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Introduction

We consider the flow of an incompressible fluid in a bounded
domain Ω := B \ S ⊂ Rd , where B is a container, S is an obstacle
whose shape is to be optimized and d ∈ {2, 3}.
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Motion of the fluid is described by the system of equations

div v = 0, (1a)

v,t + div (v ⊗ v)− div S(D(v)) +∇p + Cv = f (1b)

in QT := (0,T )× Ω, completed by the Navier slip boundary
condition

(Sn)τ = −avτ , v · n = 0 (1c)

on ΣT := (0,T )× ∂Ω.

S traceless part of the Cauchy stress
D(v) symmetric part of ∇v
C Coriolis force (skew symmetric matrix)
n unit outer normal vector to ∂Ω
vτ tangent part of a vector: vτ := v − (v · n)n
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Cost function

The shape of the obstacle S is to be optimized subject to the work
functional

J(Ω) :=

∫ T

0

∫
∂S

(pI− S)n · v =

∫ T

0

∫
∂S
|v|2.

Our aim is to show that

there exists an optimal shape in a reasonable class of domains;

J is differentiable;

find the shape gradient of J.
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Fluids with shear rate-dependent viscosity

Non-newtonian fluids have applications in many areas of sciences
and industry, e.g.:

hemodynamics, biomechanics, mechanics of geomaterials;

mechanical engineering, polymer chemistry, food industry. . .

Essentially, we deal with stress tensors of the type

S(D(v)) ≈ (κ+ |D(v)|r−2)D(v), κ ∈ {0, 1}, r > 1.

shear-thickening
(r > 2)

newtonian
(r = 2)

shear-thinning
(r < 2)

|D|

|S|
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Boundary conditions for viscous fluids

In general it is not clear what is the right boundary condition for
walls.

In many situations it is reasonable to assume that the fluid
adheres to the wall, i.e. to prescribe no slip: v|∂Ω = 0.

In case of e.g. rough or chemically patterned surfaces some
kind of slip condition is more suitable.

(a) (b) (c)

Velocity profiles: (a) no-slip, (b) partial slip, (c) complete slip.

In this presentation we consider the partial slip

(Sn)τ = −avτ , v · n = 0, a ≡ 1.
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Structural assumptions

We impose the following assumptions on the data:

(A1) S ∈ C2(Rd×d
sym ,Rd×d

sym ), S(0) = 0;

(A2) There exist constants C1,C2,C3 > 0, κ ∈ {0, 1} and r > 1 s.t.

C1(κ+ |A|r−2)|B|2 ≤ S′(A) :: (B⊗ B) ≤ C2(κ+ |A|r−2)|B|2,

|S′′(A)| ≤ C3(κ+ |A|r−3)

for any 0 6= A,B ∈ Rd×d ;

(A3) C ∈ L
5r

5r−8 ((0,T )× B,Rd×d), f ∈ Lr ′((0,T )× B,Rd);

(A4) v0 ∈W1,2(B), div v0 = 0 a.e. in B.
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Properties of S

Monotonicity:

If r > 1 then S is strictly monotone;

If r ≥ 2 then S is strongly monotone, i.e.

(S(A)− S(B)) : (A− B) ≥ C |A− B|r .

Continuity of Nemytskĭı mappings:

The mapping
D 7→ S(D)(t, x)

is continuous from Lr (QT ,Rd×d) to Lr−1(QT ,Rd×d);

The mapping
D 7→ S′(D)(t, x)

is continuous fromLr (QT ,Rd×d) to Lr−2(QT ,Rd×d×d×d).
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Existence of weak solutions

Theorem (Buĺıček, Málek, Rajagopal (2007))

Let r ≥ (d + 2)/2, T > 0 and Ω ∈ C1,1. Then problem (1) has a
unique weak solution

(v, p) ∈
[
L∞(0,T ; L2(Ω)) ∩ Lr (0,T ; W1,r

N (Ω))
]
× Lr ′(0,T ; Lr ′

0 (Ω))

that satisfies div v = 0 a.a. in QT and∫ T

0

[
〈v,t ,φ〉Ω − (v ⊗ v,∇φ)Ω + (S(D(v)),D(φ))Ω

− (p, div φ)Ω + (Cv,φ)Ω +

∫
∂Ω

v · φ
]

=

∫ T

0
(f,φ)Ω

for every φ ∈ Lr (0,T ; W1,r
N (Ω)).

W1,r
N (Ω) := {φ ∈W1,r (Ω); φ · n = 0 on ∂Ω}
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Description of the shape of S

We choose a vector field T ∈ C2(Rd ,Rd) vanishing in the vicinity
of ∂B and define the mapping

y = x + εT(x),

which describes the perturbation of the boundary ∂S . For small
ε > 0 the mapping x 7→ y takes diffeomorphically the region Ω
onto Ωε = B \ Sε where Sε = y(S).

