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Balance laws for continuum:

∂tρ+ div(ρv) = 0 (1)

∂t(ρv) + div(ρv ⊗ v) = div T + ρf, T = T> (2)

∂t(ρE ) + div(ρE ) + div q = div(Tv) + ρf · v, E :=
|v|2

2
+ e (3)

Stress tensor for general fluid:

T = S− pI, p :=
1

3
tr T (4)

Incompressibility:

div v = 0

Homogeneity:

ρ ≡ const.

Isothermality:

e ≡ const. (5)



Balance laws for continuum:

∂tρ+ div(ρv) = 0 (1)

∂t(ρv) + div(ρv ⊗ v) = div T + ρf, T = T> (2)

∂t(ρE ) + div(ρE ) + div q = div(Tv) + ρf · v, E :=
|v|2

2
+ e (3)

Stress tensor for general fluid:

T = S− pI, p :=
1

3
tr T (4)

Incompressibility:

div v = 0

Homogeneity:

ρ ≡ const.

Isothermality:

e ≡ const. (5)



Balance laws for continuum:

∂tρ+ div(ρv) = 0 (1)

∂t(ρv) + div(ρv ⊗ v) = div T + ρf, T = T> (2)

∂t(ρE ) + div(ρE ) + div q = div(Tv) + ρf · v, E :=
|v|2

2
+ e (3)

Stress tensor for general fluid:

T = S− pI, p :=
1

3
tr T (4)

Incompressibility:

div v = 0

Homogeneity:

ρ ≡ const.

Isothermality:

e ≡ const. (5)



Balance laws for continuum:

∂tρ+ div(ρv) = 0 (1)

∂t(ρv) + div(ρv ⊗ v) = div T + ρf, T = T> (2)

∂t(ρE ) + div(ρE ) + div q = div(Tv) + ρf · v, E :=
|v|2

2
+ e (3)

Stress tensor for general fluid:

T = S− pI, p :=
1

3
tr T (4)

Incompressibility:

div v = 0

Homogeneity:

ρ ≡ const.

Isothermality:

e ≡ const. (5)



Balance laws for continuum:

∂tρ+ div(ρv) = 0 (1)

∂t(ρv) + div(ρv ⊗ v) = div T + ρf, T = T> (2)

∂t(ρE ) + div(ρE ) + div q = div(Tv) + ρf · v, E :=
|v|2

2
+ e (3)

Stress tensor for general fluid:

T = S− pI, p :=
1

3
tr T (4)

Incompressibility:

div v = 0

Homogeneity:

ρ ≡ const.

Isothermality:

e ≡ const. (5)



Balance laws for continuum:

∂tρ+ div(ρv) = 0 (1)

∂t(ρv) + div(ρv ⊗ v) = div T + ρf, T = T> (2)

∂t(ρE ) + div(ρE ) + div q = div(Tv) + ρf · v, E :=
|v|2

2
+ e (3)

Stress tensor for general fluid:

T = S− pI, p :=
1

3
tr T (4)

Incompressibility:

div v = 0

Homogeneity:

ρ ≡ const.

Isothermality:

e ≡ const. (5)



Balance laws for incompressible homogeneous fluid:

div v = 0 (6)

∂tv + div(v ⊗ v) = div T + f (7)

T = S− pI, S = S> (8)

Constitutive equation for the stress tensor:

S(p,D(v)) = ν(p, |D(v)|2)D(v) (9)
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Mathematical properties of pressure-dependent fluids

div v = 0

∂tv + div(v ⊗ v) +∇p = div S(p,D(v)) + f

In Navier-Stokes equations, only ∇p is present ⇒ pressure is given
up to an additive constant.

Here: p itself is in the equations ⇒ its value has to be fixed by
additional input parameter.

Ways of fixing p:
(1) mean value over (sub)domain
(2) boundary condition—prescribe p on some interface



Pressure-dependent fluids in practice

In most of real situations, the fluid viscosity can be considered
independent of the pressure. However, there are certain situations
in which the dependence on the pressure becomes significant, e.g.
in elastohydrodynamics, where the pressure differs in several orders
of magnitude.

