MATHEMATICA BOHEMICA, Vol. 126, No. 3, pp. 555-560, 2001

Equivariant maps between certain $G$-spaces with $G=O( n-1,1)$.

Aleksander Misiak, Eugeniusz Stasiak

Aleksander Misiak, Eugeniusz Stasiak, Instytut Matematyki, Politechnika Szczecinska, Al. Piastow 17, 70-310 Szczecin, Poland

Abstract: In this note, there are determined all biscalars of a system of $s\leq n$ linearly independent contravariant vectors in $n$-dimensional pseudo-Euclidean geometry of index one. The problem is resolved by finding a general solution of the functional equation $F(A{\underset1\to u},A {\underset2 \to u},\dots,A{\underset s\to u}) =( \text{sign}( \det A)) F ({\underset1\to u},{\underset2 \to u},\dots,{\underset s\to u}) $ for an arbitrary pseudo-orthogonal matrix $A$ of index one and the given vectors ${\underset1\to u}, {\underset2 \to u},\dots,{\underset s\to u}$.

Keywords: $G$-space, equivariant map, vector, scalar, biscalar

Classification (MSC 2000): 53A55


Full text available as PDF (smallest), as compressed PostScript (.ps.gz) or as raw PostScript (.ps).

Access to the full text of journal articles on this site is restricted to the subscribers of Myris Trade. To activate your access, please contact Myris Trade at myris@myris.cz.


[Previous Article] [Next Article] [Contents of This Number] [Contents of Mathematica Bohemica]
[Full text of the older issues of Mathematica Bohemica at EMIS]