

N×k ,

such that W T
k Wk = Ik and wj are dominated by low frequecies.

Then we solve

minx∈Wk
‖b − Ax‖.

This can be reformulated as a projected problem

miny∈Rk ‖b − (AWk)y‖,

or, equivalently,

W T
k (AT A)Wky = W T

k ATb.

The question is, how to choose the basis wj?
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7. Iterative regularization
Projection methods, DCT basis

An example of a suitable basis is the DCT basis

w1 =

√
1
N

(1, 1, . . . , 1)T ,

wj =

√
2
N

(
cos

(
(j−1)π

2N

)
, cos

(
3(j−1)π

2N

)
, . . . cos

(
(2N−1)(j−1)π

2N

))T

,

for j > 1.

51 / 59

7. Iterative regularization
Projection methods, DCT basis

Solutions computed using the DCT basis w1, . . . ,wk , k = 1, . . . , 10
(k = 9 seems to be the optimal one):

Note: If there are a-priori known certain properties of the true

solution (symmetry, periodicity, etc.), use this knowledge to choose

basis vectors satisfying these properties.
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7. Iterative regularization
Projection methods, Further notes

Note that choosing wj = vj (the right singular vectors of A), we get

exactly the TSVD mehtod. Thus TSVD is an projection method.

Advantage: With fixed set of basis vectors, computations can be

performed quickly. Using e.g. DCT basis we do not have to

compute and store the basis vectors (we compute only the DCT

and the inverse DCT (IDCT) of a vector).

Disadvantage: The basis vectors are not adapted to the particular

problem.

To avoid this disadvatage we introduce the regularizing Krylov

subspace iteration.
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7. Iterative regularization
Regularizing Krylov subspace iteration

Specific projection methods are the Krylov subspace methods.

Here the orthonormal basis of a Krylov subspace

Kk(v ,M) = span(v ,Mv , . . . ,Mk−1v),

is used for wj , j = 1, . . . , k, vectors. For example the choice

v = ATb, M = ATA,

leads to very popular iterative (regularization) methods CGLS,

LSQR or CGNE, which are mathematically equivalent to applying

CG method on the normal equations ATAx = ATb.

The regularizing properties of the Krylov subspace methods will be

dicussed in 〈Lecture III〉 in more details, in particular in the context

of hybrid methods.
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7. Iterative regularization
Further remarks

In the iterative regularization (using stationary or projection

methods), the number of computed iterations k plays the role of

the regularization parameter.

As a stopping criterion for the iterative process any of the

previously mentioned approaches can be used, e.g.:

◮ the discrepancy principle,

◮ the generalized cross validation (GCV),

◮ the L-curve criterion,

◮ the normalized cumulative periodograms (NCP).
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8. Hybrid methods

The best of both worlds
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8. Hybrid methods
Introduction

Hybrid methods combine both previous approaches. Here the

regularization is realized in two steps.

First, the original problem is projeted onto a lower dimensional

subspace using an iterative (projection) method, which by itself

represents a form of regularization by projection, i.e. outer

regularization.

The small projected problem, however, may inherit a part of the

ill-posedness of the original problem and therefore some form of

inner regularization is applied.

Stopping criteria for the whole process are then based on the

regularization of the projected (small) problems.

[O’Leary, Simmons: ’81], [Hansen: ’98] or [Fiero, Golub, Hansen,

O’Leary: ’97], [Kilmer, O’Leary: ’01], [Kilmer, Español: ’06], [O’Leary,

Simmnos: ’81].
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8. Hybrid methods
Projection methods with inner Tikhonov regularization

As an example we introduce the Projection method with inner

Tikhonov regularization. Consider the ill-posed problem Ax = b

and a subspace Wk = span(w1, . . . ,wk). Denote

Mk = W T
k (ATA)Wk ∈ R

k×k , where Wk = [w1, . . . ,wk ].

The system of normal equations ATAx = ATb is projected on Wk ,

Mky = W T
k b, x = Wky .

The inner Tikhonov regularization can be applied on this small

problem

yTikhonov(λ)
= arg min

y
{‖W T

k b − Mky‖ + λ‖y‖}.

This leads to a small LS problem that can be easily solved directly

for many values of λ.
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Summary

We have described the following regularization methods:

◮ the direct regularization techniques (TSVD, Tikhonov

regularization) suitable for solving small ill-posed problems;

◮ stationary regularization methods (Landweber and Cimmino

iterations, Kaczmarz’s (ART) method);

◮ projection regularization methods including regularizing

Krylov subspace iterations;

◮ hybrid methods combining the previous techniques.

All regularization techniques require to choose a good

regularization parameter, that can be find using, e.g., the

discrepancy principle, the generalized cross validation, the L-curve

criterion, or the normalized cumulative periodograms.
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Recapitulation of Lecture I and II
Linear system

Consider an ill-posed (square nonsingular) problem

Ax = b, b = bexact + bnoise, A ∈ R
N×N , x , b ∈ R

N ,

where

◮ A is a discretization of a smoothing operator,

◮ singular values of A decay,

◮ singular vectors of A represent increasing frequencies,

◮ bexact is smooth and satisfies the discrete Pickard condition,

◮ bnoise is unknown white noise,

‖bexact‖ ≫ ‖bnoise‖, but ‖A−1bexact‖ ≪ ‖A−1bnoise‖.
We want to approximate

xexact = A−1bexact.
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Recapitulation of Lecture I and II
Linear system

Discrete Picard condition (DPC):

On average, the components |(bexact, uj )| of the true right-hand
side bexact in the left singular subspaces of A decay faster
than the singular values σj of A, j = 1, . . . ,N .

White noise:

The components |(bnoise, uj )|, j = 1, . . . ,N do not exhibit any
trend.

Denote

δnoise ≡ ‖ bnoise ‖
‖ bexact ‖

the (usually unknown) noise level in the data.
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Recapitulation of Lecture I and II
Linear system

Singular values and DPC (SHAW(400)):
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Recapitulation of Lecture I and II
Linear system

Violation of DPC for different noise levels (SHAW(400)):
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Recapitulation of Lecture I and II
Naive solution

The components of the naive solution

xnaive ≡ A−1b =
∑N

j=1

uT
j bexact

σj
vj

︸ ︷︷ ︸
xexact

+
∑N

j=1

uT
j bnoise

σj
vj

︸ ︷︷ ︸
amplified noise

corresponding to small σj ’s are dominated by amplified noise.

