Shape sensitivity analysis of time-dependent flows of shear-thickening fluids

Jan Stebel

Institute of Mathematics, Academy of Sciences, Prague

Joint work with Jan Sokołowski (Univ. Nancy)

Advances in Optimization and Related Topics Barcelona, November 30, 2010

Introduction

We consider the flow of an incompressible fluid in a bounded domain $\Omega := B \setminus S \subset \mathbb{R}^d$, where B is a container, S is an obstacle whose shape is to be optimized and $d \in \{2, 3\}$.

Motion of the fluid is described by the system of equations

$$\mathsf{div}\,\mathbf{v}=\mathbf{0},\qquad (\mathsf{1a})$$

$$\mathbf{v}_{,t} + \operatorname{div} \left(\mathbf{v} \otimes \mathbf{v}
ight) - \operatorname{div} \mathbb{S}(\mathbb{D}(\mathbf{v})) +
abla
ho + \mathbb{C} \mathbf{v} = \mathbf{f}$$
 (1b)

in $Q_T := (0, T) \times \Omega$, completed by the Navier slip boundary condition

$$(\mathbb{S}\mathbf{n})_{\tau} = -a\mathbf{v}_{\tau}, \ \mathbf{v} \cdot \mathbf{n} = 0 \tag{1c}$$

on $\Sigma_T := (0, T) \times \partial \Omega$.

- S traceless part of the Cauchy stress
- $\mathbb{D}(\mathbf{v})$ symmetric part of $\nabla \mathbf{v}$
- \mathbb{C} Coriolis force (skew symmetric matrix)
- **n** unit outer normal vector to $\partial \Omega$
- $\mathbf{v}_{ au}$ tangent part of a vector: $\mathbf{v}_{ au} := \mathbf{v} (\mathbf{v} \cdot \mathbf{n})\mathbf{n}$

Cost function

The shape of the obstacle S is to be optimized subject to the work functional

$$J(\Omega) := \int_0^T \int_{\partial S} (p\mathbb{I} - \mathbb{S}) \mathbf{n} \cdot \mathbf{v} = \int_0^T \int_{\partial S} |\mathbf{v}|^2.$$

Our aim is to show that

- there exists an optimal shape in a reasonable class of domains;
- *J* is differentiable;
- find the shape gradient of J.

Fluids with shear rate-dependent viscosity

Non-newtonian fluids have applications in many areas of sciences and industry, e.g.:

- hemodynamics, biomechanics, mechanics of geomaterials;
- mechanical engineering, polymer chemistry, food industry...

Essentially, we deal with stress tensors of the type

 $\mathbb{S}(\mathbb{D}(\mathbf{v})) \approx (\kappa + |\mathbb{D}(\mathbf{v})|^{r-2})\mathbb{D}(\mathbf{v}), \ \kappa \in \{0,1\}, \ r > 1.$

Boundary conditions for viscous fluids

In general it is not clear what is the right boundary condition for walls.

- In many situations it is reasonable to assume that the fluid adheres to the wall, i.e. to prescribe no slip: $\mathbf{v}_{|\partial\Omega} = \mathbf{0}$.
- In case of e.g. rough or chemically patterned surfaces some kind of slip condition is more suitable.

Velocity profiles: (a) no-slip, (b) partial slip, (c) complete slip.

In this presentation we consider the partial slip

$$(\mathbb{S}\mathbf{n})_{\tau} = -a\mathbf{v}_{\tau}, \ \mathbf{v}\cdot\mathbf{n} = \mathbf{0}, \ a \equiv 1.$$

Structural assumptions

We impose the following assumptions on the data:

(A1) $\mathbb{S} \in \mathcal{C}^2(\mathbb{R}^{d \times d}_{sym}, \mathbb{R}^{d \times d}_{sym})$, $\mathbb{S}(0) = 0$; (A2) There exist constants $C_1, C_2, C_3 > 0$, $\kappa \in \{0, 1\}$ and r > 1 s.t. $C_1(\kappa + |\mathbb{A}|^{r-2})|\mathbb{B}|^2 \leq \mathbb{S}'(\mathbb{A}) :: (\mathbb{B} \otimes \mathbb{B}) \leq C_2(\kappa + |\mathbb{A}|^{r-2})|\mathbb{B}|^2$, $|\mathbb{S}''(\mathbb{A})| \leq C_3(\kappa + |\mathbb{A}|^{r-3})$ for any $0 \neq \mathbb{A}, \mathbb{B} \in \mathbb{R}^{d \times d}$; (A3) $\mathbb{C} \in L^{\frac{5r}{5r-8}}((0, T) \times B, \mathbb{R}^{d \times d})$, $\mathbf{f} \in \mathbf{L}^{r'}((0, T) \times B, \mathbb{R}^d)$;

(A4) $\mathbf{v}_0 \in \mathbf{W}^{1,2}(B)$, div $\mathbf{v}_0 = 0$ a.e. in *B*.

Properties of \mathbb{S}

Monotonicity:

- If r > 1 then \mathbb{S} is strictly monotone;
- If $r \ge 2$ then \mathbb{S} is strongly monotone, i.e.

$$(\mathbb{S}(\mathbb{A}) - \mathbb{S}(\mathbb{B})) : (\mathbb{A} - \mathbb{B}) \ge C |\mathbb{A} - \mathbb{B}|^r.$$

Continuity of Nemytskii mappings:

• The mapping

$$\mathbb{D}\mapsto\mathbb{S}(\mathbb{D})(t,\mathsf{x})$$

is continuous from $L^r(Q_T, \mathbb{R}^{d \times d})$ to $L^{r-1}(Q_T, \mathbb{R}^{d \times d})$;

The mapping

$$\mathbb{D}\mapsto \mathbb{S}'(\mathbb{D})(t,{\sf x})$$

is continuous from $L^r(Q_T, \mathbb{R}^{d \times d})$ to $L^{r-2}(Q_T, \mathbb{R}^{d \times d \times d \times d})$.

Existence of weak solutions

Theorem (Bulíček, Málek, Rajagopal (2007))

Let $r \ge (d+2)/2$, T > 0 and $\Omega \in C^{1,1}$. Then problem (1) has a unique weak solution $(\mathbf{v}, p) \in \left[L^{\infty}(0, T; \mathbf{L}^{2}(\Omega)) \cap L^{r}(0, T; \mathbf{W}_{N}^{1,r}(\Omega))\right] \times L^{r'}(0, T; L_{0}^{r'}(\Omega))$ that satisfies div $\mathbf{v} = 0$ a.a. in Q_{T} and

$$\int_0^T \left[\langle \mathbf{v}_{,t}, \phi \rangle_\Omega - (\mathbf{v} \otimes \mathbf{v}, \nabla \phi)_\Omega + (\mathbb{S}(\mathbb{D}(\mathbf{v})), \mathbb{D}(\phi))_\Omega - (p, \operatorname{div} \phi)_\Omega + (\mathbb{C}\mathbf{v}, \phi)_\Omega + \int_{\partial\Omega} \mathbf{v} \cdot \phi \right] = \int_0^T (\mathbf{f}, \phi)_\Omega$$

for every $\phi \in L^r(0, T; \mathbf{W}^{1,r}_N(\Omega))$.

$$\mathbf{W}^{1,r}_N(\Omega) := \{ \boldsymbol{\phi} \in \mathbf{W}^{1,r}(\Omega); \ \boldsymbol{\phi} \cdot \mathbf{n} = 0 \text{ on } \partial \Omega \}$$

Description of the shape of S

We choose a vector field $\mathbf{T} \in \mathcal{C}^2(\mathbb{R}^d, \mathbb{R}^d)$ vanishing in the vicinity of ∂B and define the mapping

$$\mathbf{y} = \mathbf{x} + \varepsilon \mathbf{T}(\mathbf{x}),$$

which describes the perturbation of the boundary ∂S . For small $\varepsilon > 0$ the mapping $\mathbf{x} \mapsto \mathbf{y}$ takes diffeomorphically the region Ω onto $\Omega_{\varepsilon} = B \setminus S_{\varepsilon}$ where $S_{\varepsilon} = \mathbf{y}(S)$.

