
CONVEXITY STRUCTURES IN ZERO-DIMENSIONAL COMPACT
SPACES
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Abstract. We investigate some properties of compact zero-dimensional spaces with ad-
ditional convexity structures. As a main result, we prove that every retract of a Cantor
cube has a binary subbase closed under the complements.

Introduction

We show that every retract of a Cantor cube, called a zero-dimensional Dugundji space, has
a binary subbase closed under the complements. This generalizes the result of Heindorf
[3] that zero-dimensional Dugundji spaces are supercompact and admit a binary subbase
consisting of clopen sets. Introducing a suitable convexity (see the definitions below) we
construct a binary subbase consisting of convex sets, which is closed under the complements.
We also state and use some properties of inverse systems of topological convexity spaces.
The proof of our main result is simpler than Heindorf’s one and does not require algebraic
or lattice structures.

1. Preliminaries

By a geometrical space we mean a set X together with a collection G ⊂ P(X) such that:

(1) ∅, X ∈ G,
(2)

⋂
A ∈ G for nonempty A ⊂ G,

(3) If A ⊂ X and for every a, b ∈ A there exists a G ∈ G with a, b ∈ G ⊂ A then A ∈ G.

A collection G satisfying these conditions is called an interval convexity, see Calder [1].
Elements of G will be called convex sets. A halfspace is a convex set with the convex
complement. The segment joining a, b ∈ X is defined by [a, b] =

⋂
{G ∈ G : a, b ∈ G}.

Note that G ∈ G iff for every a, b ∈ G it holds [a, b] ⊂ G. Consequently, an interval
convexity is determined by its segments. If (X,G) is a geometrical space and M ⊂ X then
GM = {A ⊂M : ∀ a, b ∈ A, [a, b]∩M ⊂ A} is easily seen to be an interval convexity in M ,
called the subspace convexity. Clearly, G∩M ∈ GM whenever G ∈ G and the segment joining
points a, b in M equals [a, b]∩M . If (X,G) and (Y,H) are two geometrical spaces then the
product X×Y is a geometrical space with the interval convexity consisting of all sets G×H
where G ∈ G, H ∈ H (see [7, p. 14]). Note that [〈a1, a2〉, 〈b1, b2〉] = [a1, b1]× [a2, b2] for each
〈a1, a2〉, 〈b1, b2〉 ∈ X×Y . Let X and Y be two geometrical spaces. A map f : X → Y is called
convexity preserving , cp-map for short, provided f−1(G) is convex in X for each convex set
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G ⊂ Y . This is equivalent to the condition f([a, b]) ⊂ [f(a), f(b)] for each a, b ∈ X, see [7,
p. 15]. For the study of convexity theory we refer to van de Vel’s monograph [7].
A Boolean median space is a triple (X, T ,G) where (X,G) is a geometrical space, (X, T ) is
a compact topological space and the following conditions are satisfied:

(M1) For each two distinct points a, b ∈ X there exists a clopen halfspace H ⊂ X such
that a ∈ H and b /∈ H.

(M2) For each a, b, c ∈ X the set [a, b] ∩ [a, c] ∩ [b, c] is nonempty.

The condition (M1) implies that the intersection [a, b] ∩ [a, c] ∩ [b, c] consists of a single
point, called the median of a, b, c and denoted by m(a, b, c). Let X be a Boolean median
space. A subset M ⊂ X is median-stable [7, p. 121] provided m(a, b, c) ∈ M whenever
a, b, c ∈ M . Every closed median-stable subset of X with the subspace topology and the
subspace convexity is also a Boolean median space. Observe that the product of two Boolean
median spaces is also a Boolean median space. Every Boolean median space is a topological
median space in the sense of van de Vel [7, p. 269] and it is a zero-dimensional compact
Hausdorff topological space.
The following fact will be essential for us. Namely, the collection of all clopen halfspaces
in a Boolean median space forms a binary closed subbase for its topology (cf. van Mill
[5, Thm. 1.3.3] or van de Vel [7, Thm. II.1.7]). Recall that a nonempty family of sets is
binary if each its subcollection with empty intersection contains two disjoint sets.
Let Σ be a directed partially ordered set and let S = {Xσ, pτ

σ,Σ} be an inverse system
of sets such that each Xσ is a geometrical space and pτ

σ’s are cp-maps, i.e. pτ
σ : Xτ → Xσ

and pτ
σpµ

τ = pµ
σ whenever σ 6 τ 6 µ. The system S will be called an inverse system of

geometrical spaces. Let lim←−S be the inverse limit of S in the category of sets, i.e. the set
consisting of all points x ∈

∏
σ∈Σ Xσ such that pτ

σ(xτ ) = xσ for all σ 6 τ . Denote by pσ the
projection of lim←−S into Xσ.
The proof of the following proposition is straightforward and therefore will be omitted.