Regularization is used to suppress the effect of errors and extract
the essential information about the solution.
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Recapitulation of Lecture I and II
Regularization methods

Direct regularization (TSVD, Tikhonov regularization): Suitable
for solving small ill-posed problems.

Projection regularization: Suitable for solving large ill-posed
problems. Regularization is often based on regularizing Krylov
subspace iterations.

Hybrid methods: Here the outer iterative regularization is
combined with an inner direct regularization of the projected
small problem (i.e. of the reduced model).

The algorithm is stopped when the regularized solution of the
reduced model matches some selected stopping criteria based,
e.g., on the discrepancy principle, the generalized cross validation,
the L-curve criterion, or the normalized cumulative periodograms.
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Outline of the tutorial

◮ Lecture I—Problem formulation:

Mathematical model of blurring, System of linear algebraic
equations, Properties of the problem, Impact of noise.

◮ Lecture II—Regularization:

Basic regularization techniques (TSVD, Tikhonov), Criteria
for choosing regularization parameters, Iterative
regularization, Hybrid methods.

◮ Lecture III—Noise revealing:

Golub-Kahan iterative bidiagonalization and its properties,
Propagation of noise, Determination of the noise level, Noise
vector approximation, Open problems.
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Outline of Lecture III

◮ 9. Golub-Kahan iterative bidiagonalization and its
properties:

Basic algorithm, LSQR method, Connection with the Lanczos
tridiagonalization, Approximation of the Riemann-Stieltjes
distribution function.

◮ 10. Propagation of noise:

Motivation, Spectral properties of bidiagonalization vectors,
Noise amplification.

◮ 11. Determination of the noise level:

Estimate based on distribution functions, Identification of the
noise revealing iteration.

◮ 12. Noise vector approximation:

Basic formula, Noise subtraction, Numerical illustration
(SHAW and ELEPHANT image deblurring problem).

◮ 13. Open problems.
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9. Golub-Kahan iterative bidiagonalization and its
properties
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9. Golub-Kahan iterative bidiagonalization and its

properties
Basic algorithm

Golub-Kahan iterative bidiagonalization (GK) of A :

given w0 = 0 , s1 = b / β1 , where β1 = ‖b‖ , for
j = 1, 2, . . .

αj wj = AT sj − βj wj−1 , ‖wj‖ = 1 ,

βj+1 sj+1 = A wj − αj sj , ‖sj+1‖ = 1 .

Then w1, . . . ,wk is an orthonormal basis of Kk(ATA,ATb), and
s1, . . . , sk is an orthonormal basis of Kk(AAT , b).

[Golub, Kahan: ’65].
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9. Golub-Kahan iterative bidiagonalization and its

properties
Basic algorithm

Let Sk = [s1, . . . , sk ], Wk = [w1, . . . ,wk ] be the associated
matrices with orthonormal columns. Denote

Lk =




α1

β2 α2

. . .
. . .

βk αk


 , Lk+ =

[
Lk

eT
k βk+1

]

the bidiagonal matrices containing the normalization coefficients.

Then GK can be written in the matrix form as

AT Sk = Wk LT
k ,

A Wk = [ Sk , sk+1 ] Lk+ = Sk+1 Lk+ .
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9. Golub-Kahan iterative bidiagonalization and its

properties
LSQR method

Regularization based on GK belong among popular approaches for
solving large ill-posed problems. First the problem is projected
onto a Krylov subspace using k steps of bidiagonalization
(regularization by projection),

A x ≈ b −→ Lk+ y ≈ β1 e1 .

Then, e.g., the LSQR method minimizes the residual,

min
x∈Kk(AT A,ATb)

‖Ax − b‖ = min
y∈Rk

‖Lk+y − β1e1‖ ,

i.e. the approximation has the form xk = Wkyk , where yk is a least
squares solution of the projected problem, [Paige, Saunders: ’82].
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9. Golub-Kahan iterative bidiagonalization and its

properties
LSQR method

In hybrid methods, some form of inner regularization (TSVD,
Tikhonov regularization) is applied to the (small) projected
problem. The method then, however, requires:

◮ stopping criteria for GK,

◮ parameter choice method for the inner regularization.

This usually requires solving the problem for many values of the
regularization parameter and many iterations.
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9. Golub-Kahan iterative bidiagonalization and its

properties
Connection with the Lanczos tridiagonalization

GK is closely related to the Lanczos tridiagonalization
[Lanczos: ’50] of the symmetric matrix A AT with the starting
vector s1 = b / β1,

A AT Sk = Sk Tk + αk βk+1 sk+1 eT
k ,

where

Tk = Lk LT
k =




α2
1 α1 β1

α1 β1 α2
2 + β2

2
. . .

. . .
. . . αk−1 βk

αk−1 βk α2
k + β2

k




.
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9. Golub-Kahan iterative bidiagonalization and its

properties
Connection with the Lanczos tridiagonalization

Consequently, the matrix Lk from GK represents a Cholesky
factor of the symmetric tridiagonal matrix Tk from the Lanczos
process, [Hnětynková, Strakoš: ’07] and the references given there.
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9. Golub-Kahan iterative bidiagonalization and its

properties
Approximation of the Riemann-Stieltjes distribution function

Consider the Riemann-Stieltjes distribution function ω(λ)
with the N points of increase associated with the given (SPD)
matrix B ∈ R

N×N and the normalized initial vector s.

The Lanczos tridiagonalization of B with the starting vector s

generates at each step k a non-decreasing piecewise constant
distribution function ω(k) , with the nodes being the (distinct)

eigenvalues of the Lanczos matrix Tk and the weights ω
(k)
j

being the squared first entries of the corresponding normalized
eigenvectors, [Hestenes, Stiefel: ’52].
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9. Golub-Kahan iterative bidiagonalization and its

properties
Approximation of the Riemann-Stieltjes distribution function

The distribution functions ω(k)(λ) , k = 1, 2, . . . represent
Gauss-Christoffel quadrature (i.e. minimal partial realization)
approximations of the distribution function ω(λ) , [Hestenes,

Stiefel: ’52], [Fischer: ’96], [Meurant, Strakoš: ’06].
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9. Golub-Kahan iterative bidiagonalization and its

properties
Approximation of the Riemann-Stieltjes distribution function

Consider the SVD
Lk = Pk Θk Qk

T ,

Pk = [p
(k)
1 , . . . , p

(k)
k ] , Qk = [q

(k)
1 , . . . , q

(k)
k ] ,

Θk = diag (θ
(k)
1 , . . . , θ

(k)
n ) ,

with the singular values ordered in the increasing order,

0 < θ
(k)
1 < . . . < θ

(k)
k .