Transformation of functions to Ω

Let $(\bar{\mathbf{v}}_{\varepsilon}, \bar{p}_{\varepsilon})$ be the solution of problem (1) on $(0, T) \times \Omega_{\varepsilon}$. Introducing the transformations

$$oldsymbol{v}_arepsilon(t,oldsymbol{x}) := \mathbb{N}^ op(oldsymbol{x})oldsymbol{ar{v}}_arepsilon(t,oldsymbol{y}(oldsymbol{x})), \qquad oldsymbol{
ho}_arepsilon(t,oldsymbol{x}) := ar{oldsymbol{
ho}}_arepsilon(t,oldsymbol{y}(oldsymbol{x})),$$

where

$$\mathbb{M}(\mathbf{x}) := \mathbb{I} + \varepsilon D \mathbf{T}(\mathbf{x}), \ \mathfrak{g}(\mathbf{x}) := \det \mathbb{M}(\mathbf{x}), \ \mathbb{N}(\mathbf{x}) := \mathfrak{g}(\mathbf{x}) \mathbb{M}^{-1}(\mathbf{x}),$$

one can show that the new pair $(\mathbf{v}_{\varepsilon}, p_{\varepsilon})$ is the weak solution of the problem

$$\begin{split} \mathbf{v}_{\varepsilon,t} + \operatorname{div} \left(\mathbf{v}_{\varepsilon} \otimes \mathbf{v}_{\varepsilon} \right) - \operatorname{div} \mathbb{S}(\mathbb{D}(\mathbf{v}_{\varepsilon})) + \nabla p_{\varepsilon} + \mathbb{C} \mathbf{v}_{\varepsilon} = \mathbf{f} + \mathbf{A}_{\varepsilon}, \\ \operatorname{div} \mathbf{v}_{\varepsilon} = \mathbf{0} \end{split}$$

in the fixed domain $Q_{\mathcal{T}} := (0, \mathcal{T}) \times \Omega$ with the same boundary conditions, where $\mathbf{A}_{\varepsilon} \in \left[L^{r}(0, \mathcal{T}; \mathbf{W}_{N}^{1, r}(\Omega))\right]^{*}$ is certain term of order ε .

Transformation of functions to Ω

Let $(\bar{\mathbf{v}}_{\varepsilon}, \bar{p}_{\varepsilon})$ be the solution of problem (1) on $(0, T) \times \Omega_{\varepsilon}$. Introducing the transformations

$$oldsymbol{v}_arepsilon(t,oldsymbol{x}) := \mathbb{N}^ op(oldsymbol{x})oldsymbol{ar{v}}_arepsilon(t,oldsymbol{y}(oldsymbol{x})), \qquad p_arepsilon(t,oldsymbol{x}) := ar{p}_arepsilon(t,oldsymbol{y}(oldsymbol{x})),$$

where

$$\mathbb{M}(\mathbf{x}) := \mathbb{I} + \varepsilon D \mathbf{T}(\mathbf{x}), \ \mathfrak{g}(\mathbf{x}) := \det \mathbb{M}(\mathbf{x}), \ \mathbb{N}(\mathbf{x}) := \mathfrak{g}(\mathbf{x}) \mathbb{M}^{-1}(\mathbf{x}),$$

one can show that the new pair $(\mathbf{v}_{\varepsilon}, p_{\varepsilon})$ is the weak solution of the problem

$$\begin{split} \mathbf{v}_{\varepsilon,t} + \operatorname{div}\left(\mathbf{v}_{\varepsilon}\otimes\mathbf{v}_{\varepsilon}\right) - \operatorname{div}\mathbb{S}(\mathbb{D}(\mathbf{v}_{\varepsilon})) + \nabla p_{\varepsilon} + \mathbb{C}\mathbf{v}_{\varepsilon} = \mathbf{f} + \mathbf{A}_{\varepsilon},\\ \operatorname{div}\mathbf{v}_{\varepsilon} = \mathbf{0} \end{split}$$

in the fixed domain $Q_{\mathcal{T}} := (0, \mathcal{T}) \times \Omega$ with the same boundary conditions, where $\mathbf{A}_{\varepsilon} \in \left[L^{r}(0, \mathcal{T}; \mathbf{W}_{N}^{1, r}(\Omega))\right]^{*}$ is certain term of order ε .

