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Preface

Seminar on Numerical Analysis 2011 (SNA’11) is the eighth meeting in a series of events started
in Ostrava 2003 and devoted to numerical methods necessary for mathematical modelling of
problems in sciences and engineering. For the first time SNA’11 will be held in RoZnov pod Rad-
hos§tém, a beautiful town with many attractions and friendly Beskydy mountains surrounding.

Since 2005, a part of SNA has been devoted to the so-called Winter school with tutorial lec-
tures devoted to selected topics within the conference scope. In this year, the school part in-
cludes invited lectures devoted to operator splitting techniques for mutiphysics problems (Ax-
elsson), scalable FETT algorithms for contact problems (Dostal, Kozubek, Vondrak, Brzobohaty,
Markopoulos), ill posed problems in image processing (Hnétynkova, PleSinger, Strako§), princi-
ples of algebraic multigrid based on smoothed aggregations (Vanék) and analysis and numerical
approximation of non-local damage mechanics models (Zeman, Mielke, Roubicek).

The Winter school is complemented by contributed lectures devoted to many topics as aggrega-
tion based methods, computational mechanics, domain decomposition, efficient iterative solvers,
finite element method, formulation of mathematical models, modelling of transport problems,
parallel computations, etc.

We would like to wish SNA’11 to be, similarly to the previous SNA meetings, a fruitful event,
providing interesting lectures, showing new ideas and starting or strengthening collaboration and
friendship.

On behalf of the Programme and Organizing Committee of SNA’11,
Radim Blaheta and Jifi Stary
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An overview of aggregation techniques for two-level methods
R. Blaheta, V. Sokol

Institute of Geonics AS CR, Ostrava
VSB - Technical University of Ostrava

1 Introduction

This paper is an effort to do an overview of aggregation techniques and compare their efficiency
on model problem with heterogeneity when used for construction of coarse space for two-level
Schwarz method. Aggregation techniques are usually used in context of multilevel and multigrid
methods for construction of coarse levels. Initially coarse levels were obtained from hierarchy
of meshes with different discretization parameters. Aggregation overcomes the need for this
hierarchy of meshes and needs little or no information besides the matrix of the problem to be
solved.

Aggregation techniques presented in this paper can be divided into two groups: node-wise and
element-wise aggregations. The first group is somewhat larger and widely used, most likely
because node-wise aggregations don’t need any information about the mesh used for discretization
of the method.

2 Aggregations

In this paper for the sake of simplicity we will restrict ourselves to the case of two-level methods
only, multilevel methods can be devised by recursive use of the two-level scheme.

2.1 Two-level method with aggregation

Let us consider a problem discretized on triangulation 7}, by finite element method and described
by the linear system
Apup = bp, (1)

solved by a two-level method. One iteration of two-level method is described in Algorithm 1.
On lines 5 and 10 there are k; and ko steps of pre-smoothing and post-smoothing respectively
by operator S, usually realized by one iteration of Gauss-Seidel or Jacobi method. In the case of
classical multigrid methods, the prolongation operator P and restriction operator R are naturally
induced by the hierarchy of triangulations 7; and 7z and the matrix Ay corresponds to the
discretization on 7. However in the case of algebraic multigrid methods, the prolongation and
restriction operators and the coarse space matrix Ay are created only by using a little information
besides the matrix Ay thus avoiding the need to construct hierarchy of nested meshes.



Algorithm 1 One iteration of two-level method

Input: Ay, by, u},
il

for j =1to k; do
u = S(Ah,bh,u)

end for

TH = R(bh — Ahu)

u=u-+P (Aj_ier)

for j =1 to ky do
u=S(Ap, bp,u)

. end for

RS
Cup =

—_ =

Aggregation technique divides set of unknowns N = {1,...,n} into disjoint subsets C; of aggre-
gates of unknowns, so that N = Ule C;, C; ﬂi# Cj = (. Then the prolongation and restriction

operators are defined R = R, P = R” by boolean matrix R:

(R)m‘{ =1 if jeC; @

=0 otherwise

2.2 Node-wise aggregations

In this subsection we focus on aggregation techniques that exploits the information directly stored
in the matrix Ay, these include algorihms by Vanék et al. [3|, by Scheichl and Vainikko [2] and by
Notay [1]. The aggregation algorithm by Notay was primarily designed to work with algebraic
multilevel scheme based on a block approximate factorization of matrix, however it can also be
used for algebraic multilevel methods. The algorithm firstly defines set of nodes S;, to which
node 7 is strongly negative connected:

Si(e) = {j EN:j#i,a;<—¢ mf’gg’aik!} ; (3)
Ak

where parameter ¢ is used as threshold for strong coupling. The sets S;(¢) are used co construct
pairs of nodes that are most strongly negative connected, and then used recursively for those
pairs (and possibly few singletons) to create generalized quadruplets.

The algorithm by Vané&k et al. starts by defining strongly-connected neighborhood similar to (3)
with thresholding parameter e:

Si(e) = {j € N :|ay| > e\/auag; }, (4)

and then separates nodes that are not strongly connected to any other nodes. These nodes are
isolated from others and are not aggregated. Rest of the nodes is used for initial covering by
tentative aggregates Cj, the remaining nodes that does not belong to tentative aggregates forms
set R. The main part of the algorithm can be described as follows:

step 1: enlarge aggregates C;
move node j from R to aggregate C; if there is strong connection



step 2: process unaggregated nodes
create new aggregates: C; = Sj(e) N R, R=R\ C;

Given this aggregation, tentative prolongation is created from (2), which can be further smoothed
to get the final prolongation and restriction operators. To get the smoothed prolongation oper-
ator, simple damped Jacobi smoother was proposed in the form

P, = (I - w(diagAy) ™" Ap)P, (5)
where w is damping parameter and Ap is filtered matrix.

The last aggregation of this subsection is that of Scheichl and Vainikko. The algorithm again
starts by defining strongly connected nodes. Node j is strongly connected to ¢ if the following
condition is satisfied:

A

Aij A,

> £max

ki
where A = (diagAh)_% Ap (diagAh)_% and ¢ is again thresholding parameter for strong con-
nection. To create set of aggregates {C;} strongly-connected graph r-neighborhood S, () is
used. S, (7) is set of node ¢ and all nodes j for which there exists a path of length r of strongly-
connected nodes to node 7. The algorithm creates aggregates by finding strongly-connected graph
r-neighborhood of chosen seed node. To choose a good seed node advancing front in the graph
induced by nodes and edges of triangulation 73 is used. Smoothed aggregation can be again
obtained by applying damped Jacobi smoother with filtered matrix Ap (5).

; (6)

2.3 Element-wise aggregations

The only aggregation of this subsection is of Fish and Belsky [4]. It uses the concept of stiff and
weak element which is utilized in construction of aggregates. The element e; is considered stiff if
the spectral radius k; of its stiffness matrix is relatively large compared to other elements. The
spectral radius is estimated by Gershgorin theorem. This stiff and weak concept is element-wise
counterpart of strong and weak connection of node-wise approach. The algorithm tries to place
weak elements on the interface between aggregates of stiff elements.

start-up:
set E4 of elements to aggregate (less elements on boundary)
set By of interface elements, E; = ()
seed element eg with minimum number of neighboring elements

step 1: create stiff aggregate A;
A; = {es} U{ej : e € neighbor(es) N Ea; kj > cks}

step 2: update sets E, F4
Er = ErU{e; : (ex € neighbor(e;),e; € A;) N (e & Ai)}
Ey=FEx\{ex : (ex € neighbor(e;),e; € A;) U A;}

step 3: find new seed element e
Er = {ey, : (e, € neighbor(e;),e; € A;) N Ea}
find seed element ez : es € Ep, ks > k; Ve; € Ep

stopping criteria:
if Er = () then stop
else 1 =i+ 1, go to step 2

The parameter ¢ is used as threshold for determining the stiffness of elements.



3 Model problem and two-level Schwarz preconditioner

The model problem on which we will test aggregation techniques will be Darcy flow described

by following equations:

v=—kVu .

in Q (7)
V-v=f

The heterogeneity will be induced by the permeability coefficient k. In our model problem, the
coefficient will be stochastically generated with log-normal distribution.

The method chosen to test aggregations will be two-level Schwarz preconditioner for CG. It uses
decomposition of computational domain €2 into overlapping subdomains Qf The subdomains
are then used to define decomposition of finite element space Vj,:

Vi=VWo+Vi+...+V;
Wz{vé%mzomﬂ\ﬂﬂ,WG{L”H,

where the FE space Vj corresponds to a coarse triangulation 7. Then it is possible to con-
struct various Schwarz-type preconditioners, the simplest and most commonly used is additive
preconditioner (Bag)

Y

k
Bas =Y RTA7'R;,
=0
where {Ri}le are restriction operators mapping nodes from 2 to Qf and A; is FE matrix
corresponding to problem on subdomain Qf with homogeneous Dirichlet boundary condition on
boundary. The multiplicative and various hybrid preconditioners can be found in [5]. The matrix
Ay corresponds to auxiliary coarse space Vy with restriction operator Ry. This is the place where

aggregation comes in the play, the restriction operator Ry is defined by (2) and matrix Ag by
term Ag = RoAhRg

4 Conclusion

In this paper overview of some aggregation techniques was presented. The aggregations were
used for construction of coarse space for two-level Schwarz preconditioner for CG method. The
motivation for using model problem with strong heterogeneity is development of robust solvers
with respect to heterogeneity. These solvers are needed for e.g. investigation of (geo)composites
where strong heterogeneity is present. When using two-level method as a preconditioner, the
quality of auxiliary coarse space dramatically influences the number of iterations needed to solve
the problem. The aggregation techniques represent one possible approach to get the coarse space
of desired qualities. Note that an efficient application of a parallel aggregation-based solver for
microstructure analysis is in [6].

Acknowledgement: This work has been supported by the grants GA CR number 103/09/H078
and 105/09,/1830.
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Macroscopic traffic flow models: requiem and ressurection

M. Brandner, J. Egermaier, H. Kopincovd

NTIS New Technologies for Information Society
Department of Mathematics University of West Bohemia in Pilsen

1 Introduction

We shortly describe basic ideas of macroscopic traffic low modeling, discuss the features of these
models critically, and give proposals for their improvements. We also propose three numerical
schemes based on the finite volume approach and compare them.

2 First order macroscopic models

Traffic low modeling has become a major problem in many countries after the Second World War.
We can get different types of mathematical models depending on what scale we choose: from
the microscopic to the macroscopic through the kinetic one. The first macroscopic mathematical
models were developed in the 50’s of the 20th century. The basic first order model (i.e., the
model containing one equation) was formulated by Lighthill in 1955 and Whitham and Richards
in 1956 as presented in [6] (LWR model). It is based on the analogy between vehicles in traffic
flow and particles in a fluid. The basic equation represents the conservation law for the vehicles

o+ [f(0)l= =0, (1)

where o = o(x,t) is the density of vehicles, f = f(0) = vo is the flux, v = v(p) is the velocity.
The function f = f(p) represents a constitutive relation and it is called the fundamental diagram.
For example, we can put

7(0) = Ve (1 e ) , @)

del‘

where Vg, 1s a given maximal velocity and g4, iS a given maximal density. This model is
identical to the first-order fluid dynamics models of water flow in rivers and gas flow through pipes
(except for the specific form of f = f(p) see [3]). Daganzo [3] summarizes the shortcomings
of this type of models: they are not suitable for light traffic, they are not describe correctly the
motion of a vehicle through a shock, they don’t predict some instabilities. Newell shows (see [12]),
however, that the macroscopic LWR model is in agreement with some microscopic car-following
models. LeVeque shows in [11] that problems can occur when the flux function f = f(p) is
neither concave nor convex (the night time traffic flow). In this case the entropy solution of the
Riemann problem (see [11]|) does not address the real traffic flow. In this situation it is necessary
to pay special attention to the anisotropy of the model, i.e., to the fact that the drivers make
decicions according to the situation ahead of the vehicle, not behind it. Daganzo also argues
that the concept of relaxation time or viscosity effects (and we add: numerical viscosity effects)
is not a self-evident property of the traffic flow.

12



3 Second order macroscopic models

Some researchers have tried to eliminate the shortcomings of the above models so that they
improved them by introducing relations that are analogous to the conservation of momentum in
fluids. They obtained the second order models, i.e., the models containing two partial differential
equations. For example, the Payne-Whitham model (1971, 1974) can be written as (for brevity,
we present the simplified version without the relaxation term)

ot + (ov), = 0,
(0v): + [0v? +p(0)]ls = O, (3)

where o = p(z,t) is the density, v = v(x,t) is the velocity and p = p(p) is a given constitutive
relation. Daganzo [3] shows three basic weaknesses of this type of models:

1. A fluid particle responds to stimuli from the front and from behind, but a car is an
anisotropic particle that mostly responds to frontal stimuli.

2. The width of a traffic shock only encompasses a few vehicles.

3. Unlike molecules, vehicles have personalities.

Other Daganzo’s comments are also significant. The model described above is a system of two
hyperbolic partial differential equations (for a suitable choice of p = p(p)). But a characteristic
speed can be greater than the macroscopic fluid velocity (future vehicle behavior is determined
by what happened behind it). Furthermore, one must recognize the basic observation that the
number of molecules in the fluid and the number of cars on road are radically different.

Another major contribution to this research is the work of Aw, Klar, Materne and Rascle |1, 2|.
They propose the following model (again for brevity, we present a simplified version without the
relaxation term):
o+ g —op(0)l = O, 1)
a+[a*/o—p(0)al = 0,

where o = o(z,t) is the density, v = v(x,t) is the velocity and p = p(p) is a given constitutive
relation. This model has two very interesting properties:

1. The eigenvalues of the Jacobi matrix of the flux vector are \i(o,v) = v — gp/(p) and
A2(0,v) = v. It means that if the function p = p(p) is increasing then the maximal
characteristic speed is v.

2. The system (4) can be transformed into Lagrangian mass coordinates. If we use the Go-
dunov method (or even the finite volume method with the Roe or HLL solver) to solve
the transformed problem we obtain discrete relations that correspond to the microscopic
follow-the-leader model (see [1]). In other words, we get a direct link between the contin-
uous and discrete model. Notice that the previous model (3) is based on analogy with the
description of fluid flow only.

4 Numerical schemes and experiments

We use three numerical methods to solve (4) — the central scheme (see [9]), central-upwind scheme
(see [7]) and the scheme based on the Roe approximate Riemann solver (see [10]). It should be

13
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Figure 1: Solution of the Riemann problem 1 compared with the microscopic model represented
by the Godunov method in Lagrangian coordinates (overall situation and a detailed view).
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Figure 2: Solution of the Riemann problem 2 (overall situation and a detailed view).

noted that in the case of the Roe linearization we must determine the appropriate Roe matrix
for the different constitutive relations p = p(p) separately. This itself may be a very difficult
problem. We consider two Riemann problems with

1. left and right states given by or, = 0.5, o = 1, vy, = 10, vg = 3. The discretization steps
are chosen as Az = 10, At = 0.25 and T' = 250 (initial number of cars: 7500);

2. left and right states given by o, = 0.5, pp = 0.5, vy = 6, vg = 12. The discretization
steps are chosen as Az = 5, At = 0.1 and 7" = 100 (initial number of cars: 5000). The
vacuum state appears during the time evolution. In the case of the Roe method we can
see instability caused by linearization.

5 Conclusion

The central and central-upwind schemes are Riemann-free methods. The central-upwind scheme
may be interpreted as a method that uses the HLL solver. The HLL solver is based on the
decomposition of the jump into two waves. Moreover, it does not use linearization, and thus it
can be shown that the method that is based on this solver is positive. The scheme based on the
Roe solver uses a special type of linearization - in the case of the single wave it approximates
the shock speed exactly (in other cases, it is only an approximation). It seems therefore that in
the case of the model based on two nonlinear partial differential equations the central-upwind
method is the best approximation of the discrete follow-the-leader model. In conclusion, we note
that it is very important to distinguish what is the error of model, the error of numerical methods

14



and how to interpret the results of numerical simulations correctly. In the near future, we plan to
compare our simulations with data obtained in real experiments, to use phase transition models
and to develop numerical models for road networks.

Acknowledgement: This work has been supported by the Research Plan MSM 4977751301.
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An efficient solution of elasto-plastic problems in mechanics
M. C’ermdk, T. Kozubek, A. Markopoulos

VSB - Technical University of Ostrava

1 Introduction

The goal of this paper is to present an efficient algorithm for the numerical solution of elasto-
plastic problems in mechanics. These problems with hardening lead to the so-called quasistatic
problems, where each nonlinear and nonsmooth time step problem is solved by the semismooth
Newton method. In each Newton iteration we have to solve an auxiliary (possibly of large size)
linear system of algebraic equations. In this paper, we propose a new approach how to solve such
system efficiently using in a sense optimal algorithm based on our Total-FETI variant of FETI
(Finite Element Tearing and Interconnecting) domain decomposition method. The efficiency is
illustrated by the results of 3D elasto-plastic model benchmark.

2 TFETI domain decomposition

To apply the TFETI domain decomposition, we tear each body from the part of the boundary
with the Dirichlet boundary condition, decompose each body into subdomains, assign each sub-
domain a unique number, and introduce new “gluing” conditions on the artificial intersubdomain
boundaries and on the boundaries with imposed Dirichlet condition. For the artificial intersub-
domain boundaries, we introduce the following notation: Fg’ denotes the part of I'P that is glued
to Q9 and F% denotes the part of I'? that is glued to the other subdomains. Obviously I‘IC)? = I“g).
An auxiliary decomposition of the problem with renumbered subdomains and artificial intersub-
domain boundaries is in Fig. 1. The gluing conditions require continuity of the displacements
and of their normal derivatives across the intersubdomain boundaries.

H h

/AN

Ol 0?

Ql

A A AA
A

rvvw

\ 4
YY

Q3 Q4

vy
vww}w;

Figure 1: TFETI domain decomposition with subdomain renumbering.

The finite element discretization of @ = Q' U...UQ" with a suitable numbering of nodes results
in the quadratic programming (QP) problem
1

2uTKu —fTu — min subject to Bu=c, (1)

16



where K = diag(Kj, ..., K;) denotes a symmetric positive semidefinite block-diagonal matrix of
order n, B denotes an m x n full rank matrix, f € R", and c € R™.

The diagonal blocks K,, that correspond to the subdomains §}” are positive semidefinite sparse
matrices with known kernels, the rigid body modes. The blocks can be effectively decomposed
using Cholesky factorization [1]. The vector f describes the nodal forces arising from the volume
forces and/or some other imposed traction.

The matrix B with the rows b; and the vector ¢ with the entries ¢; enforce the prescribed
displacements on the part of the boundary with imposed Dirichlet condition and the continuity
of the displacements across the auxiliary interfaces. The continuity requires that b,u = ¢; = 0,
where b; are vectors of the order n with zero entries except 1 and —1 at appropriate positions.
Typically m is much smaller than n.

Even though (1) is a standard convex quadratic programming problem, its formulation is not
suitable for numerical solution. The reasons are that K is typically ill-conditioned, singular,
and the feasible set is in general so complex that projections into it can hardly be effectively
computed.

The complications mentioned above may be essentially reduced by applying the duality theory
of convex programming (see, e.g., Dostal [2]). The Lagrangian associated with problem (1) is
1
L(u,\) = §uTKu —fTu+ AT (Bu-c). (2)
It is well known [2]| that (1) is equivalent to the saddle point problem

L(u,\) = supinf L(u, A). (3)
N u
For more details how to solve efficiently the resulting saddle-point system we recommend |2, 5].

3 Elasto-plasticity

Elasto-plastic problems are the so-called quasi-static problems, where the history of loading
is taken into account. We consider the von Mises elasto-plasticity with the strain isotropic
hardening and incremental finite element method with the return mapping concept. More details
are in [3].

The elasto-plastic deformation of an body 2 after loading is described by the Cauchy stress
tensor o, the small strain tensor g, the displacement u, and the nonnegative hardening param-
eter k. Symmetric tensor is represented by the vectors and their deviatoric part is denoted by
the symbol dev.

Let us denote the space of continuous and piecewise linear functions constructed over a reg-
ular partition of 2 into tetrahedrons with the discretization norm A by V}, C V, where V =
{veHY(]*: v=0o0nTy}. Let

0:t0<t1<...tk<...<tN:t* (4)

be a partition of the time interval [0,¢*]. Then the solution algorithm after time and space
discretization has the form:
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Algorithm 3.

1. Initial step: ug =0, 0'2 =0, f‘ig =0,
2. for k=0, ...,N —1 do (load step)

3. From previous step we have: uﬁ, afl, I{z and compute Auy, Aoy, AKp

Nep, = E(Auh) Auy, € V), (5)
Aoy = (Uh7 K/h7 AE:h) (6)
Akp = (0-;27 Rh) AEh) (7)

4. Solution Aoy (o¥, k¥ e(Auy)) is substituted into equation of equilibrium:
/ Aot (ok, kF e(Auy))e(vy)de = (AFF, vy), Yv, €V, (8)
Q

leads to a nonlinear system of equations with unknown Awuy, which is solved using the
Newton method [4]. The linearized problem arising in each Newton step is solved by
TFETI algorithmic scheme proposed above.

5. Tllglen we compute new aproximations: 2“ = uﬁ + Auy, 2“ = afl + Aoy, nZ"'l =
Ky + AKp,.
6. enddo

Above we consider the following notation. Let C denote the Hook’s matrix, E represent linear
operator dev, p, A be the Lamé coefficients, Af,’f be the increment of the right hand side and
0'1;; = O'z + CAgy,. For return mapping concept we define

CAe if P(ot,kF)<0

_ mRM/_k _k _ h Ry TR =

Ao'h - Tcr (Uh7mh7A€h) - { CAEh — YRI if P(O’Z,K/Z) > 0, (9)
0 if P(al kF)<0

Ak, = TEM(gk gk Ae :{ - . A S, 10

where

. dev(o h) \/§
Cpl =2 — =1 11
YR = 3N+H \/7 UhaK’h n= Hdev( t)H H p” 1% 92’ z ( )

and plasticity function

3
Plohwh) =\ Sldev(o)l - (v 4 Huwh), ¥, H, >0 (12)

The function ygn is semismooth and potential. The derivative of TFM is

(I7M) (be) = C—2p [E+

3M+Hm
(13)

n \/7 Yo+ Hpm Kk dev(of+CAe)(dev(ah+CAe))T _E
3 ||dev(of+CAe)|| ldev(ak +CAE)|? ’

If we represent a function v, € Vj, by the vector v.€ R™ and omit index k then (8) can be
rewritten as the system of nonlinear equations

F(Au) = Af, (14)
where
<F(V)7W> = fQ(TfLM(E(Vh))vE(Wh»d‘Tv vVv,w e R" (15)
<Af,w> = Afh(’uh), Yw € R"™.
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4 Numerical experiments

Let us consider a 3D plate with a hole in the center (due to symmetry only a quatre of the whole
structure is used) with the geometry depicted in Fig. 2. Boundary conditions are specified in
Fig. 3. Symmetry conditions are prescribed on the left and lower sides of 2. The surface load

g(t) = 450sin(27t) [MPal, t € [0,1] [sec|, is applied to the upper side of Q. The elasto-plastic
material parameters are F = 206900 [MPa|, v = 0.29, Y = 450, H,, = 100 and the time interval
[0, %] [sec| is divided into 50 steps. We consider a mesh with 9471 nodes and 48000 tetrahedrons.

In the nth Newton iteration we compute an approximation Au” by solving the linear problem
of the form K"Au” = Af® — BT A" using the TFETT algorithmic scheme proposed above. We
stop the Newton method in every time step if | Au"t — Au”||/ (||Au™H ||+ ||Au™]]) is less than
1079,

Notice that the maximum number of the Newton iterations is small for all time steps, therefore the
method is suitable for the problem. In remaining figures, we depict plastic and elastic elements,
von Mises stress in the xy plane cross-section with the z coordinate -0.5 [mm]| corresponding to
the center of Q. In Figs. 4, 5 6, we can see which elements are plastic (gray color) and which
are elastic (white color). Particularly, in time steps 1-12 we observe only elastic behavior, and
in time steps 13-50 plastic behavior of some elements. The von Mises stress on deformed mesh
scaled 10x for better illustration is showed in Fig. 7.
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Figure 2: 3D plate geometry in [mm)]. Figure 3: 2D plate geometry in [mm)|

and boundary conditions.
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Figure 4: Plastic and elastic ele- Figure 5: Plastic and elastic ele-
ments after 1 time step. ments after 35 time steps.
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Figure 6: Plastic and elastic ele- Figure 7: Von Mises stress on the
ments after 50 time steps. deformed mesh.

5 Conclusion

We have presented an efficient algorithm for the numerical solution of elasto-plastic problems.
These problems lead to the quasi-static problems, where each nonlinear and nonsmooth time
step problem is solved by the semismooth Newton method. In each Newton iteration we have
to solve an auxiliary (possibly of large size) linear system of algebraic equations. We proposed
a new approach how to solve such system efficiently using in a sense optimal algorithm based
on our Total-FETI variant of FETI domain decomposition method. The algorithm has been
adapted also to the solution of contact problems [1].
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On optimally conditioned cubic spline wavelets on the interval
D. C’ernd, V. Finek

Department of Mathematics and Didactics of Mathematics, Technical University of Liberec

1 Introduction

Wavelets are by now a widely accepted tool especially in signal and image processing. In the
field of numerical mathematics, methods based on wavelets are successfully used for precondi-
tioning of large systems arising from discretization of elliptic partial differential equations, sparse
representations of some types of operators and adaptive solving of operator equations. Quanti-
tative properties of these methods depends on the choice of the wavelet basis, in particular on
its condition number.

Construction of wavelet bases on a bounded domain usually starts with the construction of
wavelets on the real line. Then these wavelets are adapted to the interval and by tensor product
to the m-dimensional cube. Finally splitting the domain into subdomains which are images
of (0,1)" under appropriate parametric mappings one obtains wavelet bases on fairly general
domains. Thus, the properties of the employed wavelet basis on the interval are crucial for the
properties of the resulting bases on general domain.

The first biorthogonal spline-wavelet bases on the unit interval were constructed in [5]. However
some of them are badly conditioned. Then several modifications were proposed. We will men-
tion here only the recent construction by M. Primbs [6] which seems to outperform the previous
constructions with respect to the condition number along with spectral properties of the cor-
responding stiffness matrices for linear and quadratic spline-wavelets. In this contribution, we
present construction of cubic spline wavelets on the unit interval with a nearly optimal condition
number (comparable with the condition number of the spline wavelet bases on the real line).

First of all, we summarize the desired properties:

e Riesz basis property. The functions form a Riesz basis of the space L? ((0,1)).

e Locality. The basis functions are local. Then the corresponding decomposition and recon-
struction algorithms are simple and fast.

e Biorthogonality. The primal and dual wavelet bases form a biorthogonal pair.

e Polymial exactness. The primal bases have polynomial exactness of order N and the dual
bases have polynomial exactness of order N. As in [4], N + N has to be even and N > N.

e Smoothness. The smoothness of primal and dual wavelet bases is another desired property.
It ensures the validity of norm equivalences.

e (losed form. The primal scaling functions and wavelets are known in the closed form. It is
requested property for the fast computation of integrals involving primal scaling functions
and wavelets.

o WWell-conditioned bases. Our objective is to construct wavelet bases with improved condition
number, especially for larger values of N and N.
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From the viewpoint of numerical stability, ideal wavelet bases are orthogonal wavelet bases.
However, they are usually avoided in numerical treatment of partial differential and integral
equations, because they are not accessible analytically, the complementary boundary conditions
can not be satisfied and it is not possible to increase the number of vanishing wavelet moments
independent from the order of accuracy. Moreover, sufficiently smooth orthogonal wavelets
typically have a large support.

2 Construction of wavelet bases on the interval

Majority of constructions of wavelets start with the construction of the primal scaling bases. Here,
we use the primal scaling bases designed in [1], because they are known to be well-conditioned.

Let N be the desired order of polynomial exactness of the primal scaling basis and let t/ =

(ti)ijzt]\]fv__h be a sequence of knots defined by

ti = 0 for k=-N+1,...,0,

. k .
t, = o for k=1,...2 -1,
27
t =1 for k=2/,...,2 4+ N—1.
The corresponding B-splines of order N are defined by

B \ (x) = <t£+N—t£> {ti,...,tiJrN]t(t—x)f_l, z €[0,1], (1)

where (z), := max{0,z} and [t1,...ty], f is the N-th divided difference of f. The set ®; of
primal scaling functions is then simply defined as

¢j7k:2j/23,§7N, for k=-N+1,...,27 -1, j>0. (2)

The inner functions are translations and dilations of a function ¢ which correspond to the pri-
mal scaling functions constructed by Cohen, Daubechies, Feauveau in [4]. In the following, we
consider ¢ from [4] which is shifted so that its support is [0, N].

The desired property of the dual scaling basis ® is biorthogonality to ® and polynomial exactness
of order N. Let ¢ be dual scaling function designed in [4] which is shifted so that its support is

~N+1,N+N — 1]. Then inner scaling functions are its translations and dilations of ¢:

0,,=2"7¢(2-~k), k=N-1,...20 - N-N+1 (3)

Further, there will be two types of basis functions at each boundary. Basis functions of the first
type are defined to preserve polynomial exactness in the same way as in [5]:

N-2
O = 2/? Z <pkNJ]$_1,¢(‘—l)>¢(2j'—l)|[0,1]a k=1-N,....N—-N, (4)
I=—N—-N+2
where p]kv ~1 are Bernstein polynomials defined by
. - N—1 - -
pp(x) = b‘N“( ) >xk b—a)N ' k=0,...,N-1 (5)
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The reason for the choice of Bernstein polynomials consists in their well-conditionality on [0, 8]
relative to the supremum norm. In our numerical experiments, the constant b = 10 seems to be
optimal.

The basis functions of the second type are defined as
i N+N-1 ~ ~
Oie=272 > me(@-2k—1)]gy, k=N-N+1,...,.N-2, (6)
I=N-1-2k

where h; are scaling coefficients corresponding to ¢. Then they are as much as possible similar
to the inner functions.

The boundary functions at the right boundary are defined to be symmetrical with the left
boundary functions:

Ok =052 np1k(1—), k=2 -N-N+2..2 -1 (7)

Since the set ©; := {6’]-71? ck=—-N+1,...,2 — 1} is not biorthogonal to ®;, we derive a new
set ®; from ©; by biorthogonalization. Let A; = ((¢j,k,9j,l>)§fl;l_N+l, then viewing ®; and ©;
as column vectors we define

=

®; = A "0, (8)
assuming that A is invertible, which was the case for all tested choices of IV, N.

The final step is to determine the corresponding wavelets. This problem can be transformed
from functional analysis to linear algebra by a general principle called stable completion which
was proposed in [2]. The initial stable completion was found by the method from [5] with some
small changes.

For more details on the construction, the adaptation to complementary boundary conditions,
properties of constructed bases, and the comparison of the quantitative behaviour in the adaptive
wavelet method for cubic wavelet bases from [3| and [6], we refer to [3].
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1 Introduction

Substructuring Domain Decompositon (DD) methods [1] are widely used as preconditioners for
solving large systems of linear algebraic equations obtained by finite element discretization of
second order elliptic problems. There are two main classes of the substructuring methods: primal
methods (like classical Neumann-Neumann method, BDD or BDDC) and dual ones (like FETI
or FETI-DP methods). Both classes can be regarded as equivalent in a sense that they can be
described in a common framework and that a primal method and the corresponding dual one has
the same convergence properties (see [2]). Both classes also use some sort of weighted averaging
(or weighted distribution) of values across the interface.

Although we concentrate on BDDC in this paper, we believe that our ideas can be used for other
primal and dual substructuring DD methods as well. It can be found in |2] that a primal (BDDC)
and the correspondig dual (FETI-DP) method can be determined by a choice of two operators:
the injection R and the averaging E, which also appear in the estimate of the condition number
of the preconditioned operator. Operator R represents continuity conditions across the interface
and thus also the choice of the coarse space. A lot of work has been devoted to investigation of
influence of different choices of R on convergence properties. For significant results of this effort
see for instance |1] or [3|. In this paper we focus on the averaging operator F, which seems to
be left out of main direction of research so far. We introduce a general framework for derivation
of the averaging operator, from which we recover the standard choice of the operator £ found in
literature and suggest some new proposals.

2 Primal and dual substructuring methods

Let us consider a boundary value problem with a self-adjoint operator defined on a domain
Q) C R? or R3. If we discretize the problem by means of the standard finite element method
(FEM), we arrive at the solution of a system of linear equations in the matrix form

Ku="f, (1)

where K is large, sparse, symmetric positive definite (SPD) matrix and f represents the load
vector. Let us decompose the domain €2 into N non-overlapping subdomains Q;, i = 1,..., N.
Unknowns common to at least two subdomains form the global interface denoted as I'. Remaining
unknowns are classified as belonging to subdomain interiors. The global interface I' can be
expressed as union of local interfaces I';, ¢ = 1,..., N, containing interface unknowns involved
just in subdomain €2;.
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The first step typical for substructuring DD methods is the reduction of the problem to

the interface. Without loss of generality, suppose that unknowns are ordered so that interior

unknowns form the first part and the interface unknowns form the second part of the solution
. ~ 1T . . ~

vector, i.e. u = [ u, u ] , where u, stands for all interior unknowns and u for unknowns at

interface. System (1) now can be formally rewritten to block form

Koo Ko U, _ f:(\) (2)
Ko Ki; u f |
The hat symbol (7)) is used to denote global interface quantities. If we suppose the interior
unknowns ordered subdomain after subdomain, then the submatrix K, is block diagonal with

each diagonal block corresponding to one subdomain. After eliminating all the interior unknowns
from (2), we arrive at Schur complement problem for the interface unknowns

Sti=g, (3)

where S = K. — KrOKgolKor is the Schur complement of (2) with respect to interface and
g = T KM)K(;)lfO is sometimes called condensed right-hand side. Interior unknowns u, are
determined by interface unknowns U via the system of equations Kyou, = f, — K, u, which
represents N independent subdomain problems with Dirichlet boundary condition prescribed on
the interface and can be solved in parallel. The main objective represents the solution of problem
(3), which is solved by the preconditioned conjugate gradient method (PCG).

The main idea of the primal DD substructuring methods can be expressed as splitting the
given residual of PCG method to subdomains, solving subdomain problems and projecting the
result back to the global domain. A primal additive preconditioner of the Neumann-Neumann
type can be written as Mp = EST'ET, where operator E7 represents splitting of the residual
to subdomains, S~™! stands for solution of subdomain problems, and E represents projection of
subdomain solutions back to the global problem by some averaging. The condition number x of
the preconditioned operator Mp§ is bounded by

k< [|RE|S = |II - RE|[§, (4)

where operator R splits the global interface into subdomains and relation FR = I is assumed,
which means that if the problem is split into subdomains and then projected back to the whole
domain, the original problem is obtained. The energetic norm on the right-hand side of (4) is
defined by the scalar product as ||u||§ = (Su,u). The estimate (4) can be found in [2].

The main idea of the BDDC (|2]) is to introduce a global coarse problem by imposing continuity
conditions across the interface in selected coarse unknowns, in order to achieve better precondi-
tioning and to fix ‘loating subdomains’ to guarantee invertibility of S. R now represents splitting
of the global interface into subdomains except the coarse unknowns and E7 distributes residual
among neighbouring subdomains only in those interface unknowns which are not coarse. Thus in
BDDC, only part of the global residual is split into subdomains; residual at the coarse unknowns
is left undivided — it is processed by the global coarse problem.

Dual methods can be described using the complementary projection to projection RE. It is
usually expressed by composition of other two operators as [ — RE = B};B. Operator B specifies
jump at interface values coming from adjacent subdomains and operator B;S (determined by F)
distributes a given jump across the interface among adjacent subdomains. Relationship BBg =17
is assumed. Instead of solving (3), linear system BS™I1BT \ = BS'ET ¥ is solved for unknown A
using preconditioner Mp = BpSBp?. For the condition number of the preconditioned operator
MpS~!, the same upper estimate as for primal method is valid, see [2]: k < ||BgB||z =
11— RE[[g = [|RE||5
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3 Choice of the averaging operator E

We assume that the operator R is given and our goal is to design the averaging operator E so
that it in some sense minimizes the energetic norm on the right hand side of the estimate (4).
Let us show the main ideas on the simple example derived from some scalar equation solved on
the domain splitted to just two subdomains, without coarse unknowns (more detailed analysis
can be found in [4]). In this case R and a standard choice of F have the matrix form

I
R:[I}, E=[A I-A], (5)
where A = diag(ay, ag,...,qy) is a diagonal matrix of weights «; at interface nodes of the first

subdomain.

Our approach is to start with some fixed u = (uy, ug)? with the interface jump d = uy —u; and
try to find E so that it minimizes energy norm of the projection (I—RE)u of the given vector u.
The square of the energy norm can be expressed as ||(I — RE)u||?9 =u/I-RE)'SI-RE)u =
dT (AT SA — ATS! —S'A + 8! )d, where S are local Schur complements and we use the fact
that S = diag(S*,S?) and S = S! + S in the case of two subdomains. The formula above can
be seen as a quadratic function of variables «;, which can be minimised by computing all partial
derivatives and equating them to zero:

0 ~ )
B 1T — RE)“H% = 2d; Z Sijagdy — Z S}jdj =0 Vi. (6)
j J

J

Here d; stands for the i-th component of the jump vector d and elements of the matrices S and
S! are denoted as 535 and S}j, respectively. Values of «; obtained from (6) are tailored to the
interface jump d of the given u. Let us take d as a test vector which can uncover hidden features
of S and R and, moreover, which can be chosen so that it simplifies the system (6). One option is
to choose all the cartesian basis vectors e, one after another, which leads to the popular choice
of

o = sii/(sii + 57 - (7)

For less elementary test vectors d we make an additional simplification: Let us assume that all «;
are equal to the same value of « for some set of nodes (so we are going to find some average
value). Then, after adding all equations (6) together, we get

a=drstd/d? (st +8?)d. (8)

This formula can be generalized to more than 2 subdomains. Our proposition is to choose several
test vectors with nonzero values at some selected nodes only, typically face or edge, and compute
corresponding value of « for that face or edge.

