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Abstract. Let X be a separable metric space. By CldW (X), we de-
note the hyperspace of non-empty closed subsets of X with the Wijsman
topology. Let FinW (X) and BddW (X) be the subspaces of CldW (X)
consisting of all non-empty finite sets and of all non-empty bounded
closed sets, respectively. It is proved that if X is an infinite-dimensional
separable Banach space then CldW (X) is homeomorphic to (≈) the

Hilbert space `2 and FinW (X) ≈ BddW (X) ≈ `2 × `f
2 , where

`f
2 = {(xi)i∈N ∈ `2 | xi = 0 except for finitely many i ∈ N}.

Moreover, we show that if the complement of any finite union of open
balls in X has only finitely many path-components, all of which are
closed in X, then FinW (X) and CldW (X) are ANR’s. We also give a suf-
ficient condition under which FinW (X) is homotopy dense in CldW (X).

1. Introduction

Let Cld(X) be the set of all non-empty closed sets in a topological space
X. By CldV (X) we denote the space Cld(X) with the Vietoris topology,
which is the most typical topology. The Curtis-Schori-West Hyperspace
Theorem is a celebrated result in Infinite-Dimensional Topology which states
that CldV (X) is homeomorphic to (≈) the Hilbert cube Q = [−1, 1]ω if
and only if X is a non-degenerate, connected and locally connected com-
pact metrizable space ([8] and [21]; cf. [14, Theorem 8.4.5]). For a non-
compact metric space X, since CldV (X) is non-metrizable, we have to con-
sider topologies different from the Vietoris topology. For a study of hyper-
space topologies, we refer to the book [4] (cf. [13]).

In the paper [17], it is shown that the space CldF (X) with the Fell topol-
ogy is homeomorphic to Q\{0} if and only if X is a locally compact, locally
connected separable metrizable space with no compact components. In [2],
it is shown that if X is an infinite-dimensional Banach space with weight
w(X), then the space CldAW (X) with the Attouch-Wets topology is home-
omorphic to a Hilbert space with weight 2w(X). It should be remarked that
CldAW (X) = CldF (X) for a finite-dimensional normed linear space X (cf.
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2 W. KUBIŚ, K. SAKAI, AND M. YAGUCHI

[4, p.144]). In [11], the first author proved that ifX is an infinite-dimensional
separable Banach space, then the space CldW (X) with the Wijsman topology
is an AR. In this paper, we prove the following:

Theorem I. If X is an infinite-dimensional separable Banach space, then
CldW (X) is homeomorphic to the separable Hilbert space `2.

Let Fin(X) ⊂ Cld(X) be the set of all non-empty finite sets. By FinV (X),
FinW (X), etc., we respectively denote the subspaces of CldV (X), CldW (X),
etc. In [7], it is proved that FinV (X) ≈ `f2 if and only if X is a non-
degenerate, strongly countable-dimensional,1 connected, locally path-con-
nected, σ-compact metrizable space, where

`f2 = {(xi)i∈N ∈ `2 | xi = 0 except for finitely many i ∈ N}.

In [17], it is shown that FinF (X) ≈ `f2 if and only ifX is a strongly countable-
dimensional, locally compact, locally connected, separable metrizable space
with no compact components. We also consider the subspace BddW (X) ⊂
CldW (X) consisting of all non-empty bounded closed sets. In [16], it is
proved that if X is an infinite-dimensional Banach space with weight w(X)
then

FinAW (X) ≈ `2(w(X))× `f2 and BddAW (X) ≈ `2(2w(X))× `f2 .

The following is also shown in this paper:

Theorem II. If X is an infinite-dimensional separable Banach space, then

FinW (X) ≈ BddW (X) ≈ `2 × `f2 .

It is said that Y ⊂ X is homotopy dense in X if there is a homotopy
h : X × I → X such that h0 = id and ht(X) ⊂ Y for every t > 0. It is
well-known that every homotopy dense set in an AR (resp. an ANR) is also
an AR (resp. an ANR).2 In the way of the proof of Theorem II, we show the
following:

Theorem III. Let X be a separable metric space. If the complement of any
finite union of open balls in X has only finitely many path-components all
of which are closed and unbounded, then CldW (X) is an AR and FinW (X)
is homotopy dense in CldW (X). In particular, H is an AR if FinW (X) ⊂
H ⊂ CldW (X).

¿From Theorem III above, it follows that CldW (X) is an AR and FinW (X)
is homotopy dense in CldW (X) for every infinite-dimensional separable Ba-
nach space X. Thus, we have an alternative proof of the result in [11]. To
prove Theorem III, we give a condition on a metrizable Lawson semilattice
X and its subsemilattice Y under which X is an ANR and Y is homotopy
dense in X (Theorem 5.1). See §5 for the definition of Lawson semilattice.

1It is said that X is strongly countable-dimensional if X is a countable union of finite-
dimensional closed subsets.

2This fact follows from [9, Chapter IV, Theorem 6.3].
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Furthermore, we prove the following:

Theorem IV. Let X be a separable metric space. If the complement of any
finite union of open balls in X has only finitely many path-components, all
of which are closed in X, then FinW (X) and CldW (X) are ANR’s.

For a closed subspace Y ⊂ X, we have Cld(Y ) ⊂ Cld(X) as sets. Due to
[2, Proposition 2.1], the Attouch-Wets topology on Cld(Y ) coincides with
the subspace topologies of the Attouch-Wets topology on Cld(X) as well
as the Vietoris and the Fell topologies. However, the Wijsman topology on
Cld(Y ) does not necessarily coincide with the subspace topology inherited
from the Wijsman topology on Cld(X) (see Example in Preliminaries). We
also discuss the space Cld(Y ) with the subspace topology inherited from
CldW (X), which is called the relative Wijsman topology. Theorem IV above
is proved in this setting.

2. Preliminaries

Let X = (X, d) be a metric space. The open ball and the closed ball
centered at x with radius ε are denoted by B(x, ε) and B(x, ε), respec-
tively. By C(X), we denote the set of all continuous real-valued functions
on X. In this paper, by a ‘map’, we mean a continuous function. By iden-
tifying each A ∈ Cld(X) with the map X 3 x 7→ d(x,A) ∈ R, we can
regard Cld(X) ⊂ C(X), whence Cld(X) has various topologies inherited
from C(X). The Wijsman topology on Cld(X) is the topology of point-wise
convergence, which depends on the metric d for X. For each x ∈ X and
r > 0, we define

U−(x, r) = {A ∈ Cld(X) | d(x,A) < r};
U+(x, r) = {A ∈ Cld(X) | d(x,A) > r}.3

It is easy to see that these are open sets in CldW (X) which form an open
subbasis for CldW (X). Moreover, to generate the Wijsman topology, it
suffices to take points x in a dense subset of X.

For each k ∈ N, we denote

Fink(X) = {A ∈ Fin(X) | cardA 6 k}.
It is easily observed that X is homeomorphic to the subspace Fin1

W (X) of
CldW (X). Then, we can regard X = Fin1

W (X) ⊂ CldW (X).
It is well-known that CldW (X) is metrizable if and only if X is separable,

whence we can define an admissible metric dW by using a countable dense
set {xi |∈ i ∈ N} in X as follows:

dW (A,B) = sup
i∈N

min{2−i, |d(xi, A)− d(xi, B)|}.

3Although d(x, A) < r ⇔ B(x, r)∩A 6= ∅ and d(x, A) > r ⇒ B(x, r)∩A = ∅, it should

be noticed that B(x, r)∩A = ∅ 6⇒ d(x, A) > r. In fact, let A =
⋃

n∈N[1/n,∞)en ∈ Cld(`2),

where {en | n ∈ N} is the canonical orthonormal basis for `2. Then, B(0, 1) ∩ A = ∅ but
d(0, A) = 1.
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If d is complete then dW is complete [4, Theorem 2.5.4].4 Thus,
the space CldW (X) is completely metrizable for every sepa-
rable complete metric space X.