Shape stability

Proposition

There is a constant C > 0 such that for sufficiently small $\varepsilon \ge 0$:

$$\sup_{t\in(0,T)} \|\mathbf{v}_{\varepsilon}(t)\|_{2}^{2} + \int_{0}^{T} \left(\|\mathbf{v}_{\varepsilon}\|_{1,r}^{r} + \|\mathbf{v}_{\varepsilon}\|_{2,\partial\Omega}^{2} + \|p_{\varepsilon}\|_{r'}^{r'} \right) \leq C.$$

The whole sequence $\{(\mathbf{v}_{\varepsilon}, p_{\varepsilon})\}_{\varepsilon>0}$ tends to (\mathbf{v}, p) as follows:

$$\begin{split} \mathbf{v}_{\varepsilon} &\rightharpoonup^{*} \mathbf{v} & \text{ in } L^{\infty}(0, T; \mathbf{L}^{2}(\Omega)), \\ \mathbf{v}_{\varepsilon,t} &\rightharpoonup \mathbf{v}_{,t} & \text{ in } L^{r'}(0, T; \mathbf{W}_{N}^{-1,r'}(\Omega)), \\ p_{\varepsilon} &\rightharpoonup p & \text{ in } L^{r'}(Q_{T}), \\ \mathbf{v}_{\varepsilon} &\rightarrow \mathbf{v} & \text{ in } L^{r}(0, T; \mathbf{W}_{N}^{1,r}(\Omega)) \cap \mathbf{L}^{z(r)}(Q_{T}) \text{ and in } \mathbf{L}^{2}(\Sigma_{T}). \end{split}$$

Here $z(r) := r \frac{d+2}{d}$.

Existence of optimal shapes

The cost function can be rewritten as follows:

$$J(\Omega_{arepsilon}) = \int_{0}^{T} \int_{\partial \mathcal{S}} |\mathbb{N}^{- op} \mathbf{v}_{arepsilon}|^{2} |\mathbb{N} \mathbf{n}|,$$

from which we see that J is continuous w.r.t. strong convergence of \mathbf{v}_{ε} in $\mathbf{L}^{2}(\Sigma_{T})$.

This leads to the existence of a minimizing shape in a class of domains that are uniformly in $C^{1,1}$.

Estimate of differences

We are going to estimate the differences

$$(\mathbf{u}_{\varepsilon},q_{\varepsilon}):=(rac{\mathbf{v}_{arepsilon}-\mathbf{v}}{arepsilon},rac{p_{arepsilon}-p}{arepsilon}).$$

which are weak solutions of the problem:

$$egin{aligned} \mathbf{u}_{arepsilon,t} + \operatorname{div}\left(\mathbf{u}_arepsilon\otimes\mathbf{v} + \mathbf{v}_arepsilon\otimes\mathbf{u}_arepsilon
ight) - rac{1}{arepsilon}\operatorname{div}\left(\mathbb{S}(\mathbb{D}(\mathbf{v}_arepsilon)) - \mathbb{S}(\mathbb{D}(\mathbf{v}))
ight) \ &+
abla q_arepsilon + \mathbb{C}\mathbf{u}_arepsilon = rac{1}{arepsilon}\mathcal{A}_arepsilon, \end{aligned}$$

div $\mathbf{u}_{\varepsilon} = 0$ in Q_T .

Estimate of differences

Proposition

Let $\kappa = 1$ and $r \ge (d+2)/2$. Then there is a constant C > 0 independent of $\varepsilon > 0$ such that

$$\sup_{t\in(0,\mathcal{T})} \|\mathbf{u}_{\varepsilon}(t)\|_2^2 + \|\mathbb{D}(\mathbf{u}_{\varepsilon})\|_{2,Q_{\mathcal{T}}}^2 + \|\mathbf{u}_{\varepsilon}\|_{2,\Sigma_{\mathcal{T}}}^2 \leq C.$$