3.1 Numerical results and conclusion

For a simple preliminary test a 2D Poisson equation on a rectangular domain was chosen. The
domain was divided into two rectangular subdomains of the same size and shape, both of which
touch the boundary with prescribed Dirichlet boundary condition. The problem was discretized
by FEM with bilinear elements. BDDC was used just as an iteration method, not as a precon-
ditioner combined with PCG. Four different methods for choice of E were tested:
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| iter. | Method I | Method I | Method III | Method IV a

without coarse nodes
1. 1.5001 1.4966 0.4235 1.5001 0.500
2. 0.3872 0.3854 0.0806 0.0001 0.276
3. 0.0999 0.0992 0.0153 2e-06 0.424
4. 0.0258 0.0255 0.0029 1le-09 0.492
5. 0.0066 0.0066 0.0006 4e-15 0.276
2 coarse nodes
1. 0.7349 0.7332 0.2402 0.7349 0.500
2. 0.0929 0.0925 0.0140 0.0211 0.376
3. 0.0117 0.0117 0.0008 0.0012 0.376
4. 0.0015 0.0015 5e-05 7e-05 0.376
5. 0.0002 0.0002 3e-06 4e-06 0.376

Table 1: Comparisson of discussed methods.

I: arithmetic average, i.e. a = 0.5,

I1: weighted average (7), i.e. o = si/ (sh + s2) ,

IIT: proposition (8) with d = (1,...,1), i.e. a =3}, sllj/ Z”(sllJ + slzj) :

IV . proposition (8) with d chosen as actual interface jump.
Table 1 contains norms of errors (differences from exact solution) at first 5 iterations. There
are two different choices of coarse unknowns: either none (first part of the table), or 2 nodes
at the opposite ends of the interface (second part). For Method II, computed values of «;
were between 0.4997 and 0.5000 in both cases (i.e. very close to the arithmetic average). For
Method III, value of o was 0.276 for the first case and 0.397 for the second. For Method 1V,
values of o were recomputed in every step and are presented in the last column. Very similar

results were obtained also in the case of two rectangular subdomains different in size.

For the simple test problem, it seems that Methods III and IV outperform Methods I and II. An
interesting observation is that for the first three methods, using coarse unknowns leads to better
performance (as one would expect), while it slightly worsens the convergence of Method IV.
These are just preliminary results and numerical tests will be performed for 2D and 3D problems
with more subdomains.
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1 Introduction

Classical 2-norm condition estimators often assume a given triangular factorization and estimate
the condition numbers of the triangular factors. For instance, if the matrix A is symmetric
positive definite and A = LL” is its Cholesky decomposition, then k(A) = (L) is used.
So-called incremental condition estimation for (lower) triangular matrices was proposed at the
beginning of the nineties [1], [2]. It computes a sequence of approximate condition numbers of
the leading upper left submatrices of growing dimension. The approximation for the current
submatrix is obtained from an approximate singular vector constructed without accessing the
previous submatrices. This makes the procedure relatively inexpensive and particularly suited
when a triangular matrix is computed one row at a time. A similar strategy was proposed later [5]
and recommended for sparse matrices.

In our talk we show that the two techniques may differ considerably with respect to their ability
to find accurate approximations of either the minimal or the maximal singular value, although
there is no general superiority of one technique for the condition number. We will also explain
how the differences can be exploited when the inverse of the triangular matrix is computed along
with the triangular matrix itself. This can be done at low expenses; see [4] for a discussion
of well-known implementations and [3] for a recent strategy. Using the inverse, we obtain an
incremental condition estimator which is significantly better than the estimators of [1] and [5].

In this extended abstract we give a brief description of the original incremental technique from [1]
and a new interpretation of the alternative technique from |5]. Then we present experiments
combining both techniques when the inverse of the triangular matrix is available.

2 The original incremental condition estimation technique

The incremental condition estimation of [1] for lower triangular matrices can be described as
follows. Assume we have given a vector  which comes close to a maximum norm solution of
Lz = d with ||d|| = 1. Then opin(L) = 1/||z|| and Gmin(L) = 1/||z| is used as an approximation.
To find an approximation to the minimal singular value of

(5

one searches for s = sin ¢ and ¢ = cos ¢ such that

(5 9(2)-()
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T

where o = v* z. The parameters s and c are chosen such that the new approximate singular

ST .

vector <6_8a> has maximal norm. In other words, s and ¢ solve

¥

— sa))?
2

~

2

max  s%||z|> + (c subject to A 4+s2=1. (3)
Cc,8

The solution to this maximization problem can be found in [1]. With the chosen ¢ and s, the
resulting approximate minimal singular value is

~ / 1 /

Umin(L ) = ~ Umm(L )

_ 2
Vol + Lozt

One can estimate the largest singular value similarly. Assume we have given a vector x which
comes close to a minimum norm solution of Lz = d with ||d|| = 1. Then 0,4, (L) ~ 1/||z|| and
Fmaz(L) = 1/||z|| is used as an approximation. To find an approximation of o4 (L"), solve the
minimization problem

— sa)?

min  s2z||? + (c 5 subject to A +s?=1, (4)
c,8 vy

and define, with the resulting ¢ and s, the estimate as

1

2
2 2 c—s«
Js o2 + (<=2

3 An alternative incremental condition estimation technique

Omaz (L,) = ~ Umax(L/)-

Now suppose we want to estimate the condition number of an upper triangular matrix

R = (1(’;’ f;) . (5)

Of course, one may apply the technique mentioned above to (R')T, exploiting the fact that
singular values are invariant under transposition. This would amount to approximating the
extremal right singular vectors of (R')”, although in some cases the extremal left singular vectors
of (R")T may be easier to approach. To find left singular vectors (i.e. right singular vectors
of R'), we set up the problem as follows. With an approximate singular vector x satisfying
Rz = d, ||d|| = 1, we will search for numbers «, 5 such that

0 Y (&% g1e’ ’
Then we ask the numbers Oé,ﬂ to satisfy

opt. 32| + o? subject to B2 + o?||v)|? + 20807 d + 7%a® =1, (7)

where opt stays for maximization if we approach o, (R’) and for minimization if we approach

Omaz(R').
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Introduce the abbreviations a = ||v||*> + 4% and b = vTd. According to elementary geometry
the numbers «, 0 satisfying the constraint in (7) lie on an ellipse with the origin as center and
semi-axes rotated by an angle of

2b
<;5:1/2:3nfctala1 ;

the lengths of the semi-axes a’ and o' are
a' = acos? ¢ — 2bcos ¢sin ¢ + sin? @, V' = asin? ¢ + 2bcos ¢sin ¢ + cos? .

A parametrization of the ellipse (and of o and f3) is

cos ¢ ¢ sing - ¢
<a> — | L, C,OS( )+ oA sint) ,  0<t<om, (8)
B N sin(t) + N cos(t)

and (7) can be written as

OPtocrcar  (sin(t) cos(t)) <m“ m12> (:;’Z%) where

ma1  Ma22
cos? ¢ H ’2 sin2 ¢ cos (;5 sin ¢ H ’2 sin ¢ cos ¢
<m11 m12> _ ( |z l® + = | v, \ﬁ>
m m T\ cos¢psing 2 smqb cos ¢ sm qb 2 cos? ¢ :
21 22 NG \/—H z||* + Vo o |z + o

In case the optimization problem is a minimization problem for approximating the largest sin-
gular value, one determines the smallest eigenvalue of the matrix M = (mij)lgmgg and the
corresponding normalized eigenvector is substituted in (8), yielding a solution of (7). When
approximating the smallest singular value one determines the largest eigenvalue of M and the
corresponding normalized eigenvector is substituted in (8), yielding a solution of (7). The eigen-
values of M are

m11 + mag £ /(M1 — mag)? + 4m,
2

and the corresponding normalized eigenvectors are

At =

1 1 1 1
\/1 + Ay —mq1)? <)\+ - m11> ’ \/1 + Ay — mag)? <_)‘+ + m22> ’

The technique of this section was proposed in |5|. Our description differs from [5] and represents
an alternative derivation of this technique.

4 Combination of the two techniques

Clearly, the two described techniques do not give identical results in general. It is hard to say
which one is better. The conclusion in |5] is that the newer technique is more suitable for sparse
matrices, but otherwise superiority of a particular variant is not observed in the experiments.

In the special case where besides the triangular factorization the inverses of these factors are
available, we can derive an improved incremental condition estimator. Inverse factors are com-
puted, for example, as a by-product of the recently introduced BIF method [3|. At first sight
it may seem trivial that condition estimation works better when the inverse of the matrix is
available. This is, however, not the case; in fact, the improvement consists of a carefully selected
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Figure 1: The values of 'Z(é); (lower curve) and %{;)2 (

matrices of dimension 100.

upper curve) for 50 random s.p.d.

combination of the techniques from [1] and [5]. Details on this combination are to be published
in a forthcoming paper. Here we only present a numerical experiment.

We generated 50 random matrices B of dimension 100 with the command B = randn(100, 100)
in Matlab and we computed the Cholesky decompositions LL” of the 50 symmetric positive
definite matrices A = BBT with the BIF method, hence the factor L™! was also computed.
We first computed the condition number estimations &(L) obtained with the first technique
(with (3)-(4)) from the factor L and then the improved condition number estimations &(L, L™1)
obtained with our combination of both techniques [1] and [5] from the factors L and L~!. In
Figure 1 we display the quality of these estimations through the number

RIL? ALY
P T

where k(A) is the true condition number. Clearly, #(L, L!) is a much more accurate approxi-
mation.

Acknowledgement: This work is part of the Institutional Research Plan AV(0Z10300504 and
is supported by the project TAA100300802 of the Grant Agency of the Academy of Sciences of
the Czech Republic.
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Worst-case GMRES: characterization and examples

V. Faber, P. Tichy, J. Liesen

2 Institute of Computer Science AS CR, Prague

Introduction

Let a nonsingular matrix A € R™*™ and a vector b € R™ be given. Suppose that we apply the
GMRES method with the initial guess zg = 0 to the linear system Ax = b. Then this method
computes a sequence of iterates x € (A, b), so that the kth residual r, = b — Axy, satisfies

[7kll = min [|p(A)b]. (1)
PETE

Here 7, denotes the set of polynomials of degree at most k and with value one at the origin, || -||
denotes the Euclidean norm, and Kj(A,b) = span{b, Ab,... A*~1b} is the kth Krylov subspace
generated by A and b. Without loss of generality we will assume that [|b]| = 1.

A common approach for investigating the GMRES convergence behavior is to bound (1) inde-
pendently of b, and thus to study the algorithm’s worst-case behavior. In particular, for each
iteration step k one may analyze the worst-case GMRES approzimation
Yr(A) = max min ||p(A)b]|. (2)
llol|=1 PE™k
It is clear that there exists a starting vector w = w(A, k) and the corresponding GMRES poly-

nomial py ., € 7 such that ¢ (A) = ||prw(A)w|. Such a vector and polynomial will be called
a worst-case GMRES starting vector and a worst-case GMRES polynomial for A and step k.

Using the submultiplicativity of the Euclidean norm (or by changing the order of maximization
and minimization in (2)), we can easily find the following upper bound on (2),
Yr(A) < min|p(A)]| = min max [[p(A)b]| = wi(A). (3)
pEm pemy, ||bl|=1
The quantity ¢ (A), called the kth ideal GMRES approzimation, has been introduced by Green-

baum and Trefethen [4|. The polynomial for which the minimum is attained in (3) is called the
kth ideal GMRES polynomial of A.

After the 1994 paper [4], several studies have been devoted to the problem of characterizing the
relation between ¥, (A) and ¢r(A), and in particular the tightness of the inequality (3). The
best known result is that (3) is an equality for all £ > 0, whenever A is normal [3, 5|. Some
nonnormal matrices A are known for which 95 (A4) < ¢r(A), even ¥y (A) < pr(A), for certain k,
see |1, 8]. However, it is still an open problem whether for larger classes of nonnormal matrices
the quantity ¢x(A) indeed represents the essence of the GMRES process.

In this contribution we concentrate mainly on characterization of the worst-case GMRES problem
(2), and present results of our recent paper [2]. We will show that worst-case starting vectors
have some special properties. In particular, they satisfy the so called cross-equality and they
are always right singular vectors of the matrix equal to the corresponding worst-case GMRES
polynomial in the variable A. While the ideal GMRES polynomial is always unique, we will show
that a worst-case GMRES polynomial need not be unique.
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Special properties of worst-case starting vectors

The following theorem shows that if we apply GMRES to A and a worst-case starting vector w,
and afterwards GMRES to AT and the previous (normalized) residual vector, we obtain again
the original starting vector w (up to a scaling factor). To emphasize that ry is the kth GMRES
residual for the matrix A and the starting vector b, we use the notation rp, = GMRES(A, b, k).

Theorem. Let A € R™ "™ be a nonsingular matriz, and k a positive integer, k < d(A) where
d(A) denotes the degree of the minimal polynomial of A. Let b'® be a unit norm worst-case
GMRES starting vector for A and step k and consider the following process:

re = GMRES(A,b@, k)

o — Tk

e ll
sy = GMRES(AT, b k)
b — Sk

(B

Then
b =b®  and skl = ||rel = vr(4).

This is an example of what we call the cross-equality (this term has been coined by Zavorin in
an unpublished technical report [9]). Next, we will present and discuss the following result.

Theorem. Let A € R™ "™ be a nonsingular matriz, and k a positive integer, k < d(A). If w is
a unit norm worst-case GMRES starting vector for A and step k and py, ., € T} the corresponding
GMRES polynomial, then ¢y (A) is a singular value of py,(A) and w is a corresponding right
singular vector of py ., (A).

Uniqueness

We first summarize the known results on uniqueness of the solution of the worst-case GMRES
problem (2) and the ideal GMRES problem (3).

Lemma. Let A € R™ "™ be a nonsingular matriz, and k a positive integer, k < d(A). Then

1. the kth ideal GMRES polynomial is unique [4, 6];

2. if Yp(A) = pr(A), then the kth worst-case GMRES polynomial is unique, and it is equal
to the kth ideal GMRES polynomial of A [7].

Based on the results of the previous theorems we will show that the kth worst-case GMRES
polynomial need not be unique, if 13 (A4) < pr(A). Note that the condition ¥y (A) < ¢x(A) is
a necessary but not a sufficient condition for the non-uniqueness of the kth worst-case GMRES
polynomial. This phenomenon will be demonstrated numerically on a 4 x 4 matrix from [8].

Acknowledgements: The work of Petr Tichy was supported by the project M100300901 of the
institutional support of ASCR, by the GAAS grant TAA100300802, and by the Institutional Re-
search Plan AV0Z10300504. The work of Jérg Liesen was supported by the Heisenberg Program
of the Deutsche Forschungsgemeinschaft.
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Backward error in linear least squares problems:
estimates and their accuracy

S. Gratton, P. Jirdnek, D. Titley-Peloquin

INPT-IRIT, University of Toulouse and ENSEEIHT
CERFACS, Toulouse

Mathematical Institute, University of Oxford

We consider a linear least squares (LS) problem

find € R™ such that [|b — Az|]; = m[iRn |b — Ax||2, (1)
TER™

where A € R™ "™ m and n are positive integers, b € R™, both A and b are nonzero, and
[v]l2 = VoTv denotes the Euclidean norm. The vector & is a solution of the LS problem (1) if
and only if & satisfies the system of normal equations AT Az = ATb and provided that A has full
column rank the problem (1) is uniquely solvable with & = (AT A)~'ATh = ATb, where Al is the
pseudo-inverse of A. For more information, see, e.g., |1, 3, 10].

Let x € R™ be an approximation to the solution & of the LS problem (1). We are interested in
computing the backward error associated with the approximation x, i.e., we want to find the size
of “smallest” perturbations F and f of the data A and b, respectively, such that x is the solution
of the perturbed LS problem with the matrix A + E and the right-hand side b + f. In [16]
Waldén, Karlson, and Sun provide an explicit expression for the backward error p defined by

ME%?UWiWWﬂ(A+Efw+f—CA+EW%=@7 (2)
where 6 is a given positive weighting parameter and | - || denotes the Frobenius matrix norm.
We denote by

Ollrl2

wEIgijy{ll[Eﬁf]lIF; (A+E)r=b+f} = r=b- Az, (3)

V1 +2fl3

the backward error of z associated with the linear equations Az = b (see, e.g., |2, Theorem 2.2],
[7, Problem 7.8|) and by opin(M) the minimal singular value of a matrix M. Then

p = min{w, omin (M)}, (4)
where )
M= [w([ — TTT):| ’ (5)

see [16, Corollary 2.1] or |7, Theorem 20.5]. If the LS problem (1) is not compatible, then
= omin(M) < w.

Computing the minimal singular value of the matrix M can be expensive and one can be rather
interested in its good and cheaply computable estimate. First bounds of y were given by Stew-
art [13, 14], which can be interpreted as Rayleigh quotient approximations to the minimal singular
value of the matrix M in (5). The backward error u can be bounded from above by ji; and fio
defined by

__ [[Mrflp  [JAT [l o [ Msllz _ [MAl2 6] Parll
= = ; fiz = min = = —, (6)
I71l2 I7]]2 0£sLR(A) ||s]l2 172 1+ 62]z]3
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where 7 = b— AZ is the residual associated with the solution of the LS problem (1) and P4 = AAT
is the pseudo-inverse of A. Neither fi; nor fis is however guaranteed to be a good estimate of the
backward error p. We have the bounds

1 _
Vo (A1

1
fo < p < fho.
\/wz/o-?nin(A) +1

Therefore min{jiq, fie} is close to the backward error p if the scaled residual norm w is either
larger than opax(A) or smaller than op,in(A) (or at least of the same order of magnitude).
v=——|[(ATA+ WD)V A ||y =

i ] (AT T,

proposed by Karlson and Waldén [9] can be also used as an estimate of the backward error p.
In [6] Gu studies its accuracy and obtains (for A having full column rank and r # 0) the bounds,
which can be expressed in the form

< p < iy,

The literature suggests that the quantity

w w
1712

<

1+5
9

>

il

(see also [5, Equation (1.5)]). In [4] Grcar shows that v is asymptotically equal to p in the sense
that

<

(7)

3
o
=R

.U

lim — =1.

=T W
Methods of computing v were considered by Grear, Saunders, and Su [5] (see also [15]) and its
efficient computation in the LSQR method |12, 11] was proposed in [§].

The bounds (7) show that v is a good approximation to the backward error p provided that x
is a good approximation to Z in the sense that the norms of their corresponding residuals are
close to each other. The lower bound in (7) could suggest that v might be a poor approximation
of w if ||7||2 is much smaller than ||r|l2. Numerical experience however shows that v is a very
good approximation of the LS backward error u; see, e.g., [5, 15, 8|. Indeed, it appears that the

estimate v satisfies
1 1

14
N S - —
var o C

el

Therefore the quantity v is always an accurate estimate of the backward error u.

References

[1] A. Bjorck: Numerical methods for least squares problems. SIAM, Philadelphia, 1996.

[2] X.-W. Chang, C.C. Paige, and D. Titley-Peloquin: Characterizing matrices that are consis-
tent with given solutions. STAM J. Matrix Anal. Appl. 30 (4), 2008, 1406 1420.

[3] G.H. Golub and C.F. Van Loan: Matriz computations. The Johns Hopkins University Press,
Baltimore, third edition, 1996.

[4] J.F. Grear: Optimal sensitivity analysis of linear least squares. Technical Report LBNL-
52434, Lawrence Berkeley National Laboratory, 2003.

37



[5]

6]

7]

18]

19]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

J.F. Grcar, M.A. Saunders, and Z. Su: FEstimates of optimal backward perturbations for
linear least squares problems. Technical Report SOL 2007-1, Department of Management
Science and Engineering, Stanford University, 2007.

M. Gu: Backward perturbation bounds for linear least squares problems. SIAM J. Matrix
Anal. Appl. 20 (2), 1998, 363 372.

N.J. Higham: Accuracy and stability of numerical algorithms. STAM, Philadelphia, PA, 2nd
edition, 2002.

P. Jiranek and D. Titley-Peloquin: FEstimating the backward error in LSQR. STAM J. Matrix
Anal. Appl. 31 (4), 2010, 2055-2074.

R. Karlson and B. Waldén: FEstimation of optimal backward perturbation bounds for the
linear least squares problem. BIT 37 (4), 1997, 862 869.

C.L. Lawson and R.J. Hanson: Solving least squares problems. Prentice-Hall, Englewood
Cliffs, NJ, 1974.

C.C. Paige and M.A. Saunders: ALGORITHM 583; LSQR: Sparse linear equations and
least-squares problems. ACM Trans. Math. Software 8 (2), 1982, 195-209.

C.C. Paige and M.A. Saunders: LSQR: an algorithm for sparse linear equations and sparse
least squares. ACM Trans. Math. Software 8 (1), 1982, 43 71.

G.W. Stewart:  An inverse perturbation theorem for the linear least squares problems.
SIGNUM Newsletter 10, 1975, 39 40.

G.W. Stewart: Research, development, and LINPACK. In: Mathematical Software III,
pages 1-14. Academic Press, New York, 1977.

Z. Su: Computational methods for least squares problems and clinical trials. PhD thesis,
Stanford University, 2005.

B. Waldén, R. Karlson, and J.-G. Sun: Optimal backward perturbation bounds for the linear
least squares problem. Numer. Linear Algebra Appl. 2 (3), 1995, 271 286.

38



Numerické metody vys$siho radu pro reSeni transportnich tiloh

M. Hanus, M. Smitkovd

Katedra matematiky, Zapadoceska univerzita, Plzen

1 Uvod

Numerické modelovani transportnich procesi ¢ v obecnejsi roviné zdkont zachovani se stile tesi
velké pozornosti, a to jak uzivateli (od biologt zajimajicich se o proudéni krve v cévich az napf.
po jaderné fyziky simulujici Sifeni neutronového zéateni), tak védecko-vyzkumnych pracovnikii.
Ti vytvareji stale efektivnéj§i a presnéjsi numerické metody schopné zachytit i slozité fyzikalni
jevy, jimiz jsou tlohy tohoto typu ¢asto doprovazeny. Velmi oblibené v této oblasti byly a stéle
jsou metody koneénych objemt, v soucasnosti zejména moderni schémata s vysokym rozliSenim.
Dnes jiz vSak jejich dominantni postaveni neni zdaleka tak vyrazné a do popfedi se dostévaji
alternativni metody, jimiz se budeme zabyvat v tomto piispévku.

2 Testovaci tiloha

Pro ucely testovani a porovnéni dale zminénych metod byla vybréna tloha z ¢l. [2] a bylo pro ni
metodou charakteristik sestrojeno pfesné feSeni.

Oblast: ¢tverec Q = [0,1] x [0,1], s hranici 02 =T"_UT',, kde

' ={xe€dN:a(x) n(x) <0} (vtokova hrana),
'y ={xe€d:a(x) n(x) >0} (odtokova hrana),

n znaci vektor vnéjsi normaly k Q2 a x = (x,y).

o Rovnice:
V- (a(x)u(x)) + c(x)u(x) =0 v Q, u(x) =g(x) nal_. (1)
e Parametry:
2 _
a(x) = 10y 1 _{}2; 1 , c¢(x) =—-V-a(x)=11.
o Okrajové podminky:
0 pro (x=0AN05<y<1)V(05<z<1Ay=0),
g(x) =141 pro (x=0AN0<y<05)V(0<z<05Ay=0),

sin?(my) prox=1A0<y<1.

e Presné reSeni: zndzornéno na obr. 1.
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Obrazek 1: Presné feSeni vyhodnocené ve 100 x 100 bodech ¢tverce €.

3 Metody kone¢nych prvkia (MKP)

MKP, popularni zejména pro FeSeni diferencialnich tiloh druhého a vysSiho fadu, nebyly zpocatku
pro transportni vypocty piili§ atraktivni. Pfedpokladaji totiz hladkost feseni, kterou nelze
obecné v pfipadé parcidlnich diferencidlnich rovnic hyperbolického typu o¢ekavat. Prilom ucinil
az ¢lanek [3|, v némz byla pFedstavena metoda nespojitych kone¢nych prvka ("Discontinuous
Galerkin Method", dale jen DGM). Pfestoze DGM umoziuje vyuzit piiznivé vlastnosti MKP
(geometricka flexibilita, snadno pouzitelna aproximace vysokého ¥adu atd.) i pro ulohy s nehlad-
kym FeSenim, jeji pouziti je obvykle spojeno s vét§imi vypocetnimi néroky nez u klasické MKP.
Zaroven proto probihal vyvoj tzv. stabilizovanych metod koneénych prvkia (SMKP), v nich? je za-
chovéna globalné spojita aproximace feSeni a problémy s jeho nizkou regularitou jsou adresovany
tpravami diskrétni formulace.

DGM i SMKP vyuzivaji standardni rozklad (triangulaci) Q = Uger, K oblasti © na mnoZinu
7, disjunktnich elementt (v této praci ¢tverci) K a piiblizné FeSeni uy vyjadiuji jako linearni
kombinaci kone¢ného poé¢tu nad nimi definovanych bézovych funkci. Dosazenim tohoto rozvoje
do rovnice (1) a aplikaci Galerkinovy metody je ptvodni spojita tuloha v obou pfipadech pieve-
dena na FeSeni soustavy linedrnich rovnic pro nezndmé koeficienty rozvoje. Praktické provedeni
tohoto postupu a tvar vysledné soustavy se v8ak pro oba typy metod lisi.

Z prostorovych divodi se zde budeme vénovat pouze nespojité Galerkinové metodé. Prostor
bézovych funkci je pro ni definovan jako

Vi, = {v € L*(Q);v|x € PP(K) VK € 1,},

kde PP piedstavuje prostor polynomu stupné nejvyse p definovanych na elementu K. Klasicky
Galerkintiv postup pro ziskani diskrétni verze dané tulohy vede v tomto piipadé (kdy je kvili
nedostatecné globalni hladkosti funkci z V3 nutné pro pouziti Greenovy véty integrovat po ele-
mentech) k jejimu nésledujicimu znéni: Najdi up, € V}, tak, aby Vv, € V}, platilo:

Z/ —upa - Vo, + cupvp) dx + Z /{auh}a [vp] d Z /a n)guy, ds,

Kery, e _ eCl'_
aujf,, kdyz a-n” >0, ; n 5
vpn” + vpn pro e ¢ 02
{aup}a = { ault, kdyz a-nf <0, [v,]= ’
vpN pro e C 052,

auﬁ;uﬁ

., kdyza-nf =0,

kde e znadi postupné hrany vSech elementt 73, a L, R sousedni elementy na jejich stranéich.
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Na funkce vy € V, se nekladou zadné pozadavky z hlediska spojitosti mezi elementy a teoretic-
ky ani z hlediska maximéalntho stupné p. To umoziuje relativné snadnou implementaci adap-
tivniho zjemiiovani sité (h-adaptivita) a zvySovani fadu aproximace (p-adaptivita) bez starosti
o konformitu elementti. Predbézné vysledky adaptivniho vypoctu jsou na obr. 2. Byla pouzita
jednoduché automatickd adaptivita, fizend velikosti L2 normy rozdilu feSeni na dané siti a jeho
L2-projekce na globalné zhrubenou sit. Na obrazcich je patrna dostateéné schopnost h-adaptivity
zachytit nespojitosti v feSeni. Pti pouziti elementt vyssiho fadu je lépe aproximovano feseni na
okoli nespojitosti blizko odtokové hrany, objevuji se v ném vsak nerealistické oscilace a ukazuje
se, ze upwinding zahrnuty v definici {-}a zde sam o sobé k zaruceni stability nestaci.

1.29

1.14
4 0.992
0.842
0.691
0.541
0.39
Fd0.24
0.0892
-0.0613
n -0.212

(a) p =0, h-adapt. — 83680 NDOF (b) hp-adaptivita — 85220 NDOF

II I! II I’ II

Obréazek 2: Adaptivni DGM. NDOF ... pocet neznamych po konvergenci adaptacniho procesu.
Cisla pfislugna barvam elementti odpovidaji fadu na nich def. bazovych funkei.

4 Residual distribution schemes (RDS)

Dalsi skupinou metod, jimZ je v posledni dobé vénovana zna¢né pozornost, jsou metody typu
RDS. Ty vznikly na zakladé myslenek inspirovanych pfistupy metody kone¢nych objemi i MKP
a piirozené se snazi zachovat dobré vlastnosti obou. Z prvné jmenované tak napf. robustnost
danou silnym vztahem k fyzikalni podstaté feSeného problému, z druhé nap¥. kompaktnost
diskretizace i pro aproximaci vy$§iho fadu, jeZ umoziuje vyvoj efektivnich implicitnich FeSi¢t
a jednoduchou paralelizaci (viz [1]).

Pro teseni testovaci tlohy nestacionarnim schématem typu RDS pouZijeme metodu ustalovani.
Pro nestacionarni feSeni vyssiho raddu piesnosti v ¢ase by bylo nutné pouzit konzistentni ¢asovou
diskretizaci, zde sta¢i nekonzistentni ¢asova diskretizace (detaily viz [1]).

Uvazujme skalarni zakon zachovani u; + V - (au) = 0 a libovolnou triangulaci oblasti €. Regeni
je, obdobné jako v MKP 1. fadu, aproximovano spojitou funkci linedrni na kazdém trojuhelniku,
uw(x,y,t) = >, ui(t)Ni(x,y), kde u;(t) je hodnota funkce w v uzlu i a N; jsou standardni P1
bazové funkce.

Definujeme reziduum na trojuhelniku K jako

¢K:—/utdx:7{ (au) - dn, kde 5:i/adx.
K oK K Jk

Metoda RDS je zaloZena na distribuci ¢asti tohoto rezidua na sousedni uzly. Vyjdeme-li z nekon-
zistentni formulace a Eulerovy explicitni integrace v ¢ase, ziskdme nasledujici schéma

At At
uith =i — == > BN =i — > o,
T tr
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kde S; je obsah dudlni buiiky okolo uzlu 7, tj. 1/3 obsahu vech
trojuhelnikd se spole¢nym vrcholem v uzlu i. Pro dany trojuhel-
nik pozadujeme, aby B + g5 4 I =1 (konzervativita). Dis-
tribu¢ni koeficienty S mohou byt stanoveny rtznymi zpisoby
s ohledem na pozadované vlastnosti monoténnosti a pfesnosti
feSeni, kompaktni stencil zustava zachovan. Forméalné definujeme
distribuovana rezidua jako ¢Z-K = ﬂquﬁK.

K,N

i =

Z metod typu RDS jsme vybrali N (Narrow) schéma s ¢
+ y
—# >_;k; (¢ — ¢}) (monoténni linedrni 1. ¥adu). Cisla k;,

definovana jako k; = %a-ni, nam dovoluji rozli§it mezi vtokovymi
a odtokovymi stranami a vrcholy trojuhelnika. Vektory n; jsou
definované jako vnitini normdély trojuhelniku o velikosti rovné
délce pfislugné strany. Pro vice informaci viz [1].

Obréazek 3:

Geometrické

znazornéni zakladnich prvka

RDS.

Obrézek 4: Numerické vysledky pro N schéma.

5 Zavér

Predbézné vysledky prezentované vyse slibuji pouzitelnost RDS i DGM pro feSeni netrividlnich
transportnich aloh. Ob& metody v8ak maji své neduhy (patrné pfi porovnéni obr. 2 a 4 s obr. 1,
na jejichz odstranéni autofi textu v soucasné dobé pracuji. Na seminafi pak budou RDS, DGM

i SMKP dikladnéji porovnany.
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Shape optimization in 2D contact problems with given
friction and a solution-dependent coefficient of friction

J. Haslinger, J. V. QOutrata, R. Patho

1.3 Charles University in Prague
2 Institute of Information Theory and Automation AS CR, Prague

1 Introduction

The contribution deals with shape optimization of elastic bodies in unilateral contact. We aim
at extending existing results (see [1] and [2]|) to the case of contact problems, where the co-
efficient of friction depends on the solution. To this end, let us consider the two-dimensional
Signorini problem, coupled with the physically less accurate model of given friction, but assume
a solution-dependent coefficient of friction. For analysis of the shape optimization problem in
the continuous, infinite-dimensional setting, its finite-dimensional approximation based on the
finite-element method and for convergence analysis the reader is kindly referred to [4]. Our pre-
sentation starts with the so-called mixed formulation of the algebraic state problem, involving
Lagrange multipliers for the normal contact displacement. It can be shown that if the coefficient
of friction is Lipschitz continuous with a sufficiently small modulus, then the algebraic state prob-
lem is uniquely solvable and its solution is a Lipschitz continuous function of the control variable,
describing the shape of the elastic body. In 2| its authors proposed the implicit programming
approach (ImP) combined with sensitivity analysis based on the generalized differential calculus
of Mordukhovich (see |5]) for the numerical solution of contact shape optimization problems
involving the Coulomb law of friction. We shall adapt their approach to our case and point out
the differences and difficulties compared to [2].

2 The state problem

Let an elastic body be represented by a domain Q C R? with Lipschitz boundary 0. Let 09
be split into three non-empty, disjoint parts I'y,, I'p and I'. with different boundary conditions:
on I'y, the body is fixed, while surface tractions of density P = (P, P,) act along I'p. On T,
representing the contact part of 92, the body is unilaterally supported by the rigid foundation
O = {(x1,72) € R?| 25 < 0}. In addition to the non-penetration conditions, we shall consider
effects of friction between 2 and O. We use the friction law of Tresca type, i.e. with an a-priori
given slip bound ¢ : I'. — R, but with a coefficient of friction F which depends on the solution.
Thus the friction conditions on I', read as follows:

up =0 = [Ti(u)| < F(0)g } onT
up #0 = Ti(u) = —sgn(u1)F(|luil)g ;

where T (u) : 92 — R stands for the first component of the stress vector associated with w. The
equilibrium state of Q is characterized by a displacement vector u : Q@ — R? which satisfies the
system of linear equilibrium equations in 2, the classical boundary conditions on I'y,, I'p and the
unilateral and friction conditions on I'.

Let the contact boundary I'. be piecewise linear, given by a vector v € U4, where U,q C Rﬁ is
the set of admissible control variables (p corresponds to the number of contact nodes). Following
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the finite element approximation as described in [4], we define the discretized Signorini problem
with given friction and a solution-dependent coefficient of friction as follows:

Find (u,A) € R” x R such that:
(Ala)u,v —u)y + D wil@)F(|(ur)il) (I(07)il = [(ur)il)
i=1

> (L(a),v —u)p + (A, v, —u,), YveR?,
(L—Au,+a)y,>0 VueRE,

Vs

where v, € RP stands for the subvector of v € R" consisting of the second components of
the displacement vector v at all contact nodes. Analogously, v, € RP consists of the first
components of v at the contact nodes. Further, A € C'(Uyg; R™*"?) and L € C'(U,q; R™) denote
the matrix and vector-valued functions associating with any a € U,y the stiffness matrix A(a)
and the load vector L(a), respectively. Let us note that the functions w; depend on the weights
of a quadrature rule and on the values of g at the contact nodes, as well. We assume that

w; € Cl(uad;(o,oo)) Vi=1,...,p.

In the rest of this paper we shall be working with the reduced form of the state problem only.
The reduction of (M(e)) consists in eliminating all components of the displacement field
corresponding to the non-contact nodes of the finite element partition of the domain Q(cx). One
obtains a variational inequality in terms of the state variable y = (u,,u,,A)T € (RP)3, defined
on the contact zone, which may be formulated as the following generalized equation (GE):

0€ Fla,y) + Qe y), (1)
where
Arr(a) Ap(a) 0 L. () Q1(oyy)
Fla,y) = | Ay (a) Ap(a) -T|ly—|L(a)]|, Qla,y):= 0
0 - NRi (y3)

The multifunction Q1 : U,y x RP = RP is defined as:

(Ql(a,uT))i = wi(a)F(|(ur)i|)0|(ur)i| Vi=1,...,p,

where 70" denotes the subdifferential of convex functions, NRi (+) is the normal cone in the sense

of convex analysis and the submatrices A, A, A,, € RP*P are parts of the Schur complement
to the stiffness matrix.

Note, that the multivalued part @ of our state problem (1) depends on the control variable a as
well. This is a major difference compared to the problem investigated in 2], making sensitivity
analysis more involved.

Let us conclude this section with the following result concerning solvability of (1).

Theorem 1. Let S : a — {y € (R?)?|0 € F(a,y) + Q(c,y)} denote the control-to-state
mapping and let F : Ry — Ry be Lipschitz continuous with a sufficiently small modulus. Then
S is single-valued and Lipschitz continuous in Uyg.

Proof. 1t follows from Theorem 10 and Theorem 11 in [4]. O
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3 ImP and sensitivity analysis

Let J : Uy x (RP)> — R be a continuously differentiable cost functional. Then the shape
optimization problem reads as:

minimize J(o,y)
subj. to 0¢€ F(a,y) + Q(a,y) (P)
o € Uy.

In the sequel we shall assume that the assumptions of Theorem 1 are satisfied. The ImP method
consists in reformulating (IP) as the nonlinear program:

minimize J(a) = J(a,S(a)) (P)
subj. to o € Uy,

which may be solved by standard algorithms of nonsmooth optimization. Such algorithms, how-
ever, require knowledge of some subgradient information, usually in the form of one (arbitrary)
subgradient from the Clarke subdifferential 0 at each iteration step. Following [2], we are not
going to use Clarke’s calculus (cf. [3]) to obtain the desired subgradient, but the substantially
richer calculus developed by B. Mordukhovich. A straightforward application of this theory is
the next result. For the rest of this section let & € U,q be arbitrary and put g := S(&).

Lemma 1. 0J (&) C Vo J(@,y) + D*S(a)(VyJ (&, g)).