Proposition 1.1. Let S = {Xσ, pτ
σ,Σ} be an inverse system of geometrical spaces. There

exists an interval convexity G in lim←−S with the following properties:

(a) The geometrical space (lim←−S,G) is the inverse limit in the category of geometrical
spaces. In other words, if Y is a geometrical space and {fσ : Y → Xσ}σ∈Σ is a
collection of cp-maps such that pτ

σfτ = fσ for σ 6 τ then there exists a unique
cp-map h : Y → X with the property pσh = fσ for all σ ∈ Σ.

(b) G is the least convexity in lim←−S such that all the projections pσ are cp-maps.
(c) For every a, b ∈ lim←−S it holds [a, b]G = X ∩

∏
σ∈Σ[aσ, bσ].

By an inverse system of Boolean median spaces we mean an inverse system S = {Xσ, pτ
σ,Σ}

where Xσ’s are Boolean median spaces and each pτ
σ is cp and continuous.

Proposition 1.2. The inverse limit of a system of Boolean median spaces is a Boolean
median space.

Proof. Let S = {Xσ, pτ
σ,Σ} be an inverse system of Boolean median spaces. Let pσ : lim←−S →

Xσ be the projection. The collection

{p−1
σ (H) : σ ∈ Σ, H is a clopen halfspace in Xσ}

is point-separating and consists of clopen halfspaces in lim←−S. This shows (M1).
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Fix a, b, c ∈ lim←−S. For each σ ∈ Σ let xσ = m(aσ, bσ, cσ). If τ 6 σ then pσ
τ (xσ) =

m(aτ , bτ , cτ ) since pσ
τ is cp. Hence pσ

τ (xσ) = xτ . It follows that x = {xσ}σ∈Σ ∈ lim←−S

and x ∈ [a, b] ∩ [a, c] ∩ [b, c]. This shows (M2). �

2. Some properties of Boolean median spaces

Fundamental examples of Boolean median spaces are Cantor cubes. Specifically, for a Cantor
cube {0, 1}κ we call its subset M convex iff

{x ∈ {0, 1}κ : a−1(1) ∩ b−1(1) ⊂ x−1(1) ⊂ a−1(1) ∪ b−1(1)} ⊂M,

for every a, b ∈ M (cf. [7, p. 60]). The set Hα = {x ∈ {0, 1}κ : x(α) = 1} is a clopen
halfspace in {0, 1}κ and the collection {Hα}α<κ is point-separating. Finally, the median
of a, b, c ∈ {0, 1}κ is the characteristic function of (a−1(1) ∩ b−1(1)) ∪ (a−1(1) ∩ c−1(1)) ∪
(b−1(1) ∩ c−1(1)).
The following lemma is an analogue of the result of van Mill and Wattel [6].

Lemma 2.1 (cf. [7, Lemma I.3.16]). Every Boolean median space of weight 6 κ is isomor-
phic to a closed median-stable subset of a Cantor cube {0, 1}κ.

Proof. Let X be a Boolean median space of weight 6 κ. Then there exists a subbase of
the topology {Hα}α<κ consisting of clopen halfspaces in X. Put j(x)(α) = 1 iff x ∈ Hα.
This defines a map j : X → {0, 1}κ, which is a topological embedding. By [7, Prop. I.1.12]
it remains to show that j([a, b]) = [j(a), j(b)] ∩ j(X) for each a, b ∈ X. If x ∈ [a, b] then
j(a)(α) = j(b)(α) = 1 implies j(x)(α) = 1 and j(x)(α) = 1 implies j(a)(α) = 1 or
j(b)(α) = 1. This means that j(x) ∈ [j(a), j(b)]. If x /∈ [a, b] then taking y = m(a, b, x) we
get x 6= y and hence there exists an α < κ with y ∈ Hα and x /∈ Hα. Now a, b ∈ Hα and
therefore j(a)(α) = j(b)(α) = 1 while j(x)(α) = 0. Hence j(x) /∈ [j(a), j(b)]. �

Theorem 2.2. Let X be a Boolean median space of weight κ > ω. There exists an inverse
system of Boolean median spaces S = {Xα, pβ

α, α < β < κ} such that X = lim←−S and

(1) |X0| = 1.
(2) Xλ = lim←−{Xα : α < λ}, for a limit ordinal λ < κ.
(3) For each α < κ there exist closed convex sets Aα, Bα ⊂ Xα such that Aα∪Bα = Xα,

Xα+1 = (Aα × {0}) ∪ (Bα × {1}), pα+1
α is the projection and the convexity of Xα+1

is inherited from the product Xα × {0, 1}.

Proof. In view of Lemma 2.1 we may assume that X is a closed median-stable subspace of
{0, 1}κ. Set Xα = {x|α : x ∈ X}. Let pβ

α : Xβ → Xα be the projection. Clearly, each pβ
α is

continuous cp and pβ
αpγ

β = pγ
α. Let

Aα ={x|α : x(α) = 0, x ∈ X},
Bα ={x|α : x(α) = 1, x ∈ X}.