For a closed subspace Y ⊂ X, the Wijsman topology on Cld(Y ) is defined
by using the metric dY = d|Y 2 inherited from X, and the space CldW (Y )
admits this topology. On the other hand, as mentioned in Introduction,
Cld(Y ) has the subspace topology inherited from CldW (X), called the rela-
tive Wijsman topology. The following example shows that Fin2

W (Y ) is not
the subspace of Fin2

W (X).

Example. Let X = `2 be the Hilbert space, Y = {x ∈ `2 | ‖x‖ 6 1} the
unit closed ball of X and {en | n ∈ N} the standard orthonormal base of X.
Fix δ > 0 and define

an =
1√

1 + δ2
(en+1 + δe1), n ∈ N.

Then, we have An = {0, an} ∈ Fin2(Y ). To see that An 6→ {0} in CldW (X),
consider v = te1 ∈ X (= `2), where

t >

√
1 + δ2

2δ
.

For each n ∈ N, we have

‖v − an‖2 =
∥∥∥∥(
t− δ√

1 + δ2

)
e1 −

1√
1 + δ2

en+1

∥∥∥∥2

= t2 − 2tδ√
1 + δ2

+ 1 < t2 = ‖v‖2,

hence d(v,An) = ‖v − an‖ 6→ ‖v‖ = d(v, {0}).
Now, we should find δ > 0 such that An → {0} in CldW (Y ). In order to

compute the upper estimate for δ, consider

x = (x1, . . . , xk, 0, 0, . . . ) ∈ Y ∩ `f2 ⊂ X = `2.

For each n > k,

‖x− an‖2 =
(
x1 −

δ√
1 + δ2

)2

+
k∑

i=2

x2
i +

1
1 + δ2

and ‖x‖2 =
k∑

i=1

x2
i .

4In [4], the following metric is used but it is uniformly equivalent to ours:

dW (A, B) =
∑
i∈N

2−i min{1, |d(xi, A)− d(xi, B)|}.
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Then, d(x,An) → d(x, {0}) if and only if ‖x− an‖2 > ‖x‖2 for n > k. Since
|x1| 6 ‖x‖ 6 1, it follows that

‖x− an‖2 − ‖x‖2 =
(
x1 −

δ√
1 + δ2

)2

+
1

1 + δ2
− x2

1

= 1− 2x1δ√
1 + δ2

> 1− 2δ√
1 + δ2

.

Choose 0 < δ 6 1/
√

3. Then, ‖x− an‖2 > ‖x‖2, hence d(x,An) → d(x, {0})
for every x ∈ Y ∩ `f2 . Since Y ∩ `f2 is dense in Y , it follows that An → {0}
in CldW (Y ). �

To prove Theorems I and II, we need characterizations of `2 and `2 × `f2 .
The following characterization of `2 is due to Toruńczyk [19] (cf. [20]):

Theorem 2.1. In order that X ≈ `2, it is necessary and sufficient that X is
a separable completely metrizable AR which has the discrete approximation
property, that is, each map f :

⊕
n∈N In → X is approximated by maps

g :
⊕

n∈N In → X such that {g(In) | n ∈ N} is discrete in X. �

To state the characterization of `2 × `f2 due to Bestvina and Mogilski [5],
we need some notions. A metrizable space X is σ-completely metrizable if
X is a countable union of completely metrizable closed subsets. A closed
set A ⊂ X is a (strong) Z-set in X if there are maps f : X → X \ A
arbitrarily close to id (such that A ∩ cl f(X) = ∅). A countable union of
(strong) Z-sets is called a (strong) Zσ-set. When X itself is a (strong) Zσ-set
in X, we call X a (strong) Zσ-space. For a class C of spaces, X is strongly
universal for C if given a map f : A → X of A ∈ C such that f |B is a Z-
embedding of a closed set B ⊂ A, there exist Z-embeddings g : A→ X such
that g|B = f |B and which are arbitrarily close to f . In these definitions,
the phrase ‘arbitrarily close’ is understood with respect to the limitation
topology. In case X = (X, d) is a metric space, given a collection M of maps
from a space Y to X, a map f : Y → X is arbitrarily close to maps in M if
for each α : X → (0, 1) there is g ∈M such that d(f(y), g(y)) < α(f(y)) for
every y ∈ Y . The following is Corollary 6.3 in [5].

Theorem 2.2. In order that X ≈ `2× `f2 , it is necessary and sufficient that
X is a separable σ-completely metrizable AR which is a strong Zσ-space and
it is strongly universal for separable completely metrizable spaces. �

In case X is a homotopy dense set in `2, X has the discrete approximation
property (cf. [3, Theorem 1.3.2] or [1]), hence every Z-set in X is a strong
Z-set by Proposition 1.7 in [5]. Then, we have the following:

Theorem 2.3. For a homotopy dense set X in `2, if X is a σ-completely
metrizable Zσ-space and it is strongly universal for separable completely
metrizable spaces, then X ≈ `2 × `f2 . �
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3. Proof of Theorem I

It should be remarked that CldW (X) is separable (completely) metrizable
if and only if X is separable (completely) metrizable. In [11], it has been
proved that CldW (X) is an AR for an infinite-dimensional separable Banach
space X. Thus, it remains to verify the discrete approximation property.

Let X = (X, ‖ · ‖) be a normed linear space and d the metric induced by
the norm ‖ · ‖ (i.e., d(x, y) = ‖x− y‖). By BX and SX , we denote the unit
closed ball and the unit sphere of X, respectively. For CldW (X), the metric
dW is defined by a countable dense set {xi | i ∈ N} in X, where x1 = 0.

To prove Theorem I, we need the following lemma. Since it will be also
used in the proof of Theorem II, it is formulated in a general setting.

Lemma 3.1. Let H be a subspace of CldW (X) and W an open set in H.
For each map α : H → (0, 1), there exists a map γ : W → (0,∞) such that

(*) A ∈W, A′ ∈ H, A ∩ γ(A)BX = A′ ∩ γ(A)BX

⇒ A′ ∈W, dW (A,A′) < α(A).

Proof. For each A ∈W , we define

i(A) = min{i ∈ N | 2−i < α(A) and 2−i < dW (A,H \W )} and

r(A) = max{‖xi‖ | i 6 i(A)}.
Then, r : H → [0,∞) is upper semi-continuous. Indeed, let A ∈ H and t > 0
such that r(A) < t. Since α is continuous, we can choose δ > 0 so that if
A′ ∈ H and dW (A,A′) < δ then 2−i(A) < α(A′), whence i(A′) 6 i(A) by the
definition of i(A′), which implies that r(A′) 6 r(A) < t by the definition of
r(A′). Thus, there exists a map γ : H → (0,∞) such that

γ(A) > 3 max{r(A), d(0, A)} for each A ∈ H.

To see that γ satisfies condition (*), suppose

A ∈W, A′ ∈ H and A ∩ γ(A)BX = A′ ∩ γ(A)BX .

Note that A ∩ γ(A)BX 6= ∅ because d(0, A) < 1
3γ(A). For each i 6 i(A),

since ‖xi‖ 6 r(A) < 1
3γ(A), it follows that

d(xi, A) = d(xi, A ∩ γ(A)BX)

= d(xi, A
′ ∩ γ(A)BX) = d(xi, A

′).

Then, dW (A,A′) < 2−i(A) < α(A). Since 2−i(A) < dW (A,H \W ), we have
also A′ ∈W . �

Theorem 3.2. For every infinite-dimensional separable Banach space X,
CldW (X) has the discrete approximation property. Hence, CldW (X) ≈ `2.