SSε

x

x + εT (x)
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Transformation of functions to Ω

Let (v̄ε, p̄ε) be the solution of problem (1) on (0,T )× Ωε.
Introducing the transformations

vε(t, x) := N>(x)v̄ε(t, y(x)), pε(t, x) := p̄ε(t, y(x)),

where

M(x) := I + εDT(x), g(x) := det M(x), N(x) := g(x)M−1(x),

one can show that the new pair (vε, pε) is the weak solution of the
problem

vε,t + div (vε ⊗ vε)− div S(D(vε)) +∇pε + Cvε = f + Aε,

div vε = 0

in the fixed domain QT := (0,T )× Ω with the same boundary

conditions, where Aε ∈
[
Lr (0,T ; W1,r

N (Ω))
]∗

is certain term of

order ε.
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Shape stability

Proposition

There is a constant C > 0 such that for sufficiently small ε ≥ 0:

sup
t∈(0,T )

‖vε(t)‖2
2 +

∫ T

0

(
‖vε‖r1,r + ‖vε‖2

2,∂Ω + ‖pε‖r ′r ′
)
≤ C .

The whole sequence {(vε, pε)}ε>0 tends to (v, p) as follows:

vε ⇀
∗ v in L∞(0,T ; L2(Ω)),

vε,t ⇀ v,t in Lr ′(0,T ; W−1,r ′

N (Ω)),

pε ⇀ p in Lr ′(QT ),

vε → v in Lr (0,T ; W1,r
N (Ω)) ∩ Lz(r)(QT ) and in L2(ΣT ).

Here z(r) := r d+2
d .
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Existence of optimal shapes

The cost function can be rewritten as follows:

J(Ωε) =

∫ T

0

∫
∂S
|N−>vε|2|Nn|,

from which we see that J is continuous w.r.t. strong convergence
of vε in L2(ΣT ).

This leads to the existence of a minimizing shape in a class of
domains that are uniformly in C1,1.

Jan Stebel Sensitivity analysis of incompressible fluids



Introduction Motivation Formulation in variable domain Formulation in fixed domain Shape stability Differentiability

Estimate of differences

We are going to estimate the differences

(uε, qε) := (
vε − v

ε
,

pε − p

ε
).

which are weak solutions of the problem:

uε,t + div (uε ⊗ v + vε ⊗ uε)− 1

ε
div (S(D(vε))− S(D(v)))

+∇qε + Cuε =
1

ε
Aε,

div uε = 0 in QT .
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Estimate of differences

Proposition

Let κ = 1 and r ≥ (d + 2)/2. Then there is a constant C > 0
independent of ε > 0 such that

sup
t∈(0,T )

‖uε(t)‖2
2 + ‖D(uε)‖2

2,QT
+ ‖uε‖2

2,ΣT
≤ C .

If (d + 2)/2 ≤ r < 4 then we additionally have:∫ T

0
‖qε‖

2r
3r−4

2r
3r−4

+

∫ T

0
‖uε,t‖

2r
3r−4

W
−1, 2r

3r−4
N (Ω)

≤ C .
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Regularity assumptions

We will need that given A′0 ∈ L2(0,T ; W−1,2
N (Ω)), the following

problem has a unique weak solution (v̇, ṗ):

v̇,t + div (v̇ ⊗ v + v ⊗ v̇)− div (S′(D(v))D(v̇)) +∇ṗ + Cv̇ = A′0,

div v̇ = 0

in QT , with the boundary and initial conditions

v̇ · n = 0,
[
(S′(D(v))D(v̇))n

]
τ

= −v̇τ on ΣT ,

v̇(0, ·) = v̇0.

For this reason we require an additional assumption on the
regularity of solutions, namely that

vε, v ∈ L∞(0,T ; W1,∞
N (Ω)) ∩W1,2(0,T ; W−1,2

N (Ω)) (R)

uniformly w.r.t. ε > 0.
The assumption (R) can be guaranteed in terms of the data at
least in the case d = 2 (see e.g. Kaplický (2005)).
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Existence of material derivatives

Theorem

Let the assumptions of the previous proposition hold and (R) be
satisfied. Then

uε ⇀
∗ v̇ in L∞(0,T ; L2(Ω)),

uε ⇀ v̇ in L2(0,T ; W1,2
N (Ω)),

uε → v̇ strongly in Lz(2)(QT ) and in L2(ΣT ),

qε ⇀ ṗ in L2(QT ),

uε,t ⇀ v̇,t in L2(W−1,2
N (Ω)),

Aε

ε
⇀ A′0 in L2(0,T ; W−1,2

N (Ω)).

Here (v̇, ṗ) is the material derivative of (v, p).
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Shape derivative of cost function

Recall that the cost function can be rewritten as follows:

J(Ωε) :=

∫ T

0

∫
∂Sε

|v̄ε|2 = J (ε, vε),

where

J (ε,w) :=

∫ T

0

∫
∂S
|N(ε)−>w|2|N(ε)n|.
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Theorem

The shape derivative of the cost function is given by

dJ

dε

∣∣∣∣
ε=0

= Je(T) + Jv(v̇),

where

Je(T) :=

∫ T

0

∫
∂S

((n · N′(T)n)|v|2 − 2N′(T)v · v),

Jv(v̇) := 2

∫ T

0

∫
∂S

v · v̇,

N′(T) :=
dN
dε

∣∣∣∣
ε=0

= (div T)I− DT.
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Conclusion

We have shown:

existence of material derivatives for a class of incompressible
fluids,

existence of optimal shapes,

differentiability of the work functional.

The result:

is not restricted to short time interval or small data,

depends on the available regularity, in particular it is restricted
to 2D.

Thank you for attention!
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