Therefore, we immediately see that it suffices to determine one element of the (limiting) coderiva-
tive D*S(a)(VyJ(a,g)) = {p* € R?|(p*, -V, J(&,y)) € Nars(a)}, where Ng, g stands for
the (limiting) normal cone to the graph of S. To facilitate the computation of this quantity, we
have the following result at hand:

Theorem 2. For every p* € D*S(&)(Vy,J(&,y)) there exists a vector v* € (RP)3 such that
(p*,v*) is a solution of the (limiting) adjoint GE:

p* — —\T, * * = = = = *
_ _\ | e VF(&, v+ D'Q(a, gy, —F(&, v"). AGE
(v, Mg € TF@0) 0" + D'Qla.5.~Fla5)w") (AGE)
Proof. See Lemma 8 and Theorem 13 in [4]. O

The assertion of Theorem 2 is analoguos to that of Theorem 4.1 in [2|, but for its derivation we

had to verify a calmness condition (|4, Lemma 8]) instead of strong regularity of the
GE (]2, Theorem 3.13]).

In the rest of this section we show how one may express the coderivative D*(Q in terms of the
data of the problem. First of all, note that the components of @ are decoupled (this fact is
a consequence of the assumed model of given friction), hence its coderivative can be computed
componentwise:

D*Ql(a7ylaql)(q>{)
Vo' e ®): D'Q@.5.9)(q") = 0 ,
D*NRﬁ (93, 43)(q3)
at any reference point (&,y,q) € Gr@. The third component is standard, therefore we shall

deal with the first component only. Let us write the multifunction (1 : R? x RP = R? as
a composition of an outer multifunction Z; and an inner single-valued, smooth mapping W:

Qi(a,u) = (Z1 0 ¥)(a, ), (2)

45



where
U= (¥q,...,0,) : R x R? — ((0,00) x R)”, V(o) = (wj(a),uj),
and Z7 is a composite multifunction itself:
Z1:((0,00) xR)” = RY, gy (Z(y1),---, Z(y,)),

with
Z:(0,00) x R=R, (x1,22) — z1F(|x2])0]x2].

Now the chain rule from |6, Theorem 10.40] allows us to compute the coderivative of the composite
multifunction (2) as follows:

Theorem 3. Let (&, u,q) € GrQy be such that the following condition holds:
KerVU(a,w)’ N D*Z,(¥(a,u),q)(0) = {0}. (3)
Then:
Vgt €RP 1 D*Qi(ev,w,q)(q") C V¥(a, @) D*Z (¥(ax, 1), q)(q") (4)

Since the components of Z; are also decoupled, one may compute the coderivative on the right-
hand side of (4) componentwise, i.e. in terms of coderivatives of the mapping Z. This is done
in detail in Section 6.2 of [4], from which the validity of the qualification condition (3) follows as
well.
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Reseni benchmarkové tlohy transportu latky
v diskrétni puklinové siti

M. Hokr, J. Havlicek

Technickd univerzita v Liberci

1 Uvod

Téma ¢lanku vychazi z potieb studia vlastnosti horninového prostfedi pro hodnoceni bezpe¢nosti
hlubinného tlozi§té vyhotelého jaderného paliva, hlavnimi vyzvami pro matematické modelovani
v této oblasti jsou sdruzené fyzikalni procesy a slozitost geometrické struktury prostiedi.

Jednim 7 hlavnich faktori na bezpecnost tlozisté izolacéni schopnost horniny, kterd je obvykle
hodnocena pfes jeji (ekvivaletni) hydraulickou vodivost, tj. celkovy priitok vody pies ur€ity pri-
fez. Skuteénou hodnocenou veli¢inou je ale rychlost prichodu rozpusténych radionuklidi, kteréd
je sice pro porézni prostiedi tmérné priitoku, ale pro nehomogenity typu puklin zavisi na rozlo-
zeni toku v objemu - rychle proudici ,kanaly“ proti méné vodivym puklindm s pomalym tokem.
v této praci jsou na modelové tloze puklinové sité uréovany prinikové kiivky a stfedni hodnota
a rozptyl tzv. doby zdrzeni srovnany jsou vypolty pomoci sledovani ¢astic (particle tracking)
a pomoci rovnice advekéniho transportu.

2 Popis tlohy a reSeni

Uloha byla definovana v projektu Decovalex [4], kde je timto zptisobem hodnocen vliv napja-
tosti na charakter toku a dobu zdrzeni ¢astic. Vypoéty navazuji na dfive prezentované vypocty
proudéni pro rizné stavy napjatosti [1, 2, 3], mimojiné i srovndnim zpisobu hodnoceni pomoci
ekvivalentni vodivosti a pomoci rychlosti prichodu latky. V tomto textu se nezabyvame p¥imo
vlivem napjatosti, jednotlivé varianty jsou chapany jako rtzné parametry puklinové sité pro
vyhodnoceni proudéni a transportu (v prezentaci bude popsano v plném kontextu).

Geometrie tlohy je zadédna seznamem 7797 puklin se soufadnicemi koncovych bodu a velikosti
rozevieni (8itky) ve ¢tverci v rozsahu —10 < z < 10, —10 < y < 10. Okrajové podminky pro
proudéni jsou zadény hodnotami tlaku (Dirichlet) po celém obvodu nebo na protilehlé stény tak,
aby generoval konstantni gradient 10* Pa/m (dvé varianty: vodorovné zprava doleva a svisle shora
dolit) obrazek 1. Uloha transportu latky je zadana okamzitym pulsnim vstupem (vtok daného
celkového mnozstvi latky za velmi kratky ¢as) do vSech puklin na p¥itokové strané modelového
Ctverce.

Ulohy proudéni i transportu byly vypoé&teny softwarem FLOWI123D vyvijenym na pracovisti
autori [6]. Rovnice proudéni je FeSena smiSenou-hybridni metodou kone¢nych prvki, jejiz vy-
sledkem jsou diskrétni toky jednotlivymi puklinami. Segmenty puklin mezi priseciky jsou zéroven
elementy diskretizace (z diivodu linearity v 1D segmentech neni dal3i déleni potfebné). Rovnice
advektivniho transportu je feSena metodou kone¢nych objemi, s upwind vazenim a explicitnimi
¢asovymi kroky. Volba ¢asovych kroki je fizena CFL podminkou. Doba zdrzeni je urcena jako
vazeny prumér z Casu pro jednotlivé ¢asti hmoty (=vahy) na vystupu za kazdy ¢asovy krok
vypoctu.
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Srovnavaci vypocty pomoci softwaru NAPSAC vyuzivaji standardni metodu koneénych prvki
pro proudéni (srovnani napf. z hlediska splnéni bilance hmoty je provedeno v [3]) a vypocet
transportu byl proveden pomoci metody sledovani ¢astic (particle tracking). Doba zdrzeni je
piimo vysledkem vypoctu pro kazdou jednotlivou ¢astici. Jednotlivé vysledky byly zpracovany
autory vypocti ve zpravach [7, 5].

3 Vysledky

Vysledné priunikové kiivky jsou uréovany jako pritbéh v ¢ase pro podil hmoty (resp. poctu ¢astic)
proteklé odtokovymi hranami modelového ¢tverce a celkové zadané hmoty (resp. poc¢tu ¢astic).
Vysledky pro horizontalni gradient jsou uvedeny na obrizku 2, kde jsou porovnéany jednotlivé
metody a softwary. Je vidét dobra vzajemnda shoda kromé vysledkt IC. Zajimavym vysledkem
je, ze se ve sklonu k¥ivky nijak neprojevuje numericka difuze z upwind metody (Flow123D) proti
Casticovym metodam (NAPSAC), coZ lze vysvétlit tim, 7Ze dominantnim difuznim jevem je miseni
roztoku resp. ¢astic mezi rizné ,rychlymi* trajektoriemi v siti puklin.

Na obr. 3 je dali srovnani — hodnoceni horniny pies celkovy priitok a pres dobu zdrzeni (¢as
transportu). Jiny zptusob vyjadfeni doby zdrzeni je mozné dostat pfimo z prutoku jako doba
idealni vymeény celkového objemu vody (celkovy objem ku prutoku). Piestoze tok se méni mezi
jednotlivymi variantami v mnohem vy8sim poméru, obé vyjadieni ¢asu zdrzeni davaji podobny
prubéh (méni se vyrazné objem vody mezi variantami). Vysledky potvrzuji predpoklad vzniku
vodivych kanéli z nékolika konkrétnich puklin, které i p¥i snizeni toku snizuji dobu zdrZeni (tzv.
channeling).

Impermeable
Obrazek 1: Schéma okrajovych podminek urcujicich tlakovy gradient pro tlohu proudéni — dvé
varianty s propustnymi nebo nepropustnymi bo¢nimi sténami.
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=08 — |} —{ JKTHUDEC

E - | A—/v—7\ TUL Flow123D

£ 06 — |O—O—O ProGeo NAPSAC

3 0.

(o]

c —

>

g04 —

c

= _

o

202 —
D, = cas [s]

0 ‘ I \\\HH‘ \\\HH‘ \\\HH‘

100 1000 10000 100000

Obrézek 2: Porovnani primikovych kiivek (zavislost hmoty na vystupu na ¢ase) mezi jednotlivymi
modely a fesitelskymi tymy Decovalex.
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Obrazek 3: Porovnani doby zdrZeni (¢asu transportu) uréené piimo z vypoc¢tu transportu a uréené
z celkového prittoku, proti prutoku samotnému, pro rizné varianty parametri puklin (vlivem
napjatosti).
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Parallel implementations of Total-FETI-1 algorithm
for contact problems using PETSc

D. Hordk, Z. Dostdl

VSB-Technical University of Ostrava

1 Introduction

Domain decomposition method is one of the most successful methods of solution of elliptic
partial differential equations describing many technical problems, which is based on “divide and
conquer” strategy. The FETI (Finite Element Tearing and Interconnecting) method proposed
by Farhat and Roux turned out to be one of the most successful algorithms for parallel solution
of these problems. The FETI-1 method is based on the decomposition of the spatial domain
into non-overlapping subdomains that are "glued" by Lagrange multipliers. Efficiency of the
FETI-1 method was further improved by introducing special projectors and preconditioners. By
projecting the Lagrange multipliers in each iteration onto an auxiliary space to enforce continuity
of the primal solutions at the crosspoints, Farhat, Mandel and Tezaur obtained a faster converging
FETI method for plate and shell problems - FETI-2. Similar effect was achieved by a variant
called the Dual-Primal FETI method FETI-DP, introduced by Farhat et al., where the continuity
of the primal solution at crosspoints is implemented directly into the formulation of the primal
problem. The FETI-DPC algorithm for nonlinear problems is based on active set strategies and
additional planning steps. Total-FETI-1 (TFETI-1) by Dostal simplifies the inversion of stiffness
matrices of subdomains by using Lagrange multipliers not only for gluing the subdomains along
the auxiliary interfaces, but also for implementation of the Dirichlet boundary conditions. This
method may be even more efficient than the original FETI-1.

FETI methods are even more successful for the solution of variational inequalities. The reason
is that duality reduces not only large primal problem to smaller dual, relatively well condi-
tioned strictly convex iteratively solved QP problem but also transforms the general inequality
constraints into the nonnegativity constraints so that efficient algorithms that exploit cheap pro-
jections and other tools may be exploited. Our research concerns development of the scalable
FETI-based methods for contact problems combining FETT approach with algorithms for bound
constrained quadratic programming problems with a known rate of convergence given in terms
of the spectral condition number (QPMPGP, SMALBE) and their testing in parallel environ-
ment. The most difficult part - solution of subdomain problems - may be usually carried out
in parallel without any coordination, so that high parallel scalability is enjoyed. The increas-
ing number of subdomains decreases the subdomain problem size resulting in shorter time for
subdomain stiffnes matrix factorizations and subsequently forward and backward substitutions
during pseudoinverse application, but on the other hand the increasing number of subdomains
assuming fixed discretization parameter increases the dual dimension and coarse problem size
resulting in longer time for all dual vector operations and projector application. Three types of
parallelization strategies and their impact to parallel scalability level will be discussed.
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2 FETI-1 and TFETI-1

Let us consider contact boundary value problem. To apply the FETI-1 based domain decompo-
sition let us partition domain ) into Ng subdomains 2° and we denote by K*, f* u® and B?,
respectively the subdomain stiffness matrix, the subdomain force and displacement vectors and
the signed matrix with entries -1, 0, 1 describing the subdomain interconnectivity (gluing or
nonpenetration). We shall get the discretized problem

1
min §uTKu —ulf s.t. Bu<0 (1)
Kl fl ul
K = . f=1 : |,u=1| : |, B=[B'...,BY]. (2)
KNS st uNs

The basic idea of TFETI is to keep all the subdomain stiffness matrices K* as if there were
no prescribed displacements and to enhance the prescribed displacements into the matrix of
constraints B. To enhance the boundary conditions like u; = 0, just append the row b with all
the entries equal to zero except b; = 1. The prescribed displacements will be enforced by the
Lagrange multipliers which may be interpreted as forces. An immediate result of this procedure
is that all the subdomain stiffness matrices will have known and typically the same defect. The
remaining procedure is exactly the same as described for FETI-1, the key point is that the
kernels R® of the locall stiffness matrices K*® are known and can be formed directly. We can
easily assemble the block diagonal basis R of the kernel of K as

Rl
R= - . (3)
RN

Let’s establish following notation
F=BK'BT G=R"B",d=BK'f,e=RTf,G=TG, e =T¢

where KT denotes matrix satisfying K KTK = K such as generalized inverse or Moore-Penrose
pseudoinverse, 1" denotes a nonsingular matrix, that defines the orthonormalization of the rows
of G. The critical point of evaluation of KT, the determination of the ranks of the subdomain stiff-
ness matrices K? is trivial when the TFETI-1 procedure is applied. Our minimization problem
reads

1 ~ ~
min 5ATFA ~M'd st. Ay >0 and GA =¢. (4)

The problem of minimization on the subset of the affine space is transformed to the problem on
subset of vector space by means of arbitrary A which satisfies GA = e while the solution is looked
for in the form A+ A. Using old notation and denoting d = d — F'A, the problem (4) is equivalent
to

1 —~
min §>\TF)\ —MTd st. Ay > —A; and GA = 0. (5)

Further improvement is based on the observation, that the augmented Lagrangian for problem (5)
can be decomposed by orthogonal projectors

Q=G"GG"H'G=6"G and P=I1-Q
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on the kernel of G and on the image space of G (ImQ = KerG and ImP = ImG7”), so that the
final problem reads

1 —~
min 5ATPFPA —AT'Pd sit. A\ > —=\; and GA =0, (6)

and may be solved effectively by a scalable algorithm SMALBE (Semi-Monotonic Augmented
Lagrangians with Bound and Equality) using QPMPGP (Quadratic Programming with Modified
Proportioning and Gradient Projection) in inner loop or just by QPMPGP for convex quadratic
programming problems with simple bounds enforcing equality constraint by dual penalty as the
proof of the classical estimate by Farhat, Mandel and Roux

k(PFP|ImP) < C% (7)

of the spectral condition number & of the restriction of PF'P to the range of P by the ratio of
the decomposition parameter H and the discretization parameter h remains valid for TFETI-1.

3 Parallelization strategies

Programmes were implemented using PETSc 3.0.0 (Portable Extensible Toolkit for Scientific
Computation), developed by Argonne National Laboratory. PETSc is a suite of data structures
and routines that provide the building blocks for the implementation of large-scale application
codes on high-performance computers.

The supercomputer for numerical experiments was HECToR at EPCC. Its architecture: two Cray
supercomputing facilities: the phase 2a (XT5h) machine and the phase 2b (XT6) machine; and
an archiving facility, the main service (phase 2a) uses a Cray XT4 system as its major compute
engine offering a total of 3072 AMD 2.3 GHz quad-core Opteron processors - 12,288 cores offering
a theoretical peak performance of 113 THops, 8 GB of main memory available per Opteron
processor, which is shared between its four cores, HECToR's total memory is 24.6 TB, processors
are connected with a high bandwidth interconnect using Cray SeaStar2 communication chips.

K K K
f7 T T
LJT LIT LIT

B

Y
g

Py
g

Figure 1: Three types of compared data distributions of primal and dual data.
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Most of computations appearing in these programmes are purely local and therefore parallelizable
(subdomains problems), but some operations require data transfers. The level of communication
depends first of all on distribution of B and R, G and GGT computation and GGT factorization
or G orthonormalization (see Figure 1).
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A remark on the optimal mesh and the optimal polynomial

degree distribution in solving 1D boundary value problems
by the hp-FEM

J. Chleboun

Faculty of Civil Engineering, Czech Technical University in Prague

1 Introduction

This contribution deals with an optimal distribution of mesh nodes as well as an optimal distri-
bution of polynomial degrees in the hp-version of the finite element method (FEM) applied to
solving concrete 1D boundary value problems.

Unlike the h-version of the FEM, where the polynomial degree distribution is fixed and only the
mesh can be adaptively changed to improve the accuracy of the FE solution, the Ap-FEM offers
more flexibility in the process of minimizing the difference between the exact and the FE solution.

Indeed, one can add and/or redistribute mesh nodes as well as change p, the degree of polynomials
forming the FE basis functions. Moreover, the degree need not be uniformly distributed over
the mesh. Although this diversity of changes is advantageous, it also recoils upon the analyst
who then faces the problem of establishing a good (or, better, an optimal) strategy of mesh and
polynomial degree modifications.

An extensive literature on adaptive methods in the hp-FEM shows that many efforts have been
made to minimize the error of approximation. Nevertheless, even for 1D boundary value prob-
lems, results on optimal meshing and optimal FE basis are rather limited and directed towards
asymptotical optimality, see [1, 2, 3], which is not the topic we will pursue.

This work does not deal with general purpose error estimate approaches and h or p adaptivity
algorithms. We will focus on the optimal use of a fixed number of degrees of freedom (DOF) in a
given 1D boundary value problem. The obtained optimal A and p distributions then can serve in
defining benchmark problems for practical hp-adaptive algorithms in one and (in special cases)
more spatial dimensions.

2 hp-FEM in 1D

Let us consider a boundary value problem defined on an interval («, ), that is,
—u"(z) + c(x)u(r) = f(z) in (o, ), (1)
u(a) =0, u(B) =0, or u'(a)=0, v'(B) =0, (2)
where the function ¢ is such that the bilinear form
g
a(u,v) = / (v (z)' (z) + c(z)u(z)v(z)) dz

is continuous and V-elliptic for u,v € V. The space V is a subspace of the Sobolev space H'(a, 3)
and it is determined by the boundary conditions (2) (mixed boundary conditions could also be
introduced in (2)).
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Assuming f € L?(a, 3), we arrive at the weak formulation of (1)-(2): Find u € V such that

a(u,v) /f x)dx YveV; (3)

by virtue of the assumptions, (3) is uniquely solvable.

To find an approximate solution, we substitute a finite-dimensional subspace Vnp&n Cc V for V

in (3). The space an}n is constructed as follows: (i) a mesh determined by nodes zp = o <

x1 < -+ < Tpy1 = B is defined; (ii) a set of basis functions is introduced. For each interval
I; = [x;—1,x;], a maximum polynomial degree p; is given, i = 1,...,n. Let us define X,,, a vector
comprising x; (inner mesh nodes), and P,,, a vector comprising p;; in both cases i = 1,...,n.

The support of each basis function is either [z;, ;42| (hat function) or [z;,x;41] (Lobatto poly-
nomials of degree two up to p;; see [4] for the details). The dimension of Vnpg(n is also known as
the number of DOF (NDOF).

3 Mesh and polynomial degree optimization

Let us assume that the NDOF is equal to N. Let us define f 'x,,.p,; & family of all FE spaces
Vnp&n whose NDOF equals N. To avoid formal and computational difficulties caused by de-
generated mesh intervals, f 'X,,.p, 18 constrained through a positive minimum length the mesh

intervals must not break through. Each space V % is determined by a configuration of n, X,
and P,, that is, by the total number of mesh 1ntervals by their length and position, and by the
respective maximum polynomial degree on each interval. A configuration is called N-admissible
if the related FE space has dimension V.

The difference between the solution of (3) and its FE counterpart u, x, p, is measured by

U(n, X, Py,) = ||lu— un7Xn7PnHH1(a,,8)-

The optimization problem is set as follows: For a fixed positive integer N,

minimize ¥(n, X, P,) over F. X Py (4)

The core of solving problem (4) lies in solving a continuous optimization subproblems. Indeed,
for a fixed N, n, and P,, we minimize ¥(n, X,,, P,) via searching for the optimal position of the
nodes x1,...,x,. These subproblems have to be solved for each N-admissible configuration of n
and P, that is, for each configuration that results in N degrees of freedom. Thus problem (4)
has combinatorial features and, as a consequence, it is computationally demanding.

Numerical experiments were performed for a few low values of N. To this end, a chosen function
was substituted for u in (1), the right-hand side f was calculated, and then used as the known
right-hand side in the FE problems determined by (3) and the N-admissible configurations. The
calculations were performed in the MATLAB® environment.

Acknowledgement: This work has been supported by grant No. P105/10/1682 of the Czech
Science Foundation.
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Bézier form of S—Patches
A. Kolcun

Institute of Geonics AS CR, Ostrava

1 Introduction

Parametric Cartesian surface, e.g. |1], is a wide-spread tool for data interpolation and approx-
imation. However, for simple modeling systems there is not strong requirement to control all
possible geometric parameters of resulting surface. Moreover, due to the fact, that nonplanar
rectangular patches are very often tessellated to triangles, it is useful to require the same degree
of all boundary curves of tessellated triangles. In [3] the concept of Smart-patches (S Patches)
is introduced. Its main benefits are:

1. the same degree of both diagonal and boundary curves,
2. the number of independent control points is smaller than n?.

In this paper the main properties for the biquadratic case of S—Patches are described. Bézier
form of patches is used. It gives us the possibility to find the correlation between triangular
and quadrilateral patches. Condition for smooth concatenation of biquadratic BS Patches is
formulated. Proves can be find in |2].

2 S-—Patch

Let us consider biquadratic parametric patch

Roo Ror Roo
Xw,v)=uR vl =1uu?)| R R Rz |(1vod)? (1)
Rog Ro1 Roo

It is obvious that all boundary curves are quadratic polynomial ones.

Let us consider S—Patch [3], i.e. such patch where both main diagonals Dj(u), Da(u)

Di(u) = X(u,u) =u R ul

1 00
Dy(u)=X(u,1 —u)=uR(1-u)l =uR| 1 -1 0 |ul
1 -2 1

are quadratic polynomial curves too.
Theorem 1. Biquadratic patch (1) is S—Patch iff Rjs = Ry = Ros = 0.

Corollary. All parametric lines of biquadratic S—Patch L(u) = X (u,a+bu) are curves of degree
d<2.
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Cartesian Bézier patch is defined as

B(u,v) = (bon(u) ... byn(u)) : : (bon(v) ... bnm(v))T
Pw ... P

where b; ,,(u) = < 7; (1—w)"*u" are the Bernstein polynomials and Pj; are the control points

of the patch. Let us express the biquadratic S patch in Bézier form. Control points P;; can be
found according to the relations below.

Poo Py Py 1 0 0\ '/ Rw Roi Ro 1 -2 1\ !

P = Py P11 P = —2 2 0 Ry Ri1 0 0 2 =2 (2)
Py Py Py 1 —2 1 Ry 0 0 0 0 1

3 BS—-Patch

Let us analyze the relations between main diagonals D (u), Da(u) of S—Patch and proper Bézier
diagonals  i.e. the curves defined on the set of diagonal control points Pyg, P11, Pos and
Pyg, P11, Py respectively

1 0 0 PO() 1 0 0 P20
DlB(u) = u —2 2 0 P11 5 DQB(U) =u —2 2 0 P11 5
1 -2 1 Poy 1 -2 1 Poo

where P and R are connected with relation (2).
These relations can be formulated as the theorem below.

Theorem 2. Di(u) = Dip(u) if and only if Ry; = 0. Moreover, equality of these diagonals
automatically implies the equality of Da(u) = Dap(u).

On the base of the Theorem 2 we can introduce biquadratic BS Patch, i.e. patch in the form as
follows

Roo Ro1 Roz
X(u,v)=u| Rip O 0 vl
Ry 0 0

In this case mutual relations among Bézier control points F;; and S patch control points R;;
are valid

2 2 2 2 2 2 2 2 2

1 01 201201 2

(PooPo1 Poa Pro Pr1 Pro Pag Pog Py Pay) = (300301R10302320)§ 000111222
002002400 2

000 O0O0OO0 2 2 2

We can see that in this case the patch is defined by 5-element set of control points. Examples of
non independent and independent 5-element sets of control points of BS Patches are presented
in Fig. 1.

The rest of control points e.g. for the independent pentad Pyy, Pi1, Pa1, Pio, Pao from Fig. 1le)
may be represented as follows

Poo = Po1 + Pio — P11 Poo = Pou + P2 — Py
Py = Py1 + Pig— P11 Pog = Por + P12 — Py (3)
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Figure 1: 5-element sets of control-points. a),b) non independent sets, ¢)—g) independent sets.

4 BS—Patch and Bézier triangles

As both diagonal and boundary curves of BS Patches are Bezier curves, it is meaningful to
analyze the triangle patches. There is a very close connection between the Cartesian BS—patch
and a pair of triangular Bézier patches. Let us consider triangular mesh of nodes

Pijk7 OSZ,],]{JSTL, Z+]+k:n7
where nodes P; j i, Pij.k, are neighbour, if | iy —idg [+ | j1 —j2 | + | k1 — ko |[= 2.

Bézier triangular patch is defined as

n! .
Ba(u,v,w) = 3 iljvkuulvjwkpijk
(k) 0

where 0 < u,v,w<l,u+v=w=1,0<ij5,k<n,i+j+k=n.

Let us consider Cartesian and triangular indexing of control points according to Fig. 2.

Jula] a1l 0z o0z 011 020 0z0

20 21 22 200 200 101 ooz

Figure 2: Cartesian and triangular indexing of control nodes for n = 2.

Theorem 3. BS-Patch defined on control points P;;, 0 < 4,5 < 2 is the same surface as the
pair of triangular Bézier patches, defined on the sets of proper control points.

This theorem gives us generalization of the trivial fact that bilinear patch can be decomposed to
two triangles iff the quaternion of control points is planar.

5 Smooth concatenation of BS—Patches

Let us consider 5-element set of independent control points from Fig. le). Condition (3) says
that the set of control points creates four rhomboids, see Fig. 3. Here we can distinguish three
types of control points: central crosswise and dependent.

The conditions for concatenation of the patches can be formulated in the following way.

Definition. Let there are two open polylines Ay = (PyPy ... P,) and Ay = (RoR;y ... Ry,) . Let
a) m+ 1 copies of polyline A; are created, each of it started in a node of A,
b) n+1 copies of polyline Ay are created, each of it started in a node of A .
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Figure 3: Control points for BS Patch. Different types of them are distinguished: black central
one, dark — crosswise ones, light — dependent ones.

Resulting set of rhomboids we call 'product of polylines’ A1 e Asy.

Theorem 4. Surface is set of smooth BS patches iff the set of central control points of
BS—Patches is a product of polylines.

Construction

Given two polylines given two sets (sets of ratios)

™= (pO)pl)"' )pn—l)) P = (TO)rla"')rm—l)a 0 <pi)rj < 17

we can construct smooth concatenation of BS—Patches according to the steps below.

a) The central control points of BS—Patches are the product of polylines A; @ As .

b)  Crosswise control points can be found as a ratios of neighbour central control points.
c¢) Dependent control points (corners of BS—patches) are found according to the (3).
d)  Concatenation consists of full-defined BS patches.

Fig. 4 demonstrates the above described construction.

E e ) B

Figure 4: Smooth concatenation of BS patches according to the steps a) d) above.
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Orthogonalization with a non-standard inner product
and approximate inverse preconditioning

J. Kopal, M. Rozloznik, M. Tima

! Institute of Novel Technologies and Applied Informatics, Technical University of Liberec
23 Institute of Computer Science AS CR, Prague

1 Introduction

One of the most important and frequently used preconditioning techniques for solving symmetric
positive definite systems Ax = b is based on computing the approximate inverse factorization
in the form A™! = ZZT, where Z is upper triangular [1]. Tt is also a well-known fact that the
columns of the factor Z can be computed by means of the A-orthogonalization process applied
to the unit basis vectors ey,...,e,. As noted in 3| such A-orthogonalization also produces the
Cholesky factor of the matrix A = UTU, where U~! = Z. This fact has been exploited to
construct efficient sparse approximate inverse preconditioners |1, 2, 3]. In a more general setting,
given the symmetric positive definite matrix A and the nonsingular matrix Z©) we look for
the factors Z and U so that Z(©) = ZU with ZTAZ = I and the upper triangular matrix U is
a Cholesky factor of the matrix (Z0)T A4z = UTy.

2 Ortogonalization techniques

One can use a lot of algorithms to calculate matrices Z and U. Straightforward and probably the
most expensive way is the computation based on spectral decoposition. Assume spectral decom-
position of the matrix A in the form A = VAV, We can get the factor U as the upper triangular
factor from QR decomposition (with standard inner product) of the matrix A1/2VTZ(©0) = QU
and the factor Z can be then obtained simply as the product Z = VA~1/2Q. This approach
(called EIG here) is due to computation cost useful only for small dimensional matrices. For
the real-world problems it is more suitable and likely the most common way to compute matri-
ces Z and U using on the generalized Gram-Schmidt orthogonalization (the A-orthogonalization),
which forms the columns of the matrix Z. The orthogonalization coefficients form the upper tri-
angular factor U. There are several versions of the Gram-Schmidt algorithm, which lead to the
same result in exact arithmetic. The classical Gram-Schmidt (CGS) algorithm employs a lot of
parallelism, because the scalar products can be computed separately. Rearraging of this scheme
has led to the modified Gram-Schmidt algorithm (MGS), which partly lost parallel properties,
but provides better numerical results. Except CGS and MGS algorithms there is a specific com-
bination of these schemes, which originates from AINV preconditoner |3]. This scheme will be
further referred as the AINV orthogonalization. The papers on approximate inverse factoriza-
tion are mainly focused on the construction of the algorithms and do not study their numerical
properties. Therefore it is necessary to study incomplete algorithms also from the numerical
point of view and understand well their numerical behavior. The development of algorithms for
constructing approximate inverse has led from oblique projections based AINV and CGS orthog-
onalizations |3] to their stabilized version represented by SAINV algorithm [2], which uses MGS
orthogonalization algorithm.
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3 Theoretical analysis

Assume computed quantitie Z which approximate Z so that A™! ~ ZZT. Our analysis has
focused in particular on the bound for the loss of orthogonality which can be completely different
for various algorithm as it will be presented later. With the loss of orthogonality we mean the
2-norm of the matrix ZTAZ — I. The orthogonality between computed vectors has a cardinal
significance for the quality of the preconditioner computed by the orthogonalization process. It
is a well-known fact that the eigenvalues of ZT AZ affect the convergence rate of preconditioned
conjugate gradient method applied to ZTAZy = Zb, where & = Zy. Therefore our primary goal
is to solve the orthogonal basis problem in this application. There exist complete rounding error
analysis [4, 5, 7| for all main schemes for the QR decomposition with the standard inner product,
but the situation is completely different for the non-standard inner product (induced by matrix

A).

In this contribution we review the most important schemes used for orthogonalization with re-
spect to the non-standard inner product and give the worst-case bounds for corresponding quan-
tities computed in finite precision arithmetic. We formulate our results on the loss of orthogo-
nality, on the factorization error, and on Cholesky factorization error (measured by ||ZTAZ — 1|,
|Z2© — ZU|, and ||A — UTU||) in terms of quantities proportional to the roundoff unit u, in
terms of the condition number k(A) which represents an upper bound for the relative error in
computing the A-inner product as well as the condition number of the matrix AY270) which
plays an important role in the factorization (Z(0)TAZ©) ~ UTU.

4 Numerical experiments

We consider a test problem defined as a sequence of matrices A; with dimension n = 10 which
are generated as powers of the Pascal matrix A = pascal(10) = VAVT (k(A) ~ 10%) such that

A; = VAOVT with k(A;) ~ 10,i = 0,...,17. The matrix Z\” is equal to Z\* = T.

We can see from figure 1, that the loss of orthogonality for all these algorithms is proportional
to uk(A). This problem does not reach the worst-case bound, obtained by CGS, AINV, and
MGS in the form || ZAZ — I|| < O(u)r*?(A). The factorization error corresponds to theoretical
analysis ||I—ZU||; its bound for the algorithms is proportional to ux'/?(A) [6]. On figure 2 we can
see the Cholesky factorization error |A — UTU]||, for the EIG implementation it is proportional
to ul|A|| and for other algorithms it is proportional to ux'/?(A)||A|, that are worst-case bounds
for Cholesky factorization error [6].

Problem 6 (Pascal matrix) Problem 6 (Pascal matrix)

. uliz
1071 ulz) 1172 2%
ur ) 121

== CGS
—.— CGS2

K(A)
uk(A) K(AY2Z)
U K(A) KAY2ZO) k20

10° 10" 10° 10° 10° 10" 10° 10 10" 10°

10° 10% 10°
condition number (A) condition number (A)

Figure 1: Loss of orthogonality and factorization error for the test problem.
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Problem 6 (Pascal matrix)

or[[A-UTU ||

Figure 2: Cholesky factorization error for the test problem.

5 Conclusion

As it was noted, from all given Gram-Schmidt algorithms we can get significantly different numer-
ical results, but the factorization error is essentially the same. The bound for the loss of orthogo-
nality depends linearly on the condition number x(A) for the case of eigenvalue based implemen-
tation (EIG) and classical Gram-Schmidt with reorthogonalization (CGS2). For the modified
Gram-Schmidt it is also true, although, also besides k(A) it depends on the condition number
k(AY2ZO)). The loss of orthogonality is similar for the classical Gram-Schmidt (CGS) and AINV
orthogonalization, no matter that theoretically the bound depends on x(A)r(AY2Z0)k(ZO).
From the numerical point of view and due to the computation cost, MGS seems to be a good
compromise between all these algorithms. For all these results and details we refer to [6]. We
believe that these results may initialize a detailed research of the schemes which leads to some
sparse approximation of the matrices Z and U. For a overview of such schemes we refer to [1].
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Numerical algorithms on multicore architectures
P. Kotas

VSB - Technical University of Ostrava

1 Introduction

Many tools such as Matlab (and its open-source counterpart, Octave) are often used for algorithm
prototyping and development. Matlab & Octave have easy to learn syntax and provide the easiest
way of implementing numerical algorithms. However both Matlab & Octave share problems that
limits their usefulness. The problems include :

e Matlab is a proprietary software with an expensive license. This fact limits the use of
programs written in Matlab. Octave partially solves this problem, however not all Matlab
functionality is yet implemented in Octave.

e Both Matlab & Octave are weakly dynamically typed languages, which means type checking
is performed at runtime as opposed to compile-time. As such, it is possible to write
type unsafe programs that could break during deployment stage. Furthermore, there is
performance penalty associated with runtime check.

e It is possible to call function written in other languages (such as C and Fortran) from
Matlab. However functions written in Matlab can not be easily called from other languages.

e Increasing availability of multi-core CPUs has opened a possibility to increase performance
via parallelization. However parallelization is non-trivial within Matlab, which is in contrast
to the ease of parallelization via OpenMP or Thread building blocks.

Due to above issues, most programs (or algorithms) written in Matlab are often converted to
another programming language (C++, Java, etc.), when targeting commercial deployment or
large scale parallel environments. This leads to another set of problems, such as reimplementing
Matlab functions that are necessary requirement for run of implemented algorithm.

This work considers alternative approach to algorithm prototyping. The main area of my research
are parallel algorithms for computer vision. Therefore, I focused on libraries for computer vision,
linear algebra packages and parallel libraries.

2 Computer vision libraries

There are two suitable image libraries, OpenCV [1] and cImg |2|. Clmg library is basically the
only template providing basic routines for handling images. Because I need a replacement of the
Matlab image processing toolbox I have chosen the OpenCV library. OpenCV is an extensive
set o functions for image processing and computer vision with neat implementation of matrix
operations. OpenCV also possess basic implementation of graphical user interface.
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3 Linear algebra packages

Armadillo [3] is easy to learn linear algebra package. It is build on top of LAPACK and ATLAS
and it is designed to have syntax similar to Matlab. This features makes Armadillo perfect
library for numerical algorithm prototyping.

4 Parallel libraries

There are two widely used libraries for parallelization on multi-core architectures. Thread build-
ing blocks (TBB) is library developed by Intel. It is suited for developing parallel algorithms in
C++. TBB uses object oriented approach and is based on template algorithms. On the other
hand, OpenMP is set of compiler pragmas and set of parallel instruction is built-in most todays
compilers. OpenMP is well suited for parallelization of existing sequential algorithms that spent
most of the time iterating over arrays.

5 Discussion

Both OpenMP and TBB are reliable libraries and could do similar job. Because my work is done
in C++ and all algorithms are mainly iterating over large arrays, the choice of parallel library is
not simple. Also library needs to incorporate with OpenCV. Therefore choice of parallelization
library will be based on experience with implementing simple image processing algorithm. The
Armadillo and OpenCV integration will also be tested.
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Solution of non-linear algebraic systems
in coupled thermo-mechanical analysis

J. Kruis, T. Koudelka

Faculty of Civil Engineering, Czech Technical University in Prague

1 Introduction

This contribution concentrates on mechanical analyses based on damage models coupled with
heat transfer. The damage models are used for description of concrete and rock materials.
Typical feature of such models is softening branch after the peak stress value. In order to follow
the softening behaviour, the methods of arc-length are used [1], [2]. Three of them are compared
in this paper.

2 Solution of non-linear algebraic systems of equations

The equilibrium condition of a structure after discretization by the finite element method has
the form

where d denotes the vector of nodal displacements, f,,; denotes the vector of internal forces,
f. denotes the vector of constant prescribed forces, Af, denotes the vector of proportionally
changing forces and A denotes the scalar load-level multiplier. The vector of unbalanced forces
has the form

and it is the residual. The dependence of d on A has to be obtained by an iterative process. Let
the i-th step be known, i.e. the vector d; and the parameter \; are known and r(d;, \;) = O.
Expansion of the residual has the form

or(d;, \; or(d;, \;
r(dit1, A1) = 7(dis \i) + Médi + Mé)\i =—-K;odd;1 + f,60i1=0 (3)
od oA ’ ’ pe
where the following notation
ar(dia )‘Z)
- _K, 4
a’l"(di, )\Z) .
Ay, o)
is used. Let the vector éd;; be in the form
0d;1 = 0Xi1via (6)
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Figure 1: Load deflection curve.