If $(d+2)/2 \le r < 4$ then we additionally have:

$$\int_0^T \|q_\varepsilon\|_{\frac{2r}{3r-4}}^{\frac{2r}{3r-4}} + \int_0^T \|\mathbf{u}_{\varepsilon,t}\|_{\mathbf{W}_N^{-1,\frac{2r}{3r-4}}(\Omega)}^{\frac{2r}{3r-4}} \leq C.$$

Regularity assumptions

We will need that given $\mathbf{A}'_0 \in L^2(0, T; \mathbf{W}_N^{-1,2}(\Omega))$, the following problem has a unique weak solution $(\dot{\mathbf{v}}, \dot{p})$:

$$\begin{split} \dot{\mathbf{v}}_{,t} + \operatorname{div}\left(\dot{\mathbf{v}}\otimes\mathbf{v} + \mathbf{v}\otimes\dot{\mathbf{v}}\right) - \operatorname{div}\left(\mathbb{S}'(\mathbb{D}(\mathbf{v}))\mathbb{D}(\dot{\mathbf{v}})\right) + \nabla\dot{p} + \mathbb{C}\dot{\mathbf{v}} = \mathbf{A}'_0,\\ \operatorname{div}\dot{\mathbf{v}} = \mathbf{0} \end{split}$$

in Q_T , with the boundary and initial conditions

$$\begin{split} \dot{\boldsymbol{\mathsf{v}}} \cdot \boldsymbol{\mathsf{n}} &= \boldsymbol{\mathsf{0}}, \; \left[(\mathbb{S}'(\mathbb{D}(\boldsymbol{\mathsf{v}}))\mathbb{D}(\dot{\boldsymbol{\mathsf{v}}}))\boldsymbol{\mathsf{n}} \right]_{\tau} = -\dot{\boldsymbol{\mathsf{v}}}_{\tau} \; \text{on} \; \boldsymbol{\Sigma}_{\mathcal{T}}, \\ & \dot{\boldsymbol{\mathsf{v}}}(\boldsymbol{\mathsf{0}}, \cdot) = \dot{\boldsymbol{\mathsf{v}}}_{\boldsymbol{\mathsf{0}}}. \end{split}$$

For this reason we require an additional assumption on the regularity of solutions, namely that

$$\mathbf{v}_{\varepsilon}, \mathbf{v} \in L^{\infty}(0, T; \mathbf{W}_{N}^{1,\infty}(\Omega)) \cap \mathbf{W}^{1,2}(0, T; \mathbf{W}_{N}^{-1,2}(\Omega))$$
(R)

uniformly w.r.t. $\varepsilon > 0$. The assumption (R) can be guaranteed in terms of the data at least in the case d = 2 (see e.g. Kaplický (2005)).

Regularity assumptions

We will need that given $\mathbf{A}'_0 \in L^2(0, T; \mathbf{W}_N^{-1,2}(\Omega))$, the following problem has a unique weak solution $(\dot{\mathbf{v}}, \dot{p})$:

$$\begin{split} \dot{\mathbf{v}}_{,t} + \operatorname{div}\left(\dot{\mathbf{v}} \otimes \mathbf{v} + \mathbf{v} \otimes \dot{\mathbf{v}}\right) - \operatorname{div}\left(\mathbb{S}'(\mathbb{D}(\mathbf{v}))\mathbb{D}(\dot{\mathbf{v}})\right) + \nabla \dot{p} + \mathbb{C}\dot{\mathbf{v}} = \mathbf{A}'_0,\\ \operatorname{div}\dot{\mathbf{v}} = \mathbf{0} \end{split}$$

in Q_T , with the boundary and initial conditions

$$\begin{split} \dot{\mathbf{v}} \cdot \mathbf{n} &= 0, \ \left[(\mathbb{S}'(\mathbb{D}(\mathbf{v}))\mathbb{D}(\dot{\mathbf{v}}))\mathbf{n} \right]_{\tau} = -\dot{\mathbf{v}}_{\tau} \text{ on } \boldsymbol{\Sigma}_{\mathcal{T}}, \\ \dot{\mathbf{v}}(0, \cdot) &= \dot{\mathbf{v}}_{0}. \end{split}$$

For this reason we require an additional assumption on the regularity of solutions, namely that

$$\mathbf{v}_{\varepsilon}, \mathbf{v} \in L^{\infty}(0, T; \mathbf{W}_{N}^{1,\infty}(\Omega)) \cap \mathbf{W}^{1,2}(0, T; \mathbf{W}_{N}^{-1,2}(\Omega))$$
(R)

uniformly w.r.t. $\varepsilon > 0$. The assumption (R) can be guaranteed in terms of the data at least in the case d = 2 (see e.g. Kaplický (2005)).