Then Tk = Lk LT
k = Pk Θ2

k PT
k is the spectral decomposition of

Tk ,

(θ
(k)
ℓ )2 are its eigenvalues (the Ritz values of AAT ) and

p
(k)
ℓ its eigenvectors (which determine the Ritz vectors of AAT ),

ℓ = 1, . . . , k .
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9. Golub-Kahan iterative bidiagonalization and its

properties
Approximation of the Riemann-Stieltjes distribution function

Consequently, the GK bidiagonalization generates at each step k

the distribution function

ω(k)(λ) with nodes (θ
(k)
ℓ )2 and weights ω

(k)
ℓ = |(p(k)

ℓ , e1)|2

that approximates the distribution function

ω(λ) with nodes σ2
j and weights ωj = |(b/β1, uj)|2 ,

where σ2
j , uj are the eigenpairs of A AT , for j = N, . . . , 1 ,

[Hestenes, Stiefel: ’52], [Fischer: ’96], [Meurant, Strakoš: ’06].

Note that unlike the Ritz values (θ
(k)
ℓ )2, the squared singular

values σ2
j are enumerated in descending order.

20 / 51

9. Golub-Kahan iterative bidiagonalization and its

properties
Approximation of the Riemann-Stieltjes distribution function

Discrete ill-posed problem, the smallest node and weight in
approximation of ω(λ):
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10. Propagation of noise
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10. Propagation of noise
Motivation

If the noise level δnoise in the data is known, many different
approaches can be used for the stopping criterion in GK [Kilmer,

O’Leary: ’01], e.g., the discrepancy principle [Morozov: ’66],

[Morozov: ’84], [Hansen: ’98].

However, in most applications such apriory information is not
available.

GK starts with the normalized noisy right-hand side
s1 = b / ‖b‖. Consequently, vectors sj contain information about
the noise.

Can this information be used to determine the (unknown)
noise level?
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10. Propagation of noise
Spectral properties of bidiagonalization vectors

Consider the problem SHAW(400) from [Regularization Toolbox]
with a noisy right-hand side (the noise was artificially added using
the MatLab function randn). As an example we set

δnoise ≡ ‖ bnoise ‖
‖ bexact ‖ = 10−14 .
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10. Propagation of noise
Spectral properties of bidiagonalization vectors

Components of several bidiagonalization vectors sj computed via
GK with double reorthogonalization:
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10. Propagation of noise
Spectral properties of bidiagonalization vectors

The first 80 spectral coefficients of the vectors sj in the basis of
the left singular vectors uj of A:
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10. Propagation of noise
Spectral properties of bidiagonalization vectors

Using the three-term recurrences,

β2α1 s2 = α1(Aw1 − α1s1) = AAT s1 − α2
1s1,

where AAT has smoothing property. The vector s2 is a linear
combination of s1 contaminated by the noise and A AT s1 which is
smooth. Therefore the contamination of s1 by the high frequency
part of the noise is transferred to s2, while a portion of the smooth
part of s1 is subtracted by orthogonalization of s2 against s1. The
relative level of the high frequency part of noise in s2 must
be higher than in s1.
In subsequent vectors s3, s4, . . . the relative level of the high
frequency part of noise gradually increases, until the low frequency
information is projected out.
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10. Propagation of noise
Spectral properties of bidiagonalization vectors

Signal space – noise space diagrams:

s
1
 −> s

2
s

5
 −> s

6
s

6
 −> s

7
s

10
 −> s

11
s

13
 −> s

14
s

15
 −> s

16

s
16

 −> s
17

s
17

 −> s
18

s
18

 −> s
19

s
19

 −> s
20

s
20

 −> s
21

s
21

 −> s
22

sk (triangle) and sk+1 (circle) in the signal space
span{u1, . . . , uk+1} (horizontal axis) and the noise space
span{uk+2, . . . , un} (vertical axis).
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10. Propagation of noise
Noise amplification

Noise is amplified with the ratio αk/βk+1:

GK for the spectral components:

α1 (V Tw1) = Σ (UT s1) ,

β2 (UT s2) = Σ (V Tw1) − α1 (UT s1) ,

and for k = 2, 3, . . .

αk(V Twk) = Σ (UT sk) − βk(V Twk−1) ,

βk+1(U
T sk+1) = Σ (V Twk) − αk(UT sk) .

See [Hnětynková, Plešinger, Strakoš: ’10] for a detailed derivation.
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10. Propagation of noise
Noise amplification

Since dominance in Σ(UT sk) and (V Twk−1) is shifted by one
component, in αk (V Twk) = Σ (UT sk) − βk (V Twk−1) , one
can not expect a significant cancellation, and therefore

αk ≈ βk .

Whereas Σ (V Twk) and (UT sk) do exhibit dominance in the
direction of the same components. If this dominance is strong
enough, then the required orthogonality of sk+1 and sk in
βk+1 (UT sk+1) = Σ (V Twk) − αk (UT sk) can not be achieved
without a significant cancellation, and one can expect

βk+1 ≪ αk .
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10. Propagation of noise
Noise amplification

Absolute values of the first 25 components of Σ(V Twk),
αk(UT sk), and βk+1(U

T sk+1) for k = 7 (left) and for k = 12
(right), SHAW(400) with the noise level δnoise = 10−14:
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11. Determination of the noise level
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11. Determination of the noise level
Estimate based on distribution functions

Back to the distribution function:

The large nodes σ2
1, σ2

2, . . . of ω(λ) are well-separated
(relatively to the small ones) and their weights on average decrease
faster than σ2

1 , σ2
2 due to the DPC. Therefore the large nodes

essentially control the behavior of the early stages of the
Lanczos process.
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11. Determination of the noise level
Estimate based on distribution functions

Depending on the noise level, the weights corresponding to smaller
nodes are completely dominated by noise, i.e., there exists an
index Jnoise such that

|(b/β1, uj)|2 ≈ |(bnoise/β1, uj)|2 , for j ≥ Jnoise .

The weight of the set of the associated nodes is given by

δ2 ≡
n∑

j=Jnoise

|(bnoise/β1, uj )|2 ≈ δ2
noise .
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11. Determination of the noise level
Estimate based on distribution functions

At any iteration step, the weight of ω(k)(λ) corresponding to the

smallest node (θ
(k)
1 )2 must be larger than the sum of weights

of all σ2
j smaller than this (θ

(k)
1 )2 , see [Fischer, Freund: ’94].