Substitution of the assumption (6) to (3) leads to the expression

The length of arc can be written
(6di1)"8diy + 02 (OXi1)* £y Fpp = (OXi1) 0] yoin + 07 (0Xin) 2 f, = (AD)? (8)
where the scaling parameter i) was defined. The increment of the scalar load multiplier has the
form
Al
N1 ==+ (9)
\/Uzlvi,l + ?ﬁzfg.fp

Substitution of (9) and (7) to the assumption (6) leads to the modified vector of displacements.
Generally, the residual is not equal to the zero vector

r(d; +6d;1, i +0Xi1) = fo+ (N +0Xi1)fp — fint(di +0d; 1) #0 (10)
and new system has to be solved

r(diy1,Niv1) = mip— Ki16dio + fohiz = o+ (N +0X1)f), — (11)
Fine(di +ddi1) — Ki16di2+ f6Ai2 =0

where the notation
ri1 =7(d; +6di1, \i + 6Xi1) (12)

is used.

Cumulative quantities are defined

Ad@j = Ad@j_l + 5di,j (Ad@l = 5di’1) (13)
A)\Z‘,j = A)\@j_l + 5)\2',]' (A)\@l = 5)\2',1) (14)
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and they are schematically depicted in Figure 1. Equation (11) can be rewritten to the form

Kiiodiz = f.+Ni+AN1)f, — Fine(di + Adin) + f,0)N2 (15)
The system of equations (15) can be split into two systems
Kiijuip = fo+ N+ AN, — Fiu(di + Adi 1) (16)
Kivio = f, (17)
and the decomposition
0d;o = ujo + 0N 2vV; 2 (18)
is assumed. The length of arc has now the form
|Ad; 1 + wi2 + 0Ni2vial” + ¢2HA)\i,1fp + 5)\i,2fp”2 = (Al)? (19)
which is the quadratic equation
a1(6Xi2) 4 az(6Xi2) +az3 =0 (20)
with coefficients
a1 = vviz+fLF, (21)
ay = 27),2‘1:2(Adi,1 +u;2) + 2A/\i,11/)2fffp (22)
ag = (Adig+uio) (Adiy +wig) + (AN F) f, — (AD)? (23)

The increment §); 2 is obtained from the quadratic equation (20) and it is substituted to (18).
New values are again substituted to the residual and equality to the zero vector is checked. The
algorithm is summarized in Table 1 and it is called the spherical arc-length method. If the scaling
parameter v is equal to zero, the method is called the cylindrical arc-length method.

Solution of the quadratic equation (20) is straightforward but only one root has to be used for
next computation. One of the criteria used has the form

AdY. Ad; ;
cosf = W — max (24)
Substitution of (13) and (18) leads to the form
1
cos ) = WAd;{j(Adivj + U1+ 6N j+1Vi41) (25)
New notation
ay = Adz:j(Adm + ’uz‘,j+1) (26)
as = Ad]vij
results to the concise form
cosf = 4+ 0Mij4105 OXij+105 (27)

(AD)?

Both roots of the equation (20) are substituted to the expression (27) and the root leading to
the larger value is selected.

Linearized form of the arc-length leads to the expression
T
—3lij — Ad; jui 4
T T
Ad; v jy1+P2AN Gy £

and no root selection procedure is needed.

(5)\7;7]'4_1 =
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Xo=0,dyg=0

Fort=0,1,2,...
A>\i,0 = 0, Ad@o = 0, Ti0 = 0
For j =0,1,2,...

uijp1 =K1
vij =K f,
a1 = vl v+ L f,
ag = 207 (Adij + i) + 20N 202 FL f,
az = [|Adi; + wigi1 | + (AXig) 07 f f, — (A1)
a1(6Xij+1)% + a2(6Xijr1) a3 =0 = X jm1
0dij11 = i1 + 0N j 1105541
Ad; j11 = Ad;j +6d; 11
AXijt1 = AXij +0Aij
Tijr1 = ot N+ AN ) F, = Fiu(di + Adij)
if [|7ij41]] <e, stop

A1 = A + AN

diy1 =d; + Ad,;

Table 1: Algorithm of the Arc-length Method.

3 Conclusions

Numerical experiments based on damage models of rock show that the linearized version of the
arc-length method converges faster than the spherical or cylindrical methods but on the other
hand, it sometimes performs spurious loading and unloading cycles.
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Construction of higher-order basis functions
on meshes with hanging nodes in 3D

P. Kiis

Institute of Thermomechanics AS CR, Prague

1 Introduction

Finite element method using higher-order basis functions and meshes with hanging
nodes (hp-FEM) became very popular thanks to it’s ability to achieve fast (exponential) conver-
gence. The reason of it’s qualities is its ability to perform both h (division of element in space)
and p (increase of the polynomial order) refinements in the adaptivity process. This approach
has been described in several books, see e.g. 1], [3].

In a practical computer implementation, however, many serious technical and theoretical difficul-
ties arise. In this presentation we want to address one of the crucial parts, which is construction
of conforming higher-order basis functions on meshes with arbitrary-level hanging nodes.

2 Arbitrary-level hanging nodes

Main feature of introduction of irregular meshes is that faces, edges or vertices of elements can
lie inside faces and edges of other elements in the mesh. This situation is not allowed in standard
FEM, where adjacent elements either share a single vertex, a single edge, or a single face. With
the technique of arbitrary-level hanging nodes, very small elements can be neighbors of very
large ones while keeping an undistorted regular shape — this is impossible in standard FEM.
Further, this technique makes element refinements completely local refinement of an element
never causes refinements in adjacent elements.

Some authors try to avoid implementational complexity of fully irregular meshes by introducing
l-irregular mesh. It allows hanging nodes, but of only first level. Comparison can be seen in

Figure 1: Meshes resulting from an automatic mesh adaptive procedure for problem with singu-
larity slightly to the right and up from the square center. Arbitrary-level hanging nodes (left),
level-one hanging nodes (center), no hanging nodes regular mesh (right).
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Figure 2: The number of DOFs vs. the number of successive refinement steps for the 2D case in
a square (left) and for the 3D case in a cube (right).

Figure 1 for 2D case, for a 3D case the construction is similar, but figure would be difficult to
draw. In Figure 2 we can see comparison of number of degrees of freedom in meshes obtained by
successive refinement towards singularity as shown in Figure 1 and similar construction in 3D.
Even though this construction is slightly artificial, we can see, that mesh with arbitrary-level
hanging nodes has much less degrees of freedom than two others. It is caused by the fact, that
no unnecessary refinements are performed.

Forced refinements slow down the convergence, worsen the conditioning of stiffness matrices,
and their algorithmic treatment is problematic, because they can “spread” through the mesh in a
recursive nature. Most existing adaptivity algorithms in both low- and higher-order FEM suffer
from these drawbacks.

3 Construction of basis functions

In the finite element method, solution of the problem is sought as a combination of basis functions.
In the concept of hierarchical basis, each basis function is related to an entity in the mesh, which
in the case of three dimensional mesh can be vertex, edge, face or element interior.

Let us address space H!, which is used for discretization of elliptic problems. Conformity re-
quirement of this space is continuity. Therefore, all basis functions has to be created in such way,
that they are continuous in all vertices, edges and faces. In the presentation, a rather technical
description of construction is shown. The idea is following. In the regular mesh, basis functions
are constructed simply by "gluing” pieces together, as shown in Figure 3 for a vertex function.
The process is similar for edge and face functions, even though here the situation is complicated
by a necessity of proper orientation handling. But still, when dealing with regular mesh, one has
to consider only elements adjacent to given vertex, edge or face. On all other elements the basis
function equals zero. Bubble (or interior) functions are simple, they are local to one element and
zero elsewhere and therefore their continuity is clear.

For the case of meshes with hanging nodes, new problems arise. Here much more elements
may be involved and great effort has to be made to keep basis functions conforming. A rather
sophisticated algorithm has been described in [4] for two dimensional case. We used the idea,
but in the 3D setting everything is much more complicated. In Figure 4, an element after several

refinements is shown and we can see, that much more elements are involved in construction of
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Figure 3: Two elements with images of local basis vertex function being “glued” together to form
part of a global vertex function.
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Figure 4: Example of one element of the coarse mesh with many refinements. Numbers assigned
to vertices represent coefficients of contributing local basis functions, when constructing vertex
basis function (associated to a vertex with number 1).

a vertex basis function. For edges and faces the situation is even more complicated, because,
for example, values on face may constrain values in many other faces, edges and vertices in
the mesh. A detailed algorithm which determines what local basis functions and with which
coefficients should be included to form global basis function will be presented.

73



4 Conclusion

We present algorithm of construction of conforming basis functions of higher order in meshes
with arbitrary-level hanging nodes. It is part of more complex work related to development of
hp-FEM software for 3D elliptic, electromagnetic and other problems.

In the future we want to focus on solving difficult coupled problems arising in engineering practice.
Such problems in 3D may lead to necessity of solving huge linear systems. Experiments in two
spatial dimensions suggest, that when using hp-adaptive algorithms, such systems may become
significantly smaller and therefore solvable in reasonable time.
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Geosynthetic tubes filled with liquids with different densities
J. Malik

Institute of Geonics AS CR, Ostrava

1 Introduction

Geosynthetic tubes have found applications in many branches of engineering. The reader can
find a description of these applications, for instance, in the monograph [7]. Geosynthetic tubes
have been studied in many papers, but only the problems related to the tubes filled with a single
liquid have been analyzed.

The models of geosynthetic tubes on a rigid horizontal foundation are presented, for instance,
in [3, 4, 6, 9]. The mathematical models of geosynthetic tubes filled with both liquid and air are
investigated in [1].

Application of stacked geosynthetic tubes attracts more and more attention. Such problems are
solved in [8], where the behavior of stacked tubes is analyzed both on a rigid foundation as well as
on a deformable one. Mathematical problems connected with existence, stability, and uniqueness
are analyzed in |1, 5]. The existing numerical methods are reviewed and compared in [2].

2 Formulation of the problem

In this section we formulate the basic hypotheses and the differential equations of equilibrium
for a geosynthetic tube filled with several liquids sitting on the rigid horizontal foundation.

The cross-section of the tube is depicted in Figure 1. Notice that the shape of the cross-section
is symmetric with respect to the y - axis.

Our aim is to describe the shape of the cross-section and to find the corresponding tension ¢, the
pressures pg, p1,- - -, Pn With respect to the given perimeter [, the areas vq,...,v, and the den-
sities p1,..., pn. Notice that the given data cannot be independent. Concretely, hypothesis (v)
formulated above yield the inequalities

/ N\
[ \ A
\ Ja’
N\ ALY
rigid foundation o Ag

Figure 1: Scheme of the cross-section of the tube.
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pP1L>p2>...> P

Moreover, the maximal area of the cross-section related to the fix perimeter [ corresponds to the
area of the circle. Thus the inequality

Su < 1)
=1

must hold. With respect to the theoretical results in [5], we can expect that this inequality also
ensures the solvability of the problem.

Since
Di = Di—1 _gpl(yl _yi—1)7 1= 17"'7”7 (2)

the pressures fulfill the inequalities

Po>p1>...> Dn,

where py is the pressure on the bottom, p,, is the pressure on the top. Due to hypothesis (vi), the
pressure in the liquids acts in the perpendicular direction to the synthetic fabric. Moreover due
to hypotheses (ii) and (vii), the friction between the tube and the foundation does not influence
the shape of the cross-section. Thus there is no force in the tangential direction, which results
in a constant tension force in the fabric.

First of all, we will formulate the problem with respect to the parameter s. So we consider
the continuous functions z(s), y(s), 6(s) to describe the shape of the cross-section curve. The

Y

equations of equilibrium for the geosynthetic tube filled with n liquids read

dx
i cosf(s),
% = sinf(s), )
do ’
tE:pi—gpz’H(y(s)—yi), i=01,....n—1,

where s € (s;, si+1). The equations (3) describe the shape of the part of the cross-sectional curve
in the layer occupied by the liquid with the density p;+1. Moreover, the following conditions

Tn =2(sp) =0, yo=y(s0) =0, g =0(s0) =0, 0, =0(sp) =7 (4)
are satisfied, which is evident from Figure 1. With respect to the prescribed values of the
perimeter [ and the areas vy, ..., vy, it holds the following equalities:

Sp=1/2 (5)
and
85
d .
/:Ed—zds:vi, i=1,...n. (6)
Si—1
To find the solution to our problem, we have to determine the parameters ¢, s;, p;, ¢ = 0,1,...,n,

and the continuous functions z(s), y(s), 0(s) on the interval (sg,s,) so that the differential
equations (3), the conditions (4) and the relations (2), (5) and (6) are fulfilled.
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3 Numerical model problems

In this section we use the numerical algorithms described in the previous section to solve a few
numerical model problems. We analyze a geosynthetic tube filled with two, three, and four
liquids with various densities. We use the perimeter 10 m in all the investigated examples. We
start with a tube filled with two liquids with mass densities 1000 kg/m?3 and 1300 kg/m3. Let us
consider that the volumes of the liquids are divided in the proportion 1: 1. Now we are looking
for the mutual dependence between the whole area of the cross-section and such quantities as
the length of the contact zone, the height of the tube, the pressure on the bottom and top of
the tube and the tension in the geosynthetic fabric. All these quantities are compared with the
same quantities for the geosynthetic tube filled with the single liquid with the average density
1150 kg/m3.

The graph in Figure 2 describes the dependence of the tube height filled with two liquids on the
cross-sectional area. Notice that the limit heights are 0 m and 10/7 m which correspond to the
height of an empty tube and the diameter of the circle cross-section of the tube, respectively.

The difference between the tube heights for two liquids and for the single liquid with the average
density is depicted in Figure 3. The graph in Figure 3 shows that the tube height filled with two
liquids is greater than the height of the tube filled with the single liquid for all the values of the
cross-sectional area. The maximal difference is approximately achieved for the same value of the
cross-sectional area as in the case of the contact zones.

Height (m)

Whole cross-sectional area (m?)

Figure 2: The height of the tube filled with two liquids.

x10°

Difference between heights (m)
N @ s o o~

-

0 1 2 3 4 5 6 7 8
Whole cross-sectional area (m?)

Figure 3: The difference between the tube heights for two liquids and
for a single liquid with the average density.
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The shape of the cross-section of the tube filled with two liquids (full line) and a modified shape
of the cross-section of the tube filled a single liquid (dotted line) is depicted in Figure 4. The
shape for the single liquid is modified so that the difference between the shapes is enlarged fifteen
times. The cross-sectional area is 3.0 m?.

y-axis (m)

Figure 4: The shape of the cross-section of the tube filled with two liquids (full line) and the
modified shape of the cross-section of the tube filled with a single liquid (dotted line). The
cross-sectional area is 3.0 m?.
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Some mathematical problems around
the GOOGLE search engine

1. Marek

Czech Technical University in Prague

1 Introduction

It is known that the Google search engine opened unusual interest for its fundamental principles in
many areas of research. Our contribution is concerned with the celebrated Google matrix whose
importance in computing the PageRank is undisputable. A worldwide discussion concerning
many aspects of search engines resulted in many journal publications as well as a monograph [6].
The above mentioned problem how to compute the PageRank efficiently led to an elementary but
very interesting result in Linear Algebra, to the so called Google lemma. Within short period
many proofs and generalizations of this lemma have been proposed and with large probability
some more will appear. An increasing interest to some specific disciplines of Mathematics and
Computer Science as well as many other areas of research directions should be welcome.

2 Generalities

All matrice appearing in the next sections are N x N matrices possibly expressed using their
block structure. As standard, we denote by p(C) the spectral radius of square matrix C, i.e.

p(C) = max{|A| : A € o(C)},
where o(C') denotes the spectrum of C. We call
Y(C) = sup{[A[: A € 0(C), A # p(C)}.
the convergence factor of C. We define quantity 7(C) by setting
7(C) = max {[A] : A € o(C), |A] < p(C)}
and call it subspectral radius of C.
2.1. Remark Let C be any N x N matrix. Then obviously,

p(C) 2 ~(C) = 7(C).

2.2. Remark Let T be a matriz whose elements are nonnegative real numbers. It is well known
that

1
lim TF =0 <= p(T) < 1;

k—o0
2)
i (1) g0 (o) <
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3 A short proof of the Google lemma

We are going to examine the following system of problems parameterized by parameter o€ (%, 1):
G(a) =aGW + (1 - a)G?,

where G is a (column) stochastic matrix and G(?) a suitable (low rank) irreducible stochastic
matrix.

We establish the following result and present it as

3.1. Lemma Suppose G? = vel, where v = (v1, ...,UN)T is a vector whose all components are
nonnegative reals and eT = (1,...,1), eTv =1, i.e. G®@ represents a rank-one stochastic matriz.
Then the convergence factor can be bounded as follows

1(G(e)) < a.

Proof Let Z(a) denote the Perron eigenvector. It is easy to see that vector («) has all its
components nonnegative and it can be normalized by setting e”#(a)) = 1. It follows that #(a) =
G(a)i(a) = aGWi(a) + (1 — a)v and hence

i) = [ (I — aG(l))] .

l—«o

Thus, the Perron projection of G(a) reads Q(a) = (a)e’. We check easily that Q(a)G(a)Q(a)=
G(a)Q(@) = Q(a) and

(I - Q) GP (I - Q(a)) = (6P = Q@) (I - Q(e)) =GP (I - Q(a) =0. (1)

The validity of the statement of Lemma 3.1 follows from the relation representing the unique
spectral decomposition of matrix G(a) = Q(a) + (I — Q(a)) aGW (I — Q(c)). The proof is
complete.

The above proof opens a way to generalizations. A crucial point in the above proof is a spe-
cial kind of relationship between the original transition matrix GM and the perturbation G
consisting of relations (1).

4 A generalization of the GOOGLE lemma

A speciality of our proof of the GOOGLE lemma demonstrated in the previous section consists
of showing that the perturbation vector is fully absorbed by the Perron projection of the convex
combination. An application of this fact to more general situation would be possible if we find
another type of perturbation with the absorbtion property and a method offering a convergent
procedure to compute a corresponding stationary probability vector. We show that such a pair
appears quite frequently.

Let p > 2 be a positive integer and

a® — i:l N1k, X = exp {%} i =—1,
Qi = 2", QVQ = QP Q) = gk = 1.
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Assume that G® is an irreducible blockwise cyclic stochastic matrix of order p and (1) its
spectral decomposition. We immediately see that both the block index of cyclicity as well as
rank of G equal p.

4.1. Theorem Assume G is a stochastic matriz, G?) is defined in (1), both of order N x N,
and G(a) = aGW + (1 — a)G?) a € (3,1). If also G(a) is p-cyclic, then

7 (G(a)) = a. (2)
Proof Since obviously
G(S) — ng)eT

is an irreducible rank-one stochastic matrix the GOOGLE lemma 4.1 implies that a unique
Perron projection of matrix aG™M) + (1 — )G reads as follows

Q”)(a)=< : (I—aG(1)>>_15c2.

11—«

p-Cyclicity of matrix G(«) then implies that its peripheral part possesses the following spectral
decomposition (see [1])

P
#(a)el + Z N7Q (@), Qj(a) = y;f7,

k=2

where 2 (a)T = (iT ,i{ ), and

T _ (\j—14T i—1)p ~T
y; = <)\9 a:(l),...,)\(J )px(p)>,

—j—1 ~(—1
17 = (Y emn)h), o 3T ey ),
e(n)) = (1,.. )T € R, j=2,..,p, > 0_mp = N

€ =1 — iz, for € =z + ix9, 1,20 € RL.
The conclusion of Theorem 4.1 follows from the fact that [9]

1l g L
Q) = Jim 5" (Gla)) A= expl2ni/p), = Lo
k=1

5 An application

In this section we present an application of the generalized GOOGLE lemma. It consists of
convergence of a two-level computation method for a problem with data of restricted precision.

5.1. Theorem Assume B is an irreducible stochastic matriz being cyclic of index p. Further
we assume that the elements of B are known ezactly but with some error, say B = B + C
with some stochastic BY and an error matriz ||C|| < n with n fized. To compute the appropriate
stationary probability vector of BV we utilize Algorthm 4.1. SPV(B(«a);T;t,s = 1; y(o);&?), where
B(a) = aBW + (1 —a)B®,I — B(a) = M(I = T),T = M~'W,(1/2) < a < 1, as formulated
inf10]. Here B?) = Z§:1 )\j_ng-Q),)\ = exp{2mi/p}. Then Algorithm 4.1 returns a sequence of
iterants {y®)} such that
[y ™ = 9| < w(rT)*, k=01,

where § = B(a)g, e’ =1,e = (1,...,1)T and s is independent of k.
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5.2. Remark We see that the data i.e BY) is perturbed by a term proportional to C' = Z‘;’:l Q§2)
and we insist relation ||(1 — «)C|| < n with 0 < n to hold.
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Fast solver based on Fourier transform
for linear elasticity problem

L. Mocek

VSB - Technical University of Ostrava

1 Introduction

The main goal of this paper is to briefly show how to solve elliptic boundary value problems for
linear elasticity using fictitious domain method and efficient solvers based on discrete Fourier
transform and the Schur complement reduction using orthogonal projectors. We start from the
fictitious domain formulation of a given problem. We briefly mention the main ideas and we also
mention the new fictitious domain approach based on definition of new auxiliary boundary, which
is used to get smoother solution on origin domain. Using mixed finite element discretization we
get the discrete algebraic saddle-point system, which can be solved effectively by combination
of the Schur complement reduction and the Fourier transform. For evaluation of the stiffness
matrix we use spectral decomposition of the stiffness matrix by the Discrete Fourier transform
and for its product with a vector which is used later for finding the solution, we use Fast Fourier
transform. For this evaluation it is not necessary to store the whole stiffness matrix which is big
advantage, because the order of stiffness matrix is usually large. For solving of whole algebraic
saddle-point system we use the Schur complement reduction. Because the stiffness matrix is
singular, the algebraic system is going to be reduced to the other one and afterwards we combine
method based on the Schur complement reduction with using of orthogonal projectors. Finally
the proposed method is illustrated on numerical examples.

2 Fictitious domain method

Before we formulate linear elasticity problem we briefly explain the basics of fictitious domain
method. Let w be bounded domain in R? with the Lipchitz boundary dw. On this domain we
define an elliptic boundary value problem. The main idea is to embed the real domain of our
original problem with possibly complicated geometry w to a new simple shaped domain Q (for
example rectangle) called fictitious domain, see Fig. 1. The original problem is reformulated
to a new one defined in the fictitious domain 2. The advantage of this method is that we can
use special partition on €2, which enable us to apply effective solvers for evaluation of resulting
algebraic system. We can consider the original boundary conditions as a constraint. In elastic
approach, we enforce this constraint by the Lagrange multipliers defined on the boundary ~ of
the original domain w. Therefore the fictitious domain solution has a singularity on v that can
result in an intrinsic error of the computed solution.

Figure 1: FDM Figure 2: Modified FDM
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To remove the above problem we propose a new approach [3], in which we move singularity away
from boundary . This modification is based on introduction a new control variable instead of
the Lagrange multiplier defined on the other auxiliary boundary I' located outside of the domain
w, see Fig. 2. The boundary T" satisfies the condition § = dist(I',7) > 0. This new control
variable enforces the original boundary condition on 7. Because the singularity is moved from
w, the solution is smoother in w.

3 Formulation of the linear elasticity problem

We consider elastic body which is represented by domain w C R? with smooth boundary v =
Yu U7y, divided into two disjoint parts. The zero displacement is imposed on ~, while surface
tractions of density p € (L?(7,))? on 7,. Let us formulate linear elasticity problem:

—divo(u) = f in w,
u = 0 on 7y, (1)

oWy = p on
where o(u) is the stress tensor in w, v = (v1,v2) is the unit outward normal vector to -,
u = (u1,u2) and we prescribe forces of density f|, € (LZ,(R?))? in w. The stress tensor is

related to the linearized strain tensor e(u) := 1/2(Vu+ VT u) by Hooke’s law for linear isotropic
materials:

o(u) == Atr(e(u))I 4+ 2ue(u) in w,

where "tr" denotes the trace of matrices, I € R?*? is the identity matrix and A, > 0 are the
Lamé constants.

We define operator div o(u) as

2 2 2
(O + 2u )%u1 + %u; (Aﬂﬁ—a8 gz
divo(u) = T ) (2)
O+ 1) 0%y 0%us (A+2)au2
H c%clc‘)a;g Maxl 8 2

and the space

V(Q) = (HL, Q)2 H: (Q) ={ve H (Q)|vis periodic on 9Q}.

per per
The modified fictitious domain formulation of (1) is following:
Find (a,\) € V() x A(T") such that
aq(t,v) + (v, \)r = / fvdz YveV(Q),
Q

(3)
</Luvﬂ>“{u =0 V,uu € A(’Vu)7
(tps 0 (Q)V), = (tip, D)y, Viip € A(p),
where A(T) = (H'2(1))?, Aw) = (H'?(3))?, A(yp) = (H™2(7))%, and (,)r, ().,
and (, ),, stand for the duality pairings between H'Y2(T') and H-'/2(I), Hl/z(yu) and H~ i 2 (vy),
H'Y2(,) and H1/%(7,) respectively. Finally ag : V(Q) x V() — R and (v, \)r : V(Q) x

A(T') — R are two bounded bilinear forms.

The dicretization of (3) using finite element method [1] leads to the following algebraic saddle

point system:
A | BE U f
(219) (5= (5) g
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where A € R?"*?" ig the stiffness matrix, the matrices Bp € R*™*?" and B, = (B,,,C,,)T €
R?mX27 are determined by geometries of I' and «, respectively, and by the imposed boundary
conditions, they have full row-ranks and also they are highly sparse. The vectors f and g are
given as f € R*™, g = (0,p)T € R?™, respectively. We solve this algebraic system with the
method based on Schur complement reduction.

Due to the choice of the space with periodic boundary condition on 02, the matrix A is singular
but the advantage is that A has a block circulant structure which allows to use the highly
efficient solver based on the Fourier transform. For this reason we can use Discrete Fourier
Transform for spectral decomposition of stiffness matrix A and after that easily evaluate Aty by
Fast Fourier Transform without storing A and it is big advantage against other algebraic solvers.
We denote A as generalized inverse of A and y € R*". This product appears in multiplying
procedure of Shur complement reduction which is used to solve this problem.

4 Solver for linear elasticity problem based on DFT

Let us describe this multiplying procedure in more details. We solve our problem in fictitious
domain ©. On the sides of Q = (0,L;) x (0,L,) we consider equidistant partitions into n,
and n, segments with stepsizes h, = L;/n, and hy, = L,/n,, respectively. Domain € is decom-
posed into n = n,n, partitions. On this rectangulation we introduce the fine element subspace
Vi, which is formed by piecewise bilinear functions. Then the stiffness matrix A reads as follows:

A ( (A +21) Ay @ My + pM, @ A, | (A + u)B, ® By ) 5)

(A p)B, ® By | pAy ® My + (A +2p)M, ® Ay

where symbol ® stands for the Kronecker tensor product and Ay, My, B, € R"™ ™ Lk = x,y
are circulants with the first columns

ar = (1/hy)(2,-1,0,...,0,—-1)T e R™, k=ux,y,

mi = (h/6)(4,1,0,...,0,)T € R™, k=uy,

b, = (1/2)(0,—1,0,...,0,1)T € R™, k=uz,y,
respectively. Eigenvalues of any circulant can be obtained by the DFT of its first column while

eigenvectors are columns of the inverse to the DF'T matrix. Based on this observation we can
write:

Ay =X, 'Dp, Xy, My =X.'Dy, Xy, Br=X.'Dp Xy, k=uz,y,

where Dy, , Dy, Dp,, kK = x,y are the respective diagonal matrices of eigenvalues and Xj,
k = z,y are DFT matrices. Substituing these expressions into (5) and using properties of the
Kronecker tensor product, we obtain

X_l‘o ><D11‘D12><X‘0>

A= — , 6
< 0 [x7T Doy | Dy 0]X (6)
where X = X, ® Xy, D11 = (A+2p)Da, @ Dy, +pDy, @ Da,, Dao = pDa, @ Dag, + (A4 2p)
Dy, ® Da,, D12 = A+ p)Dp, ® Dp,, D21 = D12. Let us denote D the second matrix on the

right hand-side of (6). Then we can obtain generalized inverse of AT replacing D by DT in (6).
We can rewrite D by the following factorization:

D:< I \0><D11\ 0 ><I DLDlg) ™)
Dy D}, | 1 0 | Doz — D21 D} Di2 0] I ’
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where DL = diag(di,--- ,dL) with d;-r = 1/d;, if d; # 0, and dZT. = 0 if d; = 0 and denote
Dng = D22 — D21DJ{1D12, then we define

1 + —1
t_ I‘DLDu) Di| o < I \0>
D= (17 0 (L, J\Dunl 1) )

finally we get X1l o X! o
T = T
A= (T’Tr> b <ﬂ7> ®)

We can obtain from (8) and (9) the product Ay, y = (y1,v2).

5 Schur complement reduction

From the reason that the stiffness matrix A is singular, the first component u of (4) cannot be
completely eliminated. It follows that the Schur complement reduction leads to another algebraic
system with two unknowns. The first uknown A from the previous saddle point system and new
unknown «, which corresponds to the null-space of A. We can formulate this new algebraic
system with unkowns (A, a):

B,A'Bl —B,N A\ _( BAf—g

~MTBE 0 o ~MTf
and the first unknown u of the algebraic system (4) is given as u = AT(f — BLA) + Na. We can
simplify this algebraic system to the following reduced system

F GT A d
= 1
(e G))-(0) o
where F:=B,A'Bf, Gy:=-N"BI Gy:=-M"Bf,
d:= BVATf —qg e:=-MTY}.
Now we define two orthogonal projectors P; and P, onto the null-spaces of G; and G5. The first

projector splits the saddle-point algebraic structure of the reduced system, the second projector
decomposes the unknown A € R?™ into two components A\g and Ay as

!

A= Ar + An,

where A\g belongs to the range-space of Go (Ag € R(G?)) and Ay belongs to the null-space of
G2 (Ay € N(G2)). Then A is the first component of the solution to the algebraic system (10) if

Ar = GT (GG te
and Ay satisfies the following equation:
P FAy = Pi(d— Fg).

The component Ay is solved by a projected Krylov subspace method for non-symmetric operators
(see [3]). Finally the second component of algebraic system (10) is given by

a=(G1GH™1G (d - F)).
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6 Numerical experiments

Let us show some numerical experiments. Let us define the domain w as interior of the elipse

(r —0.5)2  (y—0.5)?
0.42 0.22
which is embeded into the fictitious domain = (0,1) x (0,1) (see Fig. 3). The righthand
sides of (1) are f = —divo(a) and p = o(a)v, where @(z,y) = (0.1xy,0.1zy), (z,y) € R?. The
auxiliary boundary I' is constructed by shifting ~ in the direction of outward normal vector. In
Fig. 4 we can see original and deformed geometries of w and the difference between exact and
computed solution is shown in Fig. 5. In Table 1 we can see the number of primal and control
variables, number of iterations, computational time and relative errors of approximate solution

uy, to exact solution in these norms:

w={(z,y) € R

<1},

ln — all (o))
N2l (1 (w))2

lan — Gl Ly w))2
(8l (L (w))2

Erel(Lay(w))? = v Eremiw)z =

1
(9] - - -original
—deformed

Figure 3: Geometry of w. Figure 4: Original and de- Figure 5: |4y, — 4] in w.
formed geometry.

Step h | prim/control | Iter | Time(s) Erel,(Lg(w))2 Erel,(Hl(w))z
1/64 8450 /44 43 0.312 | 4.1269e-003 | 1.8750e-+000
1/128 33282/68 25 0.468 | 5.2323e-004 | 6.8257e-001
1/256 132098/112 37 2.215 1.0882e-004 | 3.1294e-001
1/512 | 526338/180 | 52 16.36 | 8.2582e-005 | 2.7259e-001

Table 1: Computational results.
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On numerical behavior of the Arnoldi algorithm in finite
precision arithmetic for matrices with close eigenvalues

G. Oksa, M. Rozloznik

Institute of Mathematics SAS, Bratislava
Institute of Computer Science AS CR, Prague

Let A be a symmetric matrix of order n. Our numerical example uses the Strako§ matrix of
order n = 30, which is diagonal, positive definite. Its minimal eigenvalue is A\; = 0.1, maximal
A =100, and \; = A; + (i — 1)/(n — 1)0.9"7%(\,, — A1) for 2 < i < n — 1. The eigenvectors x;
are columns of the identity matrix of order n. Let us choose a small positive constant v < 1;
our numerical example is for v = 1.11 x 107'2. Now modify \,_; as to get a very close pair with

At An—1 = Ap — 2v (so that v = (A, — A\p—1)/2), and let = (A, + Ap—1)/2.

Let v; = v/n(1,1,...,1)T be the initial unit vector and compute (in finite precision arithmetic)
two Krylov bases Vi, and W} by two implementations of the Arnoldi algorithm, whereby both
of them ensure the orthogonality of computed basis vectors up to O(e), where € is the round-
off unit (e ~ 1.11 x 107!¢ in double precision arithmetic). We have used the Householder
orthogonalization (HH) and the Iterated Modified Gram-Schmidt orthogonalization (IMGS).
The bases were generated by following recurrences for 1 < k <n — 1:

AV = Vi HY) o+ B, with |[FV] < [ANOGK 2 n)e,

+
AW = Wi HY  +FD, with [F7] < |AOKn)e,

+

where H(i)

ki1 &= 1,2, are computed upper Hessenberg matrices of order (k +1) x k.

When looking at the correlation coefficient ¢; = |w!v;|, 1 < i < n, one can observe the loss
and recapture of correlation between iterations 17-24 (see Fig. 1). This surprising observation is
closely related to the convergence behavior of two maximal Ritz values (see Fig. 2). First, the
maximal Ritz value 0,13 converges to p and remains in its vicinity for iterations 14-25. Second,

Figure 1: Loss and recapture of correlation: |1 — ¢;|.
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Convergence of two largest Ritz values
T
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Figure 2: Convergence of two largest Ritz values.

Angle between vector a or b, and span(Vk)
10 T T T T

sin(a,span(Vk))
sin(b,span(vk))

0 5 10 15 20 25 30

Figure 3: Angles between the vectors a, b, and the subspace span(V}).

the next-to-maximal Ritz value 0,’:_1 approximates A,_s up to the iteration £ = 21 and only
after that it starts to move towards A,—1. When both eigenvalues are well approximated by their
corresponding Ritz values, the correlation is fully recaptured after the iteration k = 25.

Perhaps more insight can be gained by answering the question of how the two-dimensional
eigenspace Xo = span(z,_1,,) is approximated during the computation. Define two mutually
orthogonal vectors: a = (z,_1+7,)/V2, b = (zn_1—2n)/V/2, so that X» = span(a, b), i.e., (a,b)
is another orthonormal basis of X5. Notice that a is the unit orthogonal projection of the starting
vector vy into X, but bTv; = 0. In other words, at the beginning of computation the Krylov
space contains only information w.r.t. one dimension of Xy (along a) and the other dimension
(along b) has to be built up starting from zero.

Angles between span(V}) and the vectors a and b are depicted in Fig. 3, while the components
laTvy,| and |bTvy| are depicted in Fig. 4. Starting with |67 v = 0, the b-component increases
up to the iteration k = 22. At the same time, |b”v;| differs from |[b7wy| more and more, so that
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Components |aTvk| and |bTvk|
10 T

.
o™y, |

Figure 4: Components |a’vy| and |[bTvg|.

when [bTvg| > (/e = 1078 the correlation starts to deteriorate significantly. Recall that at the
iteration k = 22 the second largest Ritz pair appears with 0,’:_1 > Ap_2 so that the approximation
of the whole X; finally begins. Notice that |a?v;| reaches its maximum at k = 2 and then almost
steadily decreases.

It turns out that it is the b-component of basis vectors, which is sensitive in both implementations
of the Arnoldi method. To understand this, we analyze two steps of the Arnoldi process at
iteration k + 1 in exact arithmetic regardless to its computer implementation:

L. Y = A'Uk, (1)
2. Bryrvrrr = (I = ViV s
Working with the orthonormal basis (z1,z9,...,Zy—2,a,b), where z;, 1 < i < n — 2, are the

eigenvectors of A, one can express vy as

n—2

ve =Y (@l vp)z; + (a"v)a + (07 )b,

i=1
so that )
Avg = Z Ni(zT o)z 4+ [u(a® o) + v vp)]a + [p(d" vg) + v(a vy))b.
i=1

We see immediately, that because the vectors a and b are not the eigenvectors of A, Avy has
a (small) b-component v(a’v;) even when b7v; = 0! When v < 1 and computations are made in
finite precision arithmetic, the b-component of Avy can be severely affected by rounding errors.

The second step from (1) can be written as follows:

n—2

Briavesr = > Xiaf vp) (I = ViVl i

= (2)
+ [u(a o) + v (" v (T = ViVl a

+ [T vg) + v(aTv)]| T - Vi VD).
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Let us define the subspace Vj, = span(V}) and its orthogonal complement V,i-. Then:

(I — VkaT)a:i = sin Z(x;, V) Ek), where (k) € Vk , Hn(k)H =1,
k)

(I —ViV)a = sin Z(a, Vi) n®),  where n( ) e Vi, Hn(k | =1, (3)
(I — VaViI)b = sin Z(b, V) 1(7 ), where ) e Vi, || || =1

The set of equations in (3) defines the normal vectors ngk), n((lk), nl()k) that can be again decom-

posed in our orthonormal basis. Now we can use this decomposition together with (3) in (2),
but we will write the expression only for the b-component:

Brep1 (T vgs1) = [sin Z(b, Vi) (0"nl™) + vsin Z(a, Vi) (6T n{)] (67 vy.)

+ [wsin Z(a, Vi) 0" n®)) 4 vsin Z(b, Vk)(an,()k))] (aTvy)
n—2

+ Z i sin Z(z;, Vi) (:L'ZTvk)(angk)).
i=1

To analyze (4) in general seems to be difficult. However, when b remains perpendicular to Vi,
i.e., b € Vi (see Fig. 3 for all iterations < 21), one gets:

T (b o) + (aTvp). (5)

Vk+1 =

Br+1 Br+1

When p/Bri1 > 1, (5) suggests an amplification of previous b-component and its subsequent
slight modification (since v is very small).