Proof. For each map α : CldW (X) → (0, 1), let γ : CldW (X) → (0,∞) be
the map obtained by Lemma 3.1. On the other hand, SX has a countable-
infinite 1

2 -discrete set {en | n ∈ N} (cf. [2]). Taking v ∈ SX , we define
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f : CldW (X)× N → CldW (X) as follows:

f(A,n) = (A ∩ γ(A)BX) ∪ γ(A)SX ∪ {(γ(A) + 2)v + en}.
Then, dW (f(A,n), A) < α(A) for every A ∈ CldW (X) and n ∈ N, by (*) in
Lemma 3.1.

To verify the continuity of f , observe that

d(x, f(A,n))

=

{
min{γ(A)− ‖x‖, d(x,A)} if ‖x‖ 6 γ(A),
min{‖x‖ − γ(A), ‖(γ(A) + 2)v + en − x‖} if ‖x‖ > γ(A).

For each x ∈ X, (A,n) 7→ d(x, f(A,n)) is continuous, which implies that
f is continuous.

It remains to show that

{f(CldW (X)× {n}) | n ∈ N}
is discrete in CldW (X). On the contrary, assume that there exist Aj ∈
CldW (X), j ∈ N, and n1 < n2 < · · · ∈ N such that (f(Aj , nj))j∈N converges
to A ∈ CldW (X).

In case supj∈N γ(Aj) = ∞, we may assume that γ(Aj) → ∞ as j → ∞.
Observe that dW (f(Aj , nj), Aj) → 0. Then, Aj → A, hence γ(Aj) → γ(A)
by the continuity of γ. This is a contradiction.

When supj∈N γ(Aj) <∞, it can be assumed that limj→∞ γ(Aj) = r. We
show that A ⊂ rBX . Suppose that ‖a‖ > r for some a ∈ A and choose
i0 6 j0 ∈ N so that d(xi0 , a) < s/6 and

j > j0 ⇒ |γ(Aj)− r| < s/2, dW (f(Aj , nj), A) < min{s/6, 2−i0},
where s = min{‖a‖ − r, 1/4}. Then, for every j > j0,

d(a, f(Aj , nj)) 6 d(a, xi0) + d(xi0 , A) + |d(xi0 , f(Aj , nj))− d(xi0 , A)|
< s/6 + s/6 + s/6 = s/2.

On the other hand,

d(a, γ(Aj)BX) > ‖a‖ − γ(Aj) > ‖a‖ − r − s/2 > s/2.

Therefore, d(a, (γ(Aj) + 2)v + enj ) < s/2. Then, we have

d(a, (r + 2)v + enj ) 6 d(a, (γ(Aj) + 2)v + enj )

+ d((γ(Aj) + 2)v + enj , (r + 2)v + enj )

< s/2 + |γ(Aj)− r| < s.

Then, for j 6= j′ > j0,

1/2 < d(enj , enj′ ) = d((r + 2)v + enj , (r + 2)v + enj′ )

6 d(a, (r + 2)v + enj ) + d(a, (r + 2)v + enj′ ) < 2s 6 1/2,

which is a contradiction. Therefore, A ⊂ rBX .
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Now, choose i1 ∈ N so that d(xi1 , (r + 2)v) < 1/4, whence

d(xi1 , A) > d(xi1 , rBX)

> d((r + 2)v, rBX)− d(xi1 , (r + 2)v)

> 2− 1/4 = 7/4.

Moreover, choose j1 ∈ N so that if j > j1 then |γ(Aj1)− r| < 1/2, whence

d(xi1 , f(Aj , nj)) 6 d(xi1 , (γ(Aj) + 2)v)

6 d(xi1 , (r + 2)v) + d((r + 2)v, (γ(Aj) + 2)v)

< 1/4 + |γ(Aj)− r| < 3/4.

Then, for every j > j1,

dW (f(Aj , nj)), A) > min{2−i1 , |d(xi1 , f(Aj , nj))− d(xi1 , A)|}
> min{2−i1 , 7/4− 3/4} = 2−i1 ,

which contradicts to f(Aj , nj) → A. Consequently,

{f(CldW (X)× {n}) | n ∈ N}
is discrete in CldW (X). �

4. Proof of Theorem II for BddW (X)

By Theorem I, we can apply Theorem 2.3 to prove that BddW (X) ≈
`2 × `f2 . We first show the following:

Lemma 4.1. For every separable normed linear space X, BddW (X) is ho-
motopy dense in CldW (X).

Proof. We define θ : CldW (X)× I → CldW (X) by θ0 = id and

θ(A, t) =
(
A ∩ t−1BX

)
∪ t−1SX .

5

To verify the continuity of θ, observe that

d(x, θ(A, t)) =

{
min{t−1 − ‖x‖, d(x,A)} if ‖x‖ 6 t−1,

‖x‖ − t−1 if ‖x‖ > t−1.

For each x ∈ X, (A, t) 7→ d(x, θ(A, t)) is continuous, which implies that θ is
continuous. �

Notice BddW (X) =
⋃

k∈N Cld(kBX).

Lemma 4.2. For every separable normed linear space X, each Cld(kBX)
is closed in CldW (X). Thus, if X is a separable Banach space, then each
Cld(kBX) is completely metrizable, hence BddW (X) is σ-completely metriz-
able.

5As compared with the contraction θ in [2], the parameter is different. Here, it is not
necessary that θ1 is the constant.
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Proof. For each A ∈ CldW (X) \ Cld(kBX), we have a ∈ A \ kBX . Let
r = ‖a‖ − k = d(a, kBX) > 0. Then,

A ∈ U−(a, r) ⊂ CldW (X) \ Cld(kBX).

Therefore, CldW (X) \ Cld(kBX) is open in CldW (X), that is, Cld(kBX) is
closed in CldW (X). �

Lemma 4.3. For every separable normed linear space X, each Cld(kBX)
is a Z-set in BddW (X), hence BddW (X) is a Zσ-space.

Proof. Let θ : CldW (X) × I → CldW (X) be the homotopy defined in the
proof of Lemma 4.1. Then, θ(BddW (X) × I) ⊂ BddW (X). For each map
α : BddW (X) → (0, 1), define ξ : BddW (X) → (0, 1) as follows:

ξ(A) = sup{t > 0 | diamdW
θ({A} × [0, t]) < α(A)}.

Then, ξ is lower semi-continuous. Indeed, if ξ(A) > s then we have s < s′ <
ξ(A) and

ε = α(A)− diamdW
θ({A} × [0, s′]) > 0.

By the continuity of θ and α, we have δ > 0 such that if A′ ∈ FinW (X) and
dW (A,A′) < δ then |α(A) − α(A′)| < 1

3ε and dW (θ(A, t), θ(A′, t)) < 1
3ε for

all t ∈ [0, s′], whence

diamdW
θ({A′} × [0, s′]) < diamdW

θ({A} × [0, s′]) + 2
3ε

= α(A)− 1
3ε < α(A′),

which means that ξ(A′) > s′ > s.
Thus, we have a map f : BddW (X) → BddW (X) defined by

f(A) = θ(A, β(A)) = A ∪ β(A)−1SX ,

where β : BddW (X) → (0, 1) is a map such that

β(A) < min{(k + 1)−1, ξ(A)}.
Observe that dW (f(A), A) < α(A) and β(A)−1 > k + 1 for each A ∈
BddW (X). Then, it follows that Cld(kBX) ∩ f(BddW (X)) = ∅. Thus,
Cld(kBX) is a Z-set in BddW (X). �

It remains to prove the strong universality of BddW (X). To this end, we
use the following fact:

Proposition 4.4. For every infinite-dimensional separable Banach space
X, the unit sphere SX is homeomorphic to `2.