Examples of commonly used experimental relations:

ν(p) = ν0 exp(αp) (Barus, 1893),

ν(p) = exp

(
−1.2 + (log ν0 + 1.2)

(
1 +

p

c

)Z
)

(Roelands, 1966).



Particular application: journal bearing lubrication

Simple type of bearing consisting of
2 cylinders and a lubricant filling the
gap in between.

R – outer ring radius
r – inner ring (shaft) radius
e – eccentricity

Wide use: e.g. steam turbines,
centrifugal compressors, pumps and
motors, etc.

r

e

R



Boundary conditions for pressure-dependent fluids

Dirichlet condition

v = vD on ∂Ω

has to be supplemented with
additional constraint fixing the level
of pressure:

 
Ω0

p = p0.

Value of p0 has influence on the
velocity field as well.



Existence results

I Dirichlet b.c., steady-state case (Franta et al. [2005],
Lanzendörfer [2009])

I Navier’s b.c., unsteady case (Buĺıček et al. [2007], Buĺıček and
Fǐserová [2009])

All results consider viscosity which satisfies

(A1) ∂ν(p,|D|2)
∂|D|2 ≈ (1 + |D|2)

r−4
2 , r ∈ (1, 2);

(A2)
∣∣∣∂ν(p,|D|2)

∂p

∣∣∣ ≤ C (1 + |D|2)
r−4

4 ;

e.g.

ν(p, |D|2) = (A + |D|2 + (1 + (αp)2)
1

r−2 )
r−2

2 .



Inflow/outflow conditions

Let ∂Ω be divided into ΓD (wall) and
Γ (inflow/outflow). Prescribing
boundary conditions of the type

v = vD on ΓD ,

pn− Sn = b(v) on Γ,
ΓΓ

the level of pressure will be uniquely determined.



Main result

(A1) ∂S(p,|D|2)
∂D ≈ (1 + |D|2)

r−2
2 , r ∈ (1, 2);

(A2)
∣∣∣∂S(p,|D|2)

∂p

∣∣∣ ≤ C (1 + |D|2)
r−2

4 ;

(A3) for every ϕ ∈ Lγ(Γ):

ˆ
Γ

b(ϕ) ·ϕ ≥ −1

2

ˆ
Γ
(ϕ · n)|ϕ|2.

Theorem (Lanzendörfer and Stebel [2008])

(i) Let (A1)–(A3). Then there exists a weak solution (v, p).
Moreover p is determined uniquely by v.

(ii) For small data there is exactly one weak solution.



Key arguments of the proof

1. A priori estimate of the convective term

ˆ
Ω

div(v ⊗ v) · v =

ˆ
Ω

div v︸︷︷︸
=0

|v|2 +

ˆ
Ω

v · ∇
(
|v|2

2

)
Green

=
1

2

ˆ
Γ
(v · n)|v|2

ˆ
Γ

b(v) · v ≥ −1

2

ˆ
Γ
(v · n)|v|2



Key arguments of the proof II.

2. Uniform presure estimate
The Bogovskii operator (div−1)

B : Lq
0(Ω)→W 1,q

0 (Ω)d

can be extended to

BΓ : Lq(Ω)→W 1,q
ΓD

(Ω);



Examples of inflow/outflow b.c.

Free outflow

1. Nonreflecting conditions of the type

pn− Sn = h(x) +
1

2
(v · n)−v

2. Conditions on the Bernoulli pressure(
p +

1

2
|v|2
)

n− Sn = h(x)



Examples of inflow/outflow b.c. II.

Porous wall/membrane

3. Filtration conditions of the type

p − Sn · n = pout + (c1 + c2|v · n|+ c3|v · n|2)v · n,
v × n = 0

pout . . . . . . given pressure at the outlet
c1, c2, c3. . . coefficients from the generalized Darcy law
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