In finite precision arithmetic, b7 v; = 0 and b’ vy is very small (regardless to the implementation)
so that it is prone to rounding errors (which depend on implementation). This small difference
in b-component of v between two implementations is amplified according to (5), when the b-
component increases. Hence, the loss of correlation between two bases starts right from the
beginning of computation and becomes evident when |[bTvg| ~ /e =~ 1078, On the other hand,
the recapture of correlation is possible only when the whole eigenspace &5 is well approximated
by the last two Ritz vectors. This is equivalent to the fast decrease of |bTv;| after the iteration
k = 22 and to the tight approximation of both \,_; and \,, by two largest Ritz values.

When A has an exactly double maximal eigenvalue, the last Ritz vector converges again to a, i.e.,
to the orthogonal projection of vy into Xs. However, since now any linear combination of vectors
a and b is an eigenvector, there arises no ‘spurious’ component along b in the matrix-vector
multiplication. Therefore, the whole eigenspace X is approximated only in the last iteration
k = n and there is no loss of correlation between two computed Arnoldi bases.
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1 Introduction

The determination of phycobilins diffusivity in thylakoid lumen from fluorescence recovery after
photobleaching (FRAP) experiments was usually done by analytical models [5, 3]. However, the
analytical models need some unrealistic conditions to be supposed. This study describes the
development and validation of a method based on finite difference simulation of diffusion process
governing by the Fickian diffusion equation and on the minimizing of an objective function
representing the disparity between the experimental and simulated time-varying concentration
profiles.

2 Model development

2.1 Theory

During a FRAP experiment, a sample either containing a fluorescent solute or having the nat-
ural capacity for fluorescent signal emission, is briefly exposed to intense laser illumination to
bleach a target region of a specified geometry (in our case, the computational domain is an
Euclidian 2D rectangular domain). For an arbitrary bleach spot and assuming (i) local homo-
geneity (assuring that the concentration profile is smooth), (ii) isotropy (diffusion coefficient is
space-invariant), (iii) an unrestricted supply of unbleached particles outside of the target region,
and (iv) negligible out-of-domain concentration gradients, the recovery of unbleached particle
concentration C' as a function of spatial coordinate 7 and time ¢ is modelled with a following
diffusion-reaction equation on two-dimensional domain :

oC

5~V (DVC) = R(C) , (1)
where D is the fluorescent particle diffusivity in domain Q (i.e. in some selected part of thylakoid
lumen), and R(C) is a reaction term modelling the binding of particles.

The initial condition, and time varying Dirichlet boundary conditions are:
Co=C(tg) onQ, C(t)=g(F,t) on 0. (2)

The reaction term R(C) is often viewed as negligible under assumptions that the fluorescent
molecules do not bind to the medium and that photobleaching of these molecules during recovery
is negligible. Consequently, if R(C') is neglected, (1) becomes the Fickian diffusion equation. In
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contrast, under continual photobleaching during image acquisition, this reaction term could be
described as a first order reaction:
R(C)=—ks C, (3)

where kg is a rate constant describing bleaching during scanning |2].

Another source of error, often negligible, is the time dependence of the fluorescent signal ¢
emitted by fluorescent particles. Although within (1) and within objective function J, cf. (8),
we use the concentrations C|, in fact we measure the fluorescence level and not directly C'. If the
following relation holds: C = kp¢, where kp is a constant, than we can work with the measured
signal without necessity of any recalculation (e.g. by a normalization of the overall signal). On
the contrary, if kr is time dependent, then we should design an experiment and estimate this
dependence, in order to have a correct form of (1).

2.2 One dimensional model

For a linear bleach spot perpendicular to a longer axis (let this axis be denoted as r) and
assuming local homogeneity and isotropy, an unrestricted supply of unbleached solute outside of
the target region and negligible out-of-domain concentration gradients, recovery of unbleached
particle concentration as a function of spatial coordinate and time ¢ is modeled with a linear,
diffusion-reaction equation:

oC 0*°C

— - D— =R(C 4

- DTS =R(C), 4
Furthermore, adopting the form of reaction term according to (3), and after introducing the
dimensionless spatial coordinate z, the dimensionless diffusion coefficient p, the dimensionless
time 7 and the dimensionless concentration y by

L
=zL, D:=p Dy, t:=7— =— )
r L, b Lo, TDO ) Cm ) ( )

where L is the length of our specimen in direction perpendicular to bleach spot, Dy is a constant
with some characteristic value (unit: m?s™1), and ¢,, is a characteristic (e.g. maximal) concen-
tration of C', we finally have the following form of dimensionless diffusion-reaction equation on
one-dimensional domain, i.e. for z € [0, 1]

8y @ . _k5L2
or Yoz~ Dy Y-

The initial condition, and time varying Dirichlet boundary conditions are:

(6)

yo = y(x,79) for x € [0,1], y(0,7) = go(7), y(1,7) = g1(7). (7)

2.3 Experimental data

Based on FRAP experiments, see Fig. 1, we have not a smooth function for the initial condition,
but a vector of values yezp(xi,to), ¢ = 1,...N. Similarly, for the boundary conditions we have
two vectors, each one composed from M values, M is the number of time points in the time
axis, where the measurements were taken: ¥e.p(0,¢;), 7 = 1,...M, on the left, and
Yeap(1,t5), j = 1,...M, on the right edge of interval |0,1|. The resting experimental data, in fact
characterizing the diffusion process, form a 2D matrix of dimension (N,M), which can be read by
columns as the concentration profiles (along z axis) in M discrete time points. The forthcoming
task is the analysis of measurement noise and its correct filtering.
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Figure 1: An example of time series of FRAP measurements with photosynthetic proteins.

2.4 Determination of diffusivity as a single parameter estimation problem

The problem of phycobilins diffusivity determination based on time series of experimental data
will be further formulated as a single parameter estimation problem. We construct an objec-
tive function J representing the disparity between the experimental and simulated time-varying
concentration profiles, and then within a suitable method we look for such a value p minimiz-
ing J. The usual form of an objective function is the sum of squared differences between the
experimentally measured and numerically simulated time-varying concentration profiles:

N M
T=3" Weap(®i:73) — Ysim (@i, )] (8)
i=1 j=1

where ygim (i, 7;) are the simulated values resulting from the solution of PDE (6) with the initial
and boundary conditions (7). The implementation of both direct problem, i.e. the solution of
PDE (6) with the initial and boundary conditions (7) for the known parameter p, and a single
parameter estimation problem is describe in the following section.

3 Implementation

Firstly we started neglecting the reaction term (i.e. we put kg = 0). Hence, we are minimizing J
with respect to p, which represents a one-dimensional optimization problem. We have used
a suitable optimization method from the UFO system which generates a sequence of iterates
{pk, k > 0} leading to a value which minimizes J (see [4]). In order to compute a function value
of Ji in (8) for a given py, in the k-th iteration, we need to know both the values of yerp(xi, 75),
i=1,..,N, j=1,..,M, and the simulated values ygjm (i, 7;), ¢ = 1,..,N, j = 1,..., M, for
a given py as well. It means that in each iteration we need to solve the problem (6)-(7) for the
initial and boundary conditions defined by the current value of p; and the experimental data:

Yo = yemp(x,TO) for z € [07 1]) y(O,T) = yewp(OaT)y y(l,T) = yegcp(laT)-

This ’direct’ problem was solved numerically using the finite difference scheme for uniformly
distributed nodes with the space steplength Ah and time steplength A7. We have used an
explicit scheme, cf. |1], which can be generally written in the form
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where (x;,7;) is an inner node of the difference scheme and § = pk% (pk is the value in the
k-th iteration). It is known that in this case the condition 5 < 1/2 has to be satisfied.

Taking into account the biological reality residing in possible time dependence of phycobilins
diffusivity, we further consider two cases. First, we can take both sums for ¢ and j in (8)
together. In this case, the scalar p is a result of minimization problem for J. Secondly, we can
consider each ¢-th space row separately. In this case, the N solutions p . p®™) correspond to
each minimization problem for fixed ¢ in the sum (8) and we have a ’dynamics’ of diffusivity p
evolution.

Our program is actually under testing, however, for the previously known diffusion coefficient
and the data simulated by the random walk model it computes correct results. Afterward,
we determined the diffusivities for the real data of FRAP measurements (with the red algae
0—14 m2g—1

Porphyridium cruentum). The range of result 1 is in agreement with reference values.

4 Conclusion

Our method for diffusion parameter estimation from FRAP data improves on other models by
accounting for experimentally measured post-bleaching fluorescence profiles and time-varying
boundary conditions, and can includes a reaction term to account for the time varying fluores-
cence signal (maybe due to the detrimental effects of low level photobleaching produced by image
acquisition during recovery). Analysis of simulated FRAP data demonstrate the advantages of
this method over common analytical approaches, including a low sensitivity to variations in the
spot radius and to the effects of photobleaching during scanning.
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1 Introduction

During a process of numerical solution of partial differential equations using domain decompo-
sition methods, a good error indicator could help us to decide whether the error of a current
approximation is sufficiently low or not on a particular subdomain. If we use the domain decom-
position method balanced by constraints (BDDC) [2], we can decrease or increase the number
of coarse degrees of freedom (DOF) on such subdomains. We derive our further considerations
from the equilibrated residual strategy which is described in [1] and developed e.g. in [3]. The
a posteriori error estimation techniques can be used though the current solution is not the exact
solution of the underlying linear system. In this contribution we discuss how the estimates can
be applied to BDDC methods without much additional effort.

Let us suppose a second order elliptic partial differential equation in a two-dimensional domain
with homogeneous Dirichlet boundary conditions on the boundary 9€2. Let the weak formulation
be to find uy € W such that

B(U’W7 U) = (fa U)a
v € W, where W is an appropriate function space. Ordinary and energy scalar products (u,v)
and B(u,v) are defined as usual. Let V be a space of finite element (FE) linear or bilinear
functions on triangular or quadrilateral mesh satisfying the boundary conditions. Let us denote
by uy the solution in V

B(uy,v) = (f,v)

for all v € V. This discretized problem can be represented by a system of linear equations
Ku=5.

Partition € into subdomains €,,, m = 1,...,n, yields n separate problems, some of them
indefinite. Let the subscript o denote DOFs belonging to internal nodes of all subdomains and
let the DOFs of nodes on internal boundaries of all subdomains have subscript r. After reordering
the nodes and after assembling the blocks by integrating only over individual subdomains, we
get a new matrix of the system of algebraic equations

(5 5)()- (1)
Koz;» K, Uy Ir ‘

Submatrix K, is block diagonal and positive definite, its dimension equals to the number of all
internal nodes. Matrix K, is positive semidefinite and its dimension is larger than the number

of nodes on interfaces because each of the interface DOFs belongs to more than one subdomain.
After elimination of KX we get a Schur complement formulation for the interface unknowns w,

Su, = fs, (2)
where
S =K, — KoK, Kor,  fs = fr = KooK o
In the BDDC methods, a coarse problem is built and solved of a dimension much lower than that
of S in order to transfer the information among the subdomains and to provide the subproblems
with the Dirichlet boundary condition.
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2 Equilibrated residual method for subdomains

The equilibrated residual method for a posteriori error estimates is described in [1]. Fluxes over
element edges are calculated and smoothed on every patch of elements which share a single vertex.
Then the energy norm of the error is computed from the solution of Neumann problems on all
elements. In our approach, we exploit this basic idea, but there are two main differences. First,
instead of patches of elements we use subdomains and moreover, only the interface unknowns
are calculated with. Second, we can compute the estimates in every BDDC iteration, it means
that we do not need the exact solution of the linear systems (1) or (2).

For the error of an approximate solution u; in step ¢, we have e = u; — uyy € W. Then the
energy norm of the error |||e]|| is

llelll = sup = Ble,v) = sup  Blu;—uw,v) = sup  (B(us,v) = (f,0)).
vew, [flvll|=1 vew, [|jvllj=1 vew, [ffvll|=1

The involved scalar products can be computed over the individual subdomains. Let us consider
a set of functions g defined on boundaries of subdomains inside €2 such that

;/angvds:O.

Then we have

el = swp 3 (Blumo) - (F0) +

g ds> , 3)
veW, |||v]||=1 m O

where wu;, is u; restricted to ,,. The right hand side of (3) can be substituted by

llelll = sup > B(¢m,0),

veW, [[]v[l|=1"7;
where ¢, € W, is a solution of

B(¢m,v) = B(uim,v) — (f,v) +/ gvds (4)

m

on Q. v € W,,, where W, is an appropriate function space on €,,, m = 1,2,...,n. If some
domain €, does not coincide with 92, then the associated problem has only Neumann boundary
conditions given by g on 9€2,,. When g are the outer normal derivatives of the exact solution on
0, we obtain the exact error e,, on €,,. In any case we have

Helll <D llidmlll (5)
m
After discretization of (4), we have

B(éu,0) = Blutam, v) — (f,0) + / guds, (6)

OQm

where ¢, and v are from FE function spaces on Q,,, m = 1,2,...,n. Then of course instead
of (5) we obtain only an error indicator.

Let us stress that there are only two conditions that must be fulfilled: a) the sum of the chosen
fluxes g have to be zero, b) the problems on interior subdomains must be solvable.

Matrix representation of the introduced considerations can be as follows. Let the systems

K,u=rmr, (7)
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represent the discretized equations (6) and let
Sl = TSm (8)

are the associated Schur complement representations. Adding fluxes g on subdomains means
adding vectors 7, to right hand sides of (7) or equivalently 7g,, to (8) to the positions of the
interface unknowns.

Condition a) is fulfilled for example whenever the fluxes have zero sums on every interface of
a pair of subdomains. Condition b) is fulfilled if for interior subdomains the equations (7) or
equivalently (8) are solvable. We can calculate the fluxes for patches of subdomains, but we can
also equilibrate the residuals at the same time for all edges by solving one system of equations.
Of course, such set of fluxes g or equivalently of vectors gy, (or 7,,) is not unique. In our
experiments we choose vectors 7g,, like multiples of residuals rg;, on each interface edge. We
follow the idea of |1] and minimize the distances of the resulting right hand sides rg,, + 7sm
from averages of residuals which belong to opposite sides of an interface shared by any two
subdomains. We can simplify the equilibrating of residuals in such manner that only the sums
of fluxes over whole interfaces are balanced and not over the individual elements. Then the
dimension of this problem is equal to the number of interfaces between subdomains.

Instead of a posteriori error estimates, this method rather yields suggestions of residual parti-
tioning for the BDDC method. The estimate is an indicator of |||u; — uy|||, where uy is the
exact FE solution of the problem.

3 Numerical example

Let us solve the equation
O*u 30%u
Z 2410322 =
Ox? + Oy?
in Q= (0,1) x (0,1) with u = 0 on 9. Let © be partitioned into 3 x 3 rectangular subdomains.
We solve this problem by the conjugate gradient method which is preconditioned by BDDC

method and use bilinear FEs on rectangular elements.

1

Error estimates in energy norm after the forth step of the conjugate gradient method are displayed
in Figure 1 for different choices of the mesh resolution and compared with the exact error and
with the error computed from residuals rg,, on subdomains

lerlll = r8mShrsm,

where Sﬁ is the Moore-Penrose pseudoinverse of S,,,. The estimates for the overall errors are
presented on the left, while on the right, the estimates are shown only for the central subdomain
which does not coincide with the boundary 0€2. The mesh resolutions are from 5 to 15 nodes
in every subdomain in each direction. In this example, the BDDC method uses all corner nodes
and one average on each interface edge as coarse DOFs.

Acknowledgement: This work has been supported by the project CEZ MSM 6840770001
and by the Grant Agency of The Czech Republic under the contract No. 201/09/P500 and
No. 201/09/1544.
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Figure 1: Error estimates in energy norm for different meshes after the forth step of the conjugate
gradient method preconditioned by BDDC. True error (simple line), residual estimate (croses)
and equilibrated residual based estimate (circles). Error estimates on € (left) and on the central
subdomain (right).
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On a posteriori error estimates for biharmonic problems
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1 Introduction

In this survey contribution, we present and compare, from the viewpoint of adaptive computation,
several recently published error estimation procedures for the numerical solution of biharmonic
and some further fourth order problems mostly in 2D, including computational error estimates.

In the hp-adaptive finite element method, there are two possibilities to assess the error of the
computed solution a posteriori: to construct a classical analytical error estimate (see their classi-
fication in [8]) or to obtain, by the same procedure as the approximate solution, a computational
error estimate. In the latter case, a reference solution is computed on a systematically refined
mesh and, at the same time, with the polynomial degree of all elements increased by 1.

We use common notation based primarily on the book [3]. For the lack of space, we sometimes
only refer to the notation introduced in the papers quoted. The complete hypotheses of the
theorems presented should be also looked for there.

2 Dirichlet and second problems for biharmonic equation

2.1. Dirichlet problem. Let £2 C R? have a polygonal boundary I'. We consider the
2D biharmonic problem

Au=f in £, (1)
ou
u_%_o on I’ (2)

with f € Lo(f2) that models, e.g., the vertical displacement of the mid-surface of a clamped
plate subject to bending.

We use the standard formulation of the weak solution u € X = HZ(£2) and approximate solution
up, € Xp written in the form (F(u),v) = 0 and (F},(up),vn) = 0. Denote by k, k > 1, the
maximum degree of polynomials in Xj,. Further, put f; = ZTeTh m,rf, where T is a triangle
of the triangulation 7, &, is the set of all its edges, P, [ > 0 fixed, is the space of polynomials
of degree at most [ and m g, S € T, U &, is the Ly orthogonal projection of Li(S) onto P(.S).
Put er = ||f — fullo;r- Let hr be the diameter of the triangle T'. Defining the local residual
a posteriori error estimator ny r for all T' € 7, we have the following theorem [8].

Theorem 2.1. Let u € X be the unique weak solution of the problem (1), (2) and let up € X,
be an approzimate solution of the corresponding discrete problem. Then we have the a posteriori
estimates

1/2 1/2

lu—upllo<er | D | +e| D hrer + 3| F'(un) — Fu(un) || + cal| Fp(un)|]
TeT, TeT,
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and
1/2

v, < csllu — up 2wy + co Z hi e
T'Cwr

for all T € Tj,. The quantities cy,...,ce depend only on hp/pr, and the integers k and l. Here
wr 18 the set of all neighbors of the triangle T and pr the diameter of the circle inscribed to T'.

The proof is given in [§].

The same problem is treated in, e.g., [9] with a residual error estimator giving similar results.

2.2. Dirichlet problem in mixed formulation. Let {2 C R? be a convex polygon with
boundary I'. Again, we consider the biharmonic problem (1), (2) with f € H~'(£2). The problem
is concerned in practice with both linear plate analysis and incompressible flow simulation.

We employ the Ciarlet-Raviart weak formulation of the problem (1) and (2) for the solution
{w = Awu,u} and the corresponding conforming second order approximate solution {wp,up}.
Let us put fp, = morf on T € T,

The local residuals Pr, Ry, Pg, and Rg are defined in [2]. We introduce the local residual
a posteriori error estimators nc,r and fjcr computed from the local residuals. We put ep(u) =
u — up, and ep(w) = w — wy,. Then the following theorem holds [2].

Theorem 2.2. Let {w,u} be the unique mized weak solution of the problem (1) and (2), and let
{wp,up} be an approximate solution of the corresponding discrete problem. For T € Tj, we then
have the a posteriori estimates

1/2 1/2

len()ll + hllen(w)lo <Cu [ | Do mér | +b*| D W :
TeT), TeT,

nor + e < Cy | len(W)iwr + hrllen(w)llow, + 0 Y er
T'Cwr

with some positive constants Cy and Cy independent of h = maxrer, hr.

The proof is given in [2].

The second problem for the biharmonic equation is treated in mixed formulation in [5] with
a gradient recovery error estimator.

2.3. Kirchhoff plate bending problem. A similar problem describing the bending of an
isotropic linearly elastic plate is studied in [1|. The nonconforming finite element approximation
of the problem is constructed in the discrete Morley space and the residual error estimator is
used.

3 Dirichlet problem for fourth order elliptic equation

3.1. Dirichlet problem in 1D. Put 2 = (0,1) C R'. Let all the functions concerned be
scalar-valued functions of a scalar variable. We consider the one dimensional boundary value
problem for the ordinary fourth order equation

101



=f in 02 (3)
with the boundary conditions
w(0) =4 (0) =0, wu(l)=4(1)=0. (4)

This is a model for the vertical displacement of a beam clamped on both ends and subject
to bending. In the model, a(x) = E(x)I(z) is a positive, bounded, and Lipschitz continuous
function in {2, where E is Young’s modulus of elasticity and I the moment of inertia. The
distributed transverse load is denoted by f € La(f2).

We use the standard formulation of the weak solution v € X = HZ(2) and u; € Xy, ie.,
a(u,v) = fQ fv and a(up,vp) = fQ fun, Xp, being the space of piecewise cubic Hermite polyno-
mials. Moreover, we use the corresponding energy norm [[v|? = a(v,v).

In [6], a recovery operator Guy, for the second derivative of v, € X, is introduced. Now we can
define the local recovery a posteriori error estimator np 7 for all triangles T of the triangulation 7
and have the following theorem [6].

Theorem 3.1. Let u € HZ(R2) be the unique weak solution of the problem (3), (4) and let
up, € Xp be an approzimate solution of the corresponding discrete problem. Then we have the
global a posteriori estimate

1/2

Yombr | —llu—wll] <

TeT,

< Ch?

d?u
1/2 -
a <Ghuh d$2> .

for the difference of the global error estimator and the energy norm of the true error. C is
a constant that may depend on u. The global error estimator is asymptotically evact.

The proof is given in [6].

3.2. Dirichlet problem. Let {2 € R"™ be a bounded connected domain and I" its Lipschitz
continuous boundary. We consider the 4th order elliptic problem for a scalar-valued function wu,

divDiv(yVVu) = f in {2, (5)
with the boundary condition (2) and f € Lo(£2), v = hijkl]?,j,k,l:l and Yijp = Vjikl = Vklij €
Loo(92).

We define the energy norm ||@| in La(£2, R"*™) and the global a posteriori error estimator
nr(B, P, ) like in [7], where (3 is an arbitrary positive real number and @ an arbitrary smooth
matrix-valued function. The estimator depends on the constant from the Friedrichs inequality
for VV on H2(£2). We then have the following theorem [7].

Theorem 3.2. Let u € HZ({2) be the weak solution of the problem (5), (2) and u € H3(f2) an
arbitrary function. Then

IV (@ —w)|* < (5, 9. a) (6)
for any positive number [ and any matriz-valued function ® € H(div Div, 2).

The proof of the theorem is based on a more general statement proven in [7|. There is an
interesting question of optimizing the inequality (6) with respect to 3 and &.

A similar 2D nonlinear Dirichlet problem is solved in [4]. A global error estimator is introduced
and similar results are obtained there.
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4 Conclusion

The quantitative properties of the estimators cannot be easily assessed and compared analyt-
ically. There are, however, global analytical error estimates for some classes of problems (see,
e.g., [4], [7]) that require as few unknown constants as possible. The a posteriori estimates
with unknown constants, however, are not optimal for the practical computation. They can be
efficient if they are asymptotically exact.

The computation of the reference solution is rather time-consuming but the refence solution
is obtained by the same software that is used to compute the approximate solution. We use
reference solutions as robust error estimators with no unknown constants to control the adaptive
strategies in the most complex finite element computations.

Acknowledgement: This work has been carried out under the state subsidy to the research
and development project Advanced Remediation Technologies and Processes Center 1M0554 of
the Programme of Research Centers supported by the Ministry of Education, Youth, and Sports
of the Czech Republic.
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Experimental grid for numerical linear algebra
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Faculty of Information Technologies, Czech Technical University in Prague

1 Introduction

Time is very often the limiting factor in scientific codes. These codes can be accelerated by
parallel executing on special distributed systems (grids). This is usual but very difficult solution.
In this paper, we describe a design of the new heterogenous grid for the numerical linear algebra
with maximal ratio between prize and computational power. Contributions of this paper is
twofold: 1) a design of new parallel routines 2) an approach for parallelization of scientific codes
by converting local numerical library calls into remote grid calls.

1.1 GPU computing

Nowadays, there is a new trend in the high-performance computing to accelerate computations
by means of Graphics Processing Units (GPU). This trend recently emerged into a new research
area called General-Purpose Computing on Graphics Processing Units (shortly GPGPU). This is
a consequence of the fact that the GPUs of modern graphic cards overcome modern CPUs in the
memory bandwidth, the number of computational units, and possibilities of the vector execution.
The GPGPU programming is simplified by several existing APIs (Application Programming
Interfaces), the most popular and well-established ones are CUDA |1, 2| and OpenCL [3]. Thanks
these APIs the GPGPU computations are widespread and used in many scientific projects.

The computational abilities of single GPU are very impressive, but some problems, especially
with large memory requirements, are still hard to solve. Although the amount of memory on
GPUs is increasing rapidly, it is still much less than we need and this leads to the limited
application of GPGPU in many scientific problems. Possible solution to that problem could be
to connect graphic cards into a GPGPU cluster to distribute computing and memory demands
across all available GPU. The benefit of this approach is that it allows us to interconnect GPUs
from various vendors but naturally there arise a new problem known as load balancing of GPUs
that we have to face to retain high computational performance.

1.2 Sparse matrix storage formats

The sparse matrix storage scheme (format) have great impact on performance and scalability
of the sparse matrix-vector multiplication operation and other iterative algorithms for sparse
matrix computations. Ideal format ensures minimal memory storage requirements, maximum
utilization of floating point vector units, maximum utilization of cache memories, and enables
load balanced parallelization of the algorithms on massively parallel systems.

Several sparse matrix formats have been proposed and some are due to their simplicity widely
used, such as Compressed Sparse Row/Column (CSR/CSC) or Jagged Diagonal Storage (JDS)
formats. The feasibility of particular format is given mainly by the sparsity pattern of a matrix.
Sparse matrices often contain dense submatrices (blocks). Therefore, some formats use blocking
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techniques which exploit knowledge about clustering of matrix non-zero entries. These blocking
formats like SPARSITY, CARB, or M-CARB, may give significantly better performance of the
algorithms on sparse matrices than allows the CSR format, due to eliminating memory read
stalls, consuming less memory, allowing a better use of registers, and improving vector unit
utilization.

But these specialized and efficient formats have also some drawbacks. They suffer from a large
transformation overhead, are designed only for a limited set of matrix operations, or do not
support fast adding or removing nonzero elements.

2 Goals of project

The schedule of this project consist of these steps

e Initial installation of HW and SW,
e Parallel GPU routines using sparse matrix storage formats

e Implementation of remote grid calls.

that are discussed in details later.

2.1 Initial installation of HW and SW

There are a lot of grids differ in their sizes, capabilities and purposes. We want to design the
grid with the maximal ratio between prize and computational power. To achieve this goal with
limited budget, we must maximize GPU usage for computation.

2.1.1 Grid architecture

We assume that system (grid) is divided into cluster of computers (nodes) with graphic cards (not
necessarily of the same type) connected by Internet network. For the communication among the
nodes inside one cluster we will assume a MPI (Message Passing Interface) library. Each cluster
has exactly one server of service. Server will manage other (slave) parts (CPUs and GPUs) and
monitor their workload.

2.1.2 Current HW configuration

Current HW configuration includes: five Geforce 470, one Tesla C2050, two Tesla C1060, one
GeForce 280. All GPUs are borrowed by Prague CUDA Teaching Centre (PCTC). In our grid

"new" and "old" GPUs are mixed, this requires good load-balancing strategy.

2.1.3 Current SW configuration
We also install third-party routines for shared memory or distributed CPU computing:

ScaLAPACK (library of high-performance linear algebra routines for distributed-memory
message-passing MIMD computers), PARDISO, SuperLU, and so on.
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2.2 Parallel GPU routines using sparse matrix storage formats

Currently, several vendor supported libraries in CUDA that efficiently implement Basic Linear
Algebra Subroutines (BLAS) and Fast Fourier Transformation (FFT) are available, these are
CUBLAS and CUFFT. Many existing linear algebra libraries focus on efficient implementation
of basic vector and matrix operations while the support for the sparse matrix computations is not
included. We will overcome this limitation by implementation of new variant of these routines.
The project’s goal is to overcome this limitation and design sparse matrix operations with data
formats suitable for GPU architecture and for GPU cluster. This work will extend the ideas of
ScaLAPACK. We will concentrate on these operations (for dense or sparse formats):

e matrix-matrix multiplication,
e Cholesky and LU factorization,

e cigensolvers.

2.3 Implementation of remote grid calls
2.3.1 Idea

Usually, only special variants of codes are executed on the grid. This approach has serious
drawback that code must be modified for grid computing. We want to overcome this limitation
and extend the utilization of the grid. To do this, we rewrite interface for some routines for
numerical linear algebra (shortly NLA, like BLAS or LAPACK). So, most of codes without any
modifications can used the computational power of the grid.

The difference will occur when client (computer outside the grid) want to proceed any NLA
routine. A heuristic on client side firstly estimate if it will be faster to compute this routine
locally or send it to the grid for execution.

If the condition is true, the client do a remote call of this NLA routine by sending a demand to
any server of grid. The server consider this demand and choose one of following actions:

e Compute this demand by itself (one node of cluster is used)
e Compute this demand by its cluster (all nodes of cluster are used)
e Re-send this demand to other server (nodes of different cluster are used)

e Refuse this demand (grid is full). Client is forced to do the local computation.

After the remote grid call is executed, results are send back to the client.

2.3.2 Discussion

e Advantages of remote grid calls

1. Time: program can be faster executed because most time-consuming parts are moved
to more powerful computer than user’s one.

2. Implementation: some parts of program can be executed in parallel without any
additional modifications
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3. Administration: all mathematical libraries can be installed on the server of service.
4. Economical: the proposed grid is not very expensive, but it provides very good per-
formance.
e Drawbacks
1. The server of service must have a good connectivity and fast and reliable connections
to other servers of grid are also required.
2. Network latency and bandwidth must be taken in account.

3. The service is suitable only from some algorithms ( most time-consuming parts are
NLA calls, without GUI, input parameters can be given command line.)

4. Algorithms must have computational demands greater than the communication over-
head (matrix-matrix multiplication is a good example).

3 Conclusions

We propose the design of a the new distributed system for numerical linear algebra. The used
grid and new approach (remote grid calls) allow the parallel execution of many of codes without
any modifications.

4 Future works

e Non-blocking remote grid calls.

e Nodes can be dynamically connected or disconneted from the grid. This is great advantage
because also classroom computer can join the grid.

Support for another libraries like GMP, PETSc and so on.

e Compression of the comunication.

Heuristic for a prediction of a workload and an execution time for some operations

Acknowledgement: This research has been supported by MSMT under research program
MSM6840770014, by CESNET Development Fund (project 390/2010), and by Prague CUDA
Teaching Centre(PCTC).
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1 Introduction

The Balancing Domain Decomposition based on Constraints (BDDC) method by Dohrmann [2]
is one of the most advanced methods of iterative substructuring for the solution of large systems
of linear algebraic equations arising from discretization of boundary value problems.

In the case of many substructures, solving the coarse problem exactly becomes a bottleneck.
This has been observed also for the FETI-DP method (e.g. in [3]), which is closely related to
BDDC. For this reason, recent research in the area is directed towards inexact solutions of the
coarse problem. Klawonn and Rheinbach in [3] use algebraic multigrid to obtain an approximate
coarse correction within FETI-DP method and achieve excellent scalability with the resulting
implementation.

We follow a different approach. As was mentioned already in [2], for BDDC method, it is
straightforward to substitute the exact solution of the coarse problem by another step of BDDC
method with subdomains playing the role of elements. In this way, the algorithm of three-level
BDDC method is obtained (studied e.g. in [6]). One may try even recursive applications of
the method called Multilevel BDDC' |4]. Unlike for other methods, such extension is natural for
BDDC, since the coarse problem has the same structure as the original problem.

It is our long-term goal to develop an efficient parallel implementation of the Multilevel BDDC
method and make it publicly available. In this paper, we present results of the recently developed
parallel implementation of the three-level BDDC method, and its comparison with standard (two-
level) BDDC method. Even these preliminary results suggest which drawbacks of the two-level
implementation might be overcome by the extension to more levels.

2 BDDC algorithm with two and three levels

The BDDC method provides a preconditioner to the reduced interface problem St = g, where S
is a Schur complement with respect to interface and g is sometimes called condensed right hand
side. This problem is solved by the preconditioned conjugate gradients (PCG) method by means
of iterative substructuring (details may be found e.g. in [5]).

Let us begin with description of the standard (two-level) BDDC method. Let K; be the local
subdomain matrix, obtained by the sub-assembling of element matrices of elements contained in
i-th subdomain. We introduce the coarse space basis functions on each subdomain represented
by columns of matrix W¥;, which is the solution to the saddle point problem with multiple right

hand sides
K; CT v, ] [0 1)
C, O A | | T

108



Matrix C; represents constraints on functions W;, one row per each. These constraints enforce
continuity of approximate solution at corners and of averages over some subsets of interface
(edges or faces) between adjacent subdomains. The local coarse matriz Keo; = lIl;fKZ\IIZ = —A;
is constructed for each subdomain. Let Rg; realize the restriction of global coarse degrees of
freedom to local coarse degrees of freedom. Using this matrix, we can construct the global coarse
matriz by the assembly procedure, formally written as Ko = Zfil RgiKCiRCZ'.

Suppose T = g — S1i is a residual within the PCG method. The residual assigned to i-th sub-
domain is computed as r; = EI ¥, where matrices E] distribute T to subdomains (see [5] for
details). The subdomain correction is now defined as the solution to system

T
Ki Ci z; _ r; ' (2)
C;, O Ai 0
The residual for the coarse problem is constructed using the coarse basis functions subdomain
by subdomain and assembling the contribution as ro = YN | RL WTETT. The coarse cor-
rection is defined as the solution to problem K¢ zc = ro. Both corrections are then added

together and averaged on the interface by matrices E; to produce the preconditioned residual
~ N
z = Zi:l Ez (‘PiRCiZC + Zi).

In the Three-level BDDC method, the matrix K¢ is not constructed on the second level. Instead,
subdomains of the basic (first) level are grouped into subdomains of the second level in the same
way as elements of the original mesh are grouped into subdomains of the first level. The whole
procedure described in this section is now repeated for the second level and thus the final coarse
problem represents the third level. The only difference between the first and the second level
is the interior pre-correction and post-correction applied on the second level. These corrections
were used also for the two-level method in the original paper [2], in which BDDC was formulated
for global (i.e. not reduced to interface) problem. Details of the three-level BDDC algorithm (as
a special case of the Multilevel BDDC algorithm) can be found in [4].

3 Parallel implementation

Our implementation of the two- and three- level BDDC methods is written in Fortran 95 pro-
gramming language using MPI library. It relies heavily on the sparse direct solver MUMPS:
a sequential instance of MUMPS is used for solving each subdomain problem, another sequential
instance is used to solve interior problems (called discrete Dirichlet problems [5]) at each sub-
domain, and finally a parallel instance of MUMPS is used to solve the resulting coarse problem
at the highest level. The program passes the matrix of the coarse problem to MUMPS in the
distributed assembled form, i.e. the local coarse matrices K¢; reside at the processor where they
are created.

Since division into subdomains has a significant impact on the efficiency of the method, it is useful
to create divisions independently of number of available processors. Thus, the solver supports
assignment of several subdomains to each processor.

The implementation uses ParMETIS package to generate division of elements into subdomains
on the first level and the METIS package to generate the division on the second level.

In Figure 1, simplified schemes of the hierarchy in the implementation of the preconditioner are
given for two and three levels, respectively.
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Figure 1: Schemes of parallel implementation of standard (two-level) BDDC (left) and three-level
BDDC (right).

4 Numerical results

The implementation has been tested on a large 3D problem of linear elasticity. This problem
represents mechanics of a geocomposite and was analysed in [1|. The problem is discretized using
unstructured grid of about 12 million linear tetrahedral elements, resulting in approximately
6 million unknowns.

The mesh was divided into 1,024 subdomains on the first level and 128 subdomains on the
second level in the three-level version. Resulting coarse problems (using corners and averages on
all edges and faces) contain 86,094 unknowns on the first level and 11,265 on the second level.

Table 1 contains strong scaling test with implementation using two and three levels. The itera-
tions of PCG were stopped when the relative residual ||¥]|/||g|| decreased bellow 1076. All these
computations were performed on the IBM SP6 computer at CINECA Supercomputing centre,
Bologna.

\ #proc | 64 | 128 | 256 [ 512 [ 1,024 |
2 levels (1,024+1), 46 PCG iter, cond. est. 50.3
set-up (sec) 61.0 | 37.7 | 25.7 | 23.2 | 39.5
iter (sec) 223 | 199 | 278 | 449 | 975

| total (with 1/0) (sec) | 723.7 | 473.1 | 317.1 | 220.2 | 24055 |

3 levels (1,024+128+1), 56 PCG iter, cond. est. 78.6
set-up (sec) 495 | 29.0 | 184 | 126 | 11.0
iter (sec) 28.5 22.6 16.7 14.7 13.2

| total (with 1/0) (sec) | 779.2 | 442.3 | 278.2 [ 182.1 | 132.7 |

Table 1: Strong scaling using two and three levels.

It has been confirmed by our experiment, that the coarse problem solution causes problems with
scalability in both two-level and three-level cases. While most parts of the implementation scale
very well, the coarse problem presents a bottleneck for scalability not only in the set-up phase, but
mainly in the part of iterations. In other words, it becomes costly (with respect to each iteration)
to solve the coarse problem, which is not extensive in size, on too many processors and broadcast
its solution to them. Slightly surprisingly, it appears more feasible for this implementation to
leave some processors idle and solve the problem on a smaller subset of processors, precisely as
it happens in the three-level implementation. One should note, that idle processors appear in
the three-level case on the second and the third level when more than 128 processors are used.
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5 Conclusion

We have presented a parallel implementation of the three-level BDDC preconditioner and com-
pared it to the two-level version. Since the implementation uses an efficient parallel sparse direct
solver (MUMPS), the coarse problem does not present a severe bottleneck for factorization in
the set-up phase for the presented problem. However, its solution slows down the computation
in the phase of iterations.