Proof. This is well-known but we give a proof for readers’ convenience.
First note that X ≈ `2 (cf. [19, §6]). As an open set in X ≈ `2, (1, 2)SX is

an `2-manifold. It is easy to see that SX ∪ 2SX is a strong Z-set in [1, 2]SX .
Then, [1, 2]SX is an `2-manifold by [20, Theorem B1] (cf. [18, Theorem 5.2]).
By using [19, Theorem 4.1], we can see that SX is also an `2-manifold. On
the other hand, SX is contractible because SX is a retract of X \ {0} and
X \ {0} ≈ `2 \ {0} is homotopically trivial. Therefore, SX ≈ `2. �
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Theorem 4.5. For every infinite-dimensional separable Banach space X,
BddW (X) is strongly universal for separable completely metrizable spaces.
Consequently, BddW (X) ≈ `2 × `f2 .

Proof. First of all, note that the class of separable completely metrizable
spaces is hereditary with respect to both closed subsets and open subsets.
Due to the remark before Theorem 2.3, it follows from Lemma 4.1 that
every Z-set in BddW (X) is a strong Z-set. Then, by Proposition 2.2 in
[5], it suffices to prove that each open set W ⊂ BddW (X) is universal for
separable completely metrizable spaces, that is, for every separable com-
pletely metrizable space Y , each map f : Y → W can be approximated by
Z-embeddings.

For each map α : W → (0, 1), we apply Lemma 3.1 to obtain a map
β : W → (0, 1) such that

(*) A ∈W, A′ ∈ Bdd(X), A ∩ β(A)−1BX = A′ ∩ β(A)−1BX

⇒ A′ ∈W, dW (A,A′) < α(A).

Since the Hilbert space `2 is universal for separable completely metrizable
spaces, we have a closed embedding h : Y → SX by Proposition 4.4. By
taking any v ∈ SX and using the homotopy θ : CldW (X) × I → CldW (X)
defined in the proof of Lemma 4.1, we can define a map g : Y →W by

g(y) = θ(f(y), β(f(y))) ∪ {(β(f(y))−1 + 2)v + h(y)}.
Then, it follows from (*) that dW (f(y), g(y)) < α(f(y)) for every y ∈ Y . As
is easily observed, g is injective.

To see that g is a closed embedding, let yi ∈ Y , i ∈ N, such that g(yi) →
A ∈W . Then, b = infi∈N β(f(yi)) > 0. Otherwise, by taking a subsequence,
it can be assumed that β(f(yi)) → 0, that is, β(f(yi))−1 → ∞, whence
dW (f(yi), g(yi)) → 0, so f(yi) → A. Hence, β(f(yi)) → β(A) 6= 0, which
is a contradiction. Furthermore, A ∩ ((b−1 + 2)v + 3

2BX) 6= ∅. In fact, if
A ∈ U+((b−1 + 2)v, 3

2) then g(yi) ∈ U+((b−1 + 2)v, 3
2) for sufficiently large

i ∈ N. On the other hand, for sufficiently large i ∈ N, |β(f(yi))−1−b−1| < 1
2 ,

whence

‖(β(f(yi))−1 + 2)v + h(yi)− (b−1 + 2)v‖ 6 |β(f(yi))−1 − b−1|+ 1 < 3
2 .

This is a contradiction.
Now, let c ∈ A ∩ ((b−1 + 2)v + 3

2BX). For each 0 < ε < 1
4 , we can choose

i0 ∈ N so that if i > i0 then g(yi) ∈ U−(c, ε) and |β(f(yi))−1−b−1| < ε < 1
4 ,

whence
‖(β(f(yi))−1 + 2)v + h(yi)− c‖ = ‖g(yi)− c‖ < ε

because ‖c‖ > b−1+ 1
2 > β(f(yi))−1+ 1

4 . Thus, (β(f(yi))−1+2)v+h(yi) → c.
Since β(f(yi))−1 → b−1, it follows that h(yi) → c − (b−1 + 2)v. Therefore,
(yi)i∈N is convergent in Y . Hence, g is a closed embedding.
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By Lemma 4.3, g(Y ) is a Zσ-set in W . Since g(Y ) ≈ Y is completely
metrizable, g(Y ) is a Z-set in W by [6, Lemma 2.4]. Thus, g : Y → W is a
Z-embedding. The proof is completed. �

5. Homotopy Dense Subsemilattices of Lawson Semilattices

A topological semilattice is a topological space S equipped with a contin-
uous operator ∨ : S×S → S which is reflexive, commutative and associative
(i.e., x∨ x = x, x∨ y = y ∨ x, (x∨ y)∨ z = x∨ (y ∨ z)). A topological semi-
lattice S is called a Lawson semilattice if S admits an open basis consisting
of subsemilattices [12].

In [2], it is shown that a metrizable Lawson semilattice X is an ANR
(resp. an AR) if and only if it is locally path-connected (resp. connected
and locally path-connected). Here, we introduce a relative version of local
path-connectedness. A subset Y ⊂ X is relatively LC0 in X if for every
x ∈ X, each neighborhood U of x in X contains a smaller neighborhood V
of x such that every two points of V ∩ Y can be joined by a path in U ∩X.
In this section, we shall prove the following theorem.

Theorem 5.1. Let X be a metrizable Lawson semilattice with Y ⊂ X a
dense subsemilattice. If Y is relatively LC0 in X (and Y is path-connected),
then X is an ANR (an AR) and Y is homotopy dense in X, hence Y is also
an ANR (an AR).

To prove Theorem 5.1 above, we will use the following result in [15]:

Theorem 5.2. Let X be a metric space with Y ⊂ X a dense set. Assume
that there exist a zero-sequence U = {Un | n ∈ N} of open covers of X and
a map f : |TN(U)| → Y such that f(U) ∈ U for U ∈

⋃
n∈N Un = TN(U)(0)

and
lim

n→∞
mesh{f(σ) | σ ∈ N(Un ∪ Un+1)} = 0.

Then, X is an ANR and Y is homotopy dense in X. �

Here, U is called a zero-sequence if limn→∞meshUn = 0, and TN(U) is a
simplicial complex defined as the union

⋃
n∈NN(Un ∪Un+1) of the nerves of

the covers Un ∪ Un+1, where we regard Un ∩ Un+1 = ∅.

Lemma 5.3. Every Lawson semilattice X is k-aspherical for any k > 0,
that is, each map f : Sk → X extends to f̃ : Bk+1 → X.

Proof. Identify Sk = Fin1
V (Sk) ⊂ FinV (Sk) and X = Fin1

V (X) ⊂ FinV (X).
Then, f has the extension fV : FinV (Sk) → FinV (X). Since FinV (X) is a
free Lawson semilattice over X, there exists a retraction r : FinV (X) → X
(see [2]). By [7], we have ϕ : Bk+1 → Fin3

V (Sk) with ϕ|Sk = id. Then,
f̃ = rfV ϕ : Bk+1 → X is an extension of f . �

Proof of Theorem 5.1. Fix an admissible metric d on X. For each n ∈ N,
let Vn be an open cover of X such that meshVn < 2−n and each V ∈ Vn is
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a subsemilattice of X. Since Y is relatively LC0 in X, each Vn has an open
refinement Un such that each U ∈ Un is contained in some V ∈ Vn so that
every pair of points in U ∩ Y can be connected by a path in V .