As k increases, some (θ
(k)
1 )2 eventually approaches (or becomes

smaller than) the node σ2
Jnoise

, and its weight becomes

|(p(k)
1 , e1)|2 ≈ δ2 ≈ δ2

noise .
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11. Determination of the noise level
Estimate based on distribution functions

Summarizing:

The weight |(p(k)
1 , e1)|2 corresponding to the smallest Ritz value

(θ
(k)
1 )2 is strictly decreasing. At some iteration step it sharply

starts to (almost) stagnate close to the squared noise level
δ2
noise

, see [Hnětynková, Plešinger, Strakoš: ’10].

The last iteration before this happens is called the noise
revealing iteration knoise.
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11. Determination of the noise level
Estimate based on distribution functions

Square roots of the weights |(p(k)
1 , e1)|2, k = 1, 2, . . . (left), and

the smallest node and weight in approximation of ω(λ) (right),
SHAW(400) with the noise level δnoise = 10−14:
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11. Determination of the noise level
Estimate based on distribution functions

Square roots of the weights |(p(k)
1 , e1)|2, k = 1, 2, . . . (left), and

the smallest node and weight in approximation of ω(λ) (right),
SHAW(400) with the noise level δnoise = 10−4:
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11. Determination of the noise level
Identification of the noise revealing iteration

In order to estimate δnoise, the iteration knoise must be identified.
This can be done by an automated procedure that does not rely
on human interaction.

For example, in our experiments knoise was determined as the first
iteration for which

|(p(k+1)
1 , e1)|

|(p(k+1+step)
1 , e1)|

<

(
|(p(k)

1 , e1)|
|(p(k+1)

1 , e1)|

)ζ

,

where ζ was set to 0.5 and step was set to 3.
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11. Determination of the noise level
Identification of the noise revealing iteration

Noise level δnoise in the data, iteration knoise, and the estimated
noise level |(p(knoise+1)

1 , e1)|, for two problems from [Regularization
Toolbox]. The estimates represent average values computed using
1000 randomly chosen vectors bnoise:

SHAW(400)

δnoise 1 × 10−14 1 × 10−6 1 × 10−4 1 × 10−2

knoise 16 9 7 4
estimate 1.80 × 10−14 1.31 × 10−6 1.01 × 10−4 1.03 × 10−2

ILAPLACE(100,1)

δnoise 1 × 10−13 1 × 10−7 1 × 10−2 1 × 10−1

knoise 22 15.30 6.02 2
estimate 9.12 × 10−14 1.34 × 10−7 1.02 × 10−2 1.11 × 10−1
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12. Noise vector approximation

41 / 51

12. Noise vector approximation
Basic formula

In the noise revealing iteration

δnoise ≈ |(p(knoise+1)
1 , e1)|,

and the bidiagonalization vector sknoise
is fully dominated by the

high frequency noise. Thus

bnoise ≈ ‖bnoise‖ sknoise
≈ β1 |(p(knoise+1)

1 , e1)| sknoise
,

represents an approximation of the unknown noise.

We can subtract the reconstructed noise from the noisy
observation vector b. Hopefully, the noise level in the corrected
system will be lower than in the original one.

What happens if we repeat this process several times?
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12. Noise vector approximation
Noise subtraction

Algorithm: Given A, b; b(0) := b;
for j = 1, . . . , t
• GK bidiagonalization of A with the starting vector b(j−1);
• identification of the noise revealing iteration knoise;

• δ(j−1) := |(p(knoise)
1 , e1)|;

• bnoise,(j−1) := β1 δ(j−1) sknoise
; // noise approximation

• b(j) := b(j−1) − bnoise,(j−1); // correction

end;
The accumulated noise approximation is

b̂noise ≡
t−1∑

j=0

bnoise,(j) .
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12. Noise vector approximation
Numerical illustration - SHAW problem

Singular values of A, and spectral coeffs. of the original and
corrected observation vector b(j), j = 1, . . . , 5, SHAW(400) with
the noise level δnoise = 10−4 (knoise = 10 is fixed):
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12. Noise vector approximation
Numerical illustration - SHAW problem

Individual components (top) and Fourier coeffs. (bottom) of
b̂noise, SHAW(400) with the noise level δnoise = 10−4:
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12. Noise vector approximation
Numerical illustration - ELEPHANT image deblurring problem

Elephant image deblurring problem: image size 324 × 470 pixels,
problem dimension N = 152280, the exact solution (left) and the
noisy right-hand side (right), δnoise = 3 × 10−3:

xexact bexact + bnoise
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12. Noise vector approximation
Numerical illustration - ELEPHANT image deblurring problem

Square roots of the weights |(p(k)
1 , e1)|2, k = 1, 2, . . . (top) and

error history of LSQR solutions (bottom):
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12. Noise vector approximation
Numerical illustration - ELEPHANT image deblurring problem

The best LSQR reconstruction (left), x
LSQR

41 , and the
corresponding componentwise error (right). GK without any
reorthogonalization:

LSQR reconstruction with minimal error, xLSQR
41

Error of the best LSQR reconstruction, |xexact − xLSQR
41
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12. Noise vector approximation
Numerical illustration - ELEPHANT image deblurring problem

Singular values of A, and spectral coeffs. of the original and
corrected observation vector b(j), j = 1, . . . , 3, Elephant image
deblurring problem with δnoise = 3 × 10−3 (knoise corresponds to
the best LSQR approximation of x):
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13. Open problems

Message:

Using GK, information about the noise can be obtained in a
straightforward and cheap way.

Open problems:

◮ Large scale problems (determining knoise);

◮ Behavior in finite precision arithmetic
(GK without reorthogonalization);

◮ Regularization;

◮ Denoising;

◮ Colored noise.
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Thank you for your kind attention!
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Základy algebrai
kého multigridu zaloºenéhona zhlazený
h agrega
í
hP. Van¥kZápado£eská univerzita v PlzniCílem p°edná²ky je poskytnout poslu
ha£i základní informa
e o metod¥ zhlazený
h agrega
í.P°edná²ka obsahuje detailní popis algoritmu v jeho podob¥ vhodné pro °e²ení neskalární
helipti
ký
h problém· jako jsou problémy pruºnosti a tenké pruºnosti (desky a sko°epiny). Výkladje drºen v elementární
h mezí
h. V záv¥ru p°edná²ky bude prezentován klí£ový konvergen£nívýsledek o ví
eúrov¬ové metod¥ zhlazený
h agrega
í (bez d·kazu).