From our first experiments, it appears that the three-level preconditioner tends to scale better
in both parts - set-up and PCG. The worse approximation properties of the three-level method,
which are theoretically analysed in |[4] and demonstrated here by higher number of PCG iterations
(Table 1), seem to be compensated by faster solution of the coarse problem in each iteration.

We expect, that these advantages of the three-level BDDC method would pronounce further for
larger problems, where the bottleneck presented by the coarse problem would be encountered
also during factorization. Such problems as well as the extension to multiple levels will be the
subject of our further research.
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The problem of moments and its connections
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1 Introduction

This contribution is about the problem of moments. During the last 150 years many books and
papers have been published about this problem. Many mathematicians studied it from many
different points of view. It is very interesting how many connections between the different parts
of mathematics has been found in these works. One can see the classical references [9] and [2].
An interesting historical review about the birth of the problem of moments can be found in [6].
As the time went on, the problem of moments was used in order to solve various questions in
mathematical statistics, theory of probability and mathematical analysis.

2 Formulation of the problem

Given the sequence of real numbers {{;}7°,. The problem is to find the following positive
measure 4 such that

& = /Ia:kdu(a:), k=0,1,... (1)

In the case when I = [0, 00) we talk about the Stieltjes moment problem. The case when I = R is
called the Hamburger moment problem. The real numbers {&}72, are then called the moments.
The terminology was taken from mechanics. If the measure pu represents the distribution of the
mass over the real semi-axis, then the integrals

| wdute). [ aauta)

represent the first (statical) moment and the second moment (moment of inertia).

One can ask the following questions:

e Does the measure y exist for the sequence of the moments {£}72,?

e If the measure p exists, is it determined uniquely?

Now lets take a look on the similar problem. Given the same sequence of the moments {&5}72,.
The problem is to find the following positive measure p, such that the first 2n moments are
matched, i.e.,

& = /xkdun(x), k=0,1,..2n — 1. (2)
I

The formulation above is often called the truncated problem of moments, one can see e.g. [1].
Searching for this measure p,, is closely connected with many different methods in the mathe-
matics. The aim of this contribution is to give an overview of many connections one could find.
It will be shown how can the knowledge of these connections lead to the new results.
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3 Connections

It is known for a long time that the finding of the p, instead of p is closely connected with the
Gauss-Christoffel quadrature, see e.g. |11], [7]. Under certain settings the problem of moments
can be seen as the theoretical background for the Lanczos method and the CG method. The
connection with the CG and with the the Gauss-Christoffel quadrature is known since the in-
troduction of the CG and it was well described by M. R. Hestenes and E. Stiefel in their joint
paper [4]. In [8] the results about the sensitivity of the Gauss-Christoffel quadrature with respect
to the small perturbations of the measure are given. Obtaining of these results would not be
possible without the deep knowledge of the connection with the problem of moments.

Russian mathematician Yu V. Vorobyev presented the general problem of moments in the Hilbert
space in [12]. Let zg, 21, ..., 2, be n + 1 prescribed linearly independent elements of the Hilbert
space H. Consider the n-dimensional subspace H,,

H,, = span{zg, 21, ..., Zn—1}-
The linear operator A, defined on the subspace H, is constructed in the following way

Apzg = 21,

2
Aj 20 = 22,

n—1
AN 20 = 2,
AZZO = Bz,

where F,,z, is the projection of z, on H,,.

Vorobyev applied his work about the moments on solving differential, integral and finite difference
equations and also on resolving spectrum of bounded operators in the Hilbert space. In the case of
the self-adjoint operators Vorobyev pointed out the connection of his work with the CG method.
The Vorobyev problem of moments was used by Z. Strako§ and P. Tichy in their approach of
approximating the scattering amplitude, see [10].

The problem of moments is closely connected with the Sturm-Liouville problem. In [3] the
connections between the singular Sturm-Liouville problem, Jacobi matrices and Hamburger mo-
ment problem are described in an elegant way. The nature of the solutions of the singular
Sturm-Liouville problem is connected with the determinacy of the associated Hamburger mo-
ment problem.

There is also the relation between the model reduction in the linear dynamical systems
2 (t) = Az(t) + bu(t),
y(t) = b*=(t)

and the problem of moments. In |7, pp. 101-108] an elegant description of the connection between
the model reduction of the above system and the problem of moments is given. Consider the
expansion of the transfer function 7°(A\) which is connected to the dynamical system (4)

(4)

T\ =X = 2tA) b=

5
= A\7HBD) + AT2(BFAD) 4 ... + XTI AT ) + ©)

A reduced model of order n which matches the first 2n terms in the above expansion is known as
the minimal partial realization. The concept of the minimal partial realization was introduced
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in the control theory literature by R. E. Kalman in 1979, see [5]. The idea to find the reduced
model is again nothing else than the problem of moments such that the first 2n moments are
matched, see (2).
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Agresivni zhrubovani v metodé zhlazenych agregaci

P. Vanek

Zapadoceska univerzita v Plzni

Dilezitou partii vysledktt o metodé zhlazenych agregaci tvofi vysledky tykajici se agresivniho
zhrubovani. Zde, hruby prostor je podstatné mensi nez jemny prostor a tato skutecnost je kom-
penzovana mocnym hladicem. Metoda zhlazenych agregaci je mimofadné vhodné pro agresivni
zhrubovani v kombinaci s polynomidlnim hladicem odvozenym od prolongéitorového hladice.
Zde hlazeni prolongétoru pracuje jako preconditioner. Tato skute¢nost bude demonstrovana na
jednoduché dvojiroviiové metodé. Bude prezentovan klicovy dvojiroviiovy vysledek ve dvou
variantadch a obecny vicetiroviiovy vysledek.
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Discrete Green’s function — a closer look
T. Vejchodsksj
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1 Introduction

For linear elliptic problems the Green’s function provides a solution operator. Similarly, in the
context of the finite element method the discrete Green’s function (DGF) provides the solution
operator for the discrete problem. Therefore, certain properties of the finite element solution can
be deduced form the properties of the DGF.

Typical example of such a property is the discrete maximum principle. It is satisfied if and only
if the corresponding DGF is nonnegative. In the lowest-order finite element methods the DGF
can be equivalently replaced by the inverse of the stiffness matrix. However, in the higher-order
methods this replacement cannot be done and the DGF plays the crucial role there.

We choose as a model problem the Possion equation with homogeneous Dirichlet boundary
conditions, discretize it by the finite element method of certain order and study the nonnegativity
of the corresponding DGF. Numerical experiments published recently in |2] indicate that for
higher-order approximations the DGF is nonnegative everywhere in the computational domain
in exceptional cases only. In this short contribution we propose to study the nonnegativity in an
interior region of the computational domain only. We present additional numerical experiments
trying to identify triangulations yielding this interior nonnegativity.

2 Model problem, DGF, and discrete maximum principle

Let Q C R? be a polygonal domain. We consider the Poisson equation in € and the homogeneous
Dirichlet boundary conditions on 9f2:

—Au=f inQ, u=0 on 0. (1)

This problem is discretized by the finite element method of order p. Thus, we consider a tri-
angulation 7, of © and introduce a space V}, of piecewise polynomial and globally continuous
functions:

Vi ={vn € Co(Q) : vp|x € PP(K) VK € Tp},

where Cy(Q) stands for the space of continuous functions on 2 whose values on 9 vanish and
PP(K) denotes the space of polynomials of degree at most p in the triangle K € 7.

The finite element formulation of problem (1) reads as follows: find wy, € V3, such that

a(uh,vh) = (f, ’Uh) Vvh S Vh. (2)

As usual, a(up,vp) = fQ Vuy, - Vo do stands the energetic bilinear form and (f,vy) = fQ fopdz
denotes the L?(£2) inner product.
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The DGF is defined as the approximate solution of the adjoint problem: for any y € €2 we define
Gh,y € V3, as the unique solution of the Galerkin problem

a(vn, Ghy) = vn(y) You € Vi (3)

Instead of G}, y(x) we will use the standard notation Gp,(x,y) = Gp 4(x). It can be easily shown
(see e.g. [1] or Lemma 1 below) that G}, is symmetric in the sense that Gp(x,y) = Gp(y,x) for
all (z,y) € Q2. In addition, from the definition of the DGF (3) and from the definition of the
finite element solution (2), we immediately infer the well known representation formula

un(y) = /Q G, y) (x) da. (4)

Furthermore, the DGF G},(z,y) can be easily expressed in terms of any basis in V}, (see e.g. |1]):

Lemma 1. Let p1, @2, ..., @n be a basis of V. Let A € R™™ bhe the corresponding stiffness
matriz, i.e. Aj; = ale;,¢;), 1,5 =1,2,...,n. Then

Gul(z,y) =Y > @i) (A ijps(x), V(z,y) € Q% (5)

i=1 j=1

In the experiments below, we use expression (5) to study the nonnegativity of the DGF G, in Q2
The interest in the nonnegativity of Gj is motivated by the direct connection with the discrete
maximum principle. Given a fixed triangulation and the corresponding space Vj, we say that
problem (2) satisfies the discrete mazimum principle (DMP) if

f>0ae in2 = wup>0in Q. (6)

The representation formula (4) immediately proves the fact that problem (2) satisfies the DMP
if and only if the corresponding DGF G}, is nonnegative in Q2.

Numerical experiments presented in |2| indicate that for higher-order finite elements the DGF Gy,
is nonnegative in an exceptional case only. Namely, for p = 2 and for all elements in the
triangulation being close to the equilateral triangle. These experiments also indicate that the
negative values of the DGF are usually close to the boundary. Therefore, we define certain layer
B C Q of points close to the boundary 9€2. We denote the complement of Bin Q as Z = Q\ B and
we call B and Z the boundary and the interior region, respectively. Since the requirement (6) is
too strong to be satisfied by the higher-order elements we can naturally ask if one of the following
weaker requirements is satisfied:

f>0ae.inQ = wu,>0inZ, (7)

f>0ae. inZand f=0ae inB = wu,>0inZ. (8)

From the representation formula (4) we easily see that requirement (8) is satisfied if and only if
Gy(z,y) > 0 for all (z,y) € Z2. Similarly, requirement (7) is satisfied if and only if G}, (x,y) > 0

for all (z,y) € Q x Z. Due to the symmetry, the nonnegativity of G in Q x Z is equivalent to
the nonnegativity in Q2 \ B2.

3 Numerical experiments

In the presented experiments we try to justify the meaningfulness of properties (7) and (8) for
higher-order finite elements. We consider Poisson problem (1) discretized on uniform triangula-
tions of  and we test the nonnegativity of the DGF in Q2 in Q2 \ B2, and in Z2. We study
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how this nonnegativity depends on the angles in the triangulations. Since the triangulations are
uniform, there are just two independent angles o and 3 (the third angle is v = 7 — a — f).
We systematically test many pairs of angles a and 8 and display the results in a panel, where
a point with coordinates («, (3) is colored according to the nonnegativity of the DGF in the tested
regions. See Figure 2.

In Experiment A, the domain 2 is a triangle. The corresponding finite element mesh consists
of 64 congruent triangles see Figure 1 (left). The elements are enumerated in a spiral ways.
Thus, the elements adjacent to the boundary have indices 1,2, ... ,39 and they form the boundary
region B. The interior elements with indices 40,41,...,64 form the interior region Z. Finally,
we stress that the shape of the triangle ) (as well as the shape of any triangle in the mesh) is
determined by the two angles a and 3.

The panels in Figure 2 show the results for polynomial degrees p = 2,3,4. Each point in these
panels correspond to a pair of angles v and 3. We construct the triangle Q with these two angles,
we create the uniform mesh in , and we compute the corresponding DGF Gj. If Gp,(z,y) > 0
for all (z,y) € Q2 then the color of point (a,3) is black. Otherwise, if Gp,(x,y) > 0 for all
(z,y) € Q2 \ B? then the color is darker gray. Otherwise, if G,(z,y) > 0 for all (z,y) € Z? then
the color is lighter gray. Otherwise, the DGF G}, has certain negative values in all tested areas
and the corresponding color is almost white. Of course, checking nonnegativity of a polynomial
is a difficult task. Therefore, we introduce in each element 153 sample points see Figure 1
(right) — and test the nonnegativity in these sample points only.

We observe that the DGF G, is nonnegative everywhere in Q2 for p = 2 and for triangles close
to the equilateral one only. Nevertheless, the darker and the lighter gray regions corresponding
to the properties (7) and (8), respectively, are substantial in all cases. In addition, numerical
experiments for polynomial degrees up to p = 10 indicate that these areas corresponding to the
validity of properties (7) and (8) increase with growing p. However, this increase is not monotone.

Examining the DGF G}, in more details we find out that many negative values of Gy, are caused
by the presence of three edges lying inside 2 and having both their end-points on 92 (e.g. the
edge between elements 1 and 22). Therefore, we remove the three corner elements (the one with
indices 1, 8, and 15) see Figure 1 (middle) and perform the same tests as above. This is
Experiment B. Its results are presented in the second row of panels in Figure 2. In comparison
with Experiment A, we observe substantial changes of the dark gray regions corresponding to
property (7). On the other hand, there is practically no influence on the light gray region
corresponding to property (8).
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Figure 1: Uniform triangulations of the triangle (left) and of the triangle without corners (mid-
dle). Right panel shows the distribution of sample points in an element.
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Figure 2: Results of Experiment A (first row) and of Experiment B (second row).

4 Conclusions

The performed experiments indicate that the higher-order DGF is negative mostly in the bound-
ary region. It seems that if the triangular elements have angles close to 60° then the higher-order
approximate solution uj is automatically nonnegative everywhere in the interior elements pro-
vided the corresponding right-hand side f is nonnegative. Further, it seems that for triangles
with the minimal angle above roughly 30° and the maximal angle below roughly 120° the prop-
erty (8) is satisfied, i.e. if f vanishes in elements adjacent to the boundary and if it is nonnegative
elsewhere then the finite element solution uy is nonnegative everywhere in the interior elements.

Acknowledgement: The author gratefully acknowledges the support of grant IAA100760702
of the Grant Agency of the Academy of Sciences of the Czech Republic, and of the institutional
research plan no. AV0Z10190503 of the Academy of Sciences of the Czech Republic.
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Fast Fourier transform based method for modelling
of heterogeneous materials

J. Vondreje, J. Zeman, 1. Marek

Faculty of Civil Engineering, Czech Technical University in Prague

Problem setting

We consider a composite material represented by a periodic unit cell Y = Hizl(—Ya, Y,) C R
In the context of linear electrostatics, the associated unit cell problem reads as

Vxe(x)=0, V-e(x)=0, j(x)=L(z) e(x), xc) (1)

where e is a Y-periodic vectorial electric field, 5 denotes the corresponding vector of electric
current and L is a second-order positive-definite tensor of electric conductivity. In addition, the
field e is subject to a constraint e = ﬁ fy e(x)dx, where e® denotes a prescribed macroscopic

electric field and |)| represents the d-dimensional measure of ).

The original problem is equivalent to the periodic Lippmann-Schwinger integral equation, for-
mally written as

e(w) + /yl“o(w ~y)- <L(y) — LO) e(y)dy=e’, ze), (2)

where the T'? operator is derived from the Green’s function of the initial problem with L(z) = L°
and e” = 0 and can be expressed in Fourier space as

Py -1%, 70 3)
— —N
5.62%6.57 k= (ka)fxlzlvé = (é‘a)g:hga = %7’6 S/

Discretization of integral equation

Numerical solution of the Lippmann-Schwinger equation is based on a discretization of a unit
cell Y into a regular periodic grid with Ny x --- x Ny nodal points and grid spacings h =
(2Y1/N1,...,2Y3/Ng). The searched field e(x),x € Y, in (2) is approximated by a trigonometric
polynomial e? in the form (cf. [2])

~ = N, N,
e(w) ~ eN(m) = Z e(k)wk(m% ZN = {k € Zd : - < ka S _Ol,a = 17’ N 7d}
— 2 2
keZ
where N = (Ny,..., Ny), € designates the Fourier coefficients and ¢ = exp (iﬂ' Zle xi§i> with
& = ]‘% are basis functions.

The trigonometric collocation method (e.g. [2|) is based on the projection of the Lippmann-
Schwinger equation (2) to the space of the trigonometric polynomials {ZkeZN CkPk, Ck € (C}
leading to linear system of equations

Ae =€’ (4)
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A dx N 0 0y 2" dx N :
where e = (e¥) € R™N and e’ = ((e ) > L€ RN store the corresponding

a)a=1,...,d «a -
solution and of the macroscopic field, respectively. The action of the linear operator (block
=N
matrix) A = | ’a"gn]’;lﬁe:zl _, on vector e produces vector Ae € RN with components
d
k k
(Aa=D_ D Afe (5)
B=Lmez™

Furthermore, the non-symmetric matrix A can be expressed as
A=1+B=1+F'TFL-L° (6)

where | is the unit matrix of size d x d x N x N, the explicit forms of the individual terms can
be found in [3].

Solution using conjugate gradients

The original Fast Fourier Transform-based Homogenization (FFTH) scheme formulated by Mou-
linec and Suquet in [1] is based on the Neumann expansion of the matrix inverse (I + B)™1, so
as to yield the m-th iterate in the form

el™ = Em: (—B)’ €. (7)
=0

J

We have proposed in [3] to solve the non-symmetric linear system using Conjugate gradients and
presented numerical experiments, which suggest convergence of CG algorithm.

In this contribution, we outline basic ideas of the convergence proof. Without a loss of generality,
we consider the special form of reference conductivity L° = pI with p > 0 and reformulate (4)
in the form:

Pg LEg = eO (8)
~0 -1 . . . .
where Pg = F7'T F(L°) " is a projection matrix on a subspace £ = {Pex|x € RN}
RN and the solution eg € £. The linear system (8) can be alternatively reformulated as
a minimization problem
e = e’ + argmine, cg d(eg)

where ¢(eg) is a linear functional defined as

pleg) = %(Les,es) + (Le’, e)

where (-, ) denotes scalar product on RN e

The convergence of the conjugate gradient method then follows from projection properties of Pg,
which implies symmetry of linear system (4) in subspace .

Acknowledgement: This research was supported by the Czech Science Foundation, through
projects No. GACR 103/09/1748, No. GACR 103/09/P490, and by the Grant Agency of the
Czech Technical University in Prague through project No. SGS10/124/OHK1/2T/11.
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Operator splittings for solving nonlinear coupled multiphysics
problems with an application for interface modeling

0. Azelsson

Institute of Geonics AS CR, Ostrava

The solution of multiphysics problems can be very demanding on computer time. A possible
remedy for evolutionary problems is to use operator splittings. Some such methods are described
and analyzed. To handle stiff problems an implicit and stable time-stepping method of second
order of accuracy is used. This allows bigger time-steps for the control of the operator splitting
errors. For nonlinear problems, a Newton solution method is used for each separate equation, and
after completion of some steps of the method the equations are updated, in this way preparing
for the start of additional iterations or of a new time-step.

An application for a nonlinear interface modeling problem arising in a moving fluid is described.
Hereby an inner-outer iteration method is used to solve the arising linearized algebraic equations.
There is no need to update the preconditioners used.



Scalable FETI based algorithms for contact problems:
theory, implementation, and numerical experiments

Z. Dostdl, T. Kozubek, V. Vondrdk, T. Brzobohaty, A, Markopoulos

VSB - Technical University of Ostrava

We report the results of our research in development of the algorithms with both numerical and
parallel scalability for the solution of contact problems of elasticity. Our talk covers 2D and 3D
problems discretized by the finite element or boundary element method, possibly with “floating”
bodies, including the multibody frictionless problems, both static and dynamic, and the problems
with a given (Tresca) friction. A common feature of all the problems considered in our talk is
a strong nonlinearity due to the interface conditions. Since even the algorithms for the solution
of linear problems have the linear complexity at least, it follows that a scalable algorithm for
contact problems has to treat the nonlinearity in a sense for free.

After introducing the variational inequalities that describe the equilibrium of a system of elastic
bodies in mutual contact under the interface conditions considered in our talk, we briefly re-
view the TFETT (total finite element tearing and interconnecting) based domain decomposition
methodology adapted to the solution of contact problems of elasticity, including optimal esti-
mates. Recall that TFETI differs from the classical FETI or FETI2 as introduced by Farhat
and Roux by imposing the prescribed displacements by the Lagrange multipliers and treating all
subdomains as “floating”.

Then we present our in a sense optimal algorithms for the solution of the resulting quadratic
programming and QPQC (quadratic programming - quadratic constraints) problems. A unique
feature of these algorithms is their capability to solve the class of such problems with homoge-
neous equality constraints and separable inequality constraints in O(1) matrix—vector multipli-
cations provided the spectrum of the Hessian of the cost function is in a given positive interval

[ 12]

Finally we put together the above results to develop scalable algorithms for the solution of the
above problems [3], [4],[5], [6], [7]. A special attention is paid to the construction of an initial
approximation which is not far from the solution, so that the above results guarantee that the cost
of the solution increases nearly proportionally with the dimension of the discretized problem and
to effective implementation of generalized inverse matrices of floating subdomains. We illustrate
the results by numerical experiments and by the solution of difficult real world problems, such as
analysis the roller bearings in Figure 1 with 73 bodies under nonsymmetric loading. We conclude
by a brief discussion of other results [8] and current research.
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Figure 1: Roller bearings of wind generator

J. Bouchala, Z. Dostal, M. Sadowska, Scalable Total BETI based algorithm for 3D coercive
contact problems of linear elastostatics, Computing, 85(2009) 189-217. IF (0.881

M. Sadowska, Z. Dostél, T. Kozubek, J. Bouchala, and A. Markopoulos, Scalable Total BETI
based solver for 8D multibody frictionless contact problems in mechanical engineering. Sub-
mitted.

7. Dostal, T. Kozubek, A. Markopoulos, T. Brzobohaty, V. Vondrak, P. Horyl, Scalable
TFETI algorithm for two dimensional multibody contact problems with friction, accepted in
Journal of Computational and Applied Mathematics.

7. Dostal, T. Kozubek, A. Markopoulos, T. Brzobohaty, V. Vondréak, P. Horyl, Theoretically
supported scalable TFETI algorithm for the solution of multibody 3D contact problems with
friction, submitted.

V. Vondréak, T. Kozubek, Z. Dostal, Parallel solution of contact shape optimization problems
based on Total FETI domain decomposition method, Engineering Optimization, accepted.



IlI-Posed Inverse Problems in Image Processing

Introduction, Structured matrices, Spectral filtering,
Regularization, Noise revealing

I. Hnétynkova®, M. Pleginger?, Z. Strako¥3

hnetynkoOkarlin.mff.cuni.cz, martin.pl th.ethz.ch,

cas.cz

1:3Faculty of Mathematics and Phycics, Charles University, Prague
2Seminar of Applied Mathematics, Dept. of Math., ETH Zirich
1:23|nstitute of Computer Science, Academy of Sciences of the Czech Republic

SNA '11, January 24—28

More realistic examples of ill-posed inverse problems

Computer tomography in medical sciences

Computer tomograph (CT) maps a 3D object of M x N x K
voxels by £ X-ray measurements on ¢ pictures with m x n pixels,

l

— QR

j=1

A() =

. RMXNXK

Simpler 2D tomography problem leads to the Radon transform.
The inverse problem is ill-posed. (3D case is more complicated.)

The mathematical problem is extremely sensitive to errors which
are always present in the (measured) data: discretization error
(finite ¢, m, n); rounding errors; physical sources of noise
(electronic noise in semiconductor PN-junctions in transistors, ...).

More realistic examples of ill-posed inverse problems
Image deblurring—Our pilot application

Our pilot application is the image deblurring problem

& Vision is the
& art of secing
= .
A | Ewhatis —_—
g invisible to
= others.

= data + noise.

It leads to a linear system Ax = b with square nonsingular matrix.
Let us motivate our tutorial by a “naive solution” of this system

A—l

[Nagy: Emory University].

Motivation. A gentle start ...

What is it an inverse problem?

Forward problem

Sl S

[Kjgller: M.Sc. thesis, DTU Lyngby, 2007].

observation b

More realistic examples of ill-posed inverse problems

Transmision computer tomography in crystalographics

Reconstruction of an unknown orientation distribution function
(ODF) of grains in a given sample of a polycrystalline matherial,

observation = data + noise

The right-hand side is a set of measured difractograms.
[Hansen, Sgrensen, Siidkésd, Poulsen: SIIMS, 2009].

Further analogous applications also in geology, e.g.:
» Seismic tomography (cracks in tectonic plates),

> Gravimetry & magnetometry (ore mineralization).

More realistic examples of ill-posed inverse problems

General framework
In general we deal with a linear problem
Ax =b
which typically arose as a discretization of a

Fredholm integral equation of the 1st kind
y(s):/K(s,t)x(t)dt.

The observation vector (right-hand side) is contaminated by noise

b= bexact 4 bnoise7 where Hbexact” > ”bnoise”'



More realistic examples of ill-posed inverse problems

General framework

We want to compute (approximate)

chact = Aflbcxact‘

Unfortunatelly, because the problem is inverse and ill-posed

the data we look for are in the naive solution covered by the
inverted noise. The naive solution

HAflbcxactH < ”Aflbnoisc

X:A—lb: A—lbexact +A—1bnoise

exact

typically has nothing to do with the wanted x

References

Textbooks + software

Textbooks:

» Hansen, Nagy, O'Leary: Deblurring Images, Spectra, Matrices,
and Filtering, SIAM, FA03, 2006.

» Hansen: Discrete Inverse Problems, Insight and Algorithms,
SIAM, FA07, 2010.

Sofwtare (MatLab toolboxes):

Discrete Inverse
Problems

Insight and Algorithms.

» HNO package,

» Regularization tools,
» AlRtools,

>

(software available on the homepage of P. C. Hansen).

1. Mathematical model of blurring

Outline of the tutorial

» Lecture I—Problem formulation:

Mathematical model of blurring, System of linear algebraic
equations, Properties of the problem, Impact of noise.

» Lecture Il—Regularization:

Basic regularization techniques (TSVD, Tikhonov), Criteria
for choosing regularization parameters, lterative
regularization, Hybrid methods.

> Lecture Ill—Noise revealing:

Golub-Kahan iteratie bidiagonalization and its properties,
Propagation of noise, Determination of the noise level, Noise
vector approximation, Open problems.

Outline of Lecture |

» 1. Mathematical model of blurring:
Blurring as an operator on the vector space of matrices,
Linear and spatial invariant operator, Point-spread-function,
2D convolution, Boundary conditions.

» 2. System of linear algebraic equations:
GauBian blur, Exploiting the separability, 1D GauBian blurring
operator, Boundary conditions, 2D GauBian blurring operator,
Structured matrices.

» 3. Properties of the problem:
Smoothing properties, Singular vectors of A, Singular values
of A, The right-hand side, Discrete Pickard condition (DPC),
SVD and Image deblurring problem, Singular images.

» 4. Impact of noise:

Violation of DPC, Naive solution, Regularization and filtering.

1. Mathematical model of blurring

Blurring as an operator of the vector space of images

The grayscale image can be considered as a matrix, consider for
convenience black = 0 and white = 1.

Consider a, so called, single-pixel-image (SPI) and a blurring
operator as follows

A(X) = A = - B,

where X = [x1,...,xk], B = [b1,..., bx] € Rk*k,

The image (matrix) B is called point-spread-function (PSF).

(In Parts 1, 2, 3 we talk about the operator, the right-hand side is noise-free.)

8/57

10/57
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1. Mathematical model of blurring

Linear and spatial invariant operator

Consider A to be:
1. linear (additive & homogenous),

2. spatial invariant.

Linearity of A allows to rewrite A(X) = B as a system of linear
algebraic equations

Ax = b, AeRVN  x beRVN.

(We do not know how, yet.)

1. Mathematical model of blurring

Linear and spatial invariant operator
Spatial invariance of A = The PSF is the same for all positi-
ons of the nonzero pixel in SPI. (What about pixels close to the
border?)
Linearity + spatial invariance:

! 1 ! 1 1

1
First row: Original (SPI) images (matrices X).
Second row: Blurred (PSF) images (matrices B = A(X)).
15
1. Mathematical model of blurring
Point—spread—function (PSF)
The square window with sufficiently large odd size k =2 + 1
allows to consider SPI image given by the matrix
SPI = eHle{Zrl € Rk*k
(the only nonzero pixel is in the middle of SPI).
The corresponding PSF image given by the matrix
P11 P1.k P—t—¢ P+
PSF, = : : — : : c Rkxk
Pk,1 P,k Pit,—0 Pt e

will be further used for the description of the operator A.

1. Mathematical model of blurring

Linear and spatial invariant operator
The matrix X containing the SPI has only one nonzero entry
(moreover equal to one).

Therefore the unfolded X

x=vee(X) =[x ,....x7 1T = ¢

represents an Euclidean vector.

The unfolding of the corredponding B (containing the PSF) then
represents jth column of A

Aej=b=vec(B)=[b{,....b]]".

The matrix A is composed columnwise by unfolded PSFs
corresponding to SPIs with different positions of the nonzero pixel.

1. Mathematical model of blurring
Point—spread—function (PSF)

Linear and spatially invariant blurring operator A is fully described
by its action on one SPI, i.e. by one PSF. (Which one?)

Recall: Up to now the width and height of both the SPI and PSF
images have been equal to some k, called the window size.

For correctness the window size must be properly chosen, namely:
» the window size must be sufficiently large
(increase of k leads to extension of PSF image by black),
» the window is typically square (for simplicity),

» we use window of odd size (for simplicity), i.e.

k=20+1.

1. Mathematical model of blurring
Point—spread—function (PSF)

Examples of PSF4:

vertical

horizontal rtica
motion blur

motion blur

out-of-focus GauBian
blur blur



1. Mathematical model of blurring

2D convolution

We have the linear, spatial invariant A given by PSF4 € Rk,
Consider a general grayscale image given by a matrix X € R™*".
How to realize the action of A on X, i.e. B = A(X), using PSF4?

Entrywise application of PSF:
1. X = 21";1 E}’:l X;J, where X,'J = x,-d-(e,-ejT) e Rmxn,

2. realize the action of A on the single-pixel-image X; ;

0 0 0 0 0 0
X,'J = 0 X,'JSP/ 0 — B[J = 0 X,')jPSFA 0 y
0 0 0 0 0 0

3.B=X", J’.’:l B;j due to the linearity of A.

1. Mathematical model of blurring

2D convolution

The entry b; j of B is influenced by the entry x;; and a few entries
in its surroundings, depending on the support of PSF 4.

In general:

bij= Zi:_z Zi:_l Xi—hj—wPh,w-

The blured image represented by matrix B is therefore the
2D convolution

of X with PSF4.

Boundary: Pixels x,,, for p € Z\[1,...,mlorv e Z\[1,...,n]
(“outside” the original image X) are not given.

1. Mathematical model of blurring

Summary

Now we know “everything” about the simplest mathematical
model of blurring:
» We consider linear, spatial invariant operator A, which is
represented by its point-spread-function PSF 4.
» The 2D convolution of true scene with the
point-spread-function represents the blurring.
» Convolution uses some information from the outside of the
scene, therefore we need to consider some boundary
conditions.

1. Mathematical model of blurring

2D convolution

Example: B=37", 3" Bij= ...

pit Piz Pig 0 O 0 pr1piz pig O 0 0 13
P21 p22 p23 0 0 0 |p21 P22 P23l O 0 0 |p1 P22 P23
+x02 ||P31 P32 P33 O 0 | +x3| O |p31 p32 p3g O [+xa| O O |p31 p32 p3s
U 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 O 0 0 0 0 O 0 0 0 0 O
0 0 0 0 O 0 0 0 0 0 0 O
pripiz piz 0 0 0 0 0 0 pr1pi2 PL3
+x32 ||P21 P22 P23 O 0 | +x33| O 0 [+x34| 0 0 |p21 p22 P23
P31 p32 p3g 0 0 0 0 0 0 |p31 p32 P33
00 0 0 0 0 0 0 0
0 0 0 0 O 0 0 0 0 O 0 0 0 0 O
0 0 0 0 O 0 0 0 0 O 0 0 0 0 O
+xa2 |[PriPiapig 0 O | +x3| O prapiapig O |+xa| O O (prTpizpis
P21 P22 P23 0 0 0 \p21 p22 P23 0 0 0 |p21 P22 P23
p31 p32 p3g 0 O 0 |p31 p32 p33l O 0 0 |p31 ps2 p33
+ , where
P11 P12 P13 b3z = x2 P33 + X3 P32 + Xo4 P31
PSFa=| P21 P22 P23 |, + x32 P23+ X33 P22+ X34 P21 -
P31 P32 P33 + Xxa2 p13 + Xa3 P2 + Xaa P11

1. Mathematical model of blurring
Boundary conditions (BC)

Real-world blurred image B is involved by the information which
is outside the scene X, i.e. by the boundary pixels x,, .
For the reconstruction of the real-world scene (deblurring) we do
have to consider some boundary condition:
> Outside the scene is nothing, x,, = 0 (black), e.g., in
astrononomical observations.
» The scene contains periodic patterns, e.g., in
micro/nanoscale imaging of matherials.
» The scene can be prolongated by reflecting.

Zero boundary

Periodic boundary Reflexive boundary
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2. System of linear algebraic equations
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2. System of linear algebraic equations

Basic concept

The problem A(X) = B can be rewritten (emploing the 2D
convolution formula) as a system of linear algebraic equations

Ax = b, AR x = vec(X), b= vec(B) e R™,

where the entries of A are the entries of the PSF, and

bij = ZL% Zim% Xi—hj—wPh,w-

In general:
» PSF has small localized support,

» each pixel is influenced only by a few pixels in its close
surroundings,

» therefore A is sparse.

2. System of linear algebraic equations

Exploiting the separability
Consider the 2D convolution with GauBian PSF in a continuous
domain. Exploiting the separability, we get

B(i,j) = //R2 X(i = h,j— w) e ") dh g

o0 o0 5 Y
:/ </ X(i— hj—wye™" dh>e’”"dw
—oo \J—oo

= / Y(i,j— W)e""’zdw7
= 2
where Y(i,j) = / X(i — h,j)e ™ dh.
—00

The blurring in the direction h (height) is independent on the
blurring in the direction w (width).

In the discrete setting: The blurring of columns of X is
independent on the blurring of rows of X.

2. System of linear algebraic equations

1D convolution

Consider the following example of an A¢ related 1D convolution:

&1
o
B1 G G|l o a &
B2 G|la a6 @ a &
B3 | _ G a G o a &
Ba | G G G @ & |’
Bs G a G ol &s
Be G G G| a &6
&
L S |
Whereb:[ﬂl,...,ﬂﬁ]T,x:[fl,...,§5]T,
and ¢ = [c1,...,cs]” is the 1D (GauBian) point-spread-function.

2. System of linear algebraic equations
GauBian PSF / GauBian blur

In the rest we consider GauBian blur:

GauBian PSF Gap(h, w) Gip(€)

where (in a continuous domain)

2

Gop(h,w) = e FHW) — e e Gp(g) = e

GauBian blur is the simplest and in many cases sufficient model.
A big advantage is its separability Gop(h, w) = Gip(h)Gip(w).
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2. System of linear algebraic equations
Exploiting the separability

As a direct consequence of the separability, the PSF matrix is a
rank one matrix of the form

PSF 4 = ch7 c, re R

The blurring of columns (rows) of X is realized by 1D (discrete)
convolution with ¢ (r), the discretized Gip(£) = e=5°,

Let Ac, Ar be matrices representing discete 1D GauBian blurring
operators, where

» Ac realizes blurring of columns of X,
» AL realizes blurring of rows of X.

Then the problem A(X) = B can be rewritten as a matrix
equation

AcXAE =B, AceR™™ Ap e R™"
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2. System of linear algebraic equations

Boundary conditions

The vector [x_1,xo|x1, . . .,&6|&7,E8] T represents the true scene. In
the reconstruction we consider:

[0,0/¢1,...,£]0,0]" ~ zero boundary condition,
[€5,¢6l€1, - - ., 6|61, 6] T ~ periodic boundary condition, or
[€2,€11€1, ..., &6|%,E5]T ~ reflexive boundary condition.

In general Ac = M + BC, where

g 0 a
C4 C3 C
Cg C CG3 C
G C4 €3 C
Cg C G O
Cy C a3

and BC is a correction due to the boundary conditions.



2. System of linear algebraic equations

Boundary conditions

Zero boundary condition:

G G| @ a & G @ a &

Gla ¢ o a & @ ¢ @ a &

ACX G G G o G|l—| 6 a aaa &
G a6 oa & s a g oall&]|

G G G oa & G G 3 Q &

s a gl all|é s oo &

i.e. here BC =0 and Ac = M is a Toeplitz matrix.

2. System of linear algebraic equations

Boundary conditions

Reflexive boundary condition:

G G| @ a & cata ot a &

sla g o a & agics 3 @ a &

A cx= G G o a G| & a @ o a &
G G i @ a & = ) a &

G G G Q|a & G G G ata &

G G G|& a 13 5 Gtar otep &

i.e. here BC =

€ G5
s
a
a o

and Ac = M + BC is a Toeplitz-plus-Hankel matrix.

2. System of linear algebraic equations

2D GauBian blurring operator—Kroneckerized product structure

Now we show how to rewrite the matrix equation Ac X AL = B as
a system of linear algebraic equations in a usual form.

Consider Ag = I,. The matrix equation

AcX =B
can be rewritten as
Ac X1 by
(Ih ® Ac) vee(X) = | =1 | =vec(B),
Ac Xn by,
where X = [x1,...,Xp], B=[b1,..., b,

and ® denotes the Kronecker product.

2. System of linear algebraic equations

Boundary conditions

Periodic boundary condition:

s ala o a
Gla o o a
Acx: G o o a
s a @ a
ala
G gl a

.e. here

and Ac = M+ BC

BC =

a

is a circulant matrix.