Now, for each n ∈ N, we can define fn : |N(Un ∪ Un+1)| → Y such that
fn(U) ∈ U for U ∈ Un ∪ Un+1 and for every simplex σ ∈ N(Un ∪ Un+1)
the image fn(σ) is contained in a member of Vn. This is possible because
of Lemma 5.3. Each fn can be inductively defined in such a way that
fn|N(Un+1) = fn+1|N(Un+1). Then, we have the map f : |TN(U)| →
Y defined by f ||N(Un ∪ Un+1)| = fn, which satisfies the assumptions of
Theorem 5.2, hence X is an ANR and Y is homotopy dense in X.

Moreover, if X or Y is path-connected, then it is n-connected for every
n ∈ N by Lemma 5.3. Then, X is an AR. �

The case X = Y in Theorem 5.1 is [2, Proposition 3.2], that is,

Corollary 5.4. Let X be a metrizable Lawson semilattice. Then, X is
an ANR (an AR) if and only if X is locally path-connected (and path-
connected).

For an arbitrary subset Y ⊂ X, we have Fin(Y ) ⊂ Comp(Y ) ⊂ Cld(X).
It should be noticed that Cld(Y ) 6⊂ Cld(X) unless Y is closed in X. As saw
in Preliminaries, FinW (Y ) (nor CldW (Y )) is not a subspace of CldW (X)
even if Y is closed in X.

When Y is dense in X, we can use a countable dense subset of Y to define
the metric dW for CldW (X). Then, CompW (Y ) and FinW (Y ) are subspaces
of CldW (X). Moreover, we have the following:

Proposition 5.5. Let X be separable metric space and Y a dense subspace
of X with the metric inherited from X. Then, the space CldW (Y ) can be
naturally embedded in CldW (X) by the closure operator clX : CldW (Y ) →
CldW (X). Namely, the space CldW (Y ) can be identified with the subspace
{A ∈ Cld(X) | clX(A ∩ Y ) = A} of CldW (X). �

Proposition 5.6. For a dense subset Y of a separable metric space X,
FinW (Y ) is a dense semilattice of CldW (X).

Proof. Let A ∈ CldW (X). For each neighborhood W of A in CldW (X), we
have p1, . . . , pn ∈ X, r1, . . . , rn > 0 and m 6 n such that

A ∈
m⋂

i=1

U−(pi, ri) ∩
n⋂

j=m+1

U+(pj , rj) ⊂ W.

For each 1 6 i 6 m, B(pi, ri) \
⋃n

j=m+1B(pj , rj) 6= ∅ because it contains a
point of A. Since Y is dense in X, we have

yi ∈ Y ∩B(pi, ri) \
n⋃

j=m+1

B(pj , rj).

Then, A′ = {a1, . . . , am} ∈ FinW (Y ) ∩W. Therefore, FinW (Y ) is dense in
CldW (X). �
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By applying Theorem 5.1 in the above setting, we have the following:

Corollary 5.7. Let X be a separable metric space with Y ⊂ X a dense
subset. If FinW (Y ) is relatively LC0 in CldW (X) (and FinW (Y ) is path-
connected), then CldW (X) is an ANR (an AR) and FinW (Y ) is homo-
topy dense in CldW (X), hence H is an ANR (an AR) if FinW (Y ) ⊂ H ⊂
CldW (Y ). �

6. Proof of Theorem III

In this section, we prove Theorem III. Here the metric for a metric space
is denoted by d. To apply Theorem 5.1, we first show the following:

Proposition 6.1. For an arbitrary metric space X, CldW (X) is a Lawson
semilattice with respect to the union operator ∪.

Proof. For each x ∈ X,

(A,B) 7→ d(x,A ∪B) = min{d(x,A), d(x,B)}
is continuous, which implies that the union operator ∪ is continuous.

Observe that U−(x, r) and U+(x, r) are subsemilattices of CldW (X) for
each x ∈ X and r > 0. Since the intersection of subsemilattices is also
a subsemilattice, CldW (X) has an open basis consisting of subsemilattices,
hence CldW (X) is a Lawson semilattice. �

Lemma 6.2. Let X be a separable metric space and Y a path-connected
subset of X. Then, each A,B ∈ FinW (Y ) can be connected by a path γ :
I → FinW (Y ) such that each γ(t) contains A or B.

Proof. For each a ∈ A and b ∈ B, we have a path γa,b : I → Y from a to b.
Now, we define a path γ : I → FinW (Y ) by

γ(t) = A ∪
⋃
{γa,b(t) | a ∈ A, b ∈ B}.

Then, γ is a path in FinW (Y ) from A to A∪B. By the same argument, we
can find a path from B to A ∪B. �

To prove the next result, we shall use a well-known combinatorial fact,
called König’s Lemma: Every finitely-branching infinite tree contains an
infinite branch (cf. [10, (4.12)]). A tree is a partially ordered set (T,<) such
that for every x ∈ T , the set {y ∈ T | y < x} is well-ordered (in our case:
finite, linearly ordered). A branch through T is a maximal linearly ordered
subset of T . In the proof of the following theorem, we consider a tree of sets
with the reversed inclusion as the partial order. It is said that A,B ⊂ X
are strongly disjoint if

dist(A,B) = inf{d(x, y) | x ∈ A, y ∈ B} > 0.

Theorem 6.3. Let X be a separable metric space. If the complement of any
finite union of open balls in X has only finitely many path-components, all of
which are closed and unbounded or compact, then CldW (X) is an ANR and
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FinW (X) is homotopy dense in CldW (X). Hence H is an ANR whenever
FinW (X) ⊂ H ⊂ CldW (X).

Proof. By Corollary 5.7, it suffices to show that FinW (X) is relatively LC0

in CldW (X). Note that X itself has only finitely many path-components
(the case the number of open balls is zero). We only consider the case X is
not compact, hence X is unbounded by the assumption.

Let A ∈ CldW (X) and U a neighborhood of A in CldW (X). Then,

A ∈
⋂
i<k

U−(pi, ri) ∩
⋂
j<l

U+(qj , sj) ⊂ U ,

for some pi, qj ∈ X and ri, sj > 0. Choose ε > 0 so that A ∈ U+(qj , sj + ε)
for every j < l.

Let X0, . . . , Xm−1 be all path-components of X \
⋃

j<l B(qj , sj +ε), where
Xi∩A 6= ∅ for i < m0 and Xj ∩A = ∅ for j > m0. Moreover, we can assume
that Xj is unbounded for m0 6 j < m1 and Xj is compact for j > m1.
Note that each Xi is not only closed but also open in X \

⋃
j<l B(qj , sj + ε)

and A is strongly disjoint from
⋃

j<l B(qj , sj + ε). For each i < k, we can
choose ai ∈ A ∩ B(pi, ri) and εi > 0 so that B(ai, εi) ⊂ Xj ∩ B(pi, ri) for
some j < m0. For each i < m0, we can choose ak+i ∈ Xi ∩ A and εk+i > 0
so that B(ak+i, εk+i) ⊂ Xi. Since

⋃
m16j<mXj is compact, we can find

t0, . . . , tv−1 ∈ X and δ0, . . . , δv−1 > 0 such that⋃
m16j<m

Xj ⊂
⋃
i<v

B(ti, δi) ⊂
⋃
i<v

B(ti, 2δi) ⊂ X \
⋃

i<m0

Xi.

Since A ⊂
⋃

i<m0
Xi, it follows that A ∈

⋂
i<v U

+(ti, δi). Thus, A has the
following neighborhood:

V =
⋂

i<k+m0

U−(ai, εi) ∩
⋂
j<l

U+(qj , sj + ε) ∩
⋂
i<v

U+(ti, δi) ⊂ U .