Metoda zhlazených agregací

Tato přednáška se opírá o tyto výsledky:

[1] P. Vaněk, M. Brezina, J. Mandel Convergence of
Algebraic Multigrid Based on Smoothed AggregationsNumer.
Math. 88(2001), no. 3 pp. 559–579
[2] P. Vaněk, J. Mandel, M. Brezina Algebraic Mul-
tigrid by Smoothed Aggregation for Second and Fourth Order
Elliptic Problems Computing 56(1996) pp. 179–196

• Metoda pro řešení soustav lineárních algebraických
rovnic pro řešení okrajových úloh pro eliptické parciální
diferenciální rovnice
• zhrubovací technika v algebraickém multigridu
• umožňuje řešení problémů na vysoce
nestrukturovaných sítích
• vhodná pro neskalární problémy (elasticita, tenká elas-
ticita)

1

Co je multigrid ?

• Řešíme soustavu

Ax = f

se symetrickou positivně definitní maticí vzniklou
diskretizací okrajové úlohy pro parciální diferenciální
rovnici
• Metoda více sítí se odehrává ve dvou základních
krocích:
– přípravná fáze
– iterace

• V přípravné fázi se vytváří systém prolongátorů I ll+1 a
hierarchie hrubých matic Al,

• l := 1 a A1 := A,
• opakuj
– zkonstruuj I ll+1 : IR

nl+1 → IRnl, nl+1 < nl,
– vypočti

Al+1 = (I ll+1)
TAlI

l
l+1,(0.1)

– l ← l + 1
• dokud Al není dostatečně malá, aby umožňovala efek-
tivní finitní řešení,
• L := l.

2

iterace: jsou dány:

• produkty přípravné fáze
– prolongátory I ll+1, l = 1, . . . , L− 1
– hierarchie matic Al, l = 1, . . . , L, A1 = A

• hladící iterační procedura

xl ← Sl(xl, fl), xl, fl ∈ IRnl

• iterační parametry
– ν1: počet pre–smoothing hladicích kroků
– ν2: počet post–smoothing hladicích kroků
– γ: parametr cyklu, γ = 1 nebo γ = 2

Algoritmus 1. x1 := x, f1 := f a MG(·, ·) := MG1(·, ·),
kde MGl(·, ·) je definováno takto:
• pro i = 1, . . . , ν1 proveď xl ← Sl(xl, fl),
• dl = Alxl − fl,
• dl+1 = (I ll+1)

Tdl,
• Je-li l + 1 = L, řeš soustavu Al+1v = dl+1, v ∈ IRnl+1,
finitně, jinak
– polož v = 0,
– pro i = 1, . . . , γ proveď v←MGl+1(v,dl+1)

• xl ← xl − I ll+1v,
• pro i = 1, . . . , ν2 proveď xl ← Sl(xl, fl).

3

Základní informace o konvegenční teorii metody
více sítí [BPWX]:

Nejprve definujeme

I1l = I12 . . . I
l−1
l , I11 = I.

Dále definujme hierarchii hrubých prostorů s normou a
skalárním součinem

Ul = Range (I1l )

(·, ·)l : I
1
l x, I

1
l y 7→

nl
∑

i=1

xiyi,

‖ · ‖l = (·, ·)
1/2
l .

• Přirozenou bází prostoru Ul = Range (I1l ) jsou slupce
matice I1l .
• V algoritmu počítáme s reprezentacemi vektorů I1l x ∈
Ul vzhledem k bázi dané sloupci I1l , tedy vektory x.
• Normou vektoru I1l x ∈ Ul je Eukleidovská norma vek-
toru x, tedy Eukleidovská norma reprezentace vektoru
I1l x vzhledem k sloupcům matice I

1
l .

• Skalárním součinem vektorů I1l x, I
1
l y ∈ Ul je Euklei-

dovský skalární součin vektorů x,y, tedy Eukleidovský
skalární součin reprezentací vektorů I1l x, I

1
l y vzhledem

k sloupcům matice I1l .
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Theorem 0.1. Předpokládáme existenci lineárních zob-
razení

Ql, l = 1, . . . , L, Q1 = I,

takových, že

‖(Ql −Ql+1)u‖
2
l ≤

C1

̺(Al)
‖u‖2A(0.2)

∀u ∈ U1, l = 1, . . . , L− 1

a

‖Ql‖A ≤ C2 ∀l = 1, . . . , L.(0.3)

Dále uvažujeme hladiče ve tvaru

Sl(xl, fl) = (I −RlAl)xl +Rlfl,

kde Rl jsou symetrické pozitivně semidefinitní matice takové,
že matice I−RlAl jsou Al-symetrické pozitivně semidefinitní
a

CR(Rlu,u)IRl ≥
‖u‖2IRnl

̺(Al)
(0.4)

∀u ∈ IRnl, l = 1, . . . , L− 1,

kde ‖ · ‖IRnl , (·, ·)IRnl značí Eukleidovskou normu a skalární
součin v IRnl. Potom pro operátor šíření chyby E metody
více sítí platí

‖E‖A ≤ 1−
1

CL
, C =

(

1 + C
1/2
2 + (CRC1)

1/2
)2

.

5

Poznámka 0.2. Z definice prostoru Ul plyne, že operátor
Ql je možno psát ve tvaru

Ql = I1l Q̃l, Q̃l : U1 → IRnl.

Tato skutečnost, rovnost Al = (I1l )
TAI1l , Q1 = I a rozklad

Ql = Ql −Ql−1 +Ql−1 −Ql−2 + . . .+Q2 −Q1 +Q1

=
l−1
∑

j=1

(Qj+1 −Qj) +Q1

nám umožňuje odhadovat

‖Qlu‖A = ‖
l−1
∑

j=1

(Qj+1 −Qj)u+Q1u‖A

≤
l−1
∑

j=1

‖(Qj −Qj+1)u‖A + ‖Q1u‖A

=
l−1
∑

j=1

‖(I1j Q̃j − I1j+1Q̃j+1)u‖A + ‖u‖A

=
l−1
∑

j=1

‖I1j (Q̃j − Ijj+1Q̃j+1)u‖A + ‖u‖A

=
l−1
∑

j=1

‖(Q̃j − Ijj+1Q̃j+1)u‖Aj
+ ‖u‖A

≤
l−1
∑

j=1

√

̺(Aj)‖(Q̃j − Ijj+1Q̃j+1)u‖IRnj + ‖u‖A

=
l−1
∑

j=1

√

̺(Aj)‖I
1
j (Q̃j − Ijj+1Q̃j+1)u‖j + ‖u‖A

=
l−1
∑

j=1

√

̺(Aj)‖(Qj −Qj+1)u‖j + ‖u‖A.