=}

&L

2. System of linear algebraic equations

Boundary conditions—Summary

Three types of boundary conditions:

» zero boundary condition,
» periodic boundary condition,

» reflexive boundary condition,

correspond to the three types of matrices Ac and Ag:

» Toeplitz matrix,
» circulant matrix,
» Toeplitz-plus-Hankel matrix,

in the linear system of the form

AcX AL =B.

2. System of linear algebraic equations

=
=]
=

c

2D GauBian blurring operator—Kroneckerized product structure

a
=3
a
a

a

a
a
=3

a
=3
(=)

=) &
S &

&
all& |
=) &
=) &

Consider Ac = I,. The matrix equation X AL, = B can be

rewritten as

"'f,llm
(AR ® Im) vec(X) = :

R
ap1lm

R
ar nlm

R
apnlm

X1

Xn

Consequently Ac X AL = (Ac X) AL gives

by

bn

= vec(B).

(AR @ Im)vec(Ac X) = (AR ® Im) (I, @ Ac)vec(X).

Using properties of Kronecker product, this system is equivalent to

Ax = (Ar @ Ac) vec(X) = vec(B) = b,

where "
a1 Ac
A= :

R
aAc 0 g

R
ay ,Ac

RAC

€ Rmnxmn
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2. System of linear algebraic equations

Structured matrices

We have

af Ac af,Ac
A=Ar®Ac = : | ermmxm,

R R '
2naAc annfic 3. Properties of the problem

where Ac, Ag are Toeplitz, circulant, or Toeplitz-plus-Hankel.

If Ac is Toeplitz, then A is a matrix with Toeplitz blocks.
If Ag is Toeplitz, then A is a block-Toeplitz matrix.
If Ac and Ag are Toeplitz (zero BC), then A is

block—Toeplitz with Toeplitz blocks (BTTB).

Analogously, for periodic BC we get BCCB matrix, for reflexie BC
we get a sum of four matrices BTTB4+BTHB+BHTB+BHHB.
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3. Properties of the problem

Smoothing properties

3. Properties of the problem

Singular vectors of A

We have an inverse ill-posed problem Ax = b, a discretization of a

Singular vectors of A represent bases with increasing frequencies:
Fredholm integral equation of the 1st kind

u, u, u u, u, u

3 4 5 6
y(S) — /K(S, t)X(t)dt. 0.1 0.1 0.1 0.1 0.1 0.1
i 0\/\ 0\/\/ 0\/\/\ 0/\/\/\ i
The matrix A is a restriction of the integral kernel K(s,t) 701\/01 o1 o1 o1 o1
(the convolution kernel in image deblurring) 0 200 4000 200 400 0 200 400 O 200 400 0O 200 400 0 200 400
» the kernel K(s,t) has smoothing property, uy Ug Uy Uy Uy Up
) 01 01 01 01 01 01
» therefore the vector y(s) is smooth,
. . . . . 0 0 0 0 0 0
and these properties are inherited by the discretized problem.
Further analysis is based on the singular value decomposition -0.1 0.1 0.1 0.1 01 01
0 200 400 O 200 400 O 200 400 O 200 400 O 200 400 O 200 400

A=UZVT, U e RVXN

(and N = mn in image deblurring).

3. Properties of the problem

Singular values of A

Y e RVXN,

Ve RNXN

Singular values decay without a noticeable gap (SHAW(400)):

i

singular value o

First 12 left singular vectors of 1D ill-posed problem SHAW(400)

[Regularization Toolbox].

3. Properties of the problem
The right-hand side

First recall that b is the discretized smooth y(s), therefore

b is smooth, i.e. dominated by low frequencies.

40

Thus b has large components in directions of several first vectors
uj, and \uij\ on average decay with j.
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3. Properties of the problem
The Discrete Pickard condition
Using the dyadic form of SVD

N
A= ijl ujojv;, N is the dimension of the discretized K(s,t),
the solution of Ax = b can be rewritten as a linear combination of
right-singular vectors,
-
N b

— A1y .
x=A bfzjzl P vj.

Since x is a discretization of some real-world object x(t)
(e.g., an “true image”) the sequence of these sums converges to
x(t) with N — oo.

This is possible only if \uij\ are on average decay faster than o;.

This property is called the (discrete) Pickard condition (DPC).

3. Properties of the problem
SVD and Image deblurring problem

Back to the image deblurring problem: We have
AcXAE =B <= (Ar® Ac)vec(X) = vec(B).

Consider SVDs of both Ac and Ag

Ar = Urdiag(sg) Vi,

,oRT e R™.

Ac = Uc diag(sc)V{,

sc=[05,...,05]T eR™, sp=[oF,...
Using the basic properties of the Kronecker product
A= Ar® Ac = (Ur diag(sr) VR ) ® (Uc diag(sc) VL)
= (Ug ® Uc) diag(sr @ sc)(Vr ® VC)T = U):VT7

we get SVD of A (up to the ordering of singular values).

3. Properties of the problem

Singular images

The solution

N ujT vec(B)

X = L, X = mtx(x), N = mn,
j=1 oj
——
scalar

is a linear combination of right singular vectors v;.

It can be further rewritten as
N ujT vec(B) «

X = -V, V; = mtx(v;) € R™*"

j=1 oj

using singular images V; (the reshaped right singular vectors).

3. Properties of the problem

The Discrete Pickard condition

The discrete Pickard condition (SHAW(400)):

o o double precision arithmetic
1
---9 high precision arithmetic
o (b3, )|, high precision arithmetic
_10 7
10
%0 o
10 N
5N
% '
10°% ®
o
[§] N
[°] \
o
-40 \
10 @
0 10 20 30 40 50 60

singular value number

3. Properties of the problem
SVD and Image deblurring problem

The solution of Ac X AL = B can be written directly as
projections uij

—
X =Vc(ULBUR)® (scsk)) VR »

fractions (uJTb)/a/

where K @ M denotes the Hadamard product of K with the
componentwise inverse of M (using MatLab notation K. /M).

Or using the dyadic expansion as

v ul vec(B)

_ J
DAL
j=1 oj

where mtx(-) denotes an inverse mapping to vec(-).

X = mtx(x), N = mn,

3. Properties of the problem

Singular images

Singular images V; (GauBian blur, zero BC, artificial colors)
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3. Properties of the problem

Note on computation of SVD

Recall that the matrices Ac, Agr are

» Toeplitz,

» circulant, or

» Toeplitz-plus-Hankel,
and often symmetric (depending on the symmetry of PSF).
Toeplitz matrix is fully determined by its first column and row,

circulant matrix by its first column (or row), and
Hankel matrix by the first column and the last row.

Eigenvalue decomposition (SVD) of such matrices can be
efficiently computed using discrete Fourier transform (DFT/FFT
algorithm), or discrete cosine transform (DCT algorithm).

4. Impact of noise

Noise, Sources of noise
Consider a problem of the form

Ax = b, b= bcxact + bnoisc, HbcxactH > ”bnoisc”7

where b"¢ is unknown and represents, e.g.,
» rounding errors,
» discretization error,
» noise with physical sources (electronic noise on PN-junctions).

We want to approximate
chact = A—lbcxact,

unfortunately ,
HAflbcxactH < HAflbnolscH.

4. Impact of noise
Violation of the discrete Pickard condition

Violation of the discrete Pickard condition by noise (SHAW(400)):

10 . . . . . . .
o2
]
- -14
1 o |(b, ul)| for Bnmse’ 10 |
o |(b,u)ford =107
/ noise
- 107
. o lbowlfors =107 4
10 — §
10710
107°
10720

0 50 100 150 200 250 300 350 400
singular value number

4. Impact of noise

4. Impact of noise

Violation of the discrete Pickard condition

The vector b"°* typically resebles white noise, i.e. it has flat
frequency characteristics.

Recall that the singular vectors of A represent frequencies.

Thus the white noise components in left singular subspaces are
about the same order of magnitude.
White noise

violates the discrete Pickard condition.

Summarizing:
exact

, it satifies DPC

> b"9's¢ does not have any real pre-image, it violates DPC.

> bt has some real pre-image x

4. Impact of noise

Violation of the discrete Pickard condition

Violation the dicrete Pickard condition by noise (Image deb. pb.):

singular values of A and projections u'b
10 T T :

* right-hand side projections on left singular subspaces u'b
— singular values o,
10 — ~ noise level
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Impact of noise
Violation of the discrete Pickard condition
Using b = b™act 4 pnois¢ we can write the expansion

ndlve =A lb § Vj
j=1 oj

N TbexaCt T bnolﬁe
= — v+ E - VY-
=1 0 ! =1 oj !
xexact amplified noise

Because o; decay and \uij“Oise| are all about the same size,
|uj7—b““ise\/oj grow for large j. However, |uije"a°°\/oj decay with j
due to DPC. Thus the high-frequency noise covers all sensefull
information in x"aive,

Therefore x"#V° is called the naive solution.

(MatLab demo)

Summary

» We have an discrete inverse problem which is ill-posed. Our
observation is often corrupted by (white) noise and we want
to reconstruct the true pre-image of this observation.

» The whole concept was illustrated on the image deblurring
problem, which was closely introduced and described.

» |t was shown how the problem can be reformulated as a
system of linear algebraic equations.

» We showed the typical properties of the corresponding matrix
and the right-hand side, in particular the discrete Pickard
condition.

» Finally, we illustrated the catastrophical impact of the noise
on the reconstruction on an example.

Impact of noise

Regularization and filtering

To avoid the catastrophical impact of noise we employ
regularization techniques.

In general the regularization can be understood as a filtering

T
N u'b
Xﬁltcrcd = b J Vi
E i @ — Vs
j= oj

where the filter factors ¢; are given by some
filter function ¢; = ¢(j, A, b,...).

(Lecture I1)
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Recapitulation of Lecture |
Right-hand side
Smooth right-hand side (including noise):

fight-hand side B

50

200

50 100 150 200 250 300

Recapitulation of Lecture |

Solution
Using SVD A = UXVT the filtered solution is
ujT b

N
filtered __
X —E O
j=1 oj

where ® = diag(¢y, ...
problem

vi, Xﬁltered — V(bz—l UTb7

,¢n). Particularly in the image deblurring

T
filtered __ 2 /‘N X uj VeC(B) a
X B (j=1 ¢J aj VJ’

The filter factors ¢; are given by some filter function

¢j = ¢(j:A7 b7~")7

for ¢; =1, j=1,..., N, we get the naive solution.

where V; are singular images.

Recapitulation of Lecture |

Linear system

Consider the problem

Ax = b, b= bexact + bnoise7 Ae RNXN’ X, be RN,

where

> A is a discretization of a smoothing operator,
singular values of A decay,
singular vectors of A represent increasing frequencies,

bexact is smooth and satisfies the discrete Pickard condition,

>
>
>
> bnoise

is unknown white noise,
”bexact H >> ”bl’]OiSe”, but

We want to approximate

HA—lbexact” < HA_IbHOise”.

Xexact — A—l bexact'

Recapitulation of Lecture |
Violation of the discrete Pickard condition

Violation of the dicrete Pickard condition in the noisy b:

singular values of A and projections u'b
10 T T T

* right-hand side projections on left singular subspaces u'b
— singular values o,
10 — ~ noise level

Recapitulation of Lecture |
Singular images

Singular images V; (GauBian blur, zero BC, artificial colors):
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Recapitulation of Lecture |
Naive solution

The naive solution is dominated by high-frequency noise:

Outline of the tutorial

naive solution

» Lecture I—Problem formulation:

Mathematical model of blurring, System of linear algebraic
equations, Properties of the problem, Impact of noise.
Lecture II—Regularization:

Basic regularization techniques (TSVD, Tikhonov), Criteria

for choosing regularization parameters, lterative
regularization, Hybrid methods.

» Lecture Ill—Noise revealing:

v

Golub-Kahan iteratie bidiagonalization and its properties,
Propagation of noise, Determination of the noise level, Noise
vector approximation, Open problems.

a = = = = o o =] = = E L
Outline of Lecture Il
» 5. Basic regularization techniques:
Truncated SVD, Selective SVD, Tikhonov regularization.
» 6. Choosing regularization parameters:
Discrepancy principle, Generalized cross validation, L-curve, 5. Basic regularization techniques
Normalized cumulative periodogram.
» 7. lterative regularziation:
Landweber iteration, Cimmino iteration, Kaczmarz's method,
Projection methods, Regularizing Krylov subspace iterations.
» 8. Hybrid methods:
Introduction, Projection methods with inner Tikhonov
regularization.
oy < =, «2» E R = ® E .
9/ 10/59

5. Basic regularization techniques
Truncated SVD

The simplest regularization technique is the truncated SVD
(TSVD). Noise affects x"® through the components
corresponding to the smalest singular values,

T T
) k ub N u' b
xhaive Z J v + Z J vi.
j=1 oj j=k+1 0oj

data dominated noise dominated

Idea: Omit the noise dominated part. Define

T T
Kk u'b N u' b
TSVD(k) _ 'j _ /j
X = vj = i vj
Zj:l aj J Zj:1¢f o} e

¢j={é

where
for j<k
for j>k

5. Basic regularization techniques
Truncated SVD
The TSVD filter function, k = 2983:

10° T T

singular values of A and TSDV filtered projections b
T T T :

+filtered projections ¢(i) u'b
— singular values o

3 = noise level

— filter function ()




5. Basic regularization techniques 5. Basic regularization techniques

Truncated SVD Truncated SVD
The TSVD solution, k = 2983: Advantages:
TSV solion k= 2983 » Simple idea, simple implementation, simple analysis,

| | - -
50 1

i.e. the rank-k approximation of A.

100 4

» We have to compute the SVD of A (or the first k singular

l[oal af, Guk e
eor 1 » Choice of the regularization parameter k is usualy based on

a knowledge of the norm of b"°'¢ which is

or given explictly as an additional information.

250 .h W M i > The noise dominated part still contains some information
5‘0 100 1&-0 2(‘10 Z%D

300 useful for reconstruction which is lost (step filter function).

13 14 /59

5. Basic regularization techniques 5. Basic regularization techniques
Selective SVD Tikhonov approach
Similar approach to TSVD is the selective SVD (SSVD). Classical Tikhonov approach is based on penalizing the norm of
Consider |[b"*¢|| is known. Then the solution
1/2 i Tikhonov(\) — :
anoise” _ ZN (uTbnoise)Z / — Anoise |u'7'bnoise‘ ~e= Aret x onov(}) = arg mxln{Hb — AXH + )\”LXH}7
=1\ = 1Y = N
where
because u; represent frequencies and b"se represents white noise. » ||b— Ax|| represents the residual norm,
We define > ||Lx|| represents (LT L)—(semi)norm of the solution,
ssvb(e) uJ»T b N JT b often L = Iy (we restrict to this case),
X = Z\ufbbs a; Vi = Zj:l bj a Vjs or it is a discretized 1st or 2nd order derivative operator,
) > ) is the (positive) penalty parameter; clearly
where
_ 1 for IUTbl >e lim XTikhonov()\) — yhaive
% = 0 for |uij| <e ' A—0
15 16 /59
5. Basic regularization techniques 5. Basic regularization techniques
Tikhonov approach Tikhonov approach

A solution of the Tikhonov LS problem
The Tikhonov minimization problem can be rewritten as

A b
xTikbonov(d) — are min{||b — Ax|| + Al|Lx||} { —AL } X= { 0 ]
X

=arg mXin{Hb — Ax|[ + N[|Lx|} can be analyzed through the system of normal equations

senn{[[2]-[ 4} ENEAREND!

i.e. to get the Tikhonov solution we solve a least squares (LS) (ATA+XN2LTL)x= ATb.
problem
[ A ]Xf [ b ] With the SVD of A, A= UV, and L = Iy = VV7 we get
AL |70

2,42 _ T
In particular, we do not have to compute the SVD of A. (X% 4+ XIy)y=2U"b,

where y = VT x and x = Vy.
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5. Basic regularization techniques
Tikhonov approach

Thus

5 Tikhonov(}) _ V(Z2 + )\2IN)71):UTb7 100
which gives
Tikhonov(}) _ Ng Ty N:
X ijl O'J?JF)\Z (UJ b)v; +
N -
2 T T 2
N of u'b N ui b < g
- Y = Y ]
=107+ X2 o) =17 o) v
1l
where ©
2
Ior: 1 for o; >\
% L i i< 1.
" i {a}/AZ for oea o 0<g<1 i 6= 6.=104
10 = -

5. Basic regularization techniques

Tikhonov approach
The Tikhonov filter function, A = 8 x 10™*:

singular values of A and Tikhonov filtered projections u'b

5. Basic regularization techniques
Tikhonov approach
The behavior of the Tikhonov filter function:

5. Basic regularization techniques

Tikhonov approach
The Tikhonov solution, A = 8 x 10~*:

Tikhonov solution, % = 8+10™*

10 T T T T T

— singular values o,

noise level
10° — filter function ¢(i)

+filtered projections ¢(i) u'b

| The question is

| 4 loals at Gut
what you son.

5. Basic regularization techniques
Tikhonov approach

Advantages:
> Simple idea, with L = I simple analysis,

A s replaced by U®xVT,

» We do not have to compute SVD of A (compare wit

> The solution is given by some LS problem.

» The filter function is smooth (compare with TSVD).
Disadvantages:

» With L # Iy the analysis is more complicated.

» We have to chose the penalty parameter \

(at this moment it is not clear how to do it).

O = (24 X\2y) 122

'“ ’ -

250 l w l m

8 I i . i
50 100 150 200 250

5. Basic regularization techniques

Summary

We have two basic approaches:

» Truncated SVD (requires a part of the SVD of A)
XISV — yox—1yTh, & = diag(/k, On—xk),

h TSVD). where k is a truncation (regularization) parameter.

» Tikhonov regularization (leads to a LS problem)
XTikhonov()\) — V¢z—1 UTb, ¢ = (22 + /\2/[1)—122’

where X is a penalty (regularization) parameter.

The question is:

How to choose the regularization parameters?

20/59
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5. Basic regularization techniques 5. Basic regularization techniques

Note on monotonicity (TSVD) Note on monotonicity (Tikhonov)
The norms of the TSVD solution and the residual Similarly the norms of the Tikhonov solution and the residual
2
HXTSVD(k)H, Hb — AXTSVD(k)” ) = Tikhonov(\) |2 2 (u b)
£ = Ix RP=3"
j= O'j

are nondecreasing and nonincreasing, respectively, with k.

. N
Simply, using SVD ,0()\) = Hb _ AXT1khonov(A)H2 _ Zj:1(1 _ (/)j)2(uij)2

| TSVD(k)||2 _ Zk (uij)Z are increasing and decreasing, respectively, with A.
j=1 UJ? Recall that 0 < ¢; < 1,
is nondecreasing with k; o2 A2
?j = 2712’ thus (1-¢)= 2 2"
N (uTb) o) +A +A
b — AxTSVD(K)| 2 I —®)UTp|? J
u N (GUUEED D Lok
PR BT
is nonincreasing with k (here ® = diag(/x,0n_x)). dx -’
25 26 /59
5. Basic regularization techniques
Note on monotonicity (Tikhonov)
First
d 4 d 4
DG = 3] F -0’ =501- e
Then 6. Choosing regularization parameters
(u7b )2
£ = Z(l — )9
j 1 J
&'(N) <0for A >0, i.e &(N) is decreasing with A.
Analogously
a N
PN = X Z(l - ¢j)2¢j(uj7—b)2v
j=1
p'(A) >0 for A >0, i.e. p(\) is increasing with A.
27 28/59
6. Choosing regularization parameters 6. Choosing regularization parameters
Spectral filtering, Error analysis Spectral filtering, Over- and undersmoothing
In general
sdiltered _ (a5 —1(Tp There is no universal approach for chosing the regularization
parameter (k or \), the choice is always problem dependent!

— V(D):—l UTbexact + V(D):—l UTbnoise
—1,T p,ex —1T pnoi
= VoL tUT Axet 4 VoL Ty pote > If &~ Iy (VOVT ~ Iy), the regularization error is small, but
= (VovT)xeact L yoy -1y proise the perturbation error (caused by noise) is large.
The solution is undersmoothed.

> If & ~ 0y (VOVT is far from the identity), inverted noise is
The absolute error is heavily damped, but we lose a lot of original data.

In general:

where VOV T is called the resolution matrix.

exact _ filtered = (Iy - V¢VT)X"X“” Vor-1yT proise The solution is oversmoothed.
e

bt oo A proper choice of the regularization parameter balances
p uri on error

I
regularization error these two types of errors.
regularization error is caused by using filtered inverse,

perturbation error consists of the inverted and filtered noise.
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6. Choosing regularization parameters
Spectral filtering, A proper choice of the parameter
Regularization and perturbation error for TSVD method:

10 ¢

3
10° |
107+ j
107

[ = Perturbation error

- - =+ Regularization error

10 :

0 100 200 300 400 500

6. Choosing regularization parameters
Generalized cross validation (GCV)

Using xfiltered — &y =1y T b the residual satisfies
b — Axfiltered _ (/N - Avq>):—1UT) b= (/N - U¢UT) b.
Defining the generalized cross validation (GCV) functional

16— Axfitered|2—[(ly — @)U b|J?

Gﬁltered(.) =
trace(ly — AVOL-1UT)2 (N — E_;V:1 ;)

we look for its minimum.
(Note: The GCV functional depends on ordering of equations.)

[Chung, Nagy, O'Leary: '04], [Golub, Von Matt: '97], [Nguyen, Milanfar,
Golub: '01].

6. Choosing regularization parameters

Generalized cross validation (GCV)

The GCV functional for TSVD (left) and Tikhonov (right)

methods:
G(k)
107 107
107 107
10 -10
10 10
0 200 400 600 1%  10° 107 10

Note: The GCV functional is often flat close to the minimum.

6. Choosing regularization parameters

Discrepancy principle
The discrepancy principle: Let
anoisc” — Anoisc

be known either from the nature of the problem, or we have some
approximation of it, see (Lecture III).

We look for a regularization parameter such that
Hb _ AXﬁlteredH _ 7_Anoise7

for some fixed 7.

Recall that for TSVD and Tikhonov regularization the norms of
the residuals are monotonic in k and A, respectively.

[Morozov: '66], [Morozov: '84].

6. Choosing regularization parameters
Generalized cross validation (GCV)

In particular for the TSVD and Tikhonov method we have

S kya (] b)?

TSVD —
L ()
GTikhonov(\) — ZNT)

St
J=1 07422

;

6. Choosing regularization parameters
L-curve
Both norms

HXﬁltered H7 ”b _ AXﬁltered H

are monotonic with respect to the regularization parameter k, A in
TSVD and Tikhonov regularization, respectively.

We plot the norm of the regularized solution agains the norm of
the residual. For emphasizing the point where both norms are
ballanced, we use the log-log scale.

Criterion based on this approach is called the L-curve. The
L-curve-optimal parameter then corresponds to the point with
maximal curvature.

Note that for TSDV we have only discrete set of points (parameter
k is discrete). The curvature is defined using an interpolation.

[Calvetti, Golub, Reichel: '99], [Calvetti, Morigi, Reichel, Sgallari: "00],
[Calvetti, Reichel: '04].
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6. Choosing regularization parameters

L-curve
Ideal L-curve for Tikhonov method (often the corner is not sharp).
Here X\ grows from the upper left to the bottom right corner along

the curve:
10° T . .
A=1e-5
=
3 102, 4
E
o =1ed
=
s
=5 1
2 10’} 1
(5]
10°

Residual nom || Ax, - bl

6. Choosing regularization parameters

Normalized cumulative periodogram (NCP)

The NCP transforms the residual rfiltered ¢ RN ysing the discrete
Fourier transform (DFT/FFT algorithm) to get its spectrum

pﬁltered — ]:(rﬁltered) — (Pl, P2, ... ,Py+1)T, V= LN/zj

The periodogram is a vector Cfiltered with coefficients

—_ p2| +- - |pj1]
G =11
Ip2| + - - |put1l

If the residual consists only of white noise, then by the definiton of
white noise the mean values satisfy

Ellp2] = Ellpsll = ... = Ellp|l,
and by linearity of E[-], points (j, E[c;]) would be on a straight
line from (0,0) to (v,1).

39

6. Choosing regularization parameters
Normalized cumulative periodogram (NCP)
NCP for Tikhonov regularization:

166 0

[Hansen: SIAM, FA07, 2010].

6. Choosing regularization parameters

Normalized cumulative periodogram (NCP)

The last criterion is based on the assumption that the residual
corresponding to the true solution

proise — AXexact

represents white noise. We try to choose a regularization
parameter such that the residual

rﬁltered —bh— AXﬁltered

resembles white noise. See also (Lecture III).

The normalized cumulative periodogram (NCP) uses the
statistical properties of Fourier spectrum of white noise.

[Rust: '98], [Rust: '00], [Rust, O'Leary: '08] (FFT-based),
[Hansen, Kilmer, Kjeldsen: '06] (DCT-based).

6. Choosing regularization parameters

Normalized cumulative periodogram (NCP)

Thus we look for the regularization parameter (k or A) such that

the coefficients of the periodogram cfiltrd Jie (moreorless) on a
straight line,
) - - 1
MiNkor A ” Cﬁltered _ thltenolse”27 thltenolse — (1, 2,... ,I/)T.
v

Note that the periodogram is normalized, i.e. ¢, = 1.

HF naise

White noise LF noise

6. Choosing regularization parameters

Further notes

Discrepancy principle: Converges as noise tends to zero, requires
an explicite information about the norm of noise component of b,
the solution tends to be oversmooth.

Generalized cross validation (GCV): No convergence when noise
tends to zero, functional is flat close to the minimum, various
adaptations for structured matrices (BCCB, etc.).

L-curve: No convergence when noise tends to zero, various
adaptations (L-ribbon, etc.), well numericaly tracktable (it is
sufficient to compute only a few points of the L-curve), troubles
when using with TSVD because k is a discrete parameter.

Usually we need to solve one system with several values of
the regularization parameter to choose the optimal one.

See also [Bjork: '88], [Bjork, Grimme, Van Dooren: '94].
For comparison see [Hansen: 98], [Kilmer, O'Leary: '01].
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7. lterative regularization

7. lterative regularization

Stationary iterative methods, Landweber iteration

Simultaneous iterative reconstruction techniques (SIRT)
is a class of stationary iterative methods with a general scheme

= X0 L GATM(b — AXEY =102, k,

where M is a symmetric positive definite (SPD) matrix and w is a
relaxation parameter.
For example often used methods are:

» the Landweber iteration with M = Iy, and

» the Cimminio iteration with M = D = diag(dh, ..., dn),

where a; is the (transposed) jth row of A (column vector).

7. lterative regularization
Stationary iterative methods, Kaczmarz's method (ART)

Kaczmarz’s method or algebraic reconstruction technique
(ART) is an iterative algorithm given by the following scheme

K10 1]

for j=1,...,N

1 1o 1 1
X141 . — le-1j-1] +twa W (b _QJTX[Z Lj 1])?
end
x = X[Z’l’NL (=1,2,..., k.

The ART method converges quite quickly in the first few
iterations, after this the convergence may become very slow.

7. lterative regularization

Introduction

Up to now we have considered direct regularization methods
suitable for small problems (SVD-based methods, Tikhonov
regularization leading to a LS problem which can be solved directly
only in small dimensions).

For solving large ill-posed problems, it is advatagous to use
iterative regularization methods. We briefly introduce several of
them:

» stationary iterative methods (Landweber iteration, Cimmino
iteration, Kaczmarz’'s method (ART)),

» projection methods (regularizing Krylov subspace iterations).

In all iterative methods the number of iterations plays the role of
the regularization parameter.

7. lterative regularization

Stationary iterative methods, Landweber iteration

The Landweber method

M= oAT(b— AXECYY, =12, k,

with 0 < w < 20;2(A) =2||ATA|| =1 gives the approximation

M= volls—1yTp, oM = jy — (Iy — wE?)k,

e ol =1 (1-wo?)~.

Using the Taylor expansion for small o;'s we get (/)j[.k] ~ kwoj?.
Thus the Landweber filters decay with the same rate as the
Tikhonov filters (¢; &~ 0?A72).

7. lterative regularization
Stationary iterative methods, Kaczmarz's method (ART)

Comparison of relative error decay for Landweber and Kaczmarz's
(ART) method:

Relative errors || x®® — x4 || /]| x|,
0

10

[~ Landweber

|-=-Kaczmarz (ART)

20 30 40

[Hansen: SIAM, FAQ7, 2010].

44

46

48

59

59

59



7. lterative regularization 7. lterative regularization

Projection methods Projection methods

Consider a subspace

Wy = SpaII(Wl, BN Wk) C RN, Wi = [Wl, BN Wk] [S RNXk,
In direct techniques we have looked for an approximation of x®xact
which lies in a low dimensional subspace of RV spanned by the such that WkT Wy = I and w; are dominated by low frequecies.
first k right singular vectors of A (TSVD); or which is dominated Then we solve
by several first right singular vectors of A (Tikhonov). mingew, ||b — Ax]|.
Thus the approximation is always dominated by the low This can be reformulated as a projected problem

frequencies and the high frequecies are dumped.
min b — (AW, s
We try to look for an approximation in an a-priori given low iny e | (AWl

dimensional subspace )V, dominated by low frequencies. or, equivalently,
W (AT AW,y = W AT b.

The question is, how to choose the basis w;?

20 50/59
7. lterative regularization 7. lterative regularization
Projection methods, DCT basis Projection methods, DCT basis
An example of a suitable basis is the DCT basis Solutions computed using the DCT basis wy,...,wx, k=1,...,10

(k =9 seems to be the optimal one):

=k (L1 )T,

. . . T Projected solutions
L 2 (—1)m 3(-1)m N-1)(j-1)x
W= N(C°5< N )OS \Taw ) €08 2N ’ EIPEPEN
A}
. 1
for j > 1. e o
of
w, kA Wy w, w, D 50 100 O 50 100 0 50 100
02 0.2 02 02 0.2
\ \/ \/\ \/\/ 2 k=6 2| k=7 2| k=8
0 0 0 0 0
1/\/\ 1 | 1
02 % w0%% @ w0 % 0 10t g0 10’ 50 100 of Yo of
g e Wy w, o 0 50100 O 50100 O 50 100 0 50 100 0 50 100
02 0.2 02 02 0.2
G\/\A “\/\/\/ “\/W\ “VWV ”VWV\ Note: If there are a-priori known certain properties of the true
02— 02— b a0 solu.t|on (symme.try,.perlodlaty, etc.): use this knowledge to choose
basis vectors satisfying these properties.
51 52 /59
7. lterative regularization 7. lterative regularization
Projection methods, Further notes Regularizing Krylov subspace iteration

Specific projection methods are the Krylov subspace methods.

Note that choosing w; = v; (the right singular vectors of A), we get Here the orthonormal basis of a Krylov subspace

exactly the TSVD mehtod. Thus TSVD is an projection method. o1
Ki(v, M) = span(v, Mv,..., M*"tv),
Advantage: With fixed set of basis vectors, computations can be
performed quickly. Using e.g. DCT basis we do not have to

compute and store the basis vectors (we compute only the DCT v=ATb M=ATA
and the inverse DCT (IDCT) of a vector). ’ ’

is used for wj, j =1,..., k, vectors. For example the choice

leads to very popular iterative (regularization) methods CGLS,
LSQR or CGNE, which are mathematically equivalent to applying
CG method on the normal equations AT Ax = AT b.

Disadvantage: The basis vectors are not adapted to the particular
problem.

To avoid this disadvatage we introduce the regularizing Krylov

subspace iteration. The regularizing properties of the Krylov subspace methods will be

dicussed in (Lecture Ill) in more details, in particular in the context
of hybrid methods.
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7. lterative regularization

Further remarks

In the iterative regularization (using stationary or projection
methods), the number of computed iterations k plays the role of
the regularization parameter. 8. Hybrid methods

As a stopping criterion for the iterative process any of the The best of both worlds

previously mentioned approaches can be used, e.g.:
» the discrepancy principle,
» the generalized cross validation (GCV),
» the L-curve criterion,

» the normalized cumulative periodograms (NCP).

55 56 /59

8. Hybrid methods 8. Hybrid methods

Introduction Projection methods with inner Tikhonov regularization
As an example we introduce the Projection method with inner

Hybrid methods combine both previous approaches. Here the ) .
Tikhonov regularization. Consider the ill-posed problem Ax = b

regularization is realized in two steps.

and a subspace Wy = span(wy, ..., wx). Denote
First, the original problem is projeted onto a lower dimensional
subspace using an iterative (projection) method, which by itself M = W (AT AW, e RF*K, where Wy = [wy, ..., wy].
represents a form of regularization by projection, i.e. outer
regularization. The system of normal equations AT Ax = AT b is projected on W,
The small projected pro'blem, however, may inherit a part of the My = W, b, x = Wqy.
ill-posedness of the original problem and therefore some form of
inner regularization is applied. The inner Tikhonov regularization can be applied on this small
Stopping criteria for the whole process are then based on the problem
regularization of the projected (small) problems. yTikhonov(A) = arg myi”{HWka — Myl + Allyll}-
[O’Leary, Simmons: '81], [Hansen: '98] or [Fiero, Golub, Hansen,
O'Leary: '97], [Kilmer, O'Leary: '01], [Kilmer, Espafiol: '06], [O'Leary, This leads to a small LS problem that can be easily solved directly
Simmnos: '81]. for many values of \.

57 58 /59

Summary

We have described the following regularization methods:
» the direct regularization techniques (TSVD, Tikhonov
regularization) suitable for solving small ill-posed problems;

» stationary regularization methods (Landweber and Cimmino
iterations, Kaczmarz's (ART) method);

» projection regularization methods including regularizing
Krylov subspace iterations;

» hybrid methods combining the previous techniques.

All regularization techniques require to choose a good
regularization parameter, that can be find using, e.g., the
discrepancy principle, the generalized cross validation, the L-curve
criterion, or the normalized cumulative periodograms.
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Recapitulation of Lecture | and Il

Linear system
Discrete Picard condition (DPC):

side bt in the left singular subspaces of A decay faster

than the singular values o; of A, j=1,...,N.

White noise:

The components |(b™5¢, ;)
trend.

Denote )
‘ ‘ bllOlSC ‘ ‘

{Snoisc —
H pexact ”

the (usually unknown) noise level in the data.

Recapitulation of Lecture | and Il

Linear system

Violation of DPC for different noise levels (SHAW/(400)):

10
c
. 14
1o o |(b, uj)l Vorénmse: 10
o |bou)fors =107
} noise:
= 107 b
. 4 |by)lford, = 10
10 N
107
107
107
0 50 100 150 200 250 300 350 400
singular value number
o ) = =

, j=1,..., N do not exhibit any

On average, the components  [(b®%°* ;)| of the true right-hand

it
©9

S

]

Recapitulation of Lecture | and Il

Linear system
Consider an ill-posed (square nonsingular) problem

Ax = b b= bexact + bn()ise Ae RNXN

where

» A is a discretization of a smoothing operator,

» singular values of A decay,
» singular vectors of A represent increasing frequencies,
>

> b9 is unknown white noise,

Hbexact H > ”bnoisew but

We want to approximate

Xexact _ A—l bexact .

Recapitulation of Lecture | and Il

Linear system

Singular values and DPC (SHAW(400)):

U‘, double precision arithmetic
- u‘, high precision arithmetic

o (b, u)l, high precision arithmetic

0 10 20 30 40 50 60
singular value number

Recapitulation of Lecture | and Il

Naive solution

The components of the naive solution

. . N ujT pexact N ujT bnoise
xmive= Ay =N Ly N Ly
j=1  0oj =1 oj
xexact

amplified noise
corresponding to small o;'s are dominated by amplified noise.

Regularization is used to suppress the effect of errors and extract
the essential information about the solution.

, x,bGRN,

pexact is smooth and satisfies the discrete Pickard condition,

HA—lbexaut” < HA—lbnoise”.

heANGs
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Recapitulation of Lecture | and Il

Regularization methods

Direct regularization (TSVD, Tikhonov regularization): Suitable
for solving small ill-posed problems.

Projection regularization: Suitable for solving large ill-posed
problems. Regularization is often based on regularizing Krylov
subspace iterations.

Hybrid methods: Here the outer iterative regularization is
combined with an inner direct regularization of the projected
small problem (i.e. of the reduced model).

The algorithm is stopped when the regularized solution of the

reduced model matches some selected stopping criteria based,
e.g., on the discrepancy principle, the generalized cross validation,
the L-curve criterion, or the normalized cumulative periodograms.

o =4 = E i)
Outline of Lecture Il
> 9. Golub-Kahan iterative bidiagonalization and its
properties:
Basic algorithm, LSQR method, Connection with the Lanczos
tridiagonalization, Approximation of the Riemann-Stieltjes
distribution function.
» 10. Propagation of noise:
Motivation, Spectral properties of bidiagonalization vectors,
Noise amplification.
» 11. Determination of the noise level:
Estimate based on distribution functions, Identification of the
noise revealing iteration.
» 12. Noise vector approximation:
Basic formula, Noise subtraction, Numerical illustration
(SHAW and ELEPHANT image deblurring problem).
» 13. Open problems.
s 8 -

"
it
©9

9. Golub-Kahan iterative bidiagonalization and its
properties

Basic algorithm

Golub-Kahan iterative bidiagonalization (GK) of A:

given wo = 0,s = b/, where [y =]|b|, for
j=12,...
ajwi = ATs— fFiwia, lwl =1,
Birisivr = Aw; — qjsj, lIsj42ll = 1.
Then wy, ..., w is an orthonormal basis of K, (AT A, ATb), and
S1, ... , Sk is an orthonormal basis of K, (AAT, b).

[Golub, Kahan: '65].

o
Q

l

[

it
Y

Outline of the tutorial

» Lecture I—Problem formulation:
Mathematical model of blurring, System of linear algebraic
equations, Properties of the problem, Impact of noise.

» Lecture Il—Regularization:
Basic regularization techniques (TSVD, Tikhonov), Criteria

for choosing regularization parameters, Iterative
regularization, Hybrid methods.