We have Aα ∪ Bα = Xα and Aα, Bα are closed. One can easily check that X = lim←−S and
the conditions (1), (2) are satisfied. Clearly Xα+1 = (Aα×{0})∪ (Bα×{1}). It remains to
show that Aα, Bα are convex.
Let x|α, y|α ∈ Aα and z|α ∈ [x|α, y|α], where x, y, z ∈ X. Setting v = m(x, y, z) we see
that v|α = z|α and v(α) = m(x(α), y(α), z(α)) = 0; hence z|α ∈ Aα. �
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3. Main result

The following lemma is known, we present a proof for the sake of completeness.

Lemma 3.1. Let P be a closed under the complements subbase of a zero-dimensional
compact topological space X and let B be the collection of all finite intersections of sets
from P. Then every clopen subset of X can be partitioned into a finite number of members
of B.

Proof. Set M = {M1 ∪ · · · ∪Mn : Mi ∈ B,Mi ∩Mj = ∅ for i 6= j, n ∈ N}. Since B ⊂M and
B is an open base of X, it is enough to show that M is an algebra of sets. Fix B,C ∈ M
and let B and C have partitions M1 ∪ · · · ∪ Mn and N1 ∪ · · · ∪ Nk respectively, where
Mi, Nj ∈ B. We have B ∩ C =

⋃
i,j Mi ∩Nj and Mi ∩Nj ’s are pairwise disjoint. It follows

that B∩C ∈M. Now observe that X\M ∈M for M ∈ B. Indeed, if M = H1∩· · ·∩Hn where
Hi ∈ P for i 6 n, then X \M has a partition into sets of the form H

ε(1)
1 ∩ · · · ∩H

ε(n)
n where

ε : {1, . . . , n} → {−1, 1} is a function not equal constantly to 1 and H1
i = Hi, H−1

i = X \Hi.
Finally, if B = M1 ∪ · · · ∪Mn ∈M where Mi ∈ B then the set X \B =

⋂
i6n(X \Mi) does

belong to M. This completes the proof. �

Theorem 3.2. If X is a retract of a Cantor cube then there exists a convexity in X such
that X is a Boolean median space.

Proof. According to [2] and [4, Thm. 2.7] we can represent X as the limit of an inverse
system S = {Xα, pβ

α, α < β < τ} with the following properties:

(1) |X0| = 1,
(2) Xγ = lim←−{Xα, α < γ} for limit ordinals γ < τ ,
(3) Xα+1 = (Xα × {0}) ∪ (Uα × {1}) where Uα is clopen in Xα and pα+1

α : Xα+1 → Xα

is the projection.

We define inductively suitable convexities in Xα’s in such a way that each Xα becomes a
Boolean median space and each pα+1

α becomes cp. Suppose that this is already done for all
ξ < γ and assume that γ = α + 1.
By Lemma 3.1, Uα = G1 ∪ · · · ∪ Gn where Gi’s are pairwise disjoint clopen and convex.
Hence Xα+1 = Xα⊕G1⊕· · ·⊕Gn and pα+1

α is the superposition of n projections of the form
Xα ⊕G1 ⊕ · · · ⊕Gi+1 → Xα ⊕G1 ⊕ · · · ⊕Gi. Thus we may assume that Uα is convex. Now
Xα+1 is a median-stable subset (the union of two convex sets) of the product Xα × {0, 1}.
It follows that Xα+1 with the subspace convexity is a Boolean median space. Clearly pα+1

α

is cp.
If γ is a limit ordinal and convexities Gα are already defined for α < γ then, by Proposition
1.2, Xγ with the convexity of the limit is a Boolean median space. This completes the
proof. �

Remark 3.3. Actually, we have proved that if X is a zero-dimensional Dugundji space
then there exists a convexity G in X and an inverse system of Boolean median spaces
S = {(Xα,Gα), pβ

α, α < β < τ} such that (X,G) = lim←−S and S has properties (1)−(3)
above, with Xα+1 = Xα⊕Uα, where Uα is clopen and convex in Xα. On the other hand, by
Haydon’s Theorem [2], the inverse limit of such a system S is a topological zero-dimensional
Dugundji space.
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Theorem 3.4. Every retract of a Cantor cube has a binary subbase closed under the com-
plements.

Proof. The desired subbase consists of the all clopen halfspaces, with respect to the con-
vexity given by Theorem 3.2. �

The example below shows that the converse does not hold.

Example 3.5. Consider a one-point compactification ακ of the discrete space of cardinality
κ. Let P be the collection of all one-element subsets of κ and all their complements. One
can check that P is a binary subbase. On the other hand, if κ > ω then ακ is not dyadic
and therefore cannot be a Dugundji space.
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