Výše uvedený odhad spolu s aproximační podmínkou (0.2)
dává

‖Qlu‖A ≤
l−1
∑

j=1

C
1/2
1 ‖u‖A + ‖u‖A = (1 + C

1/2
1 (l − 1)‖u‖A.

6

Odtud vidíme, že podmínka (0.3) plyne z aproximační pod-
mínky (0.2) s kvazioptimální konstantou. Aproximační pod-
mínka (0.2) je tudíž podmínkou klíčovou. Z podmínky (0.2)

plyne, že při konstrukci hrubých prostorů je třeba sledovat
dva cíle:
• konstruovat prolongátory tak, že levá strana (0.2) je
co možná nejmenší (aproximace),
• a tak, že spektrální poloměry hrubých matic jsou tak
malé, jak je jen možné, s cílem učinit aproximační pod-
mínku (0.2) co nejslabší (nejsnažší splnit).

Aproximační podmínka (0.2):

‖(Ql −Ql+1)u‖
2
l ≤

C1

̺(Al)
‖u‖2A

7

Metoda zhlazených agregací – základní koncept

Zde popíšeme metodu zhlazených agregací, tedy metodu,
kde prolongátor je konstruován ve tvaru

I ll+1 = SlP
l
l+1,

kde
• Sl je polynom v Al volený tak, aby

̺(Al+1) = ̺((I ll+1)
TAlI

l
l+1) = ̺((SlP

l
l+1)

TAlSlP
l
l+1)

byl co možná nejmenší a
• P l

l+1 je ortogonální matice vytvořená metodou zobec-
něných agregací. Jejím úkolem je zajistit aproximaci.

Jak jsme již řekli, ve snaze splnit klíčovou podmínku konver-
genční věty (0.2) t.j.

‖(Ql −Ql+1)u‖
2
l ≤

Ca

̺(Al)
‖u‖2A,

‖ · ‖l : I
1
l x 7→ (xTx)1/2.

usilujeme o dvě věci:
• minimalizovat levou stranu aproximační podmínky
(aproximace),
• minimalizovat ̺(Al), l = 2, . . . , L, a tím učinit apro-
ximační podmínku co nejslabší (nejsnažší splnit).

Takže,

• P l
l+1 má za úkol minimalizovat levou stranu (0.2)

• prolongátorový hladič Sl má za úkol minimalizovat
̺(Al).
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Vyložme nyní efekt hlazení prolongátoru. Protože P l
l+1 je

ortogonální matice, je

‖x‖IRnl+1 = ‖P l
l+1x‖IRnl ∀x ∈ IRnl+1,

a můžeme odhadovat

̺(Al+1) = max
x∈IRnl+1

(

(I ll+1)
TAlI

l
l+1x,x

)

IRnl+1

‖x‖2IRnl+1

= max
x∈IRnl+1

(

(SlP
l
l+1)

TAlSlP
l
l+1x,x

)

IRnl+1

‖x‖2IRnl+1

= max
x∈IRnl+1

(

ST
l AlSlP

l
l+1x, P

l
l+1x

)

IRnl

‖P l
l+1x‖

2
IRnl

= max
x∈ Range P l

l+1

(

ST
l AlSlx,x

)

IRnl

‖x‖2IRnl

≤ max
x∈IRnl

(

ST
l AlSlx,x

)

IRnl

‖x‖2IRnl

= ̺(ST
l AlSl).

Závěr:

• ̺(Al+1) ≤ ̺(ST
l AlSl), takže Sl volíme tak, abychom

minimalizovali ̺(ST
l AlSl).

• Jako Sl volíme polynom v Al minimalizující

̺(ST
l AlSl) = ̺(S2

l Al).

9

Jako prolongátorový hladič volíme polynom v Al

Sl = I −
4

3

1

λ̄l
Al, λ̄l ≥ ̺(Al).(0.5)

Tuto specifickou volbu zdůvodníme za chvíli. Pro ̺(Al+1)
máme odhad

̺(Al+1) ≤ ̺(ST
l AlSl) = ̺(S2

l Al) = max
t∈σ(Al)

t

(

1−
4

3

1

λ̄l
t

)2

≤ max
t∈[0,λ̄l]

t

(

1−
4

3

1

λ̄l
t

)2

=
1

9
λ̄l,

takže za λ̄l+1 ≥ ̺(Al+1) můžeme vzít

λ̄l+1 =
1

9
λ̄l.(0.6)

Důvodem volby prolongátorového hladiče (0.5) je
skutečnost, že

min
ω∈IR

max
t∈[0,λ̄l]

t

(

1− ω
1

λ̄l
t

)2

= max
t∈[0,λ̄l]

t

(

1−
4

3

1

λ̄l
t

)2

.
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Metoda zobecněných agregací

Standardní agregace:
• Nejjednodušší prolongátor založený na agregacích pro
jednodimenzionální příklad
• P 1

2 pro jednodimenzionální Laplaceovu rovnici
diskretizované na pravidelné síti sestávající z
n1 = 3n2 nodů
• Máme agregáty stupňů volnosti

{1, 2, 3}, {4, 5, 6}, . . . , {n1 − 2, n1 − 1, n1}.

• Sloupce P 1
2 definujeme jako restrikce vektoru jedniček

na příslušné agregáty:

P 1
2 =

































































1 ·
1 ·
1 ·

1 ·
1 ·
1 ·

· · · ·
· · · ·
· · · ·

· 1
· 1
· 1

































































.

• Operátor P 1
2 odpovídá disagregaci dané agregáty

stupňů volnosti

{1, 2, 3}, {4, 5, 6}, . . . , {n1 − 2, n1 − 1, n1}.

• Sloupce P 1
2 sestávající z 0–1 vektorů s disjunktní

nenulovou strukturou
• P 1

2 odpovídá diskrétní po částech konstantní interpo-
laci

11

Metoda zobecněných agregací

• Naším cílem je vytvořit hierarchii pomocných
prolongátorů P l

l+1 takových, že pro danou n1×r matici
B1

Range B1 ⊂ Range P 1
l , P 1

l = P 1
2 . . . P

l−1
l(0.7)

l = 1, . . . , L− 1.