» Lecture Ill—Noise revealing:

Golub-Kahan iterative bidiagonalization and its properties,
Propagation of noise, Determination of the noise level, Noise
vector approximation, Open problems.

heANGs
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9. Golub-Kahan iterative bidiagonalization and its
properties

o
o]
!
l
it

DA
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9. Golub-Kahan iterative bidiagonalization and its
properties

Basic algorithm

Let S = [51,---,5k], Wk = [wi, ..., ws] be the associated
matrices with orthonormal columns. Denote

Qal

B2

a
Ly =

b= ]
» Lt o B
Bk ak
the bidiagonal matrices containing the normalization coefficients.
Then GK can be written in the matrix form as
AT S = W, L],
AWi= [Sk: sk+1] Ly = Skt Lit -

o =] ® =

DA
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9. Golub-Kahan iterative bidiagonalization and its
properties
LSQR method

9. Golub-Kahan iterative bidiagonalization and its
properties
LSQR method

Regularization based on GK belong among popular approaches for
solving large ill-posed problems. First the problem is projected
onto a Krylov subspace using k steps of bidiagonalization

In hybrid methods, some form of inner regularization (TSVD,
(regularization by projection),

Tikhonov regularization) is applied to the (small) projected
problem. The method then, however, requires:

Ax=b — Ly = frer. » stopping criteria for GK,

Then, e.g., the LSQR method minimizes the residual, » parameter choice method for the inner regularization.
min || Ax — b]| = min |IL — B This usually requires solving the problem for many values of the
xEKK(AT A,ATb)  yeRk g e regularization parameter and many iterations.

i.e. the approximation has the form xx = Wy, where yj is a least
squares solution of the projected problem, [Paige, Saunders: '82].

o =] ® =

b2l o =3 = = E DAC
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9. Golub-Kahan iterative bidiagonalization and its
properties

Connection with the Lanczos tridiagonalization

9. Golub-Kahan iterative bidiagonalization and its
properties

Connection with the Lanczos tridiagonalization

GK is closely related to the Lanczos tridiagonalization

[Lanczos: '50] of the symmetric matrix AAT with the starting
vector s; = b/ [,

AAT S = S T + o Brst Skrr €
, Ok K Consequently, the matrix L, from GK represents a Cholesky

where factor of the symmetric tridiagonal matrix T, from the Lanczos
) process, [Hnétynkovd, Strakos: '07] and the references given there.
aj a1 B
2 2
a1 By a5 + ﬁz
T = L] =

ak_1 Bk

-1 Bk of + B2

o =] ® =

it
N

o & = = z 9ace
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9. Golub-Kahan iterative bidiagonalization and its 9. Golub-Kahan iterative bidiagonalization and its
properties properties
Approximation of the Riemann-Stieltjes distribution function Approximation of the Riemann-Stieltjes distribution function

Consider the Riemann-Stieltjes distribution function w(\)

with the N points of increase associated with the given (SPD)

matrix B € RN and the normalized initial vector s. The distribution functions w®)(\), k = 1,2, ... represent

The Lanczos tridiagonalization of B with the starting vector s Gauss-Christoffel quadrature (i.e. minimal partial realization)

generates at each step k a non-decreasing piecewise constant approximations of the distribution function w()) , [Hestenes,

distribution function w(¥), with the nodes being the (distinct) Stiefel: '52], [Fischer: '96], [Meurant, Strakos: '06].

eigenvalues of the Lanczos matrix T, and the weights W
being the squared first entries of the corresponding normalized
eigenvectors, [Hestenes, Stiefel: '52].

o
Q
l
"
it
9

o =3 = = E DAC
18/51

s



9. Golub-Kahan iterative bidiagonalization and its 9. Golub-Kahan iterative bidiagonalization and its

properties properties
Approximation of the Riemann-Stieltjes distribution function Approximation of the Riemann-Stieltjes distribution function
Consider the SVD

Ly = PeOr Qi T, Consequently, the GK bidiagonalization generates at each step k
the distribution function
Py = [p§k),---,p£k)], Qi = [Q§k)7~~~~,CI;(<k)],
O = diag(ng),...,ef,k)), WKI(A) with nodes (915‘())2 and weights wék) = \(pﬁk),el)\z
with the singular values ordered in the increasing order,

. . that approximates the distribution function
0<9§)< <6§<).

w(\) with nodes o? and weights w; = |(b/f1, u;)|?,
Then Ty = Ly L] = P,©2P] is the spectral decomposition of / 7
Ty, where 012, u; are the eigenpairs of AAT | for j=N,...,1,
. . . Hestenes, Stiefel: '52], [Fischer: '96], [Meurant, Strako$: '06].
(6’?{))2 are its eigenvalues (the Ritz values of AAT) and [ I ] ([k) ]
L . . . Note that unlike the Ritz val 6,)?, th d singul
p}k) its eigenvectors (which determine the Ritz vectors of AAT), ote 32 uniike the Ttz va'ues % ) + the squared singuiar
g P p values o7 are enumerated in descending order.
- - =z 9 o & - z Dax
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9. Golub-Kahan iterative bidiagonalization and its
properties
Approximation of the Riemann-Stieltjes distribution function
Discrete ill-posed problem, the smallest node and weight in
approximation of w(\):
1 10. Propagation of noise
—— w(\): nodes 012 weights |(b/|31,ul)\2
® nodes (6%)%, weights |(p¥,e,)/”
=
=
[
H
107 107 10°
the leftmost node
o =) = = 3 o =l ] = : wae
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10. Propagation of noise 10. Propagation of noise
Motivation Spectral properties of bidiagonalization vectors
If the noise level §2°¢ in the data is known, many different
approaches can be used for the stopping criterion in GK [Kilmer,
O'Leary: '01], e.g., the discrepancy principle [Morozov: '66], . L
[Morozov: '84], [Hansen: '98]. Cf)n5|der *Fhe Problem SHAW(400) ffom [Regulfxrl;ahon Too|b0>-<]
) o o o with a noisy right-hand side (the noise was artificially added using
Hov.vle\;jr, in most applications such apriory information is not the MatLab function randn). As an example we set
available.
noise
GK starts with the normalized noisy right-hand side gnoise — M — 1074,
s1 = b/ | b||. Consequently, vectors s; contain information about [| bt |
the noise.
Can this information be used to determine the (unknown)
noise level?
o =) = = 3 o =l ] = : wae
23
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10. Propagation of noise

Spectral properties of bidiagonalization vectors

Components of several bidiagonalization vectors s; computed via
GK with double reorthogonalization:

51 %6 it 56 S17
02 02 02 02 02
01 01 01 01 01
N 0 o 0
01 01 01 01 01
02 02 02 02 02
0 200 400 0 200 a0 0 00 400 0 200 40 0 00 400
Si8 Si9 S20 Sa1 S22
02 02 02 02 02
01 01 01 01 01
o 0 0 o 0
01 -01 01 01 01
02 02 02 02 02
0 200 40 0 00 a0 0 00 400 0 200 40 0 00 400

10. Propagation of noise

Spectral properties of bidiagonalization vectors

Using the three-term recurrences,
/ — _ T 2
32041 S = 041( AW1 — Oqsl) = AA 51 — Qa181,

where AAT has smoothing property. The vector s, is a linear
combination of s; contaminated by the noise and AAT s; which is
smooth. Therefore the contamination of s; by the high frequency
part of the noise is transferred to s,, while a portion of the smooth
part of s is subtracted by orthogonalization of s, against s;. The
relative level of the high frequency part of noise in s, must
be higher than in s;.

In subsequent vectors s3, s, ... the relative level of the high
frequency part of noise gradually increases, until the low frequency
information is projected out.

o
Q
l
"
it
9

10. Propagation of noise

Noise amplification

Noise is amplified with the ratio « /0 1:

GK for the spectral components:

al(VTwl) Z(UTSl)7
B (UTs) = T(VTw)—a1(UTsy),

and for k=2,3,...
ar(VTwe) = T(UTs) = Be(V T wie1),
By (UTsirn) = Z(V i) — aw(UTsi).

See [Hn&tynkova, Plesinger, Strakos: '10] for a detailed derivation.

o
Q
l
"
it
9

10. Propagation of noise

Spectral properties of bidiagonalization vectors

The first 80 spectral coefficients of the vectors s; in the basis of
the left singular vectors u; of A:

.

80

US1 US17
10° 10°
2 @ 6 80 20 40 6
UTs,,
10°
2 4 6 80 2 40 6
10. Propagation of noise
Spectral properties of bidiagonalization vectors
Signal space — noise space diagrams:
sl - S2 55 - 56 SB - s7 SJO - sll S13 e SIA 515 - Slﬁ
s, ->s s, ->s s, =>s s, ->s s, >, s, ->s

167 517 177 S18 187 510 107 520 207 521 217 522

sk (triangle) and sx41 (circle) in the signal space
span{ui, ..., uxy1} (horizontal axis) and the noise space
span{ukta, ..., un} (vertical axis).

10. Propagation of noise

Noise amplification

Since dominance in X(U7sx) and (V7Tw,_;) is shifted by one
component, in o, (VTwe) = X(UTse) = B (VT wy_1), one
can not expect a significant cancellation, and therefore

ag ~ B.

Whereas ¥ (VTwy) and (UTsk) do exhibit dominance in the
direction of the same components. If this dominance is strong
enough, then the required orthogonality of sx1 and s, in
Biy1 (UTsii1) = T (VTwy) — ax (UTs) can not be achieved
without a significant cancellation, and one can expect

Brr1 < -

26/51
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10. Propagation of noise

Noise amplification

Absolute values of the first 25 components of (V7 wy),
ak(UTsk), and ﬁkH(UTskH) for k =7 (left) and for k = 12
(right), SHAW(400) with the noise level §0ise = 10714

11. Determination of the noise level

Estimate based on distribution functions

Back to the distribution function:

The large nodes o2, 03, ... of w(\) are well-separated
(relatively to the small ones) and their weights on average decrease
faster than 0%, 03 due to the DPC. Therefore the large nodes
essentially control the behavior of the early stages of the
Lanczos process.

11. Determination of the noise level

Estimate based on distribution functions

At any iteration step, the weight of w(")()\) corresponding to the
smallest node (ng))2 must be larger than the sum of weights
of all Jf smaller than this ((élgk))2 , see [Fischer, Freund: '94].

As k increases, some (ng))2 eventually approaches (or becomes
smaller than) the node o2 , and its weight becomes

Jnoise

(1 ) ~ & ~ &

noise *

11. Determination of the noise level

o =3 = = heANGs
32/51

11. Determination of the noise level

Estimate based on distribution functions

Depending on the noise level, the weights corresponding to smaller
nodes are completely dominated by noise, i.e., there exists an
index Jyoise such that

|(b/B1, u) 2 = |(6"/B1, up) 2.

for J 2 Jnoise-

The weight of the set of the associated nodes is given by

n

Z ‘(bnOise/ﬂl7uj)|2 ~ 52

noise *
J=Jnoise

52 =

DA
34 /51

11. Determination of the noise level

Estimate based on distribution functions

Summarizing:

The weight \(p%k), €1)|? corresponding to the smallest Ritz value
(ng))2 is strictly decreasing. At some iteration step it sharply
starts to (almost) stagnate close to the squared noise level
62 icer S€€ [HnBtynkovd, Pleginger, Strako¥: '10].

The last iteration before this happens is called the noise
revealing iteration k.

o =3 = E DAC
36/51



11. Determination of the noise level
Estimate based on distribution functions
Square roots of the weights \(pgk), e)

the smallest node and weight in approximation of w(\) (right),
SHAW(400) with the noise level dpoise = 10714

2k =1,2,... (left), and

11. Determination of the noise level

Estimate based on distribution functions

Square roots of the weights \(pgk), e’ k =1,2, ... (left), an

the smallest node and weight in approximation of w()) (right),
SHAW(400) with the noise level §ppie = 1074

o
—— w(A): nodes 0‘2‘ weights |(r;/131u‘)|2
© nodes (687, weights |(p¥.e,)I*

weight

k =18-1=17
noise

d

——(\): nodes 0‘2 weights |(b/|;‘.1,u‘)|2
® nodes (6%)°, weights |(p{.e)I*

8-1=7

noise

25

-
iteration number k

10
the leftmost node

11. Determination of the noise level

Identification of the noise revealing iteration

In order to estimate dppise, the iteration knoise must be identified.

This can be done by an automated procedure that does not rely

on human interaction.

I(p

|(pik+1+step)" el)l

(k)

For example, in our experiments knoise Was determined as the first
(p1™, &)l

iteration for which
¢
<
k+1 )
<|(p£ ’ ’,el)>

where ¢ was set to 0.5 and step was set to 3.

k+1).el)‘

12. Noise vector approximation

=

) 10 15 10
iteration number k the leftmost node

x o I | = = 9»ace
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11. Determination of the noise level
Identification of the noise revealing iteration
Noise level d,ojse in the data, iteration knoise, and the estimated
noise level \(pgk”"'seﬂ), e1)|, for two problems from [Regularization
Toolbox]. The estimates represent average values computed using
1000 randomly chosen vectors b"°'s¢:
SHAW (400)
Onoise 1x 10 1% 1x10°° 1x10°% 1x 1072
Knoise 16 9 7 4
estimate || 1.80 x 1077 | 1.31 x 107° [ 1.01 x 10~* [ 1.03 x 102
ILAPLACE(100,1)
Onoise 1x 1013 1x 1077 1x 1072 1x 1071
Knoise 22 15.30 6.02 2
estimate || 9.12x 107 [ 1.34 x 1077 [ 1.02x 1072 | 1.11 x 10~ T
o = - = E wae
40 /51
12. Noise vector approximation
Basic formula
In the noise revealing iteration
knoise
6noise ~ ‘(P% H)v el)|7
and the bidiagonalization vector si . is fully dominated by the
high frequency noise. Thus
L i I N Y A
represents an approximation of the unknown noise.
We can subtract the reconstructed noise from the noisy
observation vector b. Hopefully, the noise level in the corrected
system will be lower than in the original one.
What happens if we repeat this process several times?
=] = ] E A

4

2 /51



12. Noise vector approximation

Noise subtraction

Algorithm: Given A, b; b©) := b;
forj=1,...,t

e GK bidiagonalization of A with the starting vector hU~1);

e identification of the noise revealing iteration kpeise;

o U1 — |(p](.knoi55)7el)|;

o proisel—D) .= g 501 Skioise s // noise approximation
o bU) .= pli—1) _ proise,(j-1). // correction
end;

The accumulated noise approximation is

—

t—
Bnoisc = Z bnoisc,(j) .

j=

o
Q
l
"
it

12. Noise vector approximation
Numerical illustration - SHAW problem

Individual components (top) and Fourier coeffs. (bottom) of
broise SHAW(400) with the noise level dy0isc = 1074

Noise 6" and accumulated noise approximation 35, 6"

e nose

E 00 50 20 70 30 30 o0

e nose
noise approxmaton|

o
Q
l
"
it
9
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12. Noise vector approximation
Numerical illustration - ELEPHANT image deblurring problem

Square roots of the weights \(pgk), e)]?, k = 1,2, ... (top) and
error history of LSQR solutions (bottom):

1P e )1 11B™5 11, 711 6™ ||, = 0.003

10
0
— 1P el
107 o 6nmse
107
wl
0 20 40 60 80 100
Error history
|| 4 [SQR _ exact
e IR -
O the minimal error, k = 41

12. Noise vector approximation

Numerical illustration - SHAW problem

Singular values of A, and spectral coeffs. of the original and

corrected observation vector bU), j=1,...,5 SHAW(400) with

the noise level Snoise = 10™* (Knoise = 10 is fixed):

Testng problem SHAW(400),, = 10°*

= Sguiar vaives of &
o U right-nan side)

)

12. Noise vector approximation
Numerical illustration - ELEPHANT image deblurring problem

Elephant image deblurring problem: image size 324 x 470 pixels,

problem dimension N = 152280, the exact solution (left) and the
noisy right-hand side (right), dnoise = 3 x 1073:

exact
X

peract ;. pnoise

heANGs
44 /51

12. Noise vector approximation
Numerical illustration - ELEPHANT image deblurring problem

The best LSQR reconstruction (left), x‘{‘lsQR, and the

corresponding componentwise error (right). GK without any

reorthogonalization:

LSQR reconstruction with minimal error, ;5%

Error of the best LSQR reconstruction, |x

evact _ LSOR
Xl

DA
46 /51
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12. Noise vector approximation 13. Open problems

Numerical illustration - ELEPHANT image deblurring problem
Singular values of A, and spectral coeffs. of the original and

corrected observation vector bU), j =1,...,3, Elephant image Message:
deblurring problem with dypise = 3 X 1073 (Knoise corresponds to

the best LSQR approximation of x): Using GK, information about the noise can be obtained in a

straightforward and cheap way.

Testing problem Elephar, 8, = 3X10°

B Open problems:

UT b (posy right-pand sice)

: §§ i > Large scale problems (determining kpoise);

» Behavior in finite precision arithmetic
(GK without reorthogonalization);

» Regularization;

» Denoising;

» Colored noise.

o = = ] E DAC

o =] = = : o
50/51

49

Thank you for your kind attention!

o =] z = E DA
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Zaklady algebraického multigridu zalozeného
na zhlazenych agregacich

P. Vanek

Zapadoceska univerzita v Plzni

Cilem pfednésky je poskytnout posluchaci zdkladni informace o metodé zhlazenych agregaci.
Ptrednaska obsahuje detailni popis algoritmu v jeho podobé vhodné pro feSeni neskalarnich
eliptickych problémii jako jsou problémy pruznosti a tenké pruznosti (desky a skofepiny). Vyklad
je drzen v elementarnich mezich. V z&véru pirednasky bude prezentovan klicovy konvergencni
vysledek o vicetroviiové metodé zhlazenych agregaci (bez ditkazu).



Metoda zhlazenych agregaci
Tato prednaska se opira o tyto vysledky:

[1] P. VANEK, M. BREZINA, J. MANDEL Convergence of
Algebraic Multigrid Based on Smoothed AggregationsNumer.
Math. 88(2001), no. 3 pp. 559-579

[2] P. VANEK, J. MANDEL, M. BREzZINA Algebraic Mul-
tigrid by Smoothed Aggregation for Second and Fourth Order
Elliptic Problems Computing 56(1996) pp. 179-196

e Metoda pro feseni soustav linearnich algebraickych
rovnic pro feSeni okrajovych tloh pro eliptické parcialni
diferencialni rovnice

e zhrubovaci technika v algebraickém multigridu

e umorznuje feseni problémi na vysoce
nestrukturovanych sitich

e vhodna pro neskaldrni problémy (elasticita, tenka elas-
ticita)

iterace: jsou dany:

e produkty piipravné faze

— prolongatory I}, l=1,...,L—1

— hierarchie matic A;, [=1,...,L, Ay =A
e hladici itera¢ni procedura

X < SI(XZ, fz), Xy, fz cR™

e iteracni parametry
— vy: pocet pre-smoothing hladicich kroki
— 1y pocet post—smoothing hladicich kroku
— 7: parametr cyklu, v = 1 nebo v = 2

ALGORITMUS 1. x;1 :=x,f; :=f a MG(-,-) := MG4(-,),
kde MG(-,-) je definovdno takto:
eproi=1,...,v1 proved x; + Si(x;, 1),
L[] dl = A[X] - fl,
o dii = (I},)'d;,
e Je-lil+1=L, 7e§ soustavu Ajy1v =diyq, v e R,
finitné, jinak
— polozZv =0,
—proi=1,...,7 proved v < MGp1(v,d41)
o x x,— I}V,
eproi=1,...,vy proved x; + Si(x1, ).

Co je multigrid ?

o Resime soustavu
Ax =1

se symetrickou positivné definitni matici vzniklou
diskretizaci okrajové tlohy pro parcidlni diferencilni
rovnici
e Metoda vice siti se odehrava ve dvou zakladnich
krocich:
— piipravna faze
— iterace
e V piipravné fazi se vytvari systém prolongatort [, ll g a
hierarchie hrubych matic 4;,

el:=1aA =A,

e opakuj
— zkonstruwj I}, : R™ — R™, nisy < ny,
— vypocti
(0.1) Avr = ()" Ay,
—l+1+1

e dokud A; neni dostatecné mald, aby umozriovala efek-
tivni finitni TeSent,
o [ :=1.

Zékladni informace o konvegené¢ni teorii metody
vice siti [BPWX]:

Nejprve definujeme

I=n..17 =r

)

Déle definujme hierarchii hrubych prostorii s normou a
skalarnim soucinem

Ui — Range (1})

]
G Iix Iy = > Tili,

i=1

1/2
- ll= (o0

e Pfirozenou bazi prostoru Uy = Range (I}) jsou slupce
matice ;.

e V algoritmu pocitame s reprezentacemi vektortl I}x €
U, vzhledem k bézi dané sloupci I}, tedy vektory x.

e Normou vektoru I}x € U; je Eukleidovské norma vek-
toru x, tedy Eukleidovska norma reprezentace vektoru
I'x vzhledem k sloupciim matice I}'.

e Skalarnim soucinem vektortt I'x, Iy € U, je Euklei-
dovsky skalarni soucin vektori x, y, tedy Eukleidovsky
skalarni soucin reprezentaci vektort I}x, Iy vzhledem
k sloupctim matice I}.



THEOREM 0.1. Predpokladame existenci linedrnich zob-
razent

Qul=1,...,L Q=1

takovych, zZe

Gy
0.2 — ull? < ———lull%
(0.2) Q1 — Quri)ull; _Q(A;)H i
Vael, l=1,...,L—1
a
(0.3) 1Qilla < Cy WI=1,.... L.

Dale wvazujeme hladice ve tvaru
S[(X[, fl) = ([ - RIAZ)XZ + Rify,

kde R; jsou symetrické pozitivné semidefinitni matice takové,
Ze matice I — RjA; jsou Aj-symetrické pozitivné semidefinitnd

a
(0.4) Cr(Ru, u)g: > e
o(A)
VaeR",I=1,....,L—1,
kde || - |lgm, (-, -)mrm 2naél Eukleidovskou normu o skaldrni

soucin v R™. Potom pro operdtor $§iteni chyby E metody
vice siti plati

2
B4 <1- C = (146" + (Cren)?)

cr

=

Odtud vidime, Ze podminka (0.3) plyne z aprozimaéni pod-
minky (0.2) s kvazioptimdlni konstantou. Aprozimacni pod-
minka (0.2) je tudiZ podminkou klicovou. Z podminky (0.2)

plyne, ze pii konstrukci hrubych prostori je tfeba sledovat
dva cile:
e konstruovat prolongéatory tak, ze leva strana (0.2) je
co mozné nejmensi (aproximace),
e a tak, Ze spektralni poloméry hrubych matic jsou tak
malé, jak je jen mozné, s cilem ucinit aproximacni pod-
minku (0.2) co nejslabsi (nejsnazsi splnit).

Aproximaéni podminka (0.2):

(@ = Qua)ullf < olA )HullA

PozNAMKA 0.2. Z definice prostoru U; plyne, Ze operdtor
Q; je mozno psdt ve tvaru

Q=1'Q, Q:Ui—R"
Tato skutecnost, rovnost A = (INTAI}, Q, = I a rozklad
Q=Q—-Q1+Q1—Qat.. . +@:—Qi+Q
= ;_é(@jﬂ - Q)+

ndm umoznuje odhadovat

Qa4 = || Z (Qj+1 = Qj)u+ Quul4

l 1

< Z] [(Q; — Qir)ulla + [[Qrulla
J=
-1 -

= IH(I Qj — 111 Qi )ulla + [[ull4
iz
S I i =

=2 I17;(Q5 — 11 Qj1)ulla + [lulla
=
-1 P

= 1H(Q; — I Qj)ulla; + [lulla
iz
-1

<. — Qi )ullges + [[ulla

—~ .
I

-

~ .
Il
_

Nl
Vel HQjenull; + [[ulla
\/7

= Qjr)ull; + [l

I
™

Vise uvedengj odhad spolu s aprozimacni podminkou (0.2)
ddvd
Q4 < z CPlalla+ ulla = (L4 G20 = 1) uas

6
Metoda zhlazenych agregaci — zakladni koncept

Zde popiseme metodu zhlazenych agregaci, tedy metodu,
kde prolongator je konstruovan ve tvaru

1 |
[1+1 = SIPI+1>

kde
e S je polynom v A; voleny tak, aby

o(Ai) = Q((Izl+1)TAl]gl+1) = Q((Slplil)TAlSIPAO

byl co mozna nejmensi a
° Pll+1 je ortogonalni matice vytvofena metodou zobec-
nénych agregaci. Jejim tkolem je zajistit aproximaci.

Jak jsme jiz Fekli, ve snaze splnit klicovou podminku konver-

genéni véty (0.2) t.j.

o
A

o(A)

%)

12

(@ — Quunulf <
[l s I = (x

usilujeme o dvé véci:
e minimalizovat levou stranu aproximac¢ni podminky
(aproximace),
e minimalizovat o(4;), [=2,...,L, a tim u¢init apro-

xima¢ni podminku co nerlabs1 (nerna251 splnit).
Takze,

o P, mé za tikol minimalizovat levou stranu (0.2)
e prolongdtorovy hladi¢ S; ma za kol minimalizovat

o(Ar).



Vylozme nyni efekt hlazeni prolongatoru. Protoze P} 4 je
ortogonalni matice, je

”X”]R"Hl = HBL]XH]R”Z Vx € IRl”H»l,

a muzeme odhadovat

((]ll+1)TAlIll+1X7 X)]R“I+l

o(An1) = max, Il
M+1
_ ((SIPIIJrl)TAlSlPIIJrlx’X)IR"IH
= max 2
x€RM+1 =& 1
T+
= max (*SVITAISIPIZHX7 PIZHX)IR”"
xeRi I[Pl 1l
B (SITAZSIX7 X)]Rn,
B x€ Range Pll“ HX”%{”I
STAS
< max %
xR xR
= o(SFA,S).
ZAavér:

o o(Ai11) < 0(STALS), takze S; volime tak, abychom
minimalizovali o(S¥ A;Sy).
e Jako S; volime polynom v A; minimalizujici

o(S] A1) = o(SPA).

Metoda zobecnénych agregaci

Standardni agregace:
e Nejjednodussi prolongator zaloZzeny na agregacich pro
jednodimenzionalni ptiklad
e P} pro jednodimenzionalni Laplaceovu rovnici
diskretizované na pravidelné siti sestavajici z
n1 = 3ng nodu
e Mame agregaty stupiii volnosti

{1,2,3}, {4,5,6},... . {fnm1 — 2,0y — 1,m}.

o Sloupce P} definujeme jako restrikce vektoru jednicek
na piislusné agregaty:

1
1
1

o Operator P3 odpovid4 disagregaci dané agregaty
stupnu volnosti
{1,2,3}, {4,5,6},...,{n1 — 2,01 — 1,my }.
o Sloupce P} sestavajici z 0-1 vektort s disjunktni
nenulovou strukturou
e P} odpovida diskrétni po Gastech konstantni interpo-
laci

Jako prolongéatorovy hladi¢ volime polynom v A4;

41
(0.5) Si=1— 574 N> o(A).
3N

Tuto specifickou volbu zdivodnime za chvili. Pro o(A;41)
mame odhad

41 \?2
< T = 2A,) = ms ( _7,*)
o(Ar1) < o(S; A1) = o(S; A1) et 1 3Alt
41 \2 1.
< 1———t) =2\,
n trel?g%{/]t( 3)\1t> 9)\1’

takze za Ai11 > o( A1) miZeme vzit

_ 1_
(0.6) M1 = gh

Dtvodem volby prolongétorového hladice (0.5) je
skutecnost, ze

) 1)\2 41 \?2
min max t (1 — uw—t) = max t (1 — 77—1%) .
weR tefo,)] A 10\ 3N

Metoda zobecnénych agregaci

e Nasim cilem je vytvofit hierarchii pomocnych
prolongatori Pl’+ 1 takovych, ze pro danou n; x r matici
Bl

(0.7) Range B' C Range P!, P!=P}...P"!
I=1,... L—1.

Obor hodnot matice B! specifikuje, které funkce (vek-
tory na nejjemnéjsi trovni) budou pfesné
reprezentovany na vSech urovnich. Podobné jako v [2],
volime B! jako generator médi s nulovou energii, tedy
kernel matice tuhosti bez esencidlnich okrajovych pod-
minek.

e Mddy s nulovou energii ziskané z geometrie a definice
elementti jsou dostupné ve vétsiné konecnéprvkovych
Fesica.

Predpokldddme #e mame matice Py,..., P}t a B!
takové, ze

IjllB] — Bl.

Abychom splnili (0.7), tvo¥ime soub&Zng P, | angq xr
matici B! tak, ze

(0.8) P,,B" =B,

kde B! bylo vytvoieno spolu s P/~! (a ddno na trovni
I =1). Tim je zaruceno, Ze

P)11+IBZ+1 — Bl.



Agregaty:

e Nase konstrukce je zaloZzena na agregaci supernodi. Na
kazdé trovni, stupné volnosti jsou organizovany v ma-
Iych disjunktnich mnozindch zvanych supernody (su-
pernody tvori disjunktni pokryti mnoziny vsech
stupiti volnosti.) Na nejjemnéjsi Grovni supernody
musi byt specifikovany, napiiklad jako mnoziny stupid
volnosti odpovidajici kone¢néprvkovym vertextim. Na
hrubsich trovnich jsou supernody definovany nasim al-
goritmem.

Prolongator Pl je konstruovan z daného systému
agregatti { A MM které tvoid disjunktni pokryti super-
nodd na Grovni /.

Agregaty jsou malé mnoziny supernodii, které tvoii dis-
junktni pokryti mnoziny vSech supernodi. V idealnim
pripadé jsou agregéty tvofeny jako nodalni okoli vy-
branych supernodt

N(i)={j: Ay # 0},

kde i, j jsou supernody a A;; je blok matice A; odpo-
vidajici supernodim i, j.

e V praxi je mnohdy nemozné vytvorit disjunktni
prokryti z nodalnich okoli, proto jsou agregaty oboha-
covany supernody

k: Ap; #0 pro néjaké j € N(q).

e Algoritmus tvorby agregati lze v hrubych rysech po-

psat takto:

ALGORITMUS 2.

—poloz k=1
— Definuj C jako mnoZinu vsech supernodi na drovni
l.

— Pro vSechny supernody i € C
x Je-li N(i) C C, poloz A, = N(i), C < C\ N (i)
ak+—k+1.
— Pro vsechny supernody i € C
% Najdi agregdt A jehoZ supernody j € AL jsou
se supernodem i vdzdny nejvétsimi bloky A;; a
poloz Al + AL U {i}.

e Vlastnost (0.8) je vynucovdna agregdt po agregitu;
sloupce PIIH odpovidajici agregatu Al jsou tvofeny
ortonormalizovanymi restrikcemi sloupctt B! na
agregat Al. Pro kazdy agregt tato konstrukce d4 vznik
r stupniim volnosti na hrubé trovni, které tvori super-
node. Kazdy agregat na trovni [ d& tudiz vznik jed-
nomu supernodu na trovni [ + 1.

rl ALGORITMUS 3. Pro dany systém agregdti { A}, any x
r matici B! spliujici P! B = B, vytvorime prolongdtor Pllﬂ,
matici B*Y spliujict (0.8) a supernody na drovni | + 1 nd-
sledovné:
1. Necht d; znaci pocet stuprit volnosti odpovidagici

agregdtu Al. Rodzél ny x r matici B' do d; x v blokii B!,

i =1,...,N;, z nichZ kaZdy odpovidda mnoziné stuprni
| volnosti agregdtu AL (viz Obr. 0.1).
L 2. RozloZ Bl = Q'R!, kde Q! je d; x v ortogondini matice
= a Rﬁ je r x r horni trojuhelnikova matice.

3. PoloZ P, = diag(Q!), a (viz Obr. 0.1)

®
i

Bl+l _
/
Ry,

4. Pro kaZdy agregdt Al, zhrubovdni ddvd vanik v stupri
volnosti na hrubé drovni (i—ty blokouy sloupec Pl,).
Tyto stupné volnosti definuji i—ty supernode na hrubé
drovni.

; 2 1
B Pl-v-l

OBRAZEK 0.1. Pomocny prolongdtor zaloZeny na zobecnénych agregacich.



Konvergence metody zhlazenych agregaci

kompozitni agregaty ~
o Kompozitni agregat Al je agregat A! chdpany jako
mnozina stupii volnosti na nejjeméjsi drovni
e Formalné je mozno kompositni agregaty zavést takto:
Al= At kde At =4l AP = U AL
keAy
e Alternativni zpusob definice kompozitnich agregati:

Al = supp P'x(A})

THEOREM 0.4. Necht prolongdtorovy hladic S; je ddn for-
mauli

Si=1 |
! 3\
kde
_ 1 - -
Al 9,71/\1 A= o(A)
a pomocny prolongdtor Pl je vytvoren Algoritmem 8 po-
moci ny X r matice B! a agregdti {.Al s, l=1,...,L—1.

Predpokladdame, Ze existuje konstanta Cy4 > 0 takovd, Ze pro
kazdy vektor u € R™ a kaZdél=1,...,L — 1 plati

gi-1
(0.10) Z nun u-— B W||12(Al) < CA Hu||A

Dale predpokladdme Ze R; je symetrickd pozitivné definitnd

matice spliugici (0.4) s konstantou cg > 0 nezdvislou na
urovni. Potom,

% — MG(x,b)|l4 < (1 - 7) 1% — x||4 ¥x € R™,

kde AX =Db, a

co = (2+ Cuacr + (4/3)en + (1/3)Ca (L + (4/3)er) (L — 1))* (L-1)]

Ddle, pokud P : uw MG(0,x), pak P je symetrickd matice
a cond(A, P) < ¢.

THEOREM 0.3. Necht prolongdtorové hladice S; jsou ddny
formuli
41
Si=1—--< A4,
! EPVI
kde
1
o 1)\ A > o(A).
Predpokldddme Ze Cy > 0 je konstanta takovd, Ze existuji
linedrni zobrazeni

M=

Q[ZIRM*)IR”Z7 l:17--<7L7 Q1:]7
takovd, Ze
29 B
(0.9) |1 P Qu — Pt+1Ql+1u||u"1 <C Y [[ull%
Yvue R", I=1,...,L—1
Dale predpokladdme Ze R; je symetrickd pozitivné definitnd
matice spligici  (0.4) s konstantou cg > 0 nezdvislou na

drovni.
Potom

1
% — MG(x,b)|l4 < (1 - 7) 1% — x4 Vx€R™,
co
kde AX =b, a
4 1 4 2
_ (2 + Cien + gen+ 301 (1 + gcR> (L- 1)) (L-1)

Navic, je-li P :uw MG(0,u), pak P je symetrickd matice
a cond(A, P) < ¢.
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1 Introduction

Damage presents an inelastic load-induced response of solid bodies, which is typical of quasi-
brittle materials. From the physical point of view, it is interpreted as a collective effect of
microstructural failures, leading finally to the macroscopic collapse of the structure. Due to
obvious reasons, the damage theories have received a great attention in the engineering literature
and a considerable amount of theoretical, numerical and experimental work has been invested
into understanding and prediction of damage processes. In this contribution, we present an
overview of available results related to a specific non-local rate-independent isotropic damage
model and its numerical treatment. The major difference of the current work and the existing
approaches is the fact that the reported numerical simulations are supported by a number of
rigorous mathematical results obtained recently in [1, 5, 7, 8].

2 The model setup

The common theoretical framework for both the analysis and numerics is provided by recent
advances in the mathematical theory of rate-independent processes; see [4] for a review. In this
setting, the state of a system is described by kinematics (displacement field u) and an internal
variables (damage level ¢). The time evolution of the system is then governed by the global
minimization of total energy of the system, consisting of the globally stored and the dissipated
energy specified later.

The global energy minimizer in space and times is then referred to as the energetic solution to
the damage problem. Its existence for a specific damage model of the Frémond-Nedjar type [3]
was proven in |1, 6, 8] under mild assumptions the problem data. In general, the procedure
involves the introduction of the e-regularized problem, preventing the complete disintegration
of the material, and the semi-discretization in time. For a given partition of the time interval
O=tyg<ti+7...<ty="1T, the time-incremental problem reads as

~

(uf(t),C(tr)) € Arg min | E(ty, @, C) + D(C(ty—1),C)| for k=1,2,...,N, (1)

(u,()€KXZ

where K denotes the set of kinematically admissible displacements, Z is the set of admissible
internal variables and the energetic contributions attain the from



Ef(t,ﬁf) = /Q € —|2- Ce(’a + UD(t)) :C E(’a + uD(t)) + %H ‘VEF a0, (2)
~1 ) e o~ )
’D(El,ZQ) — /Qa(ac) << () — ¢ (m)) de if¢'>¢%ae inQ )
+00 otherwise

where up denote the time-dependent Dirichlet boundary data, e(w) is the linearized strain
corresponding to a displacement field u, C' is a fourth-order tensor of elastic stiffness, k is an
influence factor introducing an internal length into the formulation, a denotes an activation
threshold (related to strength of a material) and the term “+00” ensures unidirectionality of the
damage evolution. An energetic solution to the complete damage is then obtained by the limit
passage in time (7 — 0) and regularization parameter €, with an appropriate re-interpretation
of kinematics at fully damaged regions |1, 5.

3 Numerical aspects

In the numerical treatment, the formulation is converted to the discrete form by performing
the spatial discretization using the conforming finite element method. The incremental time
problem then transforms into a non-convex large-scale optimization program posed in terms of
nodal displacements and nodal damage values. Following Bourdin [2], the special structure of the
problem is exploited to apply sequential convex optimization procedure, converging to a critical
point of the objective function. To ensure that the critical point is a good approximation to
the global minimizer, a simple variant of a time back-tracking algorithm, based on two-sided
energetic estimates derived in [6], is introduced [7].

80 = T
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Figure 1: Example of energetics for a dog-bone shape specimen; (a) without backtracking (energy
balance fails), (b) with backtracking (an approximate energetic solution), £€ is the globally stored

Y

energy, VarD denotes the cumulative dissipative energy.

To illustrate the performance of the proposed algorithm, in Figure 1 we present energetics of
a uniaxial tension experiment for a dog-bone shape specimen. The results confirm that the
proposed backtracking algorithm is capable of delivering a solution with lower energies then the
basic scheme. Moreover, it can be shown that the resulting response is (almost) independent of
spatial and temporal discretization. An interested reader is referred to [7] for additional details.
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