Let A0 = {ai | i < k +m0} ⊂ A. Then, A0 ∈ V ∩ FinW (X).
We show that each B ∈ V∩FinW (X) can be connected to A0 by a path in

U ∩FinW (X). Let B∗ = B∩
⋃

m06j<m1
Xj . Applying Lemma 6.2 to A0∩Xi

and B ∩Xi for i < m0, we can easily construct a path in U ∩FinW (X) from
B to A0 ∪ B∗. For each z ∈ B∗, choose m0 6 j < m1 so that z ∈ Xj , If
we can construct an infinite path fz : [1,∞) → Xj such that fz(1) = z and
limt→∞ d(z, fz(t)) = ∞ (whence limt→∞ d(x, fz(t)) = ∞ for any x ∈ X),
then we can define a path ψ : I → V from A0 to A0 ∪ B∗ as follows:
ψ(0) = A0 and

ψ(t) = A0 ∪
⋃

z∈B∗

fz(t−1) for t > 0.

For any x ∈ X, since limt→∞ d(x, fz(t)) = ∞, d(x, ψ(t)) = d(x,A0) for
sufficiently small t > 0, which means that ψ is continuous at 0.

Let z ∈ B∗∩Xj (m0 6 j < m1). Enumerate as B1, B2, . . . all open balls of
the form B(xi, α), where 0 < α < d(xi, A) and α ∈ Q. By the assumption,
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for each n ∈ N, Xj \ (B1 ∪ · · · ∪ Bn) has finitely many path-components
Hn

0 , . . . ,H
n
a(n)−1. Let T = {Hn

i | n ∈ N, i < a(n)}. Since Xj is unbounded,
it follows that T is infinite. Thus, (T,⊃) is a finitely-branching infinite tree
(i.e. each element of T has only finitely many immediate successors). By
König’s lemma, T contains an infinite branch Xj ⊃ H1

i(1) ⊃ H2
i(2) ⊃ · · · . For

each n ∈ N, pick zn ∈ Hn
i(n) and a path fn : [n − 1, n] → Hn−1

i(n−1) such that
fn(n− 1) = zn−1 and fn(n) = zn, where H0

i(0) = Xj and z0 = z. By joining
all paths f1, f2, . . . , we can obtain a path fz : [1,+∞) → Yj with fz(1) = z
and limt→∞ d(z, fz(t)) = ∞. �

Theorem 6.4. Let X be a separable metric space with x0 ∈ X. Suppose
that for arbitrarily large r > 0, X \ B(x0, r) has only finitely many path-
components, all of which are unbounded. Then, FinW (X) is path-connected.

Proof. First, note that X itself has only finitely many path-components, say
X0, . . . , Xm−1. For each i < m, take ai ∈ Ui, and let A0 = {ai | i < m} ∈
FinW (X). We show that each B ∈ FinW (X) can be connected to A0 by a
path in FinW (X).

Each x ∈ B is contained in some Xi(x), whence we have a path fx :
I → Xi(x) such that fx(0) = x and fx(1) = ai(x). Then, B is connected
to A1 = {ai(x) | x ∈ B} ⊂ A0 by a path ϕ : I → FinW (X) defined by
ϕ(t) = {fx(t) | x ∈ A}. Let A0 \A1 = {ai | i ∈ S}, that is,

S = {i | i 6= i(x) for any x ∈ B}.
For i ∈ S, we will construct a path gi : [0,∞) → Xi such that gi(0) = ai and
limt→∞ d(ai, gi(t)) = ∞. Then, A0 and A1 can be connected by the path
ϕ : I → FinW (X) defined as follows:

ψ(t) =

{
A if t = 0,
{gi(t−1) | i ∈ S} ∪A1 if t > 1.

Thus, it follows that FinW (X) is path-connected.
The path gi above can be constructed as follows: By the assumption, there

are 0 < r1 < r2 < · · · such that limn→∞ rn = ∞ and each X \ B(x0, rn)
has only finitely many path-components. Then, Xi \ B(x0, rn) has also
only finitely many path-components, say Hn

1 , . . . ,H
n
k(n). Let T = {Hn

j |
n ∈ N, j < k(n)}. Since Xi is unbounded, T is infinite. Thus, (T,⊃) is
a finitely-branching infinite tree (i.e., each element of T has only finitely
many immediate successors). By König’s lemma, T contains an infinite
branch Xi ⊃ H1

j(1) ⊃ H2
j(2) ⊃ · · · . For each n ∈ N, pick vn ∈ Hn

j(n) and a
path gn : [n − 1, n] → Hn−1

j(n−1) such that fn(n − 1) = vn−1 and fn(n) = vn,
where H0

j(0) = Xj and v0 = ai. By joining all paths f1, f2, . . . , we can obtain
a path gi : [1,+∞) → Xi with gi(1) = ai and limt→∞ d(ai, gi(t)) = ∞. �

Due to Corollary 5.7, Theorem III follows from Theorems 6.3 and 6.4.
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7. Proof of Theorem II for FinW (X)

As in the case of BddW (X), we apply Theorem 2.3 to prove that FinW (X)
is homeomorphic to `2 × `f2 . In the previous section, we have shown that
FinW (X) is homotopy dense in CldW (X) for an infinite-dimensional sepa-
rable Banach space X.

Now, notice FinW (X) =
⋃

k∈N Fink(X).

Lemma 7.1. For an arbitrary metric space X, each Fink(X) is closed in
CldW (X). Thus, if X is complete, then each Fink(X) is completely metriz-
able, hence FinW (X) is σ-completely metrizable.

Proof. For each A ∈ CldW (X) \Fink(X), choose distinct k+ 1 many points
a1, . . . , ak+1 ∈ A and let r = 1

2 min{d(ai, aj) | i 6= j}. Then,

A ∈
k+1⋂
i=1

U−(ai, r) ⊂ CldW (X) \ Fink(X).

Therefore, CldW (X) \ Fink(X) is open in CldW (X), that is, Fink(X) is
closed in CldW (X). �

Lemma 7.2. For every separable normed linear space X, each Fink(X) is
a Z-set in FinW (X), hence FinW (X) is a Zσ-space.

Proof. By using distinct k + 1 many points v1, . . . , vk+1 ∈ SX , we define a
homotopy ζ : FinW (X)× I → FinW (X) by ζ0 = id and

ζ(A, t) = A ∪ t−1{v1, . . . , vk+1} for t > 0.

For each map α : FinW (X) → (0, 1), define γ : FinW (X) → (0, 1) by

γ(A) = sup{t > 0 | diamdW
ζ({A} × [0, t]) < α(A)}.

Then, γ is lower semi-continuous. Indeed, if γ(A) > s then we have s < s′ <
γ(A) and

ε = α(A)− diamdW
ζ({A} × [0, s′]) > 0.

By the continuity of ζ and α, we have δ > 0 such that if A′ ∈ FinW (X) and
dW (A,A′) < δ then |α(A) − α(A′)| < 1

3ε and dW (ζ(A, t), ζ(A′, t)) < 1
3ε for

all t ∈ [0, s′], whence

diamdW
ζ({A′} × [0, s′]) < diamdW

ζ({A} × [0, s′]) + 2
3ε

= α(A)− 1
3ε < α(A′),

which means that γ(A′) > s′ > s.
Now, we define a map f : FinW (X) → FinW (X) as follows:

f(A) = ζ(A, β(A)) = A ∪ β(A)−1{v1, . . . , vk+1},
where β : FinW (X) → (0, 1) is a map such that β(A) < γ(A). Observe that
dW (f(A), A) < α(A) for each A ∈ FinW (X). By the definition, Fink(X) ∩
f(FinW (X)) = ∅. Thus, we have the result. �
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Remark . Due to the remark before Theorem 2.3, it follows from Theorem
III that every Z-set in FinW (X) is a strong Z-set. Therefore, each Fink(X)
is a strong Z-set in FinW (X). However, this can be also obtained in the
above proof by showing that

Fink(X) ∩ cl f(FinW (X)) = ∅.
To this end, assume that there exist An ∈ FinW (X), n ∈ N, such that

A = limn→∞ f(An) ∈ Fink(X). Then, we will find a contradiction in the
both cases infn∈N β(An) = 0 and infn∈N β(An) > 0.