Existence of material derivatives

Theorem

Let the assumptions of the previous proposition hold and (R) be satisfied. Then

$u_arepsilon \rightharpoonup^* \dot{v}$	in $L^{\infty}(0,T;\mathbf{L}^{2}(\Omega)),$
$\mathbf{u}_arepsilon ightarrow \dot{\mathbf{v}}$	in $L^{2}(0, T; \mathbf{W}_{N}^{1,2}(\Omega)),$
$\mathbf{u}_arepsilon ightarrow \dot{\mathbf{v}}$	strongly in $L^{z(2)}(Q_T)$ and in $L^2(\Sigma_T)$
$q_arepsilon ightarrow \dot{p}$	in $L^2(Q_T)$,
$\mathbf{u}_{arepsilon,t} ightarrow \dot{\mathbf{v}}_{,t}$	in $L^2(\mathbf{W}_N^{-1,2}(\Omega)),$
$\frac{\mathbf{A}_{\varepsilon}}{\varepsilon} \rightharpoonup \mathbf{A}_0'$	in $L^{2}(0, T; \mathbf{W}_{N}^{-1,2}(\Omega)).$

Here $(\dot{\mathbf{v}}, \dot{p})$ is the material derivative of (\mathbf{v}, p) .

Shape derivative of cost function

Recall that the cost function can be rewritten as follows:

$$J(\Omega_{arepsilon}) := \int_0^T \int_{\partial S_{arepsilon}} |ar{\mathbf{v}}_{arepsilon}|^2 = \mathcal{J}(arepsilon, \mathbf{v}_{arepsilon}),$$

where

$$\mathcal{J}(arepsilon, \mathbf{w}) \coloneqq \int_0^T \int_{\partial S} |\mathbb{N}(arepsilon)^{- op} \mathbf{w}|^2 |\mathbb{N}(arepsilon) \mathbf{n}|.$$

Theorem

The shape derivative of the cost function is given by

$$\left.\frac{\mathrm{d}J}{\mathrm{d}\varepsilon}\right|_{\varepsilon=0} = J_{\mathrm{e}}(\mathbf{T}) + J_{\mathrm{v}}(\dot{\mathbf{v}}),$$

where

$$J_{e}(\mathbf{T}) := \int_{0}^{T} \int_{\partial S} ((\mathbf{n} \cdot \mathbb{N}'(\mathbf{T})\mathbf{n})|\mathbf{v}|^{2} - 2\mathbb{N}'(\mathbf{T})\mathbf{v} \cdot \mathbf{v}),$$
$$J_{\mathbf{v}}(\dot{\mathbf{v}}) := 2 \int_{0}^{T} \int_{\partial S} \mathbf{v} \cdot \dot{\mathbf{v}},$$
$$\mathbb{N}'(\mathbf{T}) := \left. \frac{\mathrm{d}\mathbb{N}}{\mathrm{d}\varepsilon} \right|_{\varepsilon=0} = (\operatorname{div}\mathbf{T})\mathbb{I} - D\mathbf{T}.$$

Conclusion

We have shown:

- existence of material derivatives for a class of incompressible fluids,
- existence of optimal shapes,
- differentiability of the work functional.

The result:

- is not restricted to short time interval or small data,
- depends on the available regularity, in particular it is restricted to 2D.

Thank you for attention!

Conclusion

We have shown:

- existence of material derivatives for a class of incompressible fluids,
- existence of optimal shapes,
- differentiability of the work functional.

The result:

- is not restricted to short time interval or small data,
- depends on the available regularity, in particular it is restricted to 2D.

Thank you for attention!