• Obor hodnot matice B1 specifikuje, které funkce (vek-
tory na nejjemnější úrovni) budou přesně
reprezentovány na všech úrovních. Podobně jako v [2],
volíme B1 jako generátor módů s nulovou energií, tedy
kernel matice tuhosti bez esenciálních okrajových pod-
mínek.
• Módy s nulovou energií získané z geometrie a definice
elementů jsou dostupné ve většině konečněprvkových
řešičů.
• Předpokládáme že máme matice P 1

2 , . . . , P
l−1
l a Bl

takové, že

P 1
l B

l = B1.

Abychom splnili (0.7), tvoříme souběžně P l
l+1 a nl+1×r

matici Bl+1 tak, že

P l
l+1B

l+1 = Bl,(0.8)

kde Bl bylo vytvořeno spolu s P l−1
l (a dáno na úrovni

l = 1). Tím je zaručeno, že

P 1
l+1B

l+1 = B1.
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Agregáty:

• Naše konstrukce je založena na agregaci supernodů. Na
každé úrovni, stupně volnosti jsou organizovány v ma-
lých disjunktních množinách zvaných supernody (su-
pernody tvoří disjunktní pokrytí množiny všech
stupňů volnosti.) Na nejjemnější úrovni supernody
musí být specifikovány, například jako množiny stupňů
volnosti odpovídající konečněprvkovým vertexům. Na
hrubších úrovních jsou supernody definovány naším al-
goritmem.
• Prolongátor P l

l+1 je konstruován z daného systému
agregátů {Al

i}
Nl

i=1, které tvoří disjunktní pokrytí super-
nodů na úrovni l.
• Agregáty jsou malé množiny supernodů, které tvoří dis-
junktní pokrytí množiny všech supernodů. V ideálním
případě jsou agregáty tvořeny jako nodální okolí vy-
braných supernodů

N (i) = {j : Aij 6= 0} ,

kde i, j jsou supernody a Aij je blok matice Al odpo-
vídající supernodům i, j.

13

• V praxi je mnohdy nemožné vytvořit disjunktní
prokrytí z nodálních okolí, proto jsou agregáty oboha-
covány supernody

k : Akj 6= 0 pro nějaké j ∈ N (i).

• Algoritmus tvorby agregátů lze v hrubých rysech po-
psat takto:

Algoritmus 2.

– polož k = 1
– Definuj C jako množinu všech supernodů na úrovni
l.
– Pro všechny supernody i ∈ C
∗ Je-li N (i) ⊂ C, polož Al

k = N (i), C ← C \ N (i)
a k ← k + 1.

– Pro všechny supernody i ∈ C
∗ Najdi agregát Al

k jehož supernody j ∈ Al
k jsou

se supernodem i vázány největšími bloky Aij a
polož Al

k ← A
l
k ∪ {i}.

• Vlastnost (0.8) je vynucována agregát po agregátu;
sloupce P l

l+1 odpovídající agregátu A
l
i jsou tvořeny

ortonormalizovanými restrikcemi sloupců Bl na
agregátAl

i. Pro každý agregát tato konstrukce dá vznik
r stupňům volnosti na hrubé úrovni, které tvoří super-
node. Každý agregát na úrovni l dá tudíž vznik jed-
nomu supernodu na úrovni l + 1.

14

Obrázek 0.1. Pomocný prolongátor založený na zobecněných agregacích.
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Algoritmus 3. Pro daný systém agregátů {Al
i}

Nl

i=1 a nl×
r matici Bl splňující P 1

l B
l = B1, vytvoříme prolongátor P l

l+1,
matici Bl+1 splňující (0.8) a supernody na úrovni l + 1 ná-
sledovně:
1. Nechť di značí počet stupňů volnosti odpovídající
agregátu Al

i. Rodzěl nl×r matici Bl do di×r bloků Bl
i,

i = 1, . . . , Nl, z nichž každý odpovídá množině stupňů
volnosti agregátu Al

i (viz Obr. 0.1).
2. Rozlož Bl

i = Ql
iR

l
i, kde Q

l
i je di × r ortogonální matice

a Rl
i je r × r horní trojúhelníková matice.

3. Polož P l
l+1 = diag(Ql

i), a (viz Obr. 0.1)

Bl+1 =

















Rl
1

Rl
2

. . .
Rl

Nl

















.

4. Pro každý agregát Al
i, zhrubování dává vznik r stupňů

volnosti na hrubé úrovni (i−tý blokový sloupec P l
l+1).

Tyto stupně volnosti definují i−tý supernode na hrubé
úrovni.

16



Konvergence metody zhlazených agregací

kompozitní agregáty
• Kompozitní agregát Ãl

i je agregát A
l
i chápaný jako

množina stupňů volnosti na nejjemější úrovni
• Formálně je možno kompositní agregáty zavést takto:

Ãl
i = A

l,1
i , kde Al,l

i = Al
i, Al,j−1

i =
⋃

k∈Al,j
i

Aj−1
k .

• Alternativní způsob definice kompozitních agregátů:

Ãl
i = supp P 1

l χ(A
l
i)
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Theorem 0.3. Nechť prolongátorové hladiče Sl jsou dány
formulí

Sl = I −
4

3

1

λ̄ l
Al,

kde

λ̄l =
1

9l−1
λ̄, λ̄ ≥ ̺(A).

Předpokládáme že C1 > 0 je konstanta taková, že existují
lineární zobrazení

Q̃l : IR
n1 → IRnl, l = 1, . . . , L, Q̃1 = I,

taková, že

‖P 1
l Q̃lu− P 1

l+1Q̃l+1u‖
2
IRn1 ≤ C2

1

9l−1

λ̄
‖u‖2A(0.9)

∀u ∈ IRn1, l = 1, . . . , L− 1.

Dále předpokládáme že Rl je symetrická pozitivně definitní
matice splňující (0.4) s konstantou cR > 0 nezávislou na
úrovni.
Potom

‖x̂−MG(x,b)‖A ≤
(

1−
1

c0

)

‖x̂− x‖A ∀x ∈ IRn1,

kde Ax̂ = b, a

c0 =

(

2 + C1cR +
4

3
cR +

1

3
C1

(

1 +
4

3
cR

)

(L− 1)

)2

(L− 1)

Navíc, je–li P : u 7→ MG(0,u), pak P je symetrická matice
a cond(A,P ) ≤ c0.
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Theorem 0.4. Nechť prolongátorový hladič Sl je dán for-
mulí

Sl = I −
4

3

1

λ̄ l
Al,

kde

λ̄l =
1

9l−1
λ̄, λ̄ ≥ ̺(A)

a pomocný prolongátor P l
l+1 je vytvořen Algoritmem 3 po-

mocí n1 × r matice B1 a agregátů {Al
i}

Nl

i=1, l = 1, . . . , L− 1.
Předpokládáme, že existuje konstanta CA > 0 taková, že pro
každý vektor u ∈ IRn1 a každé l = 1, . . . , L− 1 platí

Nl
∑

i=1

min
w∈IRr
‖u− B1w‖2l2(Ãl

i)
≤ CA

9l−1

λ̄
‖u‖2A.(0.10)

Dále předpokládáme že Rl je symetrická pozitivně definitní
matice splňující (0.4) s konstantou cR > 0 nezávislou na
úrovni. Potom,

‖x̂−MG(x,b)‖A ≤
(

1−
1

c0

)

‖x̂− x‖A ∀x ∈ IRn1,

kde Ax̂ = b, a

c0 = (2 + CAcR + (4/3)cR + (1/3)CA (1 + (4/3)cR) (L− 1))2 (L−1).

Dále, pokud P : u 7→MG(0,x), pak P je symetrická matice
a cond(A,P ) ≤ c0.

19
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Analysis of a rate-independent model of non-lo
al damageand its numeri
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1 Fa
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1 Introdu
tionDamage presents an inelasti
 load-indu
ed response of solid bodies, whi
h is typi
al of quasi-brittle materials. From the physi
al point of view, it is interpreted as a 
olle
tive e�e
t ofmi
rostru
tural failures, leading �nally to the ma
ros
opi
 
ollapse of the stru
ture. Due toobvious reasons, the damage theories have re
eived a great attention in the engineering literatureand a 
onsiderable amount of theoreti
al, numeri
al and experimental work has been investedinto understanding and predi
tion of damage pro
esses. In this 
ontribution, we present anoverview of available results related to a spe
i�
 non-lo
al rate-independent isotropi
 damagemodel and its numeri
al treatment. The major di�eren
e of the 
urrent work and the existingapproa
hes is the fa
t that the reported numeri
al simulations are supported by a number ofrigorous mathemati
al results obtained re
ently in [1, 5, 7, 8℄.2 The model setupThe 
ommon theoreti
al framework for both the analysis and numeri
s is provided by re
entadvan
es in the mathemati
al theory of rate-independent pro
esses; see [4℄ for a review. In thissetting, the state of a system is des
ribed by kinemati
s (displa
ement �eld u) and an internalvariables (damage level ζ). The time evolution of the system is then governed by the globalminimization of total energy of the system, 
onsisting of the globally stored and the dissipatedenergy spe
i�ed later.The global energy minimizer in spa
e and times is then referred to as the energeti
 solution tothe damage problem. Its existen
e for a spe
i�
 damage model of the Frémond-Nedjar type [3℄was proven in [1, 6, 8℄ under mild assumptions the problem data. In general, the pro
edureinvolves the introdu
tion of the ǫ-regularized problem, preventing the 
omplete disintegrationof the material, and the semi-dis
retization in time. For a given partition of the time interval
0 = t0 < t1 + τ . . . < tN = T , the time-in
remental problem reads as

(uǫ(tk), ζ
ǫ(tk)) ∈ Arg min

(bu,bζ)∈K×Z

[
Eǫ(tk, û, ζ̂) + D(ζ(tk−1), ζ̂)

] for k = 1, 2, . . . ,N, (1)where K denotes the set of kinemati
ally admissible displa
ements, Z is the set of admissibleinternal variables and the energeti
 
ontributions attain the from



Eǫ(t, û, ζ̂) =

∫

Ω

ǫ+ ζ̂

2
ε(û + uD(t)) : C : ε(û + uD(t)) +

1

2
κ
∣∣∣∇ζ̂

∣∣∣
2

dΩ, (2)
D(ζ̂1, ζ̂2) =





∫

Ω
a(x)

(
ζ̂1(x) − ζ̂2(x)

)
dx if ζ̂1 ≥ ζ̂2 a.e. in Ω

+∞ otherwise (3)where uD denote the time-dependent Diri
hlet boundary data, ε(û) is the linearized strain
orresponding to a displa
ement �eld û, C is a fourth-order tensor of elasti
 sti�ness, κ is anin�uen
e fa
tor introdu
ing an internal length into the formulation, a denotes an a
tivationthreshold (related to strength of a material) and the term �+∞� ensures unidire
tionality of thedamage evolution. An energeti
 solution to the 
omplete damage is then obtained by the limitpassage in time (τ → 0) and regularization parameter ǫ, with an appropriate re-interpretationof kinemati
s at fully damaged regions [1, 5℄.3 Numeri
al aspe
tsIn the numeri
al treatment, the formulation is 
onverted to the dis
rete form by performingthe spatial dis
retization using the 
onforming �nite element method. The in
remental timeproblem then transforms into a non-
onvex large-s
ale optimization program posed in terms ofnodal displa
ements and nodal damage values. Following Bourdin [2℄, the spe
ial stru
ture of theproblem is exploited to apply sequential 
onvex optimization pro
edure, 
onverging to a 
riti
alpoint of the obje
tive fun
tion. To ensure that the 
riti
al point is a good approximation tothe global minimizer, a simple variant of a time ba
k-tra
king algorithm, based on two-sidedenergeti
 estimates derived in [6℄, is introdu
ed [7℄.
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(a) (b)Figure 1: Example of energeti
s for a dog-bone shape spe
imen; (a) without ba
ktra
king (energybalan
e fails), (b) with ba
ktra
king (an approximate energeti
 solution), Eǫ is the globally storedenergy, VarD denotes the 
umulative dissipative energy.To illustrate the performan
e of the proposed algorithm, in Figure 1 we present energeti
s ofa uniaxial tension experiment for a dog-bone shape spe
imen. The results 
on�rm that theproposed ba
ktra
king algorithm is 
apable of delivering a solution with lower energies then thebasi
 s
heme. Moreover, it 
an be shown that the resulting response is (almost) independent ofspatial and temporal dis
retization. An interested reader is referred to [7℄ for additional details.
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