When infn∈N β(An) = 0, we may assume that limn→∞ β(An) = 0. For
each ε > 0, choose i0 ∈ N so that 2−i0 < ε. Since β(An)−1 →∞ as n→∞,
we have n0 ∈ N such that

n > n0 ⇒ dW (f(An), A) < 2−i0−1,

β(An)−1 > max{‖xi‖+ d(xi, A) + 2−i0−1 | i = 1, . . . , i0}.
Then, for each n > n0 and i 6 i0,

β(An)−1 − ‖xi‖ > d(xi, A) + 2−i0−1 > d(xi, f(An)),

hence d(xi, f(An)) = d(xi, An), which implies dW (f(An), An) 6 2−i0−1.
Since dW (f(An), A) < 2−i0−1 it follows that dW (An, A) < 2−i0 < ε. Thus,
(An)n∈N converges to A, hence limn→∞ β(An) = β(A) > 0, which is a
contradiction.

When infn∈N β(An) > 0, we may assume that limn→∞ β(An) = b > 0.
Then, we show that zj = b−1vj ∈ A for each j = 1, . . . , k + 1. If zj 6∈ A,
choose xij so that d(xij , zi) <

1
4d(zj , A), whence

d(xij , A) > d(zj , A)− d(xij , zi) >
3
4d(zj , A).

For sufficiently large n ∈ N,

|d(xij , A)− d(xij , f(An))| < min{2−ij , 1
4d(zj , A)} and

|b−1 − β(An)−1| < 1
4d(zj , A),

whence it follows that

d(zj , A) 6 d(zi, xij ) + d(xij , A)

< 1
4d(zj , A) + |d(xij , A)− d(xij , An)|+ d(xij , An)

< 1
2d(zj , A) + d(xij , zi) + d(zi, An)

< 3
4d(zj , A) + |b−1 − β(An)−1| < d(zj , A).

This is a contradiction. �

Theorem 7.3. For every infinite-dimensional separable Banach space X,
FinW (X) is strongly universal for separable completely metrizable spaces.
Consequently, FinW (X) ≈ `2 × `f2 .
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Proof. By the same reason as in Theorem 4.5, it suffices to prove that each
open set W ⊂ FinW (X) is universal for separable completely metrizable
spaces. Let Y be a separable completely metrizable space, and f : Y → W
a map. For each map α : W → (0, 1), similarly to Theorem 4.5, we apply
Lemma 3.1 to obtain a map β : FinW (X) → (0, 1) such that

(*) A ∈W, A′ ∈ Fin(X), A ∩ β(A)−1BX = A′ ∩ β(A)−1BX

⇒ A′ ∈W, dW (A,A′) < α(A).

Let β0 = β. For n ∈ N, let βn : FinW (X) → I be the map defined by

βn(A) = min
{
(n+ 1)−1, β(A), β(A)dW (A,Finn(nBX))

}
.

Note that n + 1 6 βn(A)−1 if βn(A) 6= 0 and βn(A)−1 6 βn+1(A)−1 if
βn+1(A) 6= 0. For each A ∈ FinW (X), define k(A) ∈ N by

A ∈ Fink(A)(k(A)BX) \ Fink(A)−1((k(A)− 1)BX).

Then, βn(A) 6= 0 for n < k(A) and βn(A) = 0 for n > k(A),.
By Proposition 4.4, there exists a closed embedding h : Y → SX . Take

vn ∈ SX , n ∈ N ∪ {0}, so that ‖vn − vm‖ > 1
2 for n 6= m. We define a map

g : Y → FinW (X) by

g(z) = f(z) ∪
{
(βn(f(z))−1 + 2)vn,

(βn(f(z))−1 + 1)vn + 1
8h(z) | n < k(f(z))

}
.

By (*), g is α-close to f . To see that g is injective, let z 6= z′ ∈ Y . In case
k(f(z)) 6= k(f(z′)), assume k(f(z)) > k(f(z′)). Then,

(βk(f(z))−1(f(z))−1 + 2)vk(f(z))−1 ∈ g(z) \ g(z′),
so g(z) 6= g(z′). When k(f(z)) = k(f(z′)) = k, it follows that{

(βk−1(f(z))−1 + 2)vk−1, (βk−1(f(z))−1 + 1)vk−1 + 1
8h(z)

}
6=

{
(βk−1(f(z′))−1 + 2)vk−1, (βk−1(f(z′))−1 + 1)vk−1 + 1

8h(z
′)
}
,

which implies g(z) 6= g(z′).
To see that g is a closed map, let yi ∈ Y , i ∈ N, and G ∈ Fin(X) such

that g(yi) → G. For each n ∈ N ∪ {0}, let

bn = lim inf
i→∞

βn(f(yi)) ∈ [0, (n+ 1)−1].

Then, 1 > b0 > b1 > · · · > 0. Moreover, b0 > 0. Otherwise, by taking
a subsequence, we can assume that β(f(yi)) → 0. Then, it follows that
f(yi) → G, hence β(f(yi)) → β(G) 6= 0, which is a contradiction.

Let bm 6= 0 and bm+1 = 0. Then, (b−1
m + 2)vm ∈ G ⊂ k(G)BX because

d((b−1
m + 2)vm, G) = lim inf

i→∞
d((b−1

m + 2)vm, g(yi)) = 0.
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Hence, m+ 3 6 b−1
m + 2 6 k(G), that is, m 6 k(G)− 3. By taking a subse-

quence, we can assume that βm+1(f(yi)) → 0. Since lim infi∈N β(f(yi)) > 0,
it follows that

dW (f(yi),Finm+1((m+ 1)BX)) → 0.
Moreover, observe

lim inf
i→N

dW (f(yi),Finm(mBX)) > bm > 0.

Then, we can choose

Fi ∈ Finm+1((m+ 1)BX) \ Finm(mBX), i ∈ N,
so that dW (Fi, f(yi)) → 0. For each i ∈ N, let

Gi = Fi ∪
{
(βn(f(yi))−1 + 2)vn,

(βn(f(yi))−1 + 1)vn + 1
8h(yi) | n < k(f(yi))

}
.

Then, Gi → G as i→∞. Observe that

b−1
m + 2 > ‖(βm(f(yi))−1 + 2)vn‖ = βm(f(yi))−1 + 2

> βm(f(yi))−1 + 7
8

> ‖(βm(f(yi))−1 + 1)vm + 1
8h(yi)‖

> βm(f(yi))−1 + 7
8 > m+ 3

2 .

Since Fi ⊂ (m + 1)BX , it follows that (h(yi))i∈N is convergent. Hence,
(yi)i∈N is convergent because h is a closed embedding. �

8. The relative Wijsman topology

Let X = (X, d) be a separable metric space. For H ⊂ CldW (X) and
Y ⊂ X, we denote H|Y = {A ∈ H | A ⊂ Y }. Without any condition,
we have Fin(X)|Y = Fin(Y ) and Comp(X)|Y = Comp(Y ) as sets. But,
Cld(Y ) = Cld(X)|Y if and only if Y is closed in X. As saw in Example, even
if Y is closed in X, FinW (X)|Y 6= FinW (Y ) nor CldW (X)|Y 6= CldW (Y ) as
spaces.

In this section, we give some sufficient conditions in order that CldW (X)|Y
is an ANR or FinW (X)|Y is homotopy dense in CldW (X)|Y . Note that both
CldW (X)|Y and FinW (X)|Y are Lawson semilattices of CldW (X).

Lemma 8.1. Let X be a separable metric space. For any path-connected
closed subset Y ⊂ X, each A,B ∈ CldW (X)|Y can be connected by a path
γ : I → CldW (X)|Y such that each γ(t) contains A or B.

Proof. It suffices to show that each A ∈ Cld(Y ) can be connected to Y by
a path γ : I → CldW (X) such that A ⊂ γ(t) ⊂ Y for every t ∈ I. Let
{yn | n ∈ N} be dense in Y with y1 ∈ A. For each n ∈ N, we have a
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path λn : [n, n + 1] → Y with λn(n) = yn and λ(n + 1) = yn+1. We define
γ : I → CldW (X) by γ(0) = Y and

γi(t) = A ∪
⋃

n<m

λn([n, n+ 1]) ∪ λm([m, t−1]) for (m+ 1)−1 < t 6 m−1.

It is easy to verify the continuity of γ. �

In the following, the case Y = X is Theorem IV for CldW (X).

Theorem 8.2. Let X be a separable metric space and Y a closed set of X
such that for any finitely many open balls B1, . . . , Bn in X, Y \

⋃n
i=1Bi has

only finitely many path-components, all of which are closed in X. Then, the
space CldW (X)|Y is an ANR.

Proof. By Corollary 5.4, it suffices to show that CldW (X)|Y is locally path-
connected. Let A ∈ CldW (X) and U a neighborhood of A in CldW (X).
Then,

A ∈
⋂
i<k

U−(pi, ri) ∩
⋂
j<l

U+(qj , sj) ⊂ U ,

for some pi, qj ∈ X and ri, sj > 0. Choose ε > 0 so that A ∈ U+(qj , sj + ε)
for every j < l.

Let Y0, . . . , Ym−1 be all path-components of Y \
⋃

j<l B(qj , sj + ε), where
Yi ∩ A 6= ∅ for i < m0 and Yj ∩ A = ∅ for j > m0. Observe that each Yi is
open in Y \

⋃
j<l B(qj , sj + ε) and A is strongly disjoint from

⋃
j<l B(qj , sj +

ε). For each i < m0, we can choose pk+i ∈ Yi ∩ A and rk+i > 0 so that
B(pk+i, rk+i) ∩ Y ⊂ Yi. Since A ⊂

⋃
i<m0

Yi, it follows that
⋃

j>m0
Yi is

covered by open balls which are strongly disjoint from A. It can be assumed
that m0 6 j < m1 if and only if Yj cannot be covered by finite open
balls which are strongly disjoint from A. We can find t0, . . . , tv−1 ∈ X and
δ0, . . . , δv−1 > 0 such that⋃

m16j<m

Yj ⊂
⋃
i<v

B(ti, δi) and A ∈ U+(ti, δi) for each i < v.6

Thus, we have the neighborhood V of A defined by

V =
⋂

i<k+m0

U−(pi, ri) ∩
⋂
j<l

U+(qj , sj + ε) ∩
⋂
i<v

U+(ti, δi) ⊂ U .

It suffices to show that each B ∈ V|Y can be connected to A by a path
in U|Y . Then, B ⊂

⋃
j<m1

Yj and B ∩ Yi ⊃ B ∩B(pk+i, rk+i) 6= ∅ for every
i < m0. By Lemma 8.1, there are paths γi : I → CldW (Yi), i < m0, such
that γi(0) = A∩ Yi, γi(1) = B ∩ Yi and each γi(t) contains A∩ Yi or B ∩ Yi.
Let S = {j > m0 | B ∩ Yj 6= ∅}. For each j ∈ S, take zj ∈ B ∩ Yj and define
B∗ = {zj | j ∈ S}. By Lemma 8.1, we have paths ϕj : I → CldW (Yj), j ∈ S,

6See footnote 3.
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such that ϕj(0) = zj and ϕ(1) = B ∩ Yj . Then, we have a path γ : I → U|Y
from A ∪B∗ to B defined by

γ(t) =
⋃

i<m0

γi(t) ∪
⋃
j∈S

ϕj(t).

For each j ∈ S, we will construct an infinite path ψj : [1,∞) → Yj with
ψj(1) = zj and the following property:

(*) for each n ∈ N, there is some t0 > 0 such that

d(xi, ψj(t)) > d(xi, A)− 1/n for i 6 n and t > t0,

where {xi | i ∈ N} is a countable dense set in X to define the metric dW .
Then, we can define a path ψ : I → V from A to A∪B∗ as follows: ψ(0) = A
and

ψ(t) = A ∪
⋃
j∈S

ψj(t−1) for t > 0.

The continuity of λ at 0 can be verified as follows: For each n ∈ N, we use
(*) to find t0 > 0 so that

d(xi, ψj(t)) > d(xi, A)− 1/n for i 6 n, t > t0 and j ∈ S.

Then, t < t−1
0 implies |d(xi, ψj(t)) − d(xi, A)| < 1/n for i 6 n, hence

dW (ψ(t), A) < 1/n.
Now, for j ∈ S, we construct an infinite path ψj : [1,∞) → Yj . Enumerate

as B1, B2, . . . all open balls of the form B(xi, α), where 0 < α < d(xi, A) and
α ∈ Q. By the assumption, for each n ∈ N, Yj \ (B1 ∪ · · · ∪Bn) has finitely
many path-components Hn

0 , . . . ,H
n
a(n)−1. Let T = {Hn

i | n ∈ N, i < a(n)}.
Since every Bi is strongly disjoint from A, Yj cannot be covered by finitely
many Bi’s, hence T is infinite. Thus, (T,⊃) is a finitely-branching infinite
tree (i.e., each element of T has only finitely many immediate successors).
By König’s lemma, T contains an infinite branch Yj ⊃ H1

i(1) ⊃ H2
i(2) ⊃ · · · .

For each n ∈ N, pick yn ∈ Hn
i(n) and a path fn : [n − 1, n] → Hn−1

i(n−1) such
that fn(n − 1) = yn−1 and fn(n) = yn, where H0

i(0) = Yj and y0 = zj . By
joining all paths f1, f2, . . . , we can obtain a path ψj : [1,+∞) → Yj with
fy(1) = zj .

For each i 6 n, choose αi ∈ Q so that d(xi, A) − 1/n < αi < d(xi, A).
Then we have m ∈ N such that all balls B(x1, α1), . . . ,B(xn, αn) appear in
B0, . . . , Bm−1. For t < 1/m, we have l > m such that l < t−1 6 l + 1,
whence

ψj(t) = fl+1(t−1) ∈ Hn
i(l) ⊂ Yj \ (B(x1, α1) ∪ · · · ∪ B(xn, αn)).

Therefore, d(xi, ψj(t)) > αi > d(xi, A) − 1/n for every i 6 n. Thus ψ
satisfies (*). �

In the above, we use Lemma 6.2 instead of Lemma 8.1 to obtain the
following, in which the case Y = X is Theorem IV for FinW (X):
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Theorem 8.3. Let X be a separable metric space and Y a path-connected
subset of X such that for any finitely many open balls B1, . . . , Bn in X,
Y \

⋃n
i=1Bi has only finitely many path-components which are open in Y \⋃n

i=1Bi. Then, the space FinW (X)|Y is an ANR. �

In the same setting as Theorem 8.2, Theorem 6.3 (or Theorem III) can
be generalized as follows:

Theorem 8.4. Let X be a separable metric space and Y a path-connected
subset of X such that for any finitely many open balls B1, . . . , Bn in X,
Y \

⋃n
i=1Bi has finitely many path-components which are compact or un-

bounded (resp. all are unbounded). Then, FinW (X)|Y is homotopy dense in
CldW (X)|Y and CldW (X)|Y is an ANR (resp. an AR).

The proof of this theorem is left to